October 2007 HYB18H1G321AF–10/11/14 GDDR3 Graphics RAM 1-Gbit GDDR3 Graphics RAM RoHS compliant Internet Data Sheet Rev. 0.92 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 HYB18H1G321AF–10/11/14 Revision History: 2007-10, Rev. 0.92 Page Subjects (major changes since last revision) All tWR changed from 14 to 13 tRP at Speed Bin -10 is changed from 13 to 14 IDD Values were added. 39 36 Previous Revision: Rev. 0.91, 2007-08-08 All Typo changes. Previous Revision: Rev. 0.80, 2007-07-10 All Adapted internet editition We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] qag_techdoc_rev411 / 3.31 QAG / 2007-01-22 06122007-MW7D-3G3M 2 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 1 Overview This chapter lists all main features of the product family HYB18H1G321AF–10/11/14 and the ordering information. 1.1 Features • 1.8 V VDDQ IO voltage • 1.8 V VDD core voltage • Monolithic 1Gbit GDDR3 with an internally programmable organization of either two separate 512MBit memories (2048 K x 32 I/O x 8 banks) with separate Chip Select, or one 1Gb memory (4096 K x 32 I/O x 8 banks) • Two CS: 4096 rows and 512 columns (128 burst start locations) per bank – One CS: 8192 rows and 512 columns (128 burst start locations) per bank • Differential clock inputs (CLK and CLK) • CAS latencies of 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 • Write latencies of 3, 4, 5, 6, 7 • Burst sequence with length of 4, 8 • 4n pre fetch • Short RAS to CAS timing for Writes • tRAS Lockout support • tWR programmable for Writes with Auto-Precharge • Data mask for write commands • Single ended READ strobe (RDQS) per byte. RDQS edgealigned with READ data • Single ended WRITE strobe (WDQS) per byte. WDQS center-aligned with WRITE data • DLL aligns RDQS and DQ transitions with Clock • Programmable IO interface including on chip termination (ODT) • Autoprecharge option with concurrent auto precharge support • 8k Refresh (32ms) • Autorefresh and Self Refresh • PG-TFBGA-136 package • Calibrated output drive. Active termination support • RoHS Compliant Product 1) TABLE 1 Ordering Information Part Number1) Organization Clock (MHz) Package HYB18H1G321AF–10/11/14 ×32 1000 @CL12 PG-TFBGA-136 700 @CL11 900 @CL11 1) HYB: designator for memory components 18H: VDDQ = 1.8V 1G: 1 Gbit 32: x32 organization A: Product Revision F: Lead and Halogen-Free 1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers. Rev. 0.92, 2007-10 06122007-MW7D-3G3M 3 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 1.2 Description The Qimonda 1-Gbit GDDR3 Graphics RAM is a high speed memory device, designed for high bandwidth intensive applications like PC graphics systems. The chip is programmable into two different configurations. In the default mode the architecture is organized as two 512 Mbit memories of 8 banks, each (two CS mode). In an alternate configuration, it behaves as a conventional, 8-bank 1 Gbit DRAM (one CS mode). Note that at 1000 MHz speed grade only one CS mode is supported. HYB18H1G321AF–10/11/14 uses a double data rate interface and a 4n-pre fetch architecture. The GDDR3 interface transfers two 32 bit wide data words per clock cycle to/from the I/O pins. Corresponding to the 4n-pre fetch a single write or read access consists of a 128 bit wide, one-clock-cycle data transfer at the internal memory core and four corresponding 32 bit wide, onehalf-clock-cycle data transfers at the I/O pins. Single-ended unidirectional Read and Write Data strobes are transmitted simultaneously with Read and Write data respectively in order to capture data properly at the receivers of both the Graphics SDRAM and the controller. Data strobes are organized per byte of the 32 bit wide interface. For read commands the RDQS are edge-aligned with data, and the WDQS are centeraligned with data for write commands. The HYB18H1G321AF–10/11/14 operates from a differential clock (CLK and CLK). Commands (addresses and control signals) are registered at every positive edge of CLK. Input data is registered on both edges of WDQS, and output data is referenced to both edges of RDQS. In this document references to “the positive edge of CLK” imply the crossing of the positive edge of CLK and the negative edge of CLK. Similarly, the “negative edge of CLK” refers to the crossing of the negative edge of CLK and the positive edge of CLK. References to RDQS are to be interpreted as any or all RDQS<3:0>. WDQS, DM and DQ should be interpreted in a similar fashion. Read and write accesses to the HYB18H1G321AF–10/11/14 are burst oriented. The burst length is fixed to 4 and 8 and the two least significant bits of the burst address are “Don’t Care” and internally set to LOW. Accesses begin with the registration of an ACTIVATE command, which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVATE command are used to select the bank and the row to be accessed. The address bits registered coincident with the READ or WRITE command are used to select the bank and the column location for the burst access. In two CS mode, each of the 2 x 8 banks consists of 4096 row locations and 512 column locations. In one CS mode, the number of row locations doubles to 8192 rows while the number of column location remains unchanged at 512 columns. An AUTO PRECHARGE function can be combined with READ and WRITE to provide a self-timed row precharge that is initiated at the end of the burst access. The pipe lined, multibank architecture of the HYB18H1G321AF–10/11/14 allows for concurrent operation, thereby providing high effective bandwidth by hiding row precharge and activation time. The “On Die Termination” interface (ODT) is optimized for high frequency digital data transfers and is internally controlled. The termination resistor value can be set using an external ZQ resistor or disabled through the Extended Mode Register. The output driver impedance can be set using the Extended Mode Register. It can either be set to ZQ / 6 (auto calibration) or to 35, 40 or 45 Ohms. Auto Refresh and Power Down with Self Refresh operations are supported. An industrial standard PG-TFBGA-136 package is used which enables ultra high speed data transfer rates and a simple upgrade path from former DDR Graphics SDRAM products. Rev. 0.92, 2007-10 06122007-MW7D-3G3M 4 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 2 Configuration FIGURE 1 Ballout 1Gbit GDDR3 Graphics RAM in 1-CS mode in non Merged Mode(Top View; MF = Low) 9''4 9'' 966 =4 9664 '4 '4 9''4 '4 '4 $ 0) 966 9'' 9''4 9664 % 9664 '4 '4 9664 9''4 & 9''4 '4 '4 9''4 9664 :'46 5'46 9664 ' 9664 5'46 :'46 9664 9''4 '4 '0 9''4 ( 9''4 '0 '4 9''4 9'' '4 '4 &$6 ) &6 '4 '4 9'' 966 9664 '4 %$ * %$ '4 9664 966 95() $ 5$6 &.( + :( %$ $ 95() 966 $ 5$5 9''4 - 9''4 &. &. 966 9'' $ $ $ . $ $ $$3 9'' 966 9664 '4 $ / $ '4 9664 966 9'' '4 '4 $ 0 $ '4 '4 9'' 9''4 '4 '0 9''4 1 9''4 '0 '4 9''4 9664 :'46 5'46 9664 3 9664 5'46 :'46 9664 9''4 '4 '4 9''4 5 9''4 '4 '4 9''4 9664 '4 '4 9664 7 9664 '4 '4 9664 9''4 9'' 966 6(1 9 5(6(7 966 9'' 9''4 Rev. 0.92, 2007-10 06122007-MW7D-3G3M 5 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 FIGURE 2 Ballout 1Gbit GDDR3 Graphics RAM in 2-CS mode in non Merged Mode(Top View; MF = Low) 9''4 9'' 966 =4 9664 '4 '4 9''4 '4 '4 $ 0) 966 9'' 9''4 9664 % 9664 '4 '4 9664 9''4 & 9''4 '4 '4 9''4 9664 :'46 5'46 9664 ' 9664 5'46 :'46 9664 9''4 '4 '0 9''4 ( 9''4 '0 '4 9''4 9'' '4 '4 &$6 ) &6 '4 '4 9'' 966 9664 '4 %$ * %$ '4 9664 966 95() $ 5$6 &.( + :( %$ $ 95() 966 5$5 &6 9''4 - 9''4 &. &. 966 9'' $ $ $ . $ $ $$3 9'' 966 9664 '4 $ / $ '4 9664 966 9'' '4 '4 $ 0 $ '4 '4 9'' 9''4 '4 '0 9''4 1 9''4 '0 '4 9''4 9664 :'46 5'46 9664 3 9664 5'46 :'46 9664 9''4 '4 '4 9''4 5 9''4 '4 '4 9''4 9664 '4 '4 9664 7 9664 '4 '4 9664 9''4 9'' 966 6(1 9 5(6(7 966 9'' 9''4 Rev. 0.92, 2007-10 06122007-MW7D-3G3M 6 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 FIGURE 3 Ballout 1Gbit GDDR3 Graphics RAM in Merged Mode 9''4 9'' 966 =4 9664 '4 '4 9''4 '4 '4 $ 0) 966 9'' 9''4 9664 % 9664 '4 '4 9664 9''4 & 9''4 '4 '4 9''4 9664 :'46 5'46 9664 ' 9664 5'46 :'46 9664 9''4 '4 '0 9''4 ( 9''4 '0 '4 9''4 9'' '4 '4 &$6 ) &6 '4 '4 9'' 966 9664 '4 %$ * %$ '4 9664 966 95() $ 5$6 &.( + :( %$ $ 95() 966 5)8 $ &6 9''4 - 9''4 &. &. 966 9'' $ $ $ . $ $ $$3 9'' 966 9664 '4 $ / $ '4 9664 966 9'' '4 '4 $ 0 $ '4 '4 9'' 9''4 '4 '0 9''4 1 9''4 '0 '4 9''4 9664 :'46 5'46 9664 3 9664 5'46 :'46 9664 9''4 '4 '4 9''4 5 9''4 '4 '4 9''4 9664 '4 '4 9664 7 9664 '4 '4 9664 9''4 9'' 966 6(1 9 5(6(7 966 9'' 9''4 %DOORXWBB*ELWB*''5BPHUJHGBPRGHYVG Rev. 0.92, 2007-10 06122007-MW7D-3G3M 7 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 2.1 Ball Definition and Description TABLE 2 Ball Description Ball Type Detailed Function CLK, CLK Input Clock: CLK and CLK are differential clock inputs. Address and command inputs are latched on the positive edge of CLK. Graphics SDRAM outputs (RDQS, DQs) are referenced to CLK. CLK and CLK are not internally terminated. CKE Input Clock Enable: CKE HIGH activates and CKE LOW deactivates the internal clock and input buffers. Taking CKE LOW provides Power Down. If all banks are precharged, this mode is called Precharge Power Down and Self Refresh mode is entered if a Auto Refresh command is issued. If at least one bank is open, Active Power Down mode is entered and no Self Refresh is allowed. All input receivers except CLK, CLK and CKE are disabled during Power Down. In Self Refresh mode the clock receivers are disabled too. Self Refresh Exit is performed by setting CKE asynchronously HIGH. Exit of Power Down without Self Refresh is accomplished by setting CKE HIGH with a positive edge of CLK. The value of CKE is latched asynchronously by Reset during Power On to determine the value of the termination resistor of the address and command inputs. CKE is not allowed to go LOW during a RD, a WR or a snoop burst. CS0 Input Chip Select: CS0 enables the command decoder when low and disables it when high. When the command decoder is disabled, new commands with the exception of DTERDIS are ignored, but internal operations continue. In 2-CS mode, CS0 is exclusively used for MRS, EMRS and SREFEN. CS1 Input Chip Select: CS1 is only evaluated in 2-CS mode, and it is used as the chip-select signal for the second memory block. RAS, CAS, WE Input Command Inputs: Sampled at the positive edge of CLK, CAS, RAS, and WE define (together with corresponding CS) the command to be executed. DQ<0:31> I/O Data Input/Output: The DQ signals form the 32 bit data bus. During READs the balls are outputs and during WRITEs they are inputs. Data is transferred at both edges of RDQS. DM<0:3> Input Input Data Mask: The DM signals are input mask signals for WRITE data. Data is masked when DM is sampled HIGH with the WRITE data. DM is sampled on both edges of WDQS. DM0 is for DQ<0:7>, DM1 is for DQ<8:15>, DM2 is for DQ<16:23> and DM3 is for DQ<24:31>. Although DM balls are input-only, their loading is designed to match the DQ and WDQS balls. RDQS<0:3> Output Read Data Strobes: RDQSx are unidirectional strobe signals. During READs the RDQSx are transmitted by the Graphics SDRAM and edge-aligned with data. RDQS have preamble and postamble requirements. RDQS0 is for DQ<0:7>, RDQS1 for DQ<8:15>, RDQS2 for DQ<16:23> and RDQS3 for DQ<24:31>. WDQS<0:3> Input Write Data Strobes: WDQSx are unidirectional strobe signals. During WRITEs the WDQSx are generated by the controller and center aligned with data. WDQS have preamble and postamble requirements. WDQS0 is for DQ<0:7>, WDQS1 for DQ<8:15>, WDQS2 for DQ<16:23> and WDQS3 for DQ<24:31>. Rev. 0.92, 2007-10 06122007-MW7D-3G3M 8 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 Ball Type Detailed Function BA<0:2> Input Bank Address Inputs: BA select to which internal bank an ACTIVATE, READ, WRITE or PRECHARGE command is being applied. BA are also used to distinguish between the MODE REGISTER SET and EXTENDED MODE REGISTER SET commands. A<0:11> Input Address Inputs: During ACTIVATE, A0-A11 defines the row address. For READ/WRITE, A2-A7 and A9 defines the column address, and A8 defines the auto precharge bit. If A8 is HIGH, the accessed bank is precharged after execution of the column access. If A8 is LOW, AUTO PRECHARGE is disabled and the bank remains active. Sampled with PRECHARGE, A8 determines whether one bank is precharged (selected by BA<0:2>, A8 LOW) or all 8 banks are precharged (A8 HIGH). During (EXTENDED) MODE REGISTER SET the address inputs define the register settings. A<0:11> are sampled with the positive edge of CLK. A<12> Input Address Inputs: A12 define the MSB of the row address during an ACTIVATE in 1-CS mode. ZQ - ODT Impedance Reference: The ZQ ball is used to control the ODT impedance. RESET Input Reset pin: The RES pin is a VDDQ CMOS input. RES is not internally terminated. When RES is at LOW state the chip goes into full reset. The chip stays in full reset until RES goes to HIGH state. The Low to High transition of the RES signal is used to latch the CKE value to set the value of the termination resistors of the address and command inputs. After exiting the full reset a complete initialization is required since the full reset sets the internal settings to default. MF Input Mirror function pin: The MF pin is a VDDQ CMOS input. This pin must be hardwired on board either to a power or to a ground plane. With MF set to HIGH, the command and address pins are reassigned in order to allow for an easier routing on board for a back to back memory arrangement. SEN Input Enables Boundary Scan Functionality: If Boundary Scan is not used PIN should be constantly connected to GND. VREF Supply Voltage Reference: VREF is the reference voltage input. VDD, VSS Supply Power Supply: Power and Ground for the internal logic. VDDQ, VSSQ Supply I/O Power Supply: Isolated Power and Ground for the output buffers to provide improved noise immunity. NC, RFU - Please do not connect No Connect and Reserved for Future Use balls. RAR 2.2 Reserved for Alternate Rank Mirror Function The GDDR3 Graphics RAM provides a ball mirroring feature that is enabled by applying a logic HIGH on ball MF. This function allows for efficient routing in a clam shell configuration. Depending of the logic state applied on MF, the command and address signals will be assigned to different balls. The default ball configuration (see Figure 2) corresponds to MF = LOW. The CS1 and A12 balls are not mirrored. The DC level (HIGH or LOW) must be applied on the MF pin at power up and is not allowed to change after that. Table 3 shows the ball assignment as a function of the logic state applied on MF. Rev. 0.92, 2007-10 06122007-MW7D-3G3M 9 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 TABLE 3 Ball Assignment with Mirror MF Logic State LOW HIGH H3 H10 Signal RAS F4 F9 CAS H9 H4 WE F9 F4 CS0 H4 H9 CKE K4 K9 A0 H2 H11 A1 K3 K10 A2 M4 M9 A3 K9 K4 A4 H11 H2 A5 K10 K3 A6 L9 L4 A7 K11 K2 A8 M9 M4 A9 K2 K11 A10 L4 L9 A11 G4 G9 BA0 G9 G4 BA1 H10 H3 BA2 Rev. 0.92, 2007-10 06122007-MW7D-3G3M 10 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 2.3 Truth Tables 2.3.1 Function Truth Table for more than one Activated Bank If there is more than one bank activated in the Graphics SDRAM, some commands can be performed in parallel due to the chip’s multibank architecture. The following table defines for which commands such a scheme is possible. All other transitions are illegal. Notes 1-11 define the start and end of the actions belonging to a submitted command. This table is based on the assumption that there are no other actions ongoing on bank n or bank m. If there are any actions ongoing on a third bank tRRD, tRTW and tWTR have to be taken always into account. TABLE 4 Function Truth Table I Current State Ongoing action on bank n Possible action in parallel on bank m ACTIVE ACTIVATE1) ACT, PRE, WRITE, WRITE/A, READ, READ/A2) WRITE 3) ACT, PRE, WRITE, WRITE/A, READ, READ/A4) WRITE/A5) ACT, PRE, WRITE, WRITE/A, READ6) 7) READ ACT, PRE, WRITE, WRITE/A, READ, READ/A8) READ/A9) ACT, PRE, WRITE, WRITE/A, READ, READ/A 8) PRECHARGE10) ACT, PRE, WRITE, WRITE/A, READ, READ/A11) PRECHARGE ALL 10) 12) POWER DOWN ENTRY IDLE - ACTIVATE 1) ACT POWER DOWN ENTRY 12) - AUTO REFRESH13) - SELF REFRESH ENTRY 12) 14) MODE REGISTER SET (MRS) EXTENDED MRS 14) - EXTENDED MRS 214) POWER DOWN SELF REFRESH POWER DOWN EXIT - 15) SELF REFRESH EXIT - 16) - 1) Action ACTIVATE starts with issuing the command and ends after tRCD. 2) During action ACTIVATE an ACT command on another bank is allowed considering tRRD or tRRD_RR, a PRE command on another bank is allowed any time. WR, WR/A, RD and RD/A are always allowed. 3) Action WRITE starts with issuing the command and ends tWR after the first pos. edge of CLK following the last falling WDQS edge. 4) During action WRITE an ACT or a PRE command on another bank is allowed any time. A new WR or WR/A command on another bank must be separated by at least one NOP from the ongoing WRITE. RD or RD/A are not allowed before tWTR or tWTR_RR is met. 5) Action WRITE/A starts with issuing the command and ends tWR after the first positive edge of CLK following the last falling WDQS edge. 6) During action WRITE/A an ACT or a PRE command on another bank is allowed any time. A new WR or WR/A command on another bank has to be separated by at least one NOP from the ongoing command. RD is not allowed before or tWTR or tWTR_RR is met. RD/A is not allowed during an ongoing WRITE/A action. 7) Action READ starts with issuing the command and ends with the first positive edge of CLK following the last falling edge of RDQS. 8) During action READ and READ/A an ACT or a PRE command on another bank is allowed any time. A new RD or RD/A command on another bank has to be separated by at least one NOP from the ongoing command. A WR or WR/A command on another bank has to meet tRTW. 9) Action READ/A starts with issuing the command and ends with the first positive edge of CLK following the last falling edge of RDQS. Rev. 0.92, 2007-10 06122007-MW7D-3G3M 11 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 10) Action PRECHARGE and PRECHARGE ALL start with issuing the command and ends after tRP. 11) During Action ACTIVE an ACT command on another banks is allowed considering tRRD or tRRD_RR. A PRE command on another bank is allowed any time. WR, WR/A, RD and RD/A are always allowed. 12) During POWER DOWN and SELF REFRESH only the EXIT commands are allowed. 13) AUTO REFRESH starts with issuing the command and ends after tRFC. 14) Actions MODE REGISTER SET, EXTENDED MODE REGISTER SET and EXTENDED MODE REGISTER 2 SET start with issuing the command and ends after tMRD. 15) Action POWER DOWN EXIT starts with issuing the command and ends after tXPN. 16) Action SELF REFRESH EXIT starts with issuing the command and ends after tXSC. 2.4 Function Truth Table for CKE TABLE 5 Function Truth Table II (CKE Table) CKE N-1 CKE n CURRENT STATE COMMAND ACTION L L Power Down X Stay in Power Down Self Refresh X Stay in Self Refresh Power Down DESEL or NOP Exit Power Down Self Refresh DESEL or NOP Exit Self Refresh 5 All Banks Idle DESEL or NOP Entry Precharge Power Down L H H L Bank(s) Active DESEL or NOP Entry Active Power Down All Banks Idle Auto Refresh Entry Self Refresh Notes 1. 2. 3. 4. 5. CKEn is the logic step at clock edge n; CKEn-1 was the state of CKE at the previous clock edge. Current state is the state of the GDDR3 Graphics RAM immediately prior to clock edge n. COMMAND is the command registered at clock edge n, and ACTION is a result of COMMAND. All states and sequences not shown are illegal or reserved. DESEL or NOP commands should be issued on any clock edges occurring during the tXSR period. A minimum of 1000 clock cycles is required before applying any other valid command. Rev. 0.92, 2007-10 06122007-MW7D-3G3M 12 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 3 Boundary Scan 3.1 General Description The 1-Gbit GDDR3 incorporates a modified boundary scan test mode. This mode doesn’t operate in accordance with IEEE Standard 1149.1-1990. To save the current GDDR3 ball-out, this mode will scan the parallel data input and output the scanned data through the WDQS0 pin controlled by SEN. Note: Both pads bCS1 and A12 will be activated and could be accessed during Boundary Scan. 3.2 Disabling the scan feature It is possible to operate the 1-Gbit GDDR3 without using the boundary scan feature. SEN (at U-4 of 136- ball package) should be tied LOW(VSS) to prevent the device from entering the boundary scan mode. The other pins which are used for scan mode, RES, MF, WDQS0 and CS will be operating at normal GDDR3 functionalities when SEN is deasserted. TABLE 6 Boundary Scan Exit Order BIT# BALL BIT# BALL BIT# BALL BIT# BALL BIT# BALL BIT# BALL 1 D-3 13 E-10 25 K-11 37 R-10 49 L-3 61 G-4 2 C-2 14 F-10 26 K-10 38 T-11 50 M-2 62 F-4 3 C-3 15 E-11 27 K-9 39 T-10 51 M-4 63 F-2 4 B-2 16 G-10 28 M-9 40 T-3 52 K-4 64 G-3 5 B-3 17 F-11 29 M-11 41 T-2 53 K-3 65 E-2 6 A-4 18 G-9 30 L-10 42 R-3 54 K-2 66 F-3 7 B-10 19 H-9 31 N-11 43 R-2 55 L-4 67 E-3 8 B-11 20 H-10 32 M-10 44 P-3 56 J-3 9 C-10 21 H-11 33 N-10 45 P-2 57 J-2 10 C-11 22 J-11 34 P-11 46 N-3 58 H-2 11 D-10 23 J-10 35 P-10 47 M-3 59 H-3 12 D-11 24 L-9 36 R-11 48 N-2 60 H-4 Notes 1. When the device is in scan mode, the mirror function will be disabled and none of the pins are remapped. 2. Since the other input of the MUX for DM0 tied to GND, the device will output the continuous zeros after scanning a bit #67, if the chip stays in scan shift mode. 3. An unconnected CS1 and A12 on the board will be read as undefined. Rev. 0.92, 2007-10 06122007-MW7D-3G3M 13 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 TABLE 7 Scan Pin Description PACKAGE SYMBOL BALL NORMAL FUNCTION TYPE DESCRIPTION V-9 SSH RES Input Scan Shift: Capture the data input from the pad at logic LOW and shift the data on the chain at logic HIGH. F-9 SCK CS Input Scan Clock: Not a true clock, could be a single pulse or series of pulses. All scan inputs will be referenced to rising edge of the scan clock D-2 SOUT WDQS0 Output Scan Output V-4 SEN SEN Input Scan Enable: Logic HIGH enables the device into scan mode and will be disabled at logic LOW. Must be tied to GND when not in use. A-9 SOE MF Input Scan Output Enable: Enables (registered LOW) and disables (registered HIGH) SOUT data. This pin will be tied to VDD or GND through a resistor (typically 1KΩ for normal operation. Tester needs to overdrive this pin to guarantee the required input logic level in scan mode. Notes 1. When SEN is asserted, no commands are to be executed by the GDDR3. This applies both to user commands and manufacturing commands which may exist while RES is deasserted. 2. The Scan Function can be used right after bringing up VDD / VDDQ of the device. No initialization sequence of the device is required. After leaving the Scan Function it is required to run through the complete initialization sequence. 3. In Scan Mode all terminations for CMD/ADD and DQ, DM, RDQS and WDQS are switched off. 4. In a double-load clam-shell configuration, SEN will be asserted to both devices. Separate two SOE’s should be provided to top and bottom devices to access the scanned output. When either of the devices is in scan mode, SOE for the other device which is not in a scan will be disabled. Rev. 0.92, 2007-10 06122007-MW7D-3G3M 14 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 4 Functional Description 4.1 Mode Register Set Command (MRS) The Mode Register stores the data for controlling the operation modes of the memory. It programs CAS latency, test mode, DLL Reset , the value of the Write Latency and the Burst length. The Mode Register must be written after power up to operate the SGRAM. During a ModeRegister Set command the address inputs are sampled and stored in the Mode Register. The Mode Register content can only be set or changed when the chip is in Idle state. For non-READ commands following a Mode Register Set a delay of tMRD must be met. To apply an MRS command, CS0 has to be used. The Mode Register Bitmap is supported in two configurations. The first configuration is intended to support the Mid-RangeSpeed application. The second configuration supports higher clock cycles for CAS latency and is therefore prepared to support high-speed application. The selected configuration is defined by Bit0 of EMRS2. FIGURE 4 Mode Register Set Command CLK# CLK CKE CS# RAS# CAS# WE# A0-A11 COD BA0 0 BA1, BA2 0 COD: Code to be loaded into the register Rev. 0.92, 2007-10 06122007-MW7D-3G3M Don't Care 15 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 FIGURE 5 Mode Register Bitmap for Mid-Range-Speed Application (!**$, *$, +()*$* )*#% %(#" )*#% #% ""%* () )* *$, +()*,& )* *$, % )'+$*!" ) Rev. 0.92, 2007-10 06122007-MW7D-3G3M 16 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 FIGURE 6 Mode Register Bitmap for High-Speed Application (!**$, *$, +()*$* )*#% %(#" )*#% #% ""%* () )* *$, +()*,& )* *$, % )'+$*!" ) FIGURE 7 Mode Register Set Timing CLK# CLK Com. PA NOP MRS t RP NOP NOP A.C. NOP t MRD tMRDR MRS: MRS command PA: PREALL command A.C.: Any other command as READ RD: READ command Don't Care Rev. 0.92, 2007-10 06122007-MW7D-3G3M RD 17 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 4.1.1 Burst length Read and Write accesses to the GDDR3 Graphics RAM are burst oriented with burst length of 4 and 8. This value must be programmed using the Mode Register Set command (A0 .. A2). The burst length determines the number of column locations that can be accessed for a given READ or WRITE command. When a READ or WRITE command is issued, a block of columns equal to the burst length is effectively selected. All accesses for that burst take place within this block if a boundary is reached. The starting location within this block is determined by the two least significant bits A0 and A1 which are set internally to the fixed value of zero each.Reserved states should not be used, as unknown operation or incompatibility with future versions may result. 4.1.2 Burst type Accesses within a given bank must be programmed to be sequential. This is done using the Mode Register Set command (A3). This device does not support the burst interleave mode. TABLE 8 Burst Definition Burst Length Starting Column Address Order of Accesses within a Burst (Type = sequential) A2 A1 A0 4 — X X 0-1-2-3 8 0 X X 0-1-2-3-4-5-6-7 1 X X 4-5-6-7-0-1-2-3 The value applied at the balls A0 and A1 for the column address is “Don’t care”. 4.1.3 CAS Latency The CAS latency is the delay, in clock cycles, between the registration of a READ command and the availability of the first bit of output data. If a READ command is registered at clock edge n, and the latency is m clocks, the data will be available nominally coincident with clock edge n+m. Reserved states should not be used as unknown operation or incompatibility with future versions may result. 4.1.4 Write Latency The WRITE latency, WL, is the delay, in clock cycles, between the registration of a WRITE command and the availability of the first bit of input data. 4.1.5 Test mode The normal operating mode is selected by issuing a Mode Register Set command with bit A7 set to zero and bits A0-A6 and A8-A11 set to the desired value. Rev. 0.92, 2007-10 06122007-MW7D-3G3M 18 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 4.1.6 DLL Reset The normal operating mode is selected by issuing a Mode Register Set command with bit A8 set to zero and bits A0-A7 and A9-A11 set to the desired values. A DLL Reset is initiated by issuing a Mode Register Set command with bit A8 set to one and bits A0-A7 and A9-A11 set to the desired values. The GDDR3 Graphics RAM returns automatically in the normal mode of operations once the DLL reset is completed. Rev. 0.92, 2007-10 06122007-MW7D-3G3M 19 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 4.2 Extended Mode Register Set Command (EMRS1) The Extended Mode Register is used to control multiple operation modes of the device. The most important one is the organization as a 1-CS or a 2-CS device. Furthermore, it is used to set the output driver impedance value, the termination impedance value, the Write Recovery time value for Write with Autoprecharge. It is used as well to enable/disable the DLL, to issue the Vendor ID. There is no default value for the Extended Mode Register. Therefore it must be written after power up to operate the GDDR3 Graphics RAM.The Extended Mode Register can be programmed by performing a normal Mode Register Set operation and setting the BA0 bit to HIGH. All other bits of the EMR register are reserved and should be set to LOW.The Extended Mode Register must be loaded when all banks are idle and no burst are in progress. The controller must wait the specified time tMRD before initiating any subsequent operation (Figure 10). The timing of the EMRS command operation is equivalent to the timing of the MRS command operation. To apply an EMRS command, CS0 has to be used. FIGURE 8 Extended Mode Register Set Command CLK# CLK CKE CS# RAS# CAS# WE# A0-A11 COD BA0 1 BA1 0 BA2 Mode COD: Code to be loaded into the register Rev. 0.92, 2007-10 06122007-MW7D-3G3M Don't Care 20 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 FIGURE 9 Extended Mode Register Bitmap for Mid-Range-Speed Application %$ %$ %$ $ $ 0RGH 5)8 9 $ 9HQGRU,' 2II 2Q %$>@ 0RGH RQH&6 WZR&6 $ $ &$= $ $ $ :5 '// :5 $ $''&0' 7HUPLQDWLRQ $ =4 (QDEOH 'LVDEOH =4 =4 =4 $ $ $ 5WW $ $ $ $ :5 $ 'DWD= '// (QDEOH $ $ $ 2XWSXW'ULYHU ,PSHGDQFH $XWRFDO 2KPV 2KPV 2KPV $ 7HUPLQDWLRQ $ 2'7GLVDEOHG 5)8 =4 =4'HIDXOW ([WHQGHG0RGH5HJLVWHU6ORZYVG There are two bitmaps for the Extended Mode Register. One bitmap shown in Figure 9 is supposed to support Mid-RangeSpeed applications. The other bitmap shown in Figure 10 is more focused on the high-range-speed application. Both bitmaps distinguish different numbers in supported Write Recovery clock cycles. The mid-range bit map provides WR cycles from 4 to 11.The high-speed bitmap supports WR from 7 to 13. Rev. 0.92, 2007-10 06122007-MW7D-3G3M 21 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 FIGURE 10 Extended Mode Register Bitmap for High-Speed Application %$ %$ %$ $ $ 0RGH 5)8 9 $ 9HQGRU,' 2II 2Q 0RGH RQH&6 WZR&6 $ &$= $ $ :5 '// 'DWD= $XWRFDO 2KPV 2KPV 2KPV =4 =4 5WW $ $ (QDEOH :5 $ 'LVDEOH $ =4 $ $''&0' 7HUPLQDWLRQ $ $ $ $ '// (QDEOH $ %$>@ $ =4 $ 2XWSXW'ULYHU ,PSHGDQFH :5 $ $ 7HUPLQDWLRQ 2'7GLVDEOHG 5)8 =4 5)8 =4'HIDXOW $ $ $ ([WHQGHG0RGH5HJLVWHUIDVWYVG Notes option implemented in the device) or no action is taken by the device (if option not implemented). 5. WR (write recovery time for auto precharge) in clock cycles is calculated by dividing tWR (in ns) and rounding up to the next integer (WR[cycles] = tWR[ns] / tCK[ns]). The mode register must be programmed to this value. 1. These settings are for debugging purposes only. 2. Default termination values at Power Up. 3. The ODT disable function disables all terminators on the device. 4. If the user activates bits in the extended mode register in an optional field, either the optional field is activated (if FIGURE 11 Extended Mode Register Set Timing CLK# CLK Command PA NOP EMRS NOP t RP A.C. t MRD A.C.: Any command Don't Care Rev. 0.92, 2007-10 06122007-MW7D-3G3M NOP 22 EMRS: Extended MRS command PA: PREALL command Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 4.2.1 DLL enable The DLL must be enabled for normal operation. DLL enable is required during power-up initialization and upon returning to normal operation after having disabled the DLL. (When the device exits self-refresh mode, the DLL is enabled automatically). Anytime the DLL is enabled, 1000 cycles must occur before a READ command can be issued. 4.2.2 WR The WR parameter is programmed using the register bits A4, A5 and A7. This integer parameter defines as a number of clock cycles the Write Recovery time in a Write with Autoprecharge operation. The following inequality has to be complied with: WR * tCK ≥ tWR, where tCK is the clock cycle time. The high-speed bitmap supports WR from 7 to 13. The mid-range bitmap provides WR cycles from 4 to 11. 4.2.3 Termination Rtt The data termination, Rtt, is used to set the value of the internal termination resistors. The GDDR3 DRAM supports ZQ / 4 and ZQ / 2 termination values. The termination may also be disabled for testing and other purposes. Data -, address - and command - termination are disabled in parallel. The Termination Rtt are controlled independently from the Output Driver Impedance values. 4.2.4 Output Driver Impedance The Output Driver Impedance extended mode register is used to set the value of the data output driver impedance. When the auto calibration is used, the output driver impedance is set nominally to ZQ / 6. If the Output Driver Impedance is changed to 35, 40 or 45 Ohms the user needs to issue 16 AREF commands separated by tRFC consecutively to make the change effective. The user must be aware that the Command bus needs to be stable for a time of tKO after each AREF. 4.2.5 Vendor Code and Revision Identification The Manufacturer Vendor Code is selected by issuing an Extended Mode Register Set command with bit A10 set to 1 and bits A0-A9 and A11 set to the desired value. When the Vendor Code function is enabled the GDDR3 DRAM will provide the Qimonda vendor code on DQ[3:0] and the revision identification on DQ[7:4]. The code will be driven onto the DQ bus after tRIDon following the EMRS command that sets A10 to 1. The Vendor Code and Revision ID will be driven on DQ[7:0] until a new EMRS command is issued with A10 set back to 0. After tRIDoff following the second EMRS command, the data bus is driven back to HIGH. This second EMRS command must be issued before initiating any subsequent operation. Violating this requirement will result in unspecified operation. TABLE 9 Revision ID and Vendor Code Revision Identification Qimonda Vendor Code DQ[7:4] DQ[3:0] 0011 0010 Note: Please refer to Revision Release Note for Revision ID value. Rev. 0.92, 2007-10 06122007-MW7D-3G3M 23 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 FIGURE 12 Timing of Vendor Code and Revision ID Generation on DQ[7:0] 0 1 2 3 4 5 6 7 8 9 10 Com. EMRS N/D N/D N/D N/D N/D EMRS N/D N/D N/D N/D A[9:0], A11 Add CLK# CLK Add A10 t t RIDon RIDoff RDQS DQ[7:0] Vendor Code and Revision ID EMRS: Extended Mode Register Set Command Add: Address N/D: NOP or Deselect Don't Care 4.2.6 Address command termination The address and command termination is used to set the value of the internal termination resistors. The GDDR3 DRAM supports ZQ / 4, ZQ / 2 and ZQ termination values. The mode register programming overwrites the programming during the chip initialization. 4.2.7 Operation mode The GDDR3 DRAM can be internally configured as two 512Mbit (2-CS mode) or one 1Gbit device (1-CS mode). The pins CS1 and A12 are only active in two, resp. 1-CS mode and act either as the chip select for the second rank, or the row-address for the upper 4k-row-address range. If bit A2 from EMRS2 (“Merged Mode”) is set to 1 then the 2 operations mode will be inverted. Note also that at 1000 MHz speed grade only 1-CS mode is supported. TABLE 10 Operation Mode Function of defined Merged Mode Operation Mode Merged Mode = 0 Merged Mode = 1 0 one-CS two-CS 1 two-CS one-CS Rev. 0.92, 2007-10 06122007-MW7D-3G3M 24 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 4.3 Extended Mode Register 2 Set Command (EMRS2) The Extended Mode Register 2 must be written after power up to operate the GDDR3 Graphics RAM. The Extended Mode Register 2 can be programmed by performing a normal Mode Register Set operation and setting the BA1 bit to HIGH and BA0, BA2 bits to LOW. All bits defined as RFU in the bitmap are reserved and must be set to LOW. The Extended Mode Register 2 must be loaded when all banks are idle and no burst are in progress. The controller must wait the specified time tMRD before initiating any subsequent operation. The timing of the EMRS2 command operation is equivalent to the timing of the MRS command operation. FIGURE 13 Extended Mode Register 2 Set Command CLK# CLK CKE CS# RAS# CAS# WE# A0-A11 COD BA1 1 BA0,2 0 COD: Code to be loaded into the register Rev. 0.92, 2007-10 06122007-MW7D-3G3M Don't Care 25 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 FIGURE 14 Extended Mode Register 2 Bitmap %$ %$ %$ $>@ $ 'HIDXOWV $ $ $>@ $ $ 2&'7HUPLQDWLRQ 3XOO8S2IIVHW 2&'3XOO'RZQ2IIVHW 2&'3XOO'RZQ 2IIVHW $ 2&'7HUPLQDWLRQ 3XOO8S2IIVHW 'HIDXOWV 5)8 5)8 $ 0HUJHG 0RGH $ $ 5)8 $ $ 6)5 $SS 0RGH $ 0HUJHG0RGH 1RQ0HUJHG $ $SS0RGH 0HUJHG 1RWHERRN 'HVNWRS $ 6HOI5HIUHVK 7KHUPDO6HQVRU PV 'HIDXOWV6HWWLQJV 4.3.1 $ App Mode The GDDR3 Graphics RAM provides two bitmaps for the Mode Register and the Extended Mode Register respectively. The Bitmaps are shown in the MRS and EMRS chapters. The Bit0 of the Extended Mode Regsiter 2 defines which one of the two bitmaps is active. There Bit0 set to LOW enables the mid-range bitmap and Bit0 set to HIGH enables the High-Speed bitmap. 4.3.2 OCD Pull Down Offset The 1G GDDR3 add the ability to add an offset to the Output impedance driver set using the bit A[1:0] of the EMRS. A range from -3 to +3 can be chosen using A[11:9]. Each steps correspond to an approximate change of 1 Ohms. The offset will be applied also on Autocal value if selected. 4.3.3 OCD Termination Pull Up Offset The 1G GDDR3 add the ability to add an offset to the OCD Termination set using the bit A[3:2] of the EMRS. A range from -3 to +3 can be chosen using A[8:6]. Each steps correspond to an approximate change of 1.5 Ohms. Rev. 0.92, 2007-10 06122007-MW7D-3G3M 26 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 4.3.4 Merged Mode "Merged Mode" as been added to the EMRS2 in order to merge the node A12/CS1 to a single ball (J-3) of the chip. Default setting has both pins are using two different balls (J-2 and J-3). 4.3.5 Self Refresh Self Refresh is used to control the timing of the refresh operation when the memory is in Self Refresh. When bit A1 is set to 0 then the refresh timing is controlled by the embedded Temperature Sensor. In this mode of operation if the temperature is higher than 100°C then the refresh will happen every 8ms. If the temperature is below 100°C then the refresh will happen every 32 ms. If the A1 is set to 1 then the refresh timing will be independent from the temperature and fixed to 8 ms. Rev. 0.92, 2007-10 06122007-MW7D-3G3M 27 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 5 Electrical Characteristics 5.1 Absolute Maximum Ratings and Operation Conditions TABLE 11 Absolute Maximum Ratings Parameter Symbol VDD VDDQ VIN VOUT TSTG TJ IOUT Power Supply Voltage Power Supply Voltage for Output Buffer Input Voltage Output Voltage Storage Temperature Junction Temperature Short Circuit Output Current Rating Unit Min. Max. -0.5 2.5 V -0.5 2.5 V -0.5 2.5 V -0.5 2.5 V -55 +150 °C — +125 °C — 50 mA Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. 5.2 DC Operation Conditions 5.2.1 Recommended Power & DC Operation Conditions TABLE 12 Power & DC Operation Conditions (0 °C ≤ Tc ≤ 95 °C) Parameter Power Supply Voltage Power Supply Voltage for I/O Buffer Rev. 0.92, 2007-10 06122007-MW7D-3G3M Symbol Limit Values VDD, VDDA VDDQ 28 Unit Min. Typ. Max. 1.7 1.8 1.9 V 1.7 1.8 1.9 V Note Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 Parameter Symbol Reference Voltage Output Low Voltage Input leakage current CLK Input leakage current Limit Values VREF VOL(DC) IIL IILC IOL Unit Note 1) Min. Typ. Max. 0.69*VDDQ — 0.71*VDDQ V — — 0.8 V –5.0 — +5.0 μΑ –5.0 — +5.0 μΑ 2) 2) Output leakage current –5.0 — +5.0 μΑ 1) VREF is expected to equal 70% of VDDQ for the transmitting device and to track variations in the DC level of the same. Peak-to-peak noise on VREF may not exceed ±2% VREF (DC). Thus, from 70% of VDDQ, VREF is allowed ± 19mV for DC error and an additional ± 27mV for AC noise. 2) IIL and IOL are measured with ODT disabled. 5.3 DC & AC Logic Input Levels TABLE 13 DC & AC Logic Input Levels (0 °C ≤ Tc ≤ 95 °C) Parameter Input logic high voltage, DC Input logic low voltage, DC Input logic high voltage, AC Input logic low voltage, AC Input logic high, DC, RESET pin Input logic low, DC, RESET pin Input Logic High, DC, MF pin Input Logic Low,DC, MF pin Symbol VIH(DC) VIL(DC) VIH(AC) VIL(AC) VIHR(DC) VILR(DC) VIHMF(DC) VILMF(DC) Limit Values Unit Note Min. Max. VREF + 0.15 — V 1) — VREF -0.15 V 1) VREF + 0.25 — V 2)3) — V 2)3) VDD VREF - 0.25 VDDQ + 0.3 0.35 × VDDQ VDD + 0.3 –0.3 0 V 0.65 × VDDQ -0.3 V V V 4) 1) The DC values define where the input slew rate requirements are imposed, and the input signal must not violate these levels in order to maintain a valid level. 2) Input slew rate = 3 V/ns. If the input slew rate is less than 3 V/ns, input timing may be compromised. All slew rates are measured between VIL(DC) and VIH(DC). 3) VIH overshoot: VIH(max) = VDDQ+0.5V for a pulse width ≤ 500ps and the pulse width cannot be greater than 1/3 of the cycle rate. VIL undershoot: VIL(min) = 0 V for a pulse width ≤ 500ps and the pulse width cannot be greater than 1/3 of the cycle rate. 4) The MF pin must be hard-wired on board to either VDD or VSS. Rev. 0.92, 2007-10 06122007-MW7D-3G3M 29 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 5.4 Differential Clock DC and AC Levels TABLE 14 Differential Clock DC and AC Input conditions (0 °C ≤ Tc ≤ 95 °C) Parameter Symbol Limit Values VMP(DC) Clock Input Voltage Level, CLK and CLK VIN(DC) Clock DC Input Differential Voltage, CLK and CLK VID(DC) Clock AC Input Differential Voltage, CLK and CLK VID(AC) AC Differential Crossing Point Input Voltage VIX(AC) Clock Input Mid-Point Voltage, CLK and CLK Unit Note Min. Max. 0.7 × VDDQ – 0.10 0.7 × VDDQ + 0.10 V 1) 0.42 VDDQ + 0.3 VDDQ VDDQ + 0.5 0.7 × VDDQ + 0.15 V 1) V 1) V 1)2) V 1)3) 0.3 0.5 0.7 × VDDQ – 0.15 1) All voltages referenced to VSS. 2) VID is the magnitude of the difference between the input level on CLK and the input level on CLK. 3) The value of VIX is expected to equal 0.7 × VDDQ of the transmitting device and must track variations in the DC level of the same. 5.5 Output Test Conditions FIGURE 15 Output Test Circuit VDDQ 60 Ohm DQ DQS Rev. 0.92, 2007-10 06122007-MW7D-3G3M Test point 30 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 5.6 Pin Capacitances TABLE 15 Pin Capacitances (VDDQ = 1.8 V, TA = 25°C, f = 1 MHz) Parameter Symbol Min. Max. Unit Input capacitance: A0-A11,A12, , BA0-2, CKE, CS, CAS, RAS, WE, CKE, RES,CLK,CLK CI,CCK 1.0 2.5 pF Input capacitance: DQ0-DQ31, RDQS0-RDQS3, WDQS0-WDQS3, DM0-DM3 CIO 2.0 3.0 pF 5.7 Driver current characteristics 5.7.1 Driver IV characteristics at 40 Ohms Note Figure 16 represents the driver Pull-Down and Pull-Up IV characteristics under process, voltage and temperature best and worst case conditions. The actual Driver Pull-Down and Pull-Up current must lie between these two bounding curves. The value of the external ZQ resistor is 240 Ω, setting the nominal driver output impedance to 40 Ω. FIGURE 16 40 Ohm Driver Pull-Down and Pull-Up Characteristics 3XOO8S&KDUDFWHUVWLFV 3XOO'RZQ&KDUDFWHUVWLFV ,RXWP$ ,RXWP$ 9''49RXW9 9RXW9 Table 16 lists the numerical values of the minimum and maximum allowed values of the output driver Pull-Down and Pull-Up IV characteristics. Rev. 0.92, 2007-10 06122007-MW7D-3G3M 31 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 TABLE 16 Programmed Driver IV Characteristics at 40 Ohm Voltage (V) Pull-Down Current (mA) Pull-Up Current (mA) Minimum Maximum Minimum Maximum 0.1 2.32 3.04 -2.44 -3.27 0.2 4.56 5.98 -4.79 -6.42 0.3 6.69 8.82 -7.03 -9.45 0.4 8.74 11.56 -9.18 -12.37 0.5 10.70 14.19 -11.23 -15.17 0.6 12.56 16.72 -13.17 -17.83 0.7 14.34 19.14 -15.01 -20.37 0.8 16.01 21.44 -16.74 -22.78 0.9 17.61 23.61 -18.37 -25.04 1.0 19.11 26.10 -19.90 -27.17 1.1 20.53 28.45 .21.34 -29.17 1.2 21.92 30.45 -22.72 -31.25 1.3 23.29 32.73 -24.07 -33.00 1.4 24.65 34.95 -25.40 -35.00 1.5 26.00 37.10 -26.73 -37.00 1.6 27.35 39.15 -28.06 -39.14 1.7 28.70 41.01 -29.37 -41.25 1.8 30.08 42.53 -30.66 -43.29 1.9 — 43.71 — -45.23 2.0 — 44.89 — -47.07 5.7.2 Termination IV Characteristic at 60 Ohms Figure 17 represents the DQ termination Pull-Up IV characteristic under process, voltage and temperature best and worst case conditions. The actual DQ termination Pull-Up current must lie between these two bounding curves. The value of the external ZQ resistor is 240 Ω, setting the nominal DQ termination impedance to 60 Ω. (Extended Mode Register programmed to ZQ/4). Rev. 0.92, 2007-10 06122007-MW7D-3G3M 32 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 FIGURE 17 60 Ohm Active Termination Characteristic 2KP7HUPLQDWLRQ&KDUDFWHUVWLFV ,RXWP$ 9''49RXW9 Table 17 lists the numerical values of the minimum and maximum allowed values of the output driver termination IV characteristic. TABLE 17 Programmed Terminator Characteristics at 60 Ohm Voltage (V) Terminator Pull-Up Current (mA) Minimum Maximum 0.1 -1.63 -2.18 0.2 -3.19 0.3 0.4 Voltage (V) Terminator Pull-Up Current (mA) Minimum Maximum 1.1 -14.23 -19.45 -4.28 1.2 -15.14 -20.83 -4.69 -6.30 1.3 -16.04 -22.00 -6.12 -8.25 1.4 -16.94 -23.33 0.5 -7.49 -10.11 1.5 -17.82 -24.67 0.6 -8.78 -11.89 1.6 -18.70 -26.09 0.7 -10.01 -13.58 1.7 -19.58 -27.50 0.8 -11.16 -15.19 1.8 -20.44 -28.86 0.9 -12.25 -16.69 1.9 — -30.15 1.0 -13.27 -18.11 2.0 — -31.38 Rev. 0.92, 2007-10 06122007-MW7D-3G3M 33 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 5.8 Termination IV Characteristic at 120 Ohms Figure 18 represents the DQ or ADD/CMD termination Pull-Up IV characteristic under process, voltage and temperature best and worst case conditions. The actual termination Pull-Up current must lie between these two bounding curves. The value of the external ZQ resistor is 240 Ω, setting the nominal termination impedance to 120 Ω. (Extended Mode Register programmed to ZQ/2 for DQ terminations or CKE = 0 at the RES transition during Power-Up for ADD/CMD terminations). FIGURE 18 120 Ohm Active Termination Characteristic 2KP7HUPLQDWLRQ&KDUDFWHUVWLFV ,RXWP$ 9''49RXW9 Table 18 lists the numerical values of the minimum and maximum allowed values of the termination IV characteristic. TABLE 18 Programmed Terminator Characteristics of 120 Ohm Voltage (V) Terminator Pull-Up Current (mA) Minimum Voltage (V) Maximum Terminator Pull-Up Current (mA) Minimum Maximum 0.1 -0.81 -1.09 1.1 -7.11 -9.72 0.2 -1.60 -2.14 1.2 -7.57 -10.42 0.3 -2.34 -3.15 1.3 -8.02 -11.00 0.4 -3.06 -4.12 1.4 -8.47 -11.67 0.5 -3.74 -5.06 1.5 -8.91 -12.33 0.6 -4.39 -5.94 1.6 -9.35 -13.05 0.7 -5.00 -6.79 1.7 -9.79 -13.75 0.8 -5.58 -7.59 1.8 -10.22 -14.43 0.9 -6.12 -8.35 1.9 — -15.08 1.0 -6.63 -9.06 2.0 — -15.69 Rev. 0.92, 2007-10 06122007-MW7D-3G3M 34 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 5.9 Termination IV Characteristic at 240 Ohms Figure 19 represents the ADD/CMD termination Pull-Up IV characteristic under process, voltage and temperature best and worst case conditions. The actual ADD/CMD termination Pull-Up current must lie between these two bounding curves. The value of the external ZQ resistor is 240 Ω, setting the nominal termination impedance to 240 Ω. (CKE = 1at the RES transition during Power-Up for ADD/CMD terminations). FIGURE 19 240 Ohm Active Termination Characteristic 2KP7HUPLQDWLRQ&KDUDFWHUVWLFV ,RXWP$ 9''49RXW9 Table 19 lists the numerical values of the minimum and maximum allowed values of the ADD/CMD termination IV characteristic. TABLE 19 Programmed Terminator Characteristics at 240 Ohm Voltage (V) Terminator Pull-Up Current (mA) Minimum Maximum 0.1 -0.41 -0.55 0.2 -0.80 -1.07 0.3 -1.17 0.4 0.5 Voltage (V) Terminator Pull-Up Current (mA) Minimum Maximum 1.1 -3.56 -4.86 1.2 -3.79 -5.21 -1.58 1.3 -4.01 -5.50 -1.53 -2.06 1.4 -4.23 -5.83 -1.87 -2.53 1.5 -4.46 -6.17 0.6 -2.20 -2.97 1.6 -4.68 -6.52 0.7 -2.50 -3.40 1.7 -4.90 -6.88 0.8 -2.79 -3.80 1.8 -5.11 -7.21 0.9 -3.06 -4.17 1.9 — -7.54 1.0 -3.32 -4.53 2.0 — -7.85 Rev. 0.92, 2007-10 06122007-MW7D-3G3M 35 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 5.10 Operating Currents 5.10.1 Operating Current Ratings for HYB18H1G321AF– 10/11/14 TABLE 20 Operating Current Ratings ( 0 °C ≤ Tc ≤ 95 °C) Parameter Symbol Operating Current Operating Current Precharge Power-Down Standby Current Precharge Floating Standby Current Precharge Quiet Standby Current Active Power-Down Standby Current Active Standby Current Operating Current Burst Read Operating Current Burst Write Auto-Refresh Current (tRC=min(tRFC)) Auto-Refresh Current at tREFI Self Refresh Current Operating Current 1-CS 2-CS 1) 2) 3) 4) IDD0 IDD1 IDD2P IDD2F IDD2Q IDD3P IDD3N IDD4R IDD4W IDD5B IDD5D IDD6 IDD7 Limit Values Note -10 –11 –14 Typ. Typ. Typ. 375 350 300 mA 1) 2) 3) 390 370 310 mA 1)2)3) 240 220 180 mA 1)2)3) 300 275 230 μA 1)2)3) 275 250 215 μA 1)2)3) 240 220 180 μA 1)2)3) 380 360 310 mA 1)2)3) 510 470 395 mA 1)2)3) 540 495 415 mA 1)2)3) 570 550 450 mA 1)2)3) 300 280 235 mA 1)2)3) 10 10 10 mA 1)2)3)4) 520 500 420 mA 1)2)3) NA 690 560 mA 1)2)3) IDD specifications are tested after the device is properly initialized. Input slew rate = 3V/ns. Measured with Output open and On Die termination off. Enables on-chip refresh and address counter. Rev. 0.92, 2007-10 06122007-MW7D-3G3M Unit 36 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 5.11 Operating Current Measurement Conditions TABLE 21 Operating Current Measurement Conditions Symbol Parameter/Condition IDD0 Operating Current - One bank, Activate - Precharge tCK=min(tCK), tRC=min(tRC) Databus inputs are SWITCHING; Address and control inputs are SWITCHING, CS = HIGH between valid commands. IDD1 Operating Current - One bank, Activate - Read - Precharge One bank is accessed with tCK=min(tCK), tRC=min(tRC), CL = CL(min), Address and control inputs are SWITCHING; CS = HIGH between valid commands. Iout=0 mA IDD2P Precharge Power-Down Standby Current All banks idle, power-down mode, CKE is LOW, tCK=min(tCK), Data bus inputs are STABLE (HIGH). IDD2F Precharge Floating Standby Current All banks idle; CS is HIGH, CKE is HIGH, tCK=min(tCK); Address and control inputs are SWITCHING; Data bus input are STABLE (HIGH). IDD2Q Precharge Quiet Standby Current CS is HIGH, all banks idle, CKE is HIGH, tCK=min(tCK), Address and other control inputs STABLE (HIGH), Data bus inputs are STABLE (HIGH). IDD3P Active Power-Down Standby Current One bank active, CKE is LOW, Address and control inputs are STABLE (HIGH); Data bus inputs are STABLE (HIGH); standard active power-down mode. IDD3N Active Standby Current One bank active, CS is HIGH, CKE is HIGH, tRAS= tRAS,max, tCK=min(tCK); Address and control inputs are SWITCHING; Data bus inputs are SWITCHING. IDD4R Operating Current - Burst Read One bank active; Continuous read bursts, CL = CL(min); tCK=min(tCK); tRAS= tRAS,max; Address and control inputs are SWITCHING; Iout = 0 mA. IDD4W Operating Current - Burst Write One bank active; Continuous write bursts; tCK=min(tCK); Address and control inputs are SWITCHING; Data bus inputs are SWITCHING. IDD5B Burst Auto Refresh Current Refresh command at tRFC=min(tRFC); tCK=min(tCK); CKE is HIGH, CS is HIGH between all valid commands; Other command and address inputs are SWITCHING; Data bus inputs are SWITCHING. IDD5D Distributed Auto Refresh Current tCK=tCKmin; Refresh command every tREFI; CKE is HIGH, CS is HIGH between valid commands; Other command and address inputs are SWITCHING; Data bus inputs are SWITCHING. Rev. 0.92, 2007-10 06122007-MW7D-3G3M 37 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 Symbol Parameter/Condition IDD6 Self Refresh Current CKE ≤ max(VIL), external clock off, CK and CK LOW; Address and control inputs are STABLE (HIGH); Data Bus inputs are STABLE (HIGH). IDD7 Operating Bank Interleave Read Current 1. 1-CS Mode: All banks interleaving with CL = CL(min); tRCD = tRCDRD(min); tRRD = tRRD(min); Iout=0 mA; Address and control inputs are STABLE (HIGH) during DESELECT; Data bus inputs are SWITCHING. 2: 2-CS: All banks and all ranks interleaving with CL = CL(min); tRCD = tRCDRD(min); tRRD = tRRD(min); tRRD_RR = tRRD_RR(min); Iout=0 mA; Address and control inputs are STABLE (HIGH) during DESELECT; Data bus inputs are SWITCHING. Notes 1. 0 °C ≤ Tc ≤ 95 °C 2. Data Bus consists of DQ, DM, WDQS. 3. Definitions for IDD: LOW is defined as VIN = 0.4 × VDDQ; HIGH is defined as VIN = VDDQ; TABLE is defined as inputs are stable at a HIGH level. SWITCHING is defined as inputs are changing between HIGH and LOW every clock cycle for address and control signals, and inputs changing 50% of each data transfer for DQ signals. Rev. 0.92, 2007-10 06122007-MW7D-3G3M 38 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 5.12 AC Timings for HYB18H1G321AF–10/11/14 TABLE 22 Timing Parameters (HYB18H1G321AF–10/11/14 ) Parameter CAS latency Symbo l Limit Values –10 –11 Unit Note -14 min max min max min max 450 1000 — — — — MHz 1) 400 900 400 900 450 700 MHz 2) — — — — — — MHz 2) 0.45 0.55 0.45 0.55 0.45 0.55 3) 0.45 0.55 0.45 0.55 0.45 0.55 0.45 — 0.45 — 0.45 — tCK tCK tCK Clock and Clock Enable System frequency CL = 12 CL =11 CL = 9 Clock high level width Clock low level width Minimum clock half period fCK12 fCK11 fCK9 tCH tCL tHP 3) 3)4) Command and Address Setup and Hold Timing tIS 0.24 — 0.27 — 0.35 — ns Address/Command input hold time tIH 0.24 — 0.27 — 0.35 — ns 0.7 — 0.7 — 0.7 — tCK 3) 6 — 6 — 6 — 5)6) 12 — 12 — 12 — tCK tCK tRC tRAS tRRD 37 — 35 — 34 — 23 — 22 — 22 — 9 — 8 — 7 — tCK tCK tCK ACT(a) to ACT(b) Command period (different rank) tRRD_RR — — 1 — 1 — tCK Row Precharge Time tRP tRCDRD 14 — 13 — 12 — 13 — 12 — 11 — tCK tCK Row to Column Delay Time for Writes tRCDWR tRCDWR(Min) = max(tRCDRD(Min) - (WL + 1) × tCK;2×tCK) Four Active Windows within Rank tFAW 36 — 35 — 35 — tCK CAS(a) to CAS(b) Command period tCCD BL/2 — BL/2 — BL/2 — tCK 8) Internal write to Read Command Delay tWTR 7 — 6 — 6 — tCK 9) Address/Command input setup time Address/Command input pulse width tIPW Mode Register Set Timing tMRD Mode Register Set to READ timing tMRDR Mode Register Set cycle time 5) Row Timing Row Cycle Time Row Active Time ACT(a) to ACT(b) Command period Row to Column Delay Time for Reads 7) tCK Column Timing Rev. 0.92, 2007-10 06122007-MW7D-3G3M 39 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 Parameter CAS latency Symbo l Limit Values –10 min –11 Unit Note -14 max min max min max Internal write to Read Command Delay (different rank) tWTR_RR — — BL/2 – 1 — BL/2 – 1 — tCK 10) Write to Write Command Delay (different rank) tWTW_RR — — BL/2 — BL/2 — tCK 11) Read to Write command delay tRTW tRTR_RR 12) — tCK tCK Read to Read Command Delay (different rank) tRTW(min) = CL + BL/2+ 2 – WL — — 2 — 2 11) Write Cycle Timing Parameters for Data and Data Strobe Write command to first WDQS latching transition tDQSS WL–0.25 WL+0.25 WL–0.25 WL+0.25 WL–0.25 WL+0.25 tCK Data-in and Data Mask to WDQS Setup Time tDS 0.14 — 0.15 — 0.18 — ns Data-in and Data Mask to WDQS Hold Time tDH 0.14 — 0.15 — 0.18 — ns Data-in and DM input pulse width (each input) tDIPW 0.40 — 0.40 — 0.40 — tCK DQS input low pulse width tDQSL tDQSH tWPRE tWPST tWR 0.40 — 0.40 — 0.40 — 0.40 — 0.40 — 0.40 — 0.75 1.25 0.75 1.25 0.75 1.25 0.75 1.25 0.75 1.25 0.75 1.25 13 — 13 — 10 — tCK tCK tCK tCK tCK DQS input high pulse width DQS Write Preamble Time DQS Write Postamble Time Write Recovery Time 9) Read Cycle Timing Parameters for Data and Data Strobe tAC tRPRE Read Preamble Read Postamble tRPST Data-out high impedance time from tHZ – 0.21 0.21 – 0.22 0.22 – 0.25 0.25 ns 0.75 1.25 0.75 1.25 0.75 1.25 0.75 1.25 0.75 1.25 0.75 1.25 tCK tCK tACmin tACmax tACmin tACmax tACmin tACmax ns Data-out low impedance time from tLZ CLK tACmin tACmax tACmin tACmax tACmin tACmax ns tDQSCK tDQSQ –0.21 0.21 –0.22 0.22 –0.25 0.25 ns — 0.120 — 0.130 — 0.160 ns tQHS tQH — 0.120 — 0.130 — 0.160 ns tREF tREFI — Delay from AREF to next ACT/ AREF tRFC 52.0 — 52.0 — 59 — ns Self Refresh Exit time tXSC 1000 — 1000 — 1000 — tCK Data Access Time from Clock CLK DQS edge to Clock edge skew DQS edge to output data edge skew Data hold skew factor Data output hold time from DQS tHP – tQHS ns Refresh/Power Down Timing Refresh Period (8192 cycles) Average periodic Auto Refresh interval Rev. 0.92, 2007-10 06122007-MW7D-3G3M 32 — 3.9 32 3.9 40 — 32 3.9 ms µs 3) 13) Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 Parameter CAS latency Power Down Exit time Symbo l Limit Values –10 –11 Unit Note -14 min max min max min max tXPN 7 — 7 — 8 — tCK tATS tATH tKO 10 — 10 — 10 — ns 10 — 10 — 10 — ns 10 — 10 — 10 — ns tRIDon tRIDoff — 20 — 20 — 20 ns — 20 — 20 — 20 ns Other Timing Parameters RES to CKE setup timing RES to CKE hold timing Termination update Keep Out timing Rev. ID EMRS to DQ on timing REV. ID EMRS to DQ off timing 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) At 1000 MHz speed grade only 1-CS mode is supported DLL on mode Timing is calculated for a clock frequency of 700 MHz tHP is the lesser of tCL minimum and tCH minimum actually applied to the device CLK, CLK inputs This value of tMRD applies only to the case where the "DLL reset"’ bit is not activated. tMRD is defined from MRS to any other command then READ. tRAS,max is 8×tREFi tCCD is either for gapless consecutive reads or gapless consecutive writes. WTR and tWR start at the first rising edge of CLK after the last valid (falling) WDQS edge of the slowest WDQS signal. WTR and tWR start at the first rising edge of CLK after the last valid (falling) WDQS edge of the slowest WDQS signal. This parameter is defined for commands issued to rank m following rank n where m ≠ n. For all other type of access, standard timing parameters do apply. 12) Please round up tRTW to the next integer of tCK. 13) This parameter is defined per byte Rev. 0.92, 2007-10 06122007-MW7D-3G3M 41 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 6 Package 6.1 Package Outline FIGURE 20 Package Outline PG-TFBGA-136-059 -!8 X " ! X -!8 -!8 # -). -!8 # X - # ! " - # # 3%!4).' 0,!.% ,EAD FREE SOLDER BALLS GREEN SOLDER BALLS "AD UNIT MARKING "5- LIGHT GOOD -IDDLE OF PACKAGES EDGES 0ACKAGE ORIENTATION MARK ! 3"!FIDUCIAL SOLDER BALL ATTACH "ARE CORE AREA 3OLDER BALL DIAMETER REFERS TO POST REFLOW CONDITIONS Note: The package is conforming with JEDEC MO-207i, VAR DR-z. Rev. 0.92, 2007-10 06122007-MW7D-3G3M 42 &0/?0'4&"'!?? Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 6.2 Package Thermal Characteristics TABLE 23 PG-TFBGA-136 Package Thermal Resistances Theta_jA Theta_jB Theta_jC JEDEC Board 1s0p 2s0p Air Flow 0 m/s 1 m/s 3 m/s 0 m/s 1 m/s 3 m/s - - K/W 40 32 27 22 19 17 5 2 Notes 1. Theta_jA: Junction to Ambient thermal resistance. The values have been obtained by simulation using the conditions stated in the JEDEC JESD-51 standard. 2. Theta_jB: Junction to Board thermal resistance. The value has been obtained by simulation. 3. Theta_jC: Junction to Case thermal resistance. The value has been obtained by simulation. Rev. 0.92, 2007-10 06122007-MW7D-3G3M 43 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 List of Illustrations Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Ballout 1Gbit GDDR3 Graphics RAM in 1-CS mode in non Merged Mode(Top View; MF = Low) . . . . . . . . . . . 5 Ballout 1Gbit GDDR3 Graphics RAM in 2-CS mode in non Merged Mode(Top View; MF = Low) . . . . . . . . . . . 6 Ballout 1Gbit GDDR3 Graphics RAM in Merged Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Mode Register Set Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Mode Register Bitmap for Mid-Range-Speed Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Mode Register Bitmap for High-Speed Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Mode Register Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Extended Mode Register Set Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Extended Mode Register Bitmap for Mid-Range-Speed Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Extended Mode Register Bitmap for High-Speed Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Extended Mode Register Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Timing of Vendor Code and Revision ID Generation on DQ[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Extended Mode Register 2 Set Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Extended Mode Register 2 Bitmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Output Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 40 Ohm Driver Pull-Down and Pull-Up Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 60 Ohm Active Termination Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 120 Ohm Active Termination Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 240 Ohm Active Termination Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Package Outline PG-TFBGA-136-059 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Rev. 0.92, 2007-10 06122007-MW7D-3G3M 44 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21 Table 22 Table 23 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Ball Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Ball Assignment with Mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Function Truth Table I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Function Truth Table II (CKE Table) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Boundary Scan Exit Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Scan Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Burst Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Revision ID and Vendor Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Operation Mode Function of defined Merged Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Power & DC Operation Conditions (0 °C ≤ Tc ≤ 95 °C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 DC & AC Logic Input Levels (0 °C ≤ Tc ≤ 95 °C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Differential Clock DC and AC Input conditions (0 °C ≤ Tc ≤ 95 °C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Pin Capacitances (VDDQ = 1.8 V, TA = 25°C, f = 1 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Programmed Driver IV Characteristics at 40 Ohm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Programmed Terminator Characteristics at 60 Ohm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Programmed Terminator Characteristics of 120 Ohm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Programmed Terminator Characteristics at 240 Ohm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Operating Current Ratings ( 0 °C ≤ Tc ≤ 95 °C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Operating Current Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Timing Parameters (HYB18H1G321AF–10/11/14 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 PG-TFBGA-136 Package Thermal Resistances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Rev. 0.92, 2007-10 06122007-MW7D-3G3M 45 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 Contents 1 1.1 1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 2.1 2.2 2.3 2.3.1 2.4 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Ball Definition and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Mirror Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Function Truth Table for more than one Activated Bank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Function Truth Table for CKE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 3.1 3.2 Boundary Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Disabling the scan feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mode Register Set Command (MRS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Burst length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Burst type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CAS Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DLL Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extended Mode Register Set Command (EMRS1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DLL enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Termination Rtt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Driver Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vendor Code and Revision Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Address command termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extended Mode Register 2 Set Command (EMRS2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OCD Pull Down Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OCD Termination Pull Up Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Merged Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 15 18 18 18 18 18 19 20 23 23 23 23 23 24 24 25 26 26 26 27 27 5 5.1 5.2 5.2.1 5.3 5.4 5.5 5.6 5.7 5.7.1 5.7.2 5.8 5.9 5.10 Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings and Operation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Operation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended Power & DC Operation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC & AC Logic Input Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differential Clock DC and AC Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Test Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Driver current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Driver IV characteristics at 40 Ohms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Termination IV Characteristic at 60 Ohms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Termination IV Characteristic at 120 Ohms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Termination IV Characteristic at 240 Ohms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 28 28 28 29 30 30 31 31 31 32 34 35 36 Rev. 0.92, 2007-10 06122007-MW7D-3G3M 46 Internet Data Sheet HYB18H1G321AF–10/11/14 1-Gbit GDDR3 5.10.1 5.11 5.12 Operating Current Ratings for HYB18H1G321AF–10/11/14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Operating Current Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 AC Timings for HYB18H1G321AF–10/11/14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6 6.1 6.2 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Package Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Rev. 0.92, 2007-10 06122007-MW7D-3G3M 47 Internet Data Sheet Edition 2007-10 Published by Qimonda AG Gustav-Heinemann-Ring 212 D-81739 München, Germany © Qimonda AG 2007. All Rights Reserved. Legal Disclaimer The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office. Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Qimonda Office. Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. www.qimonda.com