February 2007 HYS72T128001HR–5–A HYS72T256000HR–[3S/3.7/5]–A 240-Pin Registered DDR SDRAM Modules RDIMM DDR2 SDRAM RoHS Compliant Internet Data Sheet Rev. 1.4 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules HYS72T128001HR–5–A, HYS72T256000HR–[3S/3.7/5]–A Revision History: 2007-02, Rev. 1.4 Page Subjects (major changes since last revision) All Adapted internet edition All Added HYS72T256000HR-3S-A: Updated Ordering Information, Block Diagrams, IDD Currents, SPD Codes Previous Revision: Rev. 1.31, 2006-09 All Qimonda Update Previous Revision: Rev. 1.3, 2006-01 Added HYS72T128001HR-5-A: Updated Ordering Information, Block Diagrams, IDD Currents, SPD Codes and Package Outlines accordingly 5 Added High Temperature Self refresh to Feature List, Operating Temperature and to SPD Codes 20 Changed footnote 1 (Table 9) into “Attention” 29 Added footnote 2 to IDD Currents (Table 18) Previous Revision: Rev. 1.2, 2005-08 28, 32 SPD Codes updated 35 Package Outline figure updated We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] qag_techdoc_rev400 / 3.2 QAG / 2006-08-01 03062006-GD6J-14FP 2 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules 1 Overview This chapter gives an overview of the 240-Pin Registered DDR SDRAM Modules product family and describes its main characteristics. 1.1 Features • 240-Pin PC2–4200 and PC2–3200 DDR2 SDRAM memory modules for PC, Workstation and Server main memory applications. • One rank 128M ×72, 256M ×72 module organization and 128M x 8, 256M ×4 chip organization • Standard Double-Data-Rate-Two Synchronous DRAMs (DDR2 SDRAM) with a single + 1.8 V (± 0.1 V) power supply • 1 and 2 GByte module built with 1 Gbit DDR2 SDRAMs in P-TFBGA-68 chipsize packages. • All speed grades faster than DDR2-400 comply with DDR2-400 timing specifications as well. • Programmable CAS Latencies (3, 4 & 5), Burst Length (4 & 8) and Burst Type • Auto Refresh (CBR) and Self Refresh • Average Refresh Period 7.8 µs at a TCASE lower than 85 °C, 3.9 µs between 85 °C and 95 °C • Programmable self refresh rate via EMRS2 setting • All inputs and outputs SSTL_18 compatible • Off-Chip Driver Impedance Adjustment (OCD) and On-Die Termination (ODT) • Serial Presence Detect with E2PROM • RDIMM Dimensions (nominal): 30,00 mm high, 133.35 mm wide • Based on JEDEC standard reference card layouts Raw Card “A-F” and “C-H” • RoHS compliant products1) TABLE 1 Performance Table Product Type Speed Code –3S –3.7 –5 Unit Speed Grade PC2–5300 5–5–5 PC2–4200 4–4–4 PC2–3200 4–4–4 — 333 266 200 MHz 266 266 200 MHz 200 200 200 MHz 15 15 15 ns 15 15 15 ns 45 45 40 ns 60 60 55 ns Max. Clock Frequency @CL5 @CL4 @CL3 Min. RAS-CAS-Delay Min. Row Precharge Time Min. Row Active Time Min. Row Cycle Time fCK5 fCK4 fCK3 tRCD tRP tRAS tRC 1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers. Rev. 1.4, 2007-02 03062006-GD6J-14FP 3 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules 1.2 Description The Qimonda HYS72T[128/256]00xHR–[3S/3.7/5]–A module family are Registered DIMM modules with 30,0 mm height based on DDR2 technology. DIMMs are available as ECC modules in 128M ×72 (1 GByte) and 256M ×72 (2 GByte) organization and density, intended for mounting into 240-Pin connector sockets. The memory array is designed with 1-Gbit Double-Data-RateTwo (DDR2) Synchronous DRAMs. All control and address signals are re-driven on the DIMM using register devices and a PLL for the clock distribution. This reduces capacitive loading to the system bus, but adds one cycle to the SDRAM timing. Decoupling capacitors are mounted on the PCB board. The DIMMs feature serial presence detect based on a serial E2PROM device using the 2-pin I2C protocol. The first 128 bytes are programmed with configuration data and the second 128 bytes are available to the customer. TABLE 2 Ordering Information for RoHS Compliant Products Product Type1) Compliance Code2) Description SDRAM Technology 2GB 1Rx4 PC2–5300R–444–11–H0 1 Rank, ECC 1 Gbit (×4) 2GB 1Rx4 PC2–4200R–444–11–H0 1 Rank, ECC 1 Gbit (×4) HYS72T128001HR–5–A 1GB 1Rx8 PC2–3200R–333–12–F0 1 Rank, ECC 1 Gbit (×8) HYS72T256000HR–5–A 2GB 1Rx4 PC2–3200R–333–11–H0 1 Rank, ECC 1 Gbit (×4) PC2–5300 HYS72T256000HR–3S–A PC2–4200 HYS72T256000HR–3.7–A PC2–3200 1) All Product Types end with a place code, designating the silicon die revision. Example: HYS72T256000HR–3.7–A, indicating Rev. “A” dies are used for DDR2 SDRAM components. For all Qimonda DDR2 module and component nomenclature see Chapter 6 of this data sheet. 2) The Compliance Code is printed on the module label and describes the speed grade, for example “PC2–4200R–444–11–H0”, where 4200R means Registered DIMM modules with 4.26 GB/sec Module Bandwidth and “444-11” means Column Address Strobe (CAS) latency = 4, Row Column Delay (RCD) latency = 4 and Row Precharge (RP) latency = 4 using the latest JEDEC SPD Revision 1.1 and produced on the Raw Card “F” TABLE 3 Address Format DIMM Density Module Organization Memory Ranks ECC/ Non-ECC # of SDRAMs # of row/bank/column bits 1 GB 128M ×72 1 ECC 9 14/3/11 A-F 2 GB 256M ×72 1 ECC 18 14/3/11 C-H Rev. 1.4, 2007-02 03062006-GD6J-14FP 4 Raw Card Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules TABLE 4 Components on Modules Product Type1) DRAM Components1) DRAM Density DRAM Organisation Note HYS72T128001HR HYB18T1G800AF 1 Gbit 128M ×8 2) HYS72T256000HR HYB18T1G400AF 1 Gbit 256M ×4 2) 1) Green Product 2) For a detailed description of all functionalities of the DRAM components on these modules see the component data sheet. Rev. 1.4, 2007-02 03062006-GD6J-14FP 5 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules 2 Pin Configuration 2.1 Pin Configuration The pin configuration of the Registered DDR2 SDRAM DIMM is listed by function in Table 5 (240 pins). The abbreviations used in columns Pin and Buffer Type are explained in Table 6 and Table 7 respectively. The pin numbering is depicted in Figure 1. TABLE 5 Pin Configuration of RDIMM Ball No. Name Pin Type Buffer Type Function 185 CK0 I SSTL Clock Signal CK0, Complementary Clock Signal CK0 186 CK0 I SSTL 52 CKE0 I SSTL 171 CKE1 I SSTL NC NC — Not Connected Note: 1-Rank module 193 S0 I SSTL 76 S1 I SSTL Chip Select Rank 1:0 Note: 2-Ranks module NC NC — Not Connected Note: 1-Rank module 192 RAS I SSTL 74 CAS I SSTL Row Address Strobe (RAS), Column Address Strobe (CAS), Write Enable (WE) 73 WE I SSTL 18 RESET I CMOS Register Reset 71 BA0 I SSTL Bank Address Bus 1:0 190 BA1 I SSTL 54 BA2 I SSTL Bank Address Bus 2 Greater than 512Mb DDR2 SDRAMS NC I SSTL Not Connected Less than 1Gb DDR2 SDRAMS Clock Signals Clock Enables 1:0 Note: 2-Ranks module Control Signals Address Signals Rev. 1.4, 2007-02 03062006-GD6J-14FP 6 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules Ball No. Name Pin Type Buffer Type Function 188 A0 I SSTL Address Bus 12:0, Address Signal 10/AutoPrecharge 183 A1 I SSTL 63 A2 I SSTL 182 A3 I SSTL 61 A4 I SSTL 60 A5 I SSTL 180 A6 I SSTL 58 A7 I SSTL 179 A8 I SSTL 177 A9 I SSTL 70 A10 I SSTL AP I SSTL 57 A11 I SSTL 176 A12 I SSTL 196 A13 I SSTL Address Signal 13 NC NC — Not Connected Note: Non CA parity modules based on 256 Mbit component A14 I SSTL Address Signal 14 Note: CA Parity module NC NC — Not Connected Note: Non CA parity module. Less than 1 GBit per DRAM die. A15 I SSTL Address Signal 14 Note: CA Parity module NC NC — Not Connected Note: Non CA parity module. Less than 1 GBit per DRAM die. 174 173 Rev. 1.4, 2007-02 03062006-GD6J-14FP 7 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules Ball No. Name Pin Type Buffer Type Function Data Bus 63:0 Data Signals 3 DQ0 I/O SSTL 4 DQ1 I/O SSTL 9 DQ2 I/O SSTL 10 DQ3 I/O SSTL 122 DQ4 I/O SSTL 123 DQ5 I/O SSTL 128 DQ6 I/O SSTL 129 DQ7 I/O SSTL 12 DQ8 I/O SSTL 13 DQ9 I/O SSTL 21 DQ10 I/O SSTL 22 DQ11 I/O SSTL 131 DQ12 I/O SSTL 132 DQ13 I/O SSTL 140 DQ14 I/O SSTL 141 DQ15 I/O SSTL 24 DQ16 I/O SSTL 25 DQ17 I/O SSTL 30 DQ18 I/O SSTL 31 DQ19 I/O SSTL 143 DQ20 I/O SSTL 144 DQ21 I/O SSTL 149 DQ22 I/O SSTL 150 DQ23 I/O SSTL 33 DQ24 I/O SSTL 34 DQ25 I/O SSTL 39 DQ26 I/O SSTL 40 DQ27 I/O SSTL 152 DQ28 I/O SSTL 153 DQ29 I/O SSTL 158 DQ30 I/O SSTL 159 DQ31 I/O SSTL 80 DQ32 I/O SSTL 81 DQ33 I/O SSTL 86 DQ34 I/O SSTL 87 DQ35 I/O SSTL 199 DQ36 I/O SSTL 200 DQ37 I/O SSTL 205 DQ38 I/O SSTL Rev. 1.4, 2007-02 03062006-GD6J-14FP 8 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules Ball No. Name Pin Type Buffer Type Function 206 DQ39 I/O SSTL Data Bus 63:0 89 DQ40 I/O SSTL 90 DQ41 I/O SSTL 95 DQ42 I/O SSTL 96 DQ43 I/O SSTL 208 DQ44 I/O SSTL 209 DQ45 I/O SSTL 214 DQ46 I/O SSTL 215 DQ47 I/O SSTL 98 DQ48 I/O SSTL 99 DQ49 I/O SSTL 107 DQ50 I/O SSTL 108 DQ51 I/O SSTL 217 DQ52 I/O SSTL 218 DQ53 I/O SSTL 226 DQ54 I/O SSTL 227 DQ55 I/O SSTL 110 DQ56 I/O SSTL 111 DQ57 I/O SSTL 116 DQ58 I/O SSTL 117 DQ59 I/O SSTL 229 DQ60 I/O SSTL 230 DQ61 I/O SSTL 235 DQ62 I/O SSTL 236 DQ63 I/O SSTL 42 CB0 I/O SSTL 43 CB1 I/O SSTL 48 CB2 I/O SSTL 49 CB3 I/O SSTL 161 CB4 I/O SSTL 162 CB5 I/O SSTL 167 CB6 I/O SSTL 168 CB7 I/O SSTL Check Bits Rev. 1.4, 2007-02 03062006-GD6J-14FP Check Bits 7:0 Note: NC on Non-ECC module 9 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules Ball No. Name Pin Type Buffer Type Function Data Strobes 17:0 Data Strobe Bus 7 DQS0 I/O SSTL 6 DQS0 I/O SSTL 16 DQS1 I/O SSTL 15 DQS1 I/O SSTL 28 DQS2 I/O SSTL 27 DQS2 I/O SSTL 37 DQS3 I/O SSTL 36 DQS3 I/O SSTL 84 DQS4 I/O SSTL 83 DQS4 I/O SSTL 93 DQS5 I/O SSTL 92 DQS5 I/O SSTL 105 DQS6 I/O SSTL 104 DQS6 I/O SSTL 114 DQS7 I/O SSTL 113 DQS7 I/O SSTL 46 DQS8 I/O SSTL 45 DQS8 I/O SSTL 125 DQS9 I/O SSTL 126 DQS9 I/O SSTL 134 DQS10 I/O SSTL 135 DQS10 I/O SSTL 146 DQS11 I/O SSTL 147 DQS11 I/O SSTL 155 DQS12 I/O SSTL 156 DQS12 I/O SSTL 202 DQS13 I/O SSTL 203 DQS13 I/O SSTL 211 DQS14 I/O SSTL 212 DQS14 I/O SSTL 223 DQS15 I/O SSTL 224 DQS15 I/O SSTL 232 DQS16 I/O SSTL 233 DQS16 I/O SSTL 164 DQS17 I/O SSTL 165 DQS17 I/O SSTL Rev. 1.4, 2007-02 03062006-GD6J-14FP 10 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules Ball No. Name Pin Type Buffer Type Function 125 DM0 I SSTL 134 DM1 I SSTL Data Masks 8:0 Note: ×8 based module 146 DM2 I SSTL 155 DM3 I SSTL 202 DM4 I SSTL 211 DM5 I SSTL 223 DM6 I SSTL 232 DM7 I SSTL 164 DM8 I SSTL 120 SCL I CMOS Serial Bus Clock 119 SDA I/O OD Serial Bus Data 239 SA0 I CMOS Serial Address Select Bus 2:0 240 SA1 I CMOS 101 SA2 I CMOS Data Mask EEPROM Parity 55 ERR_OUT O CMOS PAR_IN I CMOS VREF VDDSPD VDDQ AI — I/O Reference Voltage PWR — EEPROM Power Supply PWR — I/O Driver Power Supply 53, 59, 64, 67, 69, VDD 172, 178, 184, 187, 189, 197 PWR — Power Supply 2, 5, 8, 11, 14, 17, VSS 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 65, 66, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 198, 201, 204, 207, 210, 213, 216, 219, 222, 225, 228, 231, 234, 237 GND — Ground Plane Parity bits Power Supplies 1 238 51, 56, 62, 72, 75, 78, 170, 175, 181, 191, 194 Rev. 1.4, 2007-02 03062006-GD6J-14FP 11 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules Ball No. Name Pin Type Buffer Type Function 19, 55, 68, 102, NC 137, 138, 173, 220, 221 NC — Not connected 195 ODT0 I SSTL 77 ODT1 I SSTL On-Die Termination Control 1:0 Note: 2-Ranks module NC NC — Other Pins Note: 1-Rank modules TABLE 6 Abbreviations for Buffer Type Abbreviation Description SSTL Serial Stub Terminated Logic (SSTL_18) CMOS CMOS Levels OD Open Drain. The corresponding pin has 2 operational states, active low and tristate, and allows multiple devices to share as a wire-OR. TABLE 7 Abbreviations for Pin Type Abbreviation Description I Standard input-only pin. Digital levels. O Output. Digital levels. I/O I/O is a bidirectional input/output signal. AI Input. Analog levels. PWR Power GND Ground NU Not Usable NC Not Connected Rev. 1.4, 2007-02 03062006-GD6J-14FP 12 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules FIGURE 1 Pin Configuration for RDIMM (240 pins) 95() '4 966 '46 '4 966 '4 '46 966 1& '4 966 '4 '46 966 '4 '4 966 '46 '4 966 &% '46 966 &% 9''4 9'' 1& $ 9'' $ $ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 3LQ 966 3LQ 9'' 3LQ 9'' 3LQ %$ 3LQ :( 3LQ 9''4 3LQ 1&2 ' 7 3LQ 966 3LQ '4 3LQ '46 3LQ 966 3LQ 3LQ '4 3LQ '4 3LQ 966 3LQ '46 3LQ '4 3LQ 966 3LQ '4 3LQ 6$ 3LQ 966 3LQ '46 3LQ '4 3LQ 966 3LQ '4 3LQ '46 3LQ 966 3LQ '4 3LQ 6'$ Rev. 1.4, 2007-02 03062006-GD6J-14FP 3LQ 966 3LQ '4 '46 3LQ 3LQ 966 3LQ '4 3LQ '4 3LQ 966 '46 3LQ 5(6(7 3LQ 3LQ 966 '4 3LQ '4 3LQ 3LQ 966 '46 3LQ '4 3LQ 3LQ 966 '4 3LQ '46 3LQ 3LQ 966 '4 3LQ 3LQ &% 3LQ 966 '46 3LQ 3LQ &% 3LQ 966 &.( 3LQ 1&%$ 3LQ 3LQ 9''4 3LQ $ 3LQ $ 3LQ 9''4 3LQ 9'' ) 5 2 1 7 6 , ' ( % $ & . 6 , ' ( 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ '0'46 46 3LQ 1&' 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ '0'46 3LQ 1&'46 3LQ 966 3LQ 1& 3LQ 1& 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ '0'46 3LQ 1&'46 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ '0'46 3LQ 1&' 46 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ &% 3LQ &% 3LQ 966 3LQ '0'46 3LQ 1&'46 3LQ 966 3LQ &% 3LQ &% 3LQ 966 3LQ 9''4 3LQ 1&&.( 3LQ 9'' 3LQ 1& 3LQ 1&$ 3LQ 9''4 3LQ $ 3LQ $ 3LQ 9'' 3LQ $ 3LQ $ 3LQ 9''4 3LQ $ 3LQ $ 3LQ 9'' 3LQ &. 3LQ &. 3LQ 9'' 3LQ $ 3LQ 9'' 3LQ %$ 3LQ 9''4 3LQ 5$6 3LQ 6 3LQ 9''4 3LQ 2'7 3LQ 1&$ 3LQ 9'' 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ '0'46 3LQ 1&'46 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ '0'46 3LQ 1&' 46 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ 1& 3LQ 1& 3LQ 966 3LQ '0'46 3LQ 1&' 46 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ '0'46 3LQ 1&'46 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ 9''63' 3LQ 6$ 3LQ 6$ 033 7 3LQ 966 3LQ 1& $$3 3LQ 3LQ 9''4 3LQ &$6 1&6 3LQ 3LQ 9''4 '4 3LQ 3LQ 966 '46 3LQ '4 3LQ 3LQ 966 '4 3LQ '46 3LQ 3LQ 966 '4 3LQ '4 3LQ 3LQ 966 3LQ 1& '46 3LQ 3LQ 966 '4 3LQ '4 3LQ 3LQ 966 '46 3LQ '4 3LQ 3LQ 966 3LQ 6&/ 13 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules 3 Electrical Characteristics 3.1 Absolute Maximum Ratings TABLE 8 Absolute Maximum Ratings Parameter Voltage on any pins relative to VSS Voltage on VDD relative to VSS Voltage on VDDQ relative to VSS Storage Humidity (without condensation) Symbol Values VIN, VOUT VDD VDDQ HSTG Unit Min. Max. –0.5 2.3 V –1.0 2.3 V –0.5 2.3 V 5 95 % Note/Test Condition Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Rev. 1.4, 2007-02 03062006-GD6J-14FP 14 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules 3.2 DC Operating Conditions TABLE 9 Operating Conditions Parameter Symbol TOPR TCASE TSTG PBar HOPR DIMM Module Operating Temperature Range (ambient) DRAM Component Case Temperature Range Storage Temperature Barometric Pressure (operating & storage) Operating Humidity (relative) Values Unit Note Min. Max. 0 +55 °C 1) 0 +95 °C 2)3)4)5) –55 +100 °C +69 +105 kPa 10 90 % 6) 1) When operating this product in the 85 °C to 95 °C TCASE temperature range, the High Temperature Self Refresh has to be enabled by setting EMR(2) bit A7 to “1”. When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50 % 2) DRAM Component Case Temperature is the surface temperature in the center on the top side of any of the DRAMs. 3) Within the DRAM Component Case Temperature range all DRAM specification will be supported. 4) Above 85 °C DRAM case temperature the Auto-Refresh command interval has to be reduced to tREFI = 3.9 µs. 5) Self-Refresh period is hard-coded in the DRAMs and therefore it is imperative that the system ensures the DRAM is below 85 °C case temperature before initiating self-refresh operation. 6) Up to 3000 m TABLE 10 Supply Voltage Levels and DC Operating Conditions Parameter Device Supply Voltage Output Supply Voltage Input Reference Voltage SPD Supply Voltage DC Input Logic High DC Input Logic Low Symbol VDD VDDQ VREF VDDSPD VIH(DC) VIL (DC) IL Values Unit Min. Typ. Max. 1.7 1.8 1.9 V 1.7 1.8 1.9 V 1) 0.49 × VDDQ 0.5 × VDDQ 0.51 × VDDQ V 2) 1.7 — 3.6 V VREF + 0.125 — V – 0.30 — VDDQ + 0.3 VREF – 0.125 V In / Output Leakage Current –5 — 5 µA 1) Under all conditions, VDDQ must be less than or equal to VDD 2) Peak to peak AC noise on VREF may not exceed ± 2% VREF (DC).VREF is also expected to track noise in VDDQ. 3) Input voltage for any connector pin under test of 0 V ≤ VIN ≤ VDDQ + 0.3 V; all other pins at 0 V. Current is per pin Rev. 1.4, 2007-02 03062006-GD6J-14FP Note 15 3) Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules 3.3 AC Characteristics 3.3.1 Speed Grades Definitions TABLE 11 Speed Grade Definition Speed Grade DDR2–667 DDR2–533C DDR2–400B QAG Sort Name –3S –3.7 –5 CAS-RCD-RP latencies 5–5–5 4–4–4 3–3–3 Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Unit Note tCK Symbol Min. Max. Min. Max. Min. Max. — tCK tCK tCK tRAS tRC tRCD tRP 5 8 5 8 5 8 ns 1)2)3)4) 3.75 8 3.75 8 5 8 ns 1)2)3)4) 3 8 3.75 8 5 8 ns 1)2)3)4) 45 70000 45 70000 40 70000 ns 1)2)3)4)5) 60 — 60 — 55 — ns 1)2)3)4) 15 — 15 — 15 — ns 1)2)3)4) 15 — 15 — 15 — ns 1)2)3)4) 1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements” 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI. 3.3.2 AC Timing Parameters TABLE 12 DRAM Component Timing Parameter by Speed Grade - DDR2–667 Parameter Symbol DDR2–667 Unit Note1)2)3)4)5)6)7) 8) DQ output access time from CK / CK CAS to CAS command delay Average clock high pulse width Average clock period Rev. 1.4, 2007-02 03062006-GD6J-14FP tAC tCCD tCH.AVG tCK.AVG 16 Min. Max. –450 +450 ps 2 — nCK 0.48 0.52 tCK.AVG 3000 8000 ps 9) 10)11) Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules Parameter Symbol DDR2–667 Unit Note1)2)3)4)5)6)7) 8) Min. Max. 3 — nCK 12) tCL.AVG Auto-Precharge write recovery + precharge time tDAL Minimum time clocks remain ON after CKE tDELAY 0.48 0.52 tCK.AVG 1)1) WR + tnRP — nCK 13)14) tIS + tCK .AVG + tIH — ns tDH.BASE DQ and DM input pulse width for each input tDIPW DQS output access time from CK / CK tDQSCK DQS input high pulse width tDQSH DQS input low pulse width tDQSL DQS-DQ skew for DQS & associated DQ signals tDQSQ DQS latching rising transition to associated clock tDQSS 175 — ps 0.35 — tCK.AVG –400 +400 ps 0.35 — 0.35 — tCK.AVG tCK.AVG — 240 ps 16) –0.25 +0.25 tCK.AVG 17) tDS.BASE tDSH tDSS tHP 100 –– ps 18)19)20) 17) CKE minimum pulse width ( high and low pulse width) tCKE Average clock low pulse width asynchronously drops LOW DQ and DM input hold time edges DQ and DM input setup time DQS falling edge hold time from CK DQS falling edge to CK setup time CK half pulse width tHZ Address and control input hold time tIH.BASE Control & address input pulse width for each input tIPW Address and control input setup time tIS.BASE DQ low impedance time from CK/CK tLZ.DQ DQS/DQS low-impedance time from CK / CK tLZ.DQS MRS command to ODT update delay tMOD Mode register set command cycle time tMRD OCD drive mode output delay tOIT DQ/DQS output hold time from DQS tQH DQ hold skew factor tQHS Read preamble tRPRE Read postamble tRPST Internal Read to Precharge command delay tRTP Write preamble tWPRE Write postamble tWPST Write recovery time tWR Internal write to read command delay tWTR Exit power down to read command tXARD Exit active power-down mode to read command tXARDS Data-out high-impedance time from CK / CK (slow exit, lower power) Rev. 1.4, 2007-02 03062006-GD6J-14FP 17 19)20)15) 9) 0.2 — 0.2 — tCK.AVG tCK.AVG Min(tCH.ABS, tCL.ABS) __ ps 21) — tAC.MAX ps 9)22) 275 — ps 25)23) 0.6 — tCK.AVG 200 — ps 24)25) 2 × tAC.MIN ps 9)22) tAC.MIN tAC.MAX tAC.MAX ps 9)22) 0 12 ns 1) 2 — nCK 0 12 ns 1) tHP – tQHS — ps 26) — 340 ps 27) 0.9 1.1 28)29) 0.4 0.6 tCK.AVG tCK.AVG 7.5 — ns 31) 0.35 — 0.4 0.6 tCK.AVG tCK.AVG 15 — ns 31) 7.5 — ns 31)32) 2 — nCK 7 – AL — nCK 17) 28)30) Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules Parameter Symbol DDR2–667 Unit Note1)2)3)4)5)6)7) 8) Min. Max. Exit precharge power-down to any valid command (other than NOP or Deselect) tXP 2 — nCK Exit self-refresh to a non-read command tRFC +10 — ns Exit self-refresh to read command tXSNR tXSRD 200 — nCK Write command to DQS associated clock edges WL RL–1 31) nCK 1) For details and notes see the relevant Qimonda component data sheet 2) VDDQ = 1.8 V ± 0.1V; VDD = 1.8 V ± 0.1 V. See notes 1)6)1)8) 3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. 6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 7) The output timing reference voltage level is VTT. 8) New units, ‘tCK.AVG‘ and ‘nCK‘, are introduced in DDR2–667 and DDR2–800. Unit ‘tCK.AVG‘ represents the actual tCK.AVG of the input clock under operation. Unit ‘nCK‘ represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2–400 and DDR2–533, ‘tCK‘ is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min). 9) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tERR(6-10PER).MIN = – 272 ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN – tERR(6-10PER).MAX = – 400 ps – 293 ps = – 693 ps and tDQSCK.MAX(DERATED) = tDQSCK.MAX – tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2–667 derates to tLZ.DQ.MIN(DERATED) = - 900 ps – 293 ps = – 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!) 10) Input clock jitter spec parameter. These parameters are referred to as 'input clock jitter spec parameters' and these parameters apply to DDR2–667 and DDR2–800 only. The jitter specified is a random jitter meeting a Gaussian distribution. 11) These parameters are specified per their average values, however it is understood that the relationship between the average timing and the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations). 12) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of tIS + 2 x tCK + tIH. 13) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For DDR2–533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks. 14) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR. 15) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and VIH.DC.MIN. See Figure 3. 16) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output slew rate mismatch between DQS / DQS and associated DQ in any given cycle. 17) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not. 18) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN. See Figure 3. 19) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed. 20) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal ((L/U/R)DQS / DQS) crossing. Rev. 1.4, 2007-02 03062006-GD6J-14FP 18 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules 21) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter. It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the minimum of the actual instantaneous clock low time. 22) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) . 23) Input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied to the device under test. See Figure 4. 24) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied to the device under test. See Figure 4. 25) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not. 26) tQH = tHP – tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under the max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.} Examples: 1) If the system provides tHP of 1315 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system provides tHP of 1420 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 1080 ps minimum. 27) tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation of the output drivers. 28) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (tRPST), or begins driving (tRPRE). Figure 2 shows a method to calculate these points when the device is no longer driving (tRPST), or begins driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent. 29) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.PER.MIN = – 72 ps and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG – 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX + tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!). 30) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.DUTY.MIN = – 72 ps and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG – 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX + tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!). 31) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which tRP = 15 ns, the device will support tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter. 32) tWTR is at lease two clocks (2 x tCK) independent of operation frequency. FIGURE 2 Method for calculating transitions and endpoint 92+[P9 977[P9 92+[P9 977[P9 W/= W+= W535(EHJLQSRLQW W5367 H QGSRLQW 92/[P9 977[P9 92/[P9 977[P9 7 7 7 7 W+=W5367 HQGSRLQW 77 Rev. 1.4, 2007-02 03062006-GD6J-14FP W/=W535( E HJLQSRLQW 7 7 19 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules FIGURE 3 Differential input waveform timing - tDS and tDS '46 '46 W'6 W'+ W'6 W'+ 9''4 9,+DFPLQ 9,+GFPLQ 95()GF 9,/GF PD[ 9,/DF PD[ 966 FIGURE 4 Differential input waveform timing - tlS and tlH &. &. W,6 W,+ W,6 W,+ 9''4 9,+DFPLQ 9,+GFPLQ 95()GF 9,/GFPD[ 9,/DFPD[ 966 Rev. 1.4, 2007-02 03062006-GD6J-14FP 20 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules TABLE 13 DRAM Component Timing Parameter by Speed Grade - DDR2–533 Parameter Symbol DDR2–533 Unit Note1)2)3)4)5) 6)7) Min. Max. tAC tCCD tCH tCKE tCL tDAL –500 +500 ps 2 — 0.45 0.55 3 — 0.45 0.55 WR + tRP — tCK tCK tCK tCK tCK Minimum time clocks remain ON after CKE asynchronously drops LOW tDELAY tIS + tCK + tIH –– ns 9) DQ and DM input hold time (differential data strobe) tDH(base) 225 –– ps 10) –25 — ps 11) tDIPW tDQSCK tDQSL,H tDQSQ 0.35 — tCK –450 +450 ps 0.35 — tCK — 300 ps tDQSS tDS(base) – 0.25 + 0.25 tCK 100 — ps 11) –25 — ps 11) tDSH 0.2 — tCK DQS falling edge to CK setup time (write cycle) tDSS 0.2 — tCK DQ output access time from CK / CK CAS A to CAS B command period CK, CK high-level width CKE minimum high and low pulse width CK, CK low-level width Auto-Precharge write recovery + precharge time DQ and DM input hold time (single ended data tDH1(base) strobe) DQ and DM input pulse width (each input) DQS output access time from CK / CK DQS input low (high) pulse width (write cycle) DQS-DQ skew (for DQS & associated DQ signals) Write command to 1st DQS latching transition DQ and DM input setup time (differential data strobe) DQ and DM input setup time (single ended data tDS1(base) strobe) DQS falling edge hold time from CK (write cycle) Clock half period Data-out high-impedance time from CK / CK Address and control input hold time Address and control input pulse width (each input) Address and control input setup time DQ low-impedance time from CK / CK DQS low-impedance from CK / CK Mode register set command cycle time OCD drive mode output delay Data output hold time from DQS Data hold skew factor Average periodic refresh Interval Rev. 1.4, 2007-02 03062006-GD6J-14FP tHP tHZ tIH(base) tIPW MIN. (tCL, tCH) tIS(base) tLZ(DQ) tLZ(DQS) tMRD tOIT tQH tQHS tREFI 21 8)18) 11) 12) — tAC.MAX ps 13) 375 — ps 11) 0.6 — tCK 250 — ps 11) 2 × tAC.MIN ps 14) tAC.MIN tAC.MAX tAC.MAX ps 14) 2 — tCK 0 12 ns tHP –tQHS — — — 400 ps — 7.8 µs 14)15) Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules Parameter Symbol DDR2–533 Unit Note1)2)3)4)5) 6)7) Min. Max. tREFI tRFC — 3.9 µs 16)18) — — ns 17) tRP tRP tRPRE tRPST tRRD tRP + 1tCK 15 + 1tCK — ns — ns 0.9 1.1 14) 0.40 0.60 tCK tCK 7.5 — ns 14)18) Active bank A to Active bank B command period tRRD 10 — ns 16)22) Internal Read to Precharge command delay tRTP tWPRE tWPST tWR 7.5 — ns 0.25 — 0.40 0.60 tCK tCK 15 — ns tWTR tXARD 7.5 — ns 20) 2 — tCK 21) Exit active power-down mode to Read command (slow exit, lower power) tXARDS 6 – AL — tCK 21) Exit precharge power-down to any valid command (other than NOP or Deselect) tXP 2 — tCK Exit Self-Refresh to non-Read command tXSNR tXSRD tRFC +10 — ns 200 — WR tWR/tCK — tCK tCK Average periodic refresh Interval Auto-Refresh to Active/Auto-Refresh command period Precharge-All (4 banks) command period Precharge-All (8 banks) command period Read preamble Read postamble Active bank A to Active bank B command period Write preamble Write postamble Write recovery time for write without AutoPrecharge Internal Write to Read command delay Exit power down to any valid command (other than NOP or Deselect) Exit Self-Refresh to Read command Write recovery time for write with AutoPrecharge 14) 19) 22) 1) For details and notes see the relevant Qimonda component data sheet. 2) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V. See notes 1)6)1)8) 3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. 6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 7) The output timing reference voltage level is VTT. 8) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MR. 9) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. 10) For timing definition, refer to the Component data sheet. 11) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate mis-match between DQS / DQS and associated DQ in any given cycle. 12) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for tCL and tCH). Rev. 1.4, 2007-02 03062006-GD6J-14FP 22 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules 13) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These parameters are verified by design and characterization, but not subject to production test. 14) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C and 95 °C. 15) 0 °C≤ TCASE ≤ 85 °C 16) 85 °C < TCASE ≤ 95 °C 17) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device. 18) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 2 “Ordering Information for RoHS Compliant Products” on Page 4. 19) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 20) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz. 21) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active powerdown mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow power-down exit timing tXARDS has to be satisfied. 22) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MRS. TABLE 14 DRAM Component Timing Parameter by Speed Grade - DDR2 - 400 Parameter Symbol DDR2–400 Unit Note1)2)3)4)5) 6)7) Min. Max. tAC tCCD tCH tCKE tCL tDAL –600 +600 ps 2 — 0.45 0.55 3 — 0.45 0.55 WR + tRP — tCK tCK tCK tCK tCK Minimum time clocks remain ON after CKE asynchronously drops LOW tDELAY tIS + tCK + tIH — ns 9) DQ and DM input hold time (differential data strobe) tDH(base) 275 — ps 10) –25 — ps 11) 0.35 — tCK –500 +500 ps 0.35 — tCK — 350 ps – 0.25 + 0.25 tCK DQ output access time from CK / CK CAS A to CAS B command period CK, CK high-level width CKE minimum high and low pulse width CK, CK low-level width Auto-Precharge write recovery + precharge time DQ and DM input hold time (single ended data tDH1(base) strobe) DQ and DM input pulse width (each input) DQS output access time from CK / CK DQS input low (high) pulse width (write cycle) DQS-DQ skew (for DQS & associated DQ signals) tDIPW tDQSCK tDQSL,H tDQSQ Write command to 1st DQS latching transition tDQSS 8)21) 11) DQ and DM input setup time (differential data strobe) tDS(base) 150 — ps 11) DQ and DM input setup time (single ended data strobe) tDS1(base) –25 — ps 11) Rev. 1.4, 2007-02 03062006-GD6J-14FP 23 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules Parameter Symbol DDR2–400 Unit Note1)2)3)4)5) 6)7) Min. Max. tDSH 0.2 — DQS falling edge to CK setup time (write cycle) tDSS 0.2 — DQS falling edge hold time from CK (write cycle) Clock half period Data-out high-impedance time from CK / CK Address and control input hold time Address and control input pulse width (each input) Address and control input setup time DQ low-impedance time from CK / CK DQS low-impedance from CK / CK Mode register set command cycle time OCD drive mode output delay Data output hold time from DQS Data hold skew factor Average periodic refresh Interval Average periodic refresh Interval tHP tHZ tIH(base) tIPW MIN. (tCL, tCH) tIS(base) tLZ(DQ) tLZ(DQS) tMRD tOIT tQH tQHS tREFI tREFI tCK tCK — 12) — tAC.MAX ps 13) 475 — ps 11) 0.6 — tCK 350 — ps 11) 2 × tAC.MIN ps 14) tAC.MIN tAC.MAX tAC.MAX ps 14) 2 — tCK 0 12 ns tHP –tQHS — — — 450 ps — 7.8 µs 14)15) — 3.9 µs 16)18) 17) Auto-Refresh to Active/Auto-Refresh command period — — — ns Precharge-All (4 banks) command period tRP tRP tRPRE tRPST tRRD tRP + 1tCK 15 + 1tCK — ns — ns 0.9 1.1 14) 0.40 0.60 tCK tCK 7.5 — ns 14)18) Active bank A to Active bank B command period tRRD 10 — ns 16)22) Internal Read to Precharge command delay tRTP tWPRE tWPST tWR 7.5 — ns 0.25 — 0.40 0.60 tCK tCK 15 — ns tWTR tXARD 10 — ns 20) 2 — tCK 21) Exit active power-down mode to Read command (slow exit, lower power) tXARDS 6 – AL — tCK 21) Exit precharge power-down to any valid command (other than NOP or Deselect) tXP 2 — tCK Exit Self-Refresh to non-Read command tXSNR tRFC +10 — ns Precharge-All (8 banks) command period Read preamble Read postamble Active bank A to Active bank B command period Write preamble Write postamble Write recovery time for write without AutoPrecharge Internal Write to Read command delay Exit power down to any valid command (other than NOP or Deselect) Rev. 1.4, 2007-02 03062006-GD6J-14FP 24 14) 19) Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules Parameter Symbol DDR2–400 Unit Note1)2)3)4)5) 6)7) Min. Max. Exit Self-Refresh to Read command tXSRD 200 — Write recovery time for write with AutoPrecharge WR tWR/tCK — tCK tCK 22) 1) For details and notes see the relevant Qimonda component data sheet. 2) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V. See notes 1)6)1)8) 3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. 6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 7) The output timing reference voltage level is VTT. 8) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MR. 9) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. 10) For timing definition, refer to the Component data sheet. 11) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate mis-match between DQS / DQS and associated DQ in any given cycle. 12) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for tCL and tCH). 13) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These parameters are verified by design and characterization, but not subject to production test. 14) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C and 95 °C. 15) 0 °C≤ TCASE ≤ 85 °C 16) 85 °C < TCASE ≤ 95 °C 17) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device. 18) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 2 “Ordering Information for RoHS Compliant Products” on Page 4. 19) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 20) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz. 21) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active powerdown mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow power-down exit timing tXARDS has to be satisfied. 22) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MRS. Rev. 1.4, 2007-02 03062006-GD6J-14FP 25 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules 3.3.3 ODT AC Electrical Characteristics TABLE 15 ODT AC Characteristics and Operating Conditions for DDR2-667 Symbol tAOND tAON tAONPD tAOFD tAOF tAOFPD tANPD tAXPD Parameter / Condition Values Unit Note Min. Max. ODT turn-on delay 2 2 nCK 1) ODT turn-on tAC.MAX + 0.7 ns 2 tCK + tAC.MAX + 1 ns ns 1)2) ODT turn-on (Power-Down Modes) tAC.MIN tAC.MIN + 2 ns ns 1) ODT turn-off delay 2.5 2.5 nCK 1) tAC.MAX + 0.6 ns 2.5 tCK + tAC.MAX + 1 ns ns ODT turn-off (Power-Down Modes) tAC.MIN tAC.MIN + 2 ns 1)3) ns 1) ODT to Power Down Mode Entry Latency 3 — nCK nCK 1) ODT turn-off 1) ODT Power Down Exit Latency 8 — 1) New units, “tCK.AVG” and “nCK”, are introduced in DDR2-667 and DDR2-800. Unit “tCK.AVG” represents the actual tCK.AVG of the input clock under operation. Unit “nCK” represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2-400 and DDR2-533, “tCK” is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min). 2) ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-667/800, tAOND is 2 clock cycles after the clock edge that registered a first ODT HIGH counting the actual input clock edges. 3) ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-667/800, if tCK(avg) = 3 ns is assumed, tAOFD is 1.5 ns (= 0.5 x 3 ns) after the second trailing clock edge counting from the clock edge that registered a first ODT LOW and by counting the actual input clock edges. Rev. 1.4, 2007-02 03062006-GD6J-14FP 26 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules TABLE 16 ODT AC Characteristics and Operating Conditions for DDR2-533 & DDR2-400 Symbol Parameter / Condition Values Min. tAOND tAON tAONPD tAOFD tAOF tAOFPD tANPD tAXPD Unit Note Max. ODT turn-on delay 2 2 tCK ODT turn-on tAC.MAX + 1 ns 2 tCK + tAC.MAX + 1 ns ns ODT turn-on (Power-Down Modes) tAC.MIN tAC.MIN + 2 ns ODT turn-off delay 2.5 2.5 tCK ODT turn-off tAC.MAX + 0.6 ns 2.5 tCK + tAC.MAX + 1 ns ns ODT turn-off (Power-Down Modes) tAC.MIN tAC.MIN + 2 ns ODT to Power Down Mode Entry Latency 3 — ODT Power Down Exit Latency 8 — tCK tCK 1) ns 2) ns 1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-400/533, tAOND is 10 ns (= 2 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns. 2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-400/533, tAOFD is 12.5 ns (= 2.5 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns. 3.4 Currents Specifications and Conditions TABLE 17 IDD Measurement Conditions Parameter Symbol Note 1)2)3)4)5)6) Operating Current 0 IDD0 One bank Active - Precharge; tCK = tCK.MIN, tRC = tRC.MIN, tRAS = tRAS.MIN, CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are SWITCHING, Databus inputs are SWITCHING. Operating Current 1 One bank Active - Read - Precharge; IOUT = 0 mA, BL = 4, tCK = tCK.MIN, tRC = tRC.MIN, tRAS = tRAS.MIN, tRCD = tRCD.MIN, AL = 0, CL = CLMIN; CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are SWITCHING, Databus inputs are SWITCHING. IDD1 Precharge Standby Current IDD2N All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK.MIN; Other control and address inputs are SWITCHING, Data bus inputs are SWITCHING. Precharge Power-Down Current Other control and address inputs are STABLE, Data bus inputs are FLOATING. IDD2P Precharge Quiet Standby Current All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK.MIN; Other control and address inputs are STABLE, Data bus inputs are FLOATING. IDD2Q Rev. 1.4, 2007-02 03062006-GD6J-14FP 27 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules Parameter Symbol Note 1)2)3)4)5)6) IDD3N Active Standby Current Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CLMIN; tCK = tCK.MIN; tRAS = tRAS.MAX, tRP = tRP.MIN; CKE is HIGH, CS is HIGH between valid commands. Address inputs are SWITCHING; Data Bus inputs are SWITCHING; IOUT = 0 mA. Active Power-Down Current IDD3P(0) All banks open; tCK = tCK.MIN, CKE is LOW; Other control and address inputs are STABLE, Data bus inputs are FLOATING. MRS A12 bit is set to LOW (Fast Power-down Exit); Active Power-Down Current IDD3P(1) All banks open; tCK = tCK.MIN, CKE is LOW; Other control and address inputs are STABLE, Data bus inputs are FLOATING. MRS A12 bit is set to HIGH (Slow Power-down Exit); Operating Current Burst Write: All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CLMIN; tCK = tCK.MIN; tRAS = tRAS.MAX., tRP = tRP.MAX; CKE is HIGH, CS is HIGH between valid commands. Address inputs are SWITCHING; Data Bus inputs are SWITCHING; IDD4W Burst Refresh Current tCK = tCK.MIN., Refresh command every tRFC = tRFC.MIN interval, CKE is HIGH, CS is HIGH between valid commands, Other control and address inputs are SWITCHING, Data bus inputs are SWITCHING. IDD5B Distributed Refresh Current tCK = tCK.MIN., Refresh command every tRFC = tREFI interval, CKE is LOW and CS is HIGH between valid commands, Other control and address inputs are SWITCHING, Data bus inputs are SWITCHING. IDD5D Self-Refresh Current IDD6 CKE ≤ 0.2 V; external clock off, CK and CK at 0 V; Other control and address inputs are FLOATING, Data bus inputs are FLOATING. IDD6 current values are guaranteed up to TCASE of 85 °C max. All Bank Interleave Read Current IDD7 All banks are being interleaved at minimum tRC without violating tRRD using a burst length of 4. Control and address bus inputs are STABLE during DESELECTS. Iout = 0 mA. 1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V 2) IDD specifications are tested after the device is properly initialized and IDD parameter are specified with ODT disabled. 3) Definitions for IDD see Table 18 4) IDD1, IDD4R and IDD7 current measurements are defined with the outputs disabled (IOUT = 0 mA). To achieve this on module level the output buffers can be disabled using an EMRS(1) (Extended Mode Register Command) by setting A12 bit to HIGH. 5) For two rank modules: for all active current measurements the other rank is in Precharge Power-Down Mode IDD2P 6) For details and notes see the relevant Qimonda component data sheet TABLE 18 Definitions for IDD Parameter Description LOW VIN ≤ VIL(ac).MAX, HIGH is defined as VIN ≥ VIH(ac).MIN STABLE inputs are stable at a HIGH or LOW level FLOATING inputs are VREF = VDDQ /2 SWITCHING inputs are changing between HIGH and LOW every other clock (once per 2 cycles) for address and control signals, and inputs changing between HIGH and LOW every other data transfer (once per cycle) for DQ signals not including mask or strobes Rev. 1.4, 2007-02 03062006-GD6J-14FP 28 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules TABLE 19 Product Type HYS72T256000HR–3S–A HYS72T256000HR–3.7–A HYS72T128001HR–5–A HYS72T256000HR–5–A IDD Specification for HYS72T[128/256]00xHR–[3S/3.7/5]–A Organization 2 GByte 2 GByte 1 GByte 2 GByte 1 Rank 1 Rank 1 Rank 1 Rank ×72 ×72 ×72 ×72 –3S –3.7 –5 –5 Symbol Max. Max. Max. Max. IDD0 IDD1 IDD2N IDD2P IDD2Q IDD3N IDD3P.MRS=0 IDD3P.MRS=1 IDD4R IDD4W IDD5B IDD5D IDD6 IDD7 2130 1850 910 2490 2030 1680 Unit Note1) 1670 mA 2) 1000 1850 mA 2) 1330 590 1040 mA 3) 720 630 340 530 mA 3) 1320 910 530 910 mA 3) 1770 1400 640 1130 mA 3) 470 860 440 910 mA 3)4) 720 660 360 730 mA 3)5) 4200 3100 1310 2480 mA 2) 4200 3020 1270 2390 mA 2) 4200 3830 1900 3650 mA 2) 720 680 370 590 mA 3)6) 108 144 72 144 mA 3)6) 5190 4640 2120 4100 mA 3) 1) Module IDD is calculated on the basis of component IDD and includes currents of Registers and PLL. ODT disabled. IDD1, IDD4R and IDD7 are defined with the outputs disabled. 2) The other rank is in IDD2P Percharge Power-Down mode 3) Both ranks are in the same IDD current mode 4) Fast: MRS(12)=0 5) Slow: MRS(12)=1 6) Values for 0 °C ≤ TCASE ≤ 85 °C Rev. 1.4, 2007-02 03062006-GD6J-14FP 29 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules 4 SPD Codes This chapter lists all hexadecimal byte values stored in the EEPROM of the products described in this data sheet. SPD stands for serial presence detect. All values with XX in the table are module specific bytes which are defined during production. List of SPD Code Tables • Table 20 “HYS72T[128/256]00xHR-[3S/3.7/5]-A” on Page 30 TABLE 20 Product Type HYS72T256000HR–3S–A HYS72T256000HR–3.7–A HYS72T128001HR–5–A HYS72T256000HR–5–A HYS72T[128/256]00xHR-[3S/3.7/5]-A Organization 2 GByte 2 GByte 1 GByte 2 GByte ×72 ×72 ×72 ×72 1 Rank (×4) 1 Rank (×4) 1 Rank (×8) 1 Rank (×4) Label Code PC2– 5300R–555 PC2– 4200R–444 PC2– 3200R–333 PC2– 3200R–333 JEDEC SPD Revision Rev. 1.2 Rev. 1.1 Rev. 1.2 Rev. 1.1 Byte# Description HEX HEX HEX HEX 0 Programmed SPD Bytes in EEPROM 80 80 80 80 1 Total number of Bytes in EEPROM 08 08 08 08 2 Memory Type (DDR2) 08 08 08 08 3 Number of Row Addresses 0E 0E 0E 0E 4 Number of Column Addresses 0B 0B 0A 0B 5 DIMM Rank and Stacking Information 60 60 60 60 6 Data Width 48 48 48 48 7 Not used 00 00 00 00 8 Interface Voltage Level 05 05 05 05 9 tCK @ CLMAX (Byte 18) [ns] tAC SDRAM @ CLMAX (Byte 18) [ns] 30 3D 50 50 10 45 50 60 60 11 Error Correction Support (non-ECC, ECC) 02 02 02 02 12 Refresh Rate and Type 82 82 82 82 13 Primary SDRAM Width 04 04 08 04 Rev. 1.4, 2007-02 03062006-GD6J-14FP 30 Internet Data Sheet Product Type HYS72T256000HR–3S–A HYS72T256000HR–3.7–A HYS72T128001HR–5–A HYS72T256000HR–5–A HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules Organization 2 GByte 2 GByte 1 GByte 2 GByte ×72 ×72 ×72 ×72 1 Rank (×4) 1 Rank (×4) 1 Rank (×8) 1 Rank (×4) Label Code PC2– 5300R–555 PC2– 4200R–444 PC2– 3200R–333 PC2– 3200R–333 JEDEC SPD Revision Rev. 1.2 Rev. 1.1 Rev. 1.2 Rev. 1.1 Byte# HEX HEX HEX HEX Description 14 Error Checking SDRAM Width 04 04 08 04 15 Not used 00 00 00 00 16 Burst Length Supported 0C 0C 0C 0C 17 Number of Banks on SDRAM Device 08 08 08 08 18 Supported CAS Latencies 38 38 38 38 19 DIMM Mechanical Characteristics 01 00 00 00 20 DIMM Type Information 01 01 01 01 21 DIMM Attributes 05 05 04 05 22 Component Attributes 03 01 01 01 23 3D 3D 50 50 50 50 60 60 50 50 50 50 60 60 60 60 30 tCK @ CLMAX -1 (Byte 18) [ns] tAC SDRAM @ CLMAX -1 [ns] tCK @ CLMAX -2 (Byte 18) [ns] tAC SDRAM @ CLMAX -2 [ns] tRP.MIN [ns] tRRD.MIN [ns] tRCD.MIN [ns] tRAS.MIN [ns] 31 Module Density per Rank 32 38 tAS.MIN and tCS.MIN [ns] tAH.MIN and tCH.MIN [ns] tDS.MIN [ns] tDH.MIN [ns] tWR.MIN [ns] tWTR.MIN [ns] tRTP.MIN [ns] 39 Analysis Characteristics 24 25 26 27 28 29 33 34 35 36 37 Rev. 1.4, 2007-02 03062006-GD6J-14FP 31 3C 3C 3C 3C 1E 1E 1E 1E 3C 3C 3C 3C 2D 2D 28 28 02 02 01 02 20 25 35 35 27 37 47 47 10 10 15 15 17 22 27 27 3C 3C 3C 3C 1E 1E 28 28 1E 1E 1E 1E 00 00 00 00 Internet Data Sheet Product Type HYS72T256000HR–3S–A HYS72T256000HR–3.7–A HYS72T128001HR–5–A HYS72T256000HR–5–A HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules Organization 2 GByte 2 GByte 1 GByte 2 GByte ×72 ×72 ×72 ×72 1 Rank (×4) 1 Rank (×4) 1 Rank (×8) 1 Rank (×4) Label Code PC2– 5300R–555 PC2– 4200R–444 PC2– 3200R–333 PC2– 3200R–333 JEDEC SPD Revision Rev. 1.2 Rev. 1.1 Rev. 1.2 Rev. 1.1 Byte# Description HEX HEX HEX HEX 40 06 06 06 06 3C 3C 37 37 45 tRC and tRFC Extension tRC.MIN [ns] tRFC.MIN [ns] tCK.MAX [ns] tDQSQ.MAX [ns] tQHS.MAX [ns] 22 28 2D 2D 46 PLL Relock Time 0F 0F 0F 0F 47 TCASE.MAX Delta / ∆T4R4W Delta 50 51 51 51 41 42 43 44 7F 7F 7F 7F 80 80 80 80 18 1E 23 23 48 Psi(T-A) DRAM 58 60 60 60 49 ∆T0 (DT0) 37 37 33 33 50 ∆T2N (DT2N, UDIMM) or ∆T2Q (DT2Q, RDIMM) 21 1D 1A 1A 51 ∆T2P (DT2P) 21 23 23 23 52 ∆T3N (DT3N) 24 1E 18 18 53 ∆T3P.fast (DT3P fast) 23 1F 18 18 54 ∆T3P.slow (DT3P slow) 17 16 16 16 55 ∆T4R (DT4R) / ∆T4R4W Sign (DT4R4W) 4A 43 35 35 56 ∆T5B (DT5B) 21 22 21 21 57 ∆T7 (DT7) 28 2A 25 25 58 Psi(ca) PLL C4 C4 C4 C4 59 Psi(ca) REG 8C 8C 8C 8C 60 ∆TPLL (DTPLL) 68 61 59 59 61 ∆TREG (DTREG) / Toggle Rate 94 78 5C 5C 62 SPD Revision 12 11 12 11 63 Checksum of Bytes 0-62 8F A4 D8 D2 64 Manufacturer’s JEDEC ID Code (1) 7F 7F 7F 7F 65 Manufacturer’s JEDEC ID Code (2) 7F 7F 7F 7F Rev. 1.4, 2007-02 03062006-GD6J-14FP 32 Internet Data Sheet Product Type HYS72T256000HR–3S–A HYS72T256000HR–3.7–A HYS72T128001HR–5–A HYS72T256000HR–5–A HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules Organization 2 GByte 2 GByte 1 GByte 2 GByte ×72 ×72 ×72 ×72 1 Rank (×4) 1 Rank (×4) 1 Rank (×8) 1 Rank (×4) Label Code PC2– 5300R–555 PC2– 4200R–444 PC2– 3200R–333 PC2– 3200R–333 JEDEC SPD Revision Rev. 1.2 Rev. 1.1 Rev. 1.2 Rev. 1.1 Byte# Description HEX HEX HEX HEX 66 Manufacturer’s JEDEC ID Code (3) 7F 7F 7F 7F 67 Manufacturer’s JEDEC ID Code (4) 7F 7F 7F 7F 68 Manufacturer’s JEDEC ID Code (5) 7F 7F 7F 7F 69 Manufacturer’s JEDEC ID Code (6) 51 51 51 51 70 Manufacturer’s JEDEC ID Code (7) 00 00 00 00 71 Manufacturer’s JEDEC ID Code (8) 00 00 00 00 72 Module Manufacturer Location xx xx xx xx 73 Product Type, Char 1 37 37 37 37 74 Product Type, Char 2 32 32 32 32 75 Product Type, Char 3 54 54 54 54 76 Product Type, Char 4 32 32 31 32 77 Product Type, Char 5 35 35 32 35 78 Product Type, Char 6 36 36 38 36 79 Product Type, Char 7 30 30 30 30 80 Product Type, Char 8 30 30 30 30 81 Product Type, Char 9 30 30 31 30 82 Product Type, Char 10 48 48 48 48 83 Product Type, Char 11 52 52 52 52 84 Product Type, Char 12 33 33 35 35 85 Product Type, Char 13 53 2E 41 41 86 Product Type, Char 14 41 37 20 20 87 Product Type, Char 15 20 41 20 20 88 Product Type, Char 16 20 20 20 20 89 Product Type, Char 17 20 20 20 20 90 Product Type, Char 18 20 20 20 20 91 Module Revision Code 5x 5x 3x 5x Rev. 1.4, 2007-02 03062006-GD6J-14FP 33 Internet Data Sheet Product Type HYS72T256000HR–3S–A HYS72T256000HR–3.7–A HYS72T128001HR–5–A HYS72T256000HR–5–A HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules Organization 2 GByte 2 GByte 1 GByte 2 GByte ×72 ×72 ×72 ×72 1 Rank (×4) 1 Rank (×4) 1 Rank (×8) 1 Rank (×4) Label Code PC2– 5300R–555 PC2– 4200R–444 PC2– 3200R–333 PC2– 3200R–333 JEDEC SPD Revision Rev. 1.2 Rev. 1.1 Rev. 1.2 Rev. 1.1 Byte# HEX HEX HEX HEX Description 92 Test Program Revision Code xx xx xx xx 93 Module Manufacturing Date Year xx xx xx xx 94 Module Manufacturing Date Week xx xx xx xx 95 - 98 Module Serial Number xx xx xx xx 99 - 127 Not used 00 00 00 00 128 255 FF FF FF FF Blank for customer use Rev. 1.4, 2007-02 03062006-GD6J-14FP 34 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules 5 Package Outlines FIGURE 5 Package Outline Raw Card A L-DIM-240-11 $ % & 0$ ; [ & $ % 'HWD LOR IF RQWD FWV $ % & %XUUPD [ DOORZ H G Rev. 1.4, 2007-02 03062006-GD6J-14FP */' 35 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules FIGURE 6 Package Outline Raw Card C L-DIM-240-13 $ % & 0 $; [ & $ % 'HWDLOR IF RQWD FWV $ % & %XUUP D[ D OORZH G Rev. 1.4, 2007-02 03062006-GD6J-14FP */' 36 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules 6 Product Type Nomenclature (DDR2 DRAMs and DIMMs) Qimonda’s nomenclature uses simple coding combined with some propriatory coding. Table 21 provides examples for module and component product type number as well as the field number. The detailed field description together with possible values and coding explanation is listed for modules in Table 22 and for components in Table 23. TABLE 21 Nomenclature Fields and Examples Example for Field Number 1 2 3 4 5 6 Micro-DIMM HYS 64 T 64/128 0 2 DDR2 DRAM HYB 18 T 512/1G 16 7 8 9 10 11 0 K M –5 –A 0 A C –5 — TABLE 22 DDR2 DIMM Nomenclature Field Description Values Coding 1 Qimonda Module Prefix HYS Constant 2 Module Data Width [bit] 64 Non-ECC 72 ECC 3 DRAM Technology T DDR2 4 Memory Density per I/O [Mbit]; Module Density1) 32 256 MByte 64 512 MByte 128 1 GByte 256 2 GByte 512 4 GByte 5 Raw Card Generation 0 .. 9 Look up table 6 Number of Module Ranks 0, 2, 4 1, 2, 4 7 Product Variations 0 .. 9 Look up table 8 Package, Lead-Free Status A .. Z Look up table 9 Module Type D SO-DIMM M Micro-DIMM R Registered U Unbuffered F Fully Buffered Rev. 1.4, 2007-02 03062006-GD6J-14FP 37 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules Field Description Values Coding 10 Speed Grade –2.5F PC2–6400 5–5–5 –2.5 PC2–6400 6–6–6 11 Die Revision –3 PC2–5300 4–4–4 –3S PC2–5300 5–5–5 –3.7 PC2–4200 4–4–4 –5 PC2–3200 3–3–3 –A First –B Second 1) Multiplying “Memory Density per I/O” with “Module Data Width” and dividing by 8 for Non-ECC and 9 for ECC modules gives the overall module memory density in MBytes as listed in column “Coding”. TABLE 23 DDR2 DRAM Nomenclature Field Description Values Coding 1 2 Qimonda Component Prefix HYB Constant Interface Voltage [V] 18 SSTL_18 3 DRAM Technology T DDR2 4 Component Density [Mbit] 256 256 Mbit 512 512 Mbit 1G 1 Gbit 2G 2 Gbit 40 ×4 80 ×8 16 ×16 0 .. 9 Look up table 5+6 Number of I/Os 7 Product Variations 8 Die Revision 9 10 Package, Lead-Free Status Speed Grade Rev. 1.4, 2007-02 03062006-GD6J-14FP A First B Second C FBGA, lead-containing F FBGA, lead-free –25F DDR2-800 5-5-5 –2.5 DDR2-800 6-6-6 –3 DDR2-667 4-4-4 –3S DDR2-667 5-5-5 –3.7 DDR2-533 4-4-4 –5 DDR2-400 3-3-3 38 Internet Data Sheet HYS72T[128/256]00xHR–[3S/3.7/5]–A Registered DDR2 SDRAM Modules Table of Contents 1 1.1 1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 2.1 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 3.1 3.2 3.3 3.3.1 3.3.2 3.3.3 3.4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Speed Grades Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ODT AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Currents Specifications and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 SPD Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6 Product Type Nomenclature (DDR2 DRAMs and DIMMs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 14 14 15 16 16 16 26 27 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Rev. 1.4, 2007-02 03062006-GD6J-14FP 39 Internet Data Sheet Edition 2007-02 Published by Qimonda AG Gustav-Heinemann-Ring 212 D-81739 München, Germany © Qimonda AG 2007. All Rights Reserved. Legal Disclaimer The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office. Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Qimonda Office. Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. www.qimonda.com