QIMONDA HYB18TC256160BF-3S

May 2007
HYB18T C25680 0 BF
HYB18T C25616 0 BF
256-Mbit Double-Data-Rate-Two SDRAM
DDR2 SDRAM
RoHS Compliant Products
Internet Data Sheet
Rev. 1.3
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
Revision History: Rev. 1.3, 2007-05
All
Adapted internet edition
2
Added product type HYB18TC256800BF
Previous Revision: Rev. 1.21, 2007-02
All
Qimonda template update
Previous Revision: Rev. 1.2, 2006-07
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
[email protected]
qag_techdoc_rev400 / 3.2 QAG / 2006-08-01
07182006-DD60-22E6
2
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
1
Overview
This chapter gives an overview of the 256-Mbit Double-Data-Rate-Two SDRAM product family and describes its main
characteristics.
1.1
Features
The 256-Mbit Double-Data-Rate-Two SDRAM offers the following key features:
• Off-Chip-Driver impedance adjustment (OCD) and On• 1.8 V ± 0.1 V Power Supply
• 1.8 V ± 0.1 V (SSTL_18) compatible I/O
Die-Termination (ODT) for better signal quality
• DRAM organizations with 8 and 16 data in/outputs
• Auto-Precharge operation for read and write bursts
• Double Data Rate architecture: two data transfers per
• Auto-Refresh, Self-Refresh and power saving Powerclock cycle four internal banks for concurrent operation
Down modes
• Programmable CAS Latency: 3, 4, 5 and 6
• Average Refresh Period 7.8 µs at a TCASE lower than
• Programmable Burst Length: 4 and 8
85 °C, 3.9 µs between 85 °C and 95 °C
• Differential clock inputs (CK and CK)
• Programmable self refresh rate via EMRS2 setting
• Programmable partial array refresh via EMRS2 settings
• Bi-directional, differential data strobes (DQS and DQS) are
transmitted / received with data. Edge aligned with read
• DCC enabling via EMRS2 setting
• Full and reduced Strength Data-Output Drivers
data and center-aligned with write data.
• 1K page size
• DLL aligns DQ and DQS transitions with clock
• Packages: PG-TFBGA-84, PG-TFBGA-60
• DQS can be disabled for single-ended data strobe
operation
• RoHS Compliant Products1)
• Commands entered on each positive clock edge, data and
• All Speed grades faster than DDR400 comply with
data mask are referenced to both edges of DQS
DDR400 timing specifications when run at a clock rate of
• Data masks (DM) for write data
200 MHz
• Posted CAS by programmable additive latency for better
command and data bus efficiency
TABLE 1
Performance tables for –2.5
Product Type Speed Code
–2.5
Unit
Speed Grade
DDR2–800E 6–6–6
—
400
MHz
333
MHz
266
MHz
200
MHz
15
ns
15
ns
45
ns
60
ns
Max. Clock Frequency
@CL6
@CL5
@CL4
@CL3
Min. RAS-CAS-Delay
Min. Row Precharge Time
Min. Row Active Time
Min. Row Cycle Time
fCK6
fCK5
fCK4
fCK3
tRCD
tRP
tRAS
tRC
1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined
in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury,
lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.
Rev. 1.3, 2007-05
07182006-DD60-22E6
3
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
TABLE 2
Performance table for –3(S)
Product Type Speed Code
–3
–3S
Unit
Speed Grade
DDR2–667C 4–4–4
DDR2–667D 5–5–5
—
333
333
MHz
333
266
MHz
200
200
MHz
12
15
ns
12
15
ns
45
45
ns
57
60
ns
Max. Clock Frequency
@CL5
@CL4
@CL3
Min. RAS-CAS-Delay
Min. Row Precharge Time
Min. Row Active Time
Min. Row Cycle Time
fCK5
fCK4
fCK3
tRCD
tRP
tRAS
tRC
TABLE 3
Performance table for –3.7
Product Type Speed Code
–3.7
Unit
Speed Grade
DDR2–533C 4–4–4
—
266
MHz
266
MHz
Max. Clock Frequency
@CL5
@CL4
@CL3
Min. RAS-CAS-Delay
Min. Row Precharge Time
Min. Row Active Time
Min. Row Cycle Time
fCK5
fCK4
fCK3
tRCD
tRP
tRAS
tRC
200
MHz
15
ns
15
ns
45
ns
60
ns
TABLE 4
Performance table for –5
Product Type Speed Code
–5
Units
Speed Grade
DDR2–400B 3–3–3
—
200
MHz
200
MHz
200
MHz
15
ns
15
ns
40
ns
55
ns
Max. Clock Frequency
fCK5
fCK4
fCK3
tRCD
tRP
tRAS
tRC
@CL5
@CL4
@CL3
Min. RAS-CAS-Delay
Min. Row Precharge Time
Min. Row Active Time
Min. Row Cycle Time
Rev. 1.3, 2007-05
07182006-DD60-22E6
4
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
1.2
Description
All of the control and address inputs are synchronized with a
pair of externally supplied differential clocks. Inputs are
latched at the cross point of differential clocks (CK rising and
CK falling). All I/Os are synchronized with a single ended
DQS or differential DQS-DQS pair in a source synchronous
fashion.
A 15 bit address bus is used to convey row, column and bank
address information in a RAS-CAS multiplexing style.
The DDR2 device operates with a 1.8 V ± 0.1 V power
supply. An Auto-Refresh and Self-Refresh mode is provided
along with various power-saving power-down modes.
The functionality described and the timing specifications
included in this data sheet are for the DLL Enabled mode of
operation.
The DDR2 SDRAM is available in PG-TFBGA package.
The 256-Mb DDR2 DRAM is a high-speed Double-DataRate-Two CMOS DRAM device containing 536,870,912 bits
and internally configured as a quad -bank DRAM. The 256Mb device is organized as either 8 Mbit ×8 I/O ×4 banks or 4
Mbit ×16 I/O ×4 banks chip. These devices achieve high
speed transfer rates starting at 400 Mb/sec/pin for general
applications. See Table 1 to Table 4 for performance figures.
The device is designed to comply with all DDR2 DRAM key
features:
1. Posted CAS with additive latency
2. Write latency = read latency - 1
3. Normal and weak strength data-output driver
4. Off-Chip Driver (OCD) impedance adjustment
5. On-Die Termination (ODT) function
TABLE 5
Ordering Information for Lead-Free Products (RoHS Compliant)
Product Type1)
Org.
CAS-RCD-RP
Latencies2)3)4)
Clock
(MHz)
Speed
Package
Note
HYB18TC256800BF-2.5
×8
6-6-6
400
DDR2-800E
PG-TFBGA-60
5)
HYB18TC256160BF-2.5
×16
HYB18TC256800BF-3
×8
HYB18TC256160BF-3
×16
HYB18TC256800BF-3S
×8
HYB18TC256160BF-3S
×16
HYB18TC256800BF-3.7
×8
HYB18TC256160BF-3.7
×16
HYB18TC256800BF-5
×8
HYB18TC256160BF-5
×16
PG-TFBGA-84
4-4-4
333
DDR2-667C
PG-TFBGA-60
PG-TFBGA-84
5-5-5
333
DDR2-667D
PG-TFBGA-60
4-4-4
266
DDR2-533C
PG-TFBGA-60
3-3-3
200
DDR2-400B
PG-TFBGA-60
PG-TFBGA-84
PG-TFBGA-84
PG-TFBGA-84
1) Please check with your Qimonda representative that leadtime and availability of your preferred device type and version meet your project
requirements.
2) CAS: Column Address Strobe
3) RCD: Row Column Delay
4) RP: Row Precharge
5) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined
in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury,
lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.
Note: For product nomenclature see Chapter 9 of this data sheet
Rev. 1.3, 2007-05
07182006-DD60-22E6
5
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
2
Configuration
This chapter contains the chip configuration, addressing.
2.1
Chip Configuration for PG-TFBGA-60
The chip configuration of a DDR2 SDRAM is listed by function in Table 6. The abbreviations used in the Ball# columns are
explained in Table 7 and Table 8 respectively. The ball numbering for the FBGA package is depicted in figures.
TABLE 6
Chip Configuration of DDR2 SDRAM
Ball#
Name
Ball
Type
Buffer
Type
Function
Clock Signal CK, CK
Clock Signals ×8 organization
E8
CK
I
SSTL
F8
CK
I
SSTL
F2
CKE
I
SSTL
Clock Enable
Row Address Strobe (RAS), Column Address Strobe (CAS), Write
Enable (WE)
Control Signals ×8 organizations
F7
RAS
I
SSTL
G7
CAS
I
SSTL
F3
WE
I
SSTL
G8
CS
I
SSTL
Chip Select
SSTL
Bank Address Bus 1:0
Address Signals ×8 organizations
G2
BA0
I
G3
BA1
I
SSTL
H8
A0
I
SSTL
H3
A1
I
SSTL
H7
A2
I
SSTL
J2
A3
I
SSTL
J8
A4
I
SSTL
J3
A5
I
SSTL
J7
A6
I
SSTL
K2
A7
I
SSTL
K8
A8
I
SSTL
K3
A9
I
SSTL
H2
A10
I
SSTL
AP
I
SSTL
K7
A11
I
SSTL
L2
A12
I
SSTL
Rev. 1.3, 2007-05
07182006-DD60-22E6
Address Signal 12:0, Address Signal 10/Autoprecharge
6
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
Ball#
Name
Ball
Type
Buffer
Type
Function
L8
A13
I
SSTL
Address Signal 13
NC
–
–
Note: 256 Mbit components and
Data Signal 3:0
Note: Bi-directional data bus
Data Signals ×8 organization
C8
DQ0
I/O
SSTL
C2
DQ1
I/O
SSTL
D7
DQ2
I/O
SSTL
D3
DQ3
I/O
SSTL
D1
DQ4
I/O
SSTL
D9
DQ5
I/O
SSTL
B1
DQ6
I/O
SSTL
B9
DQ7
I/O
SSTL
Data Signal 7:4
Note: Bi-directional data bus
Data Strobe×8 organizations
B7
DQS
I/O
SSTL
A8
DQS
I/O
SSTL
Data Strobe
Data Strobe ×8 organisation
B3
RDQS
O
SSTL
A2
RDQS
O
SSTL
Read Data Strobe
Data Mask ×8 organizations
B3
DM
I
SSTL
Data Mask
Power Supplies ×8 organization
A9,C1,C3,C7,C VDDQ
9
PWR
–
I/O Driver Power Supply
VDD
A7,B2,B8,D2,D VSSQ
PWR
–
Power Supply
PWR
–
I/O Driver Power Supply
PWR
–
Power Supply
AI
–
I/O Reference Voltage
PWR
–
Power Supply
PWR
–
Power Supply
PWR
–
Power Supply
PWR
–
Power Supply
–
Not Connected
Note: No internal electrical connection is present
SSTL
On-Die Termination Control
A1
8
A3,E3
VSS
Power Supplies ×8 organizations
E2
E1
E9,H9,L1
E7
J1,K9
VREF
VDDL
VDD
VSSDL
VSS
Not Connected ×8 organization
G1, L3,L7, L8
NC
NC
Other Balls ×8 organizations
F9
ODT
Rev. 1.3, 2007-05
07182006-DD60-22E6
I
7
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
TABLE 7
Abbreviations for Ball Type
Abbreviation
Description
I
Standard input-only ball. Digital levels.
O
Output. Digital levels.
I/O
I/O is a bidirectional input/output signal.
AI
Input. Analog levels.
PWR
Power
GND
Ground
NC
Not Connected
TABLE 8
Abbreviations for Buffer Type
Abbreviation
Description
SSTL
Serial Stub Terminated Logic (SSTL_18)
LV-CMOS
Low Voltage CMOS
CMOS
CMOS Levels
OD
Open Drain. The corresponding ball has 2 operational states, active low and tristate, and
allows multiple devices to share as a wire-OR.
Rev. 1.3, 2007-05
07182006-DD60-22E6
8
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
FIGURE 1
Chip Configuration for ×8 components, PG-TFBGA-60 (top view)
$
9664
'46
9''4
'05'46
%
'46
9664
'4
'4
9''4
&
9''4
'4
9''4
'4
9664
'4
'
'4
9664
'4
9''/
95()
966
(
966'/
&.
9''
&.(
:(
)
5$6
&.
2'7
%$
%$
*
&$6
&6
$$3
$
+
$
$
$
$
-
$
$
$
$
.
$
$
$
1&
/
1&
1&$
9''
1&5'46
966
'4
9664
9''4
1&
966
9''
9''
966
0337
Notes
1.
2.
3.
4.
RDQS / RDQS are enabled by EMRS(1) command.
If RDQS / RDQS is enabled, the DM function is disabled
When enabled, RDQS & RDQS are used as strobe signals during reads.
VDDL and VSSDL are power and ground for the DLL. VDDL is connected to VDD on the device. VDD, VDDQ, VSSDL, VSS, and VSSQ
are isolated on the device.
5. Ball position L8 is A13 for 512-Mbit and is Not Connected on 256-Mbit.
Rev. 1.3, 2007-05
07182006-DD60-22E6
9
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
2.2
Chip Configuration for PG-TFBGA-84
The chip configuration of a DDR2 SDRAM is listed by function in Table 6. The abbreviations used in the Ball# columns are
explained in Table 7 and Table 8 respectively.
TABLE 9
Chip Configuration of DDR SDRAM
Ball#
Name
Ball
Type
Buffer
Type
Function
Clock Signal CK, CK
Clock Signals ×16 Organization
J8
CK
I
SSTL
K8
CK
I
SSTL
K2
CKE
I
SSTL
Clock Enable
Row Address Strobe (RAS), Column Address Strobe (CAS), Write
Enable (WE)
Control Signals ×16 Organization
K7
RAS
I
SSTL
L7
CAS
I
SSTL
K3
WE
I
SSTL
L8
CS
I
SSTL
Chip Select
Bank Address Bus 1:0
Address Signals ×16 Organization
L2
BA0
I
SSTL
L3
BA1
I
SSTL
M8
A0
I
SSTL
M3
A1
I
SSTL
M7
A2
I
SSTL
N2
A3
I
SSTL
N8
A4
I
SSTL
N3
A5
I
SSTL
N7
A6
I
SSTL
P2
A7
I
SSTL
P8
A8
I
SSTL
P3
A9
I
SSTL
M2
A10
I
SSTL
AP
I
SSTL
P7
A11
I
SSTL
R2
A12
I
SSTL
Rev. 1.3, 2007-05
07182006-DD60-22E6
Address Signal 12:0,Address Signal 10/Autoprecharge
10
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
Ball#
Name
Ball
Type
Buffer
Type
Function
Data Signal 15:0
Note: Bi-directional data bus. DQ[15:0] for ×16 components
Data Signals ×16 Organization
G8
DQ0
I/O
SSTL
G2
DQ1
I/O
SSTL
H7
DQ2
I/O
SSTL
H3
DQ3
I/O
SSTL
H1
DQ4
I/O
SSTL
H9
DQ5
I/O
SSTL
F1
DQ6
I/O
SSTL
F9
DQ7
I/O
SSTL
C8
DQ8
I/O
SSTL
C2
DQ9
I/O
SSTL
D7
DQ10
I/O
SSTL
D3
DQ11
I/O
SSTL
D1
DQ12
I/O
SSTL
D9
DQ13
I/O
SSTL
B1
DQ14
I/O
SSTL
B9
DQ15
I/O
SSTL
Data Strobe ×16 Organization
B7
UDQS
I/O
SSTL
A8
UDQS
I/O
SSTL
F7
LDQS
I/O
SSTL
E8
LDQS
I/O
SSTL
Data Strobe Upper Byte
Data Strobe Lower Byte
Data Mask ×16 Organization
B3
UDM
I
SSTL
Data Mask Upper Byte
F3
LDM
I
SSTL
Data Mask Lower Byte
Power Supplies ×16 Organization
VREF
C1, C3, C7, C9, VDDQ
AI
–
I/O Reference Voltage
PWR
–
I/O Driver Power Supply
VDDL
A1, E1, J9, M9, VDD
PWR
–
Power Supply
PWR
–
Power Supply
A7, A9, D2, D8, VSSQ
E7, F2, F8, H2,
H8
PWR
–
Power Supply
PWR
–
Power Supply
PWR
–
Power Supply
–
Not Connected
J2
E9, G1, G3, G7,
G9
J1
R1
J7
VSSDL
A3, E3, J3, N1, VSS
P9
Not Connected ×16 Organization
A2, E2, L1, R3, NC
R7, R8
Rev. 1.3, 2007-05
07182006-DD60-22E6
NC
11
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
Ball#
Name
Ball
Type
Buffer
Type
Function
SSTL
On-Die Termination Control
Other Balls ×16 Organization
K9
ODT
I
TABLE 10
Abbreviations for Ball Type
Abbreviation
Description
I
Standard input-only ball. Digital levels.
O
Output. Digital levels.
I/O
I/O is a bidirectional input/output signal.
AI
Input. Analog levels.
PWR
Power
GND
Ground
NC
Not Connected
TABLE 11
Abbreviations for Buffer Type
Abbreviation
Description
SSTL
Serial Stub Terminated Logic (SSTL_18)
LV-CMOS
Low Voltage CMOS
CMOS
CMOS Levels
OD
Open Drain. The corresponding ball has 2 operational states, active low and tristate, and
allows multiple devices to share as a wire-OR.
Rev. 1.3, 2007-05
07182006-DD60-22E6
12
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
FIGURE 2
Ball Configuration for ×16 components, PG-TFBGA-84 (top view)
$
6664
8'46
6''4
8'0
%
8'46
6664
'4
'4
6''4
&
6''4
'4
6''4
'4
6664
'4
'
'4
6664
'4
6''
1&
666
(
6664
/'46
6''4
'4
6664
/'0
)
/'46
6664
'4
6''4
'4
6''4
*
6''4
'4
6''4
'4
6664
'4
+
'4
6664
'4
6''/
65()
666
-
966
'/
&.
6''
&.(
:(
.
5$6
&.
2'7
%$
%$
/
&$6
&6
$
$3
$
0
$
$
$
$
1
$
$
$
$
3
$
$
$
1&
5
1&
1&
6''
.#
666
'4
6664
6''4
1&
666
6''
6''
666
0337
Notes
1. UDQS/UDQS is data strobe for DQ[15:8], LDQS/LDQS is data strobe for DQ[7:0]
2. LDM is the data mask signal for DQ[7:0], UDM is the data mask signal for DQ[15:8]
3. VDDL and VSSDL are power and ground for the DLL. VDDL is connected to VDD on the device. VDD, VDDQ, VSSDL, VSS, and VSSQ
are isolated on the device.
Rev. 1.3, 2007-05
07182006-DD60-22E6
13
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
2.3
256-Mbit DDR2 Addressing
This chapter describes the 256-Mbit DDR2 addressing.
TABLE 12
DDR2 Addressing for ×8 Organization
Configuration
32Mb x 8
Bank Address
BA[1:0]
Number of Banks
4
Auto-Precharge
A10 / AP
Row Address
A[12:0]
Column Address
A[9:0]
Number of Column Address Bits
10
1)
Number of I/Os
8
Page Size [Bytes]
1024 (1K)
Note
2)
3)
1) Referred to as ’org’
2) Referred to as ’colbits’
3) PageSize = 2colbits × org/8 [Bytes]
TABLE 13
DDR2 Addressing for ×16 Organization
Configuration
16Mb x 16
Bank Address
BA[1:0]
Number of Banks
4
Auto-Precharge
A10 / AP
Row Address
A[12:0]
Column Address
A[8:0]
Number of Column Address Bits
9
Number of I/Os
16
Page Size [Bytes]
1024 (1K)
1) Referred to as ’org’
2) Referred to as ’colbits’
3) PageSize = 2colbits × org/8 [Bytes]
Rev. 1.3, 2007-05
07182006-DD60-22E6
14
1)
Note
2)
3)
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
3
Functional Description
This chapter contains the functional description.
%$ %$ %$ $
$
$
$
$
$
$
$
$
$
$
$
$
3'
:5
'//
70
&/
%7
%/
Z
Z
Z
Z
Z
Z
Z
UHJDGGU
$
03%7
TABLE 14
Mode Register Definition (BA[2:0] = 000B)
Field
Bits
Type1)
Description
BA2
16
reg. addr.
Bank Address [2]
Note: BA2 not available on 256 Mbit and 512 Mbit components
BA1
15
Bank Address [1]
BA1 Bank Address
0B
BA0
14
Bank Address [0]
0B
BA0 Bank Address
A13
13
Address Bus[13]
Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration
PD
12
w
Active Power-Down Mode Select
0B
PD Fast exit
1B
PD Slow exit
WR
[11:9]
w
Write Recovery2)
Note: All other bit combinations are illegal.
0B
0B
001B
010B
011B
100B
101B
BA2 Bank Address
A13 Address bit 13
WR 2
WR 3
WR 4
WR 5
WR 6
DLL
8
w
DLL Reset
0B
DLL No
1B
DLL Yes
TM
7
w
Test Mode
0B
TM Normal Mode
1B
TM Vendor specific test mode
Rev. 1.3, 2007-05
07182006-DD60-22E6
15
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
Field
Bits
Type1)
Description
CL
[6:4]
w
CAS Latency
Note: All other bit combinations are illegal.
011B
100B
101B
110B
111B
CL 3
CL 4
CL 5
CL 6
CL 7
BT
3
w
Burst Type
0B
BT Sequential
BT Interleaved
1B
BL
[2:0]
w
Burst Length
Note: All other bit combinations are illegal.
010B BL 4
011B BL 8
1) w = write only register bits
2) Number of clock cycles for write recovery during auto-precharge. WR in clock cycles is calculated by dividing tWR (in ns) by tCK (in ns) and
rounding up to the next integer: WR [cycles] ≥ tWR (ns) / tCK (ns). The mode register must be programmed to fulfill the minimum requirement
for the analogue tWR timing WRMIN is determined by tCK.MAX and WRMAX is determined by tCK.MIN.
%$ %$ %$ $ $ $
$
$
$
$
$
$
$
$
$
$
$
6 '46
4RII 5'4
2&'
3URJUDP
5WW
$/
5WW
',&
'//
Z
Z
Z
Z
Z
Z
Z
UHJ
D
GGU
Z
03%7
TABLE 15
Extended Mode Register Definition (BA[2:0] = 001B)
Field
Bits
Type1)
Description
BA2
16
reg. addr.
Bank Address [2]
Note: BA2 not available on 256 Mbit and 512 Mbit components
0B
BA2 Bank Address
BA1
15
Bank Address [1]
0B
BA1 Bank Address
BA0
14
Bank Address [0]
1B
BA0 Bank Address
A13
13
w
Address Bus [13]
Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration
0B
A13 Address bit 13
Qoff
12
w
Output Disable
0B
QOff Output buffers enabled
1B
QOff Output buffers disabled
RDQS
11
w
Read Data Strobe Output (RDQS, RDQS)
RDQS Disable
0B
1B
RDQS Enable
Rev. 1.3, 2007-05
07182006-DD60-22E6
16
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
Field
Bits
Type1)
Description
DQS
10
w
Complement Data Strobe (DQS Output)
0B
DQS Enable
DQS Disable
1B
OCD
[9:7]
Program
w
Off-Chip Driver Calibration Program
000B OCD OCD calibration mode exit, maintain setting
001B OCD Drive (1)
010B OCD Drive (0)
100B OCD Adjust mode
111B OCD OCD calibration default
AL
w
Additive Latency
Note: All other bit combinations are illegal.
[5:3]
000B
001B
010B
011B
100B
101B
RTT
6,2
w
AL 0
AL 1
AL 2
AL 3
AL 4
AL 5
Nominal Termination Resistance of ODT
Note: See Table 26 “ODT DC Electrical Characteristics” on Page 24
00B
01B
10B
11B
RTT ∞ (ODT disabled)
RTT 75 Ohm
RTT 150 Ohm
RTT 50 Ohm
DIC
1
w
Off-chip Driver Impedance Control
DIC Full (Driver Size = 100%)
0B
1B
DIC Reduced
DLL
0
w
DLL Enable
0B
DLL Enable
1B
DLL Disable
1) w = write only register bits
Rev. 1.3, 2007-05
07182006-DD60-22E6
17
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
%$
%$
%$
$
$
$
$
$
$
$
$
65)
$
$
$
$
'&&
UHJDGGU
$
$
3$65
03%7
TABLE 16
EMRS(2) Programming Extended Mode Register Definition (BA[2:0]=010B)
Field
Bits
Type1)
Description
BA
[15:14]
w
Bank Adress
00B BA MRS
01B BA EMRS(1)
10B BA EMRS(2)
11B BA EMRS(3): Reserved
SRF
7
w
Address Bus, High Temperature Self Refresh Rate for TCASE > 85°C
0B
A7 disable
1B
A7 enable 2)
A
[6:4]
w
Address Bus
000B A Address bits
DCC
3
w
Address Bus, Duty Cycle Correction (DCC)
0B
A3 DCC disabled
1B
A3 DCC enabled
Partial Self Refresh for 4 banks
PASR [2:0]
w
Address Bus, Partial Array Self Refresh for 4 Banks3)
Note: Only for 256 Mbit and 512 Mbit components
000B
001B
010B
011B
100B
101B
110B
111B
PASR0 Full Array
PASR1 Half Array (BA[1:0]=00, 01)
PASR2 Quarter Array (BA[1:0]=00)
PASR3 Not defined
PASR4 3/4 array (BA[1:0]=01, 10, 11)
PASR5 Half array (BA[1:0]=10, 11)
PASR6 Quarter array (BA[1:0]=11)
PASR7 Not defined
1) w = write only
2) When DRAM is operated at 85 °C ≤ TCase ≤ 95 °C the extended self refresh rate must be enabled by setting bit A7 to "1" before the self
refresh mode can be entered.
3) If PASR (Partial Array Self Refresh) is enabled, data located in areas of the array beyond the specified location will be lost if self refresh
is entered. Data integrity will be maintained if tREF conditions are met and no Self Refresh command is issued
Rev. 1.3, 2007-05
07182006-DD60-22E6
18
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
%$ %$ %$ $ $ $
$
$
$
$
$
$
$
$
$
$
$
UHJD
GG
U
03%7
TABLE 17
EMR(3) Programming Extended Mode Register Definition(BA[2:0]=011B)
Field
Bits
Type1)
Description
BA2
16
reg.addr
Bank Address[2]
Note: BA2 is not available on 256Mbit and 512Mbit components
0B
BA2 Bank Address
BA1
15
Bank Adress[1]
1B
BA1 Bank Address
BA0
14
Bank Adress[0]
BA0 Bank Address
1B
A
[13:0]
w
Address Bus[13:0]
Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration
00000000000000BA[13:0] Address bits
1) w = write only
TABLE 18
ODT Truth Table
Input Pin
EMRS(1) Address Bit A10
EMRS(1) Address Bit A11
×8 Components
DQ[7:0]
X
DQS
X
DQS
0
X
RDQS
X
1
RDQS
0
1
DM
X
0
×16 Components
DQ[7:0]
X
DQ[15:8]
X
LDQS
X
LDQS
0
UDQS
X
UDQS
0
LDM
X
UDM
X
X
X
Note: X = don’t care; 0 = bit set to low; 1 = bit set to high
Rev. 1.3, 2007-05
07182006-DD60-22E6
19
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
TABLE 19
Burst Length and Sequence
Burst Length
Starting Address
(A2 A1 A0)
Sequential Addressing
(decimal)
4
×00
0, 1, 2, 3
0, 1, 2, 3
×01
1, 2, 3, 0
1, 0, 3, 2
×1 0
2, 3, 0, 1
2, 3, 0, 1
×1 1
3, 0, 1, 2
3, 2, 1, 0
000
0, 1, 2, 3, 4, 5, 6, 7
0, 1, 2, 3, 4, 5, 6, 7
001
1, 2, 3, 0, 5, 6, 7, 4
1, 0, 3, 2, 5, 4, 7, 6
010
2, 3, 0, 1, 6, 7, 4, 5
2, 3, 0, 1, 6, 7, 4, 5
011
3, 0, 1, 2, 7, 4, 5, 6
3, 2, 1, 0, 7, 6, 5, 4
100
4, 5, 6, 7, 0, 1, 2, 3
4, 5, 6, 7, 0, 1, 2, 3
101
5, 6, 7, 4, 1, 2, 3, 0
5, 4, 7, 6, 1, 0, 3, 2
8
Rev. 1.3, 2007-05
07182006-DD60-22E6
Interleave Addressing
(decimal)
110
6, 7, 4, 5, 2, 3, 0, 1
6, 7, 4, 5, 2, 3, 0, 1
111
7, 4, 5, 6, 3, 0, 1, 2
7, 6, 5, 4, 3, 2, 1, 0
20
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
4
Truth Tables
The truth tables in this chapter summarize the commands and there signal coding to control a standard Double-Data-Rate-Two
SDRAM.
TABLE 20
Command Truth Table
Function
CKE
CS RAS
CAS WE BA0
BA1
A[12:11]
A10 A[9:0]
Note1)2)3)
Previous
Cycle
Current
Cycle
(Extended) Mode
Register Set
H
H
L
L
L
L
BA
OP Code
Auto-Refresh
H
H
L
L
L
H
X
X
X
X
4)
Self-Refresh Entry
H
L
L
L
L
H
X
X
X
X
4)6)
Self-Refresh Exit
L
H
H
X
X
X
X
X
X
X
4)6)7)
L
H
H
H
4)5)
Single Bank Precharge
H
H
L
L
H
L
BA
X
L
X
4)5)
Precharge all Banks
H
H
L
L
H
L
X
X
H
X
4)
Bank Activate
H
H
L
L
H
H
BA
Row Address
Write
H
H
L
H
L
L
BA
Column
L
Column
4)5)8)
Write with AutoPrecharge
H
H
L
H
L
L
BA
Column
H
Column
4)5)8)
Read
H
H
L
H
L
H
BA
Column
L
Column
4)5)8)
Read with AutoPrecharge
H
H
L
H
L
H
BA
Column
H
Column
4)5)8)
No Operation
H
X
L
H
H
H
X
X
X
X
4)
Device Deselect
H
X
H
X
X
X
X
X
X
X
4)
Power Down Entry
H
L
H
X
X
X
X
X
X
X
4)9)
L
H
H
H
Power Down Exit
L
H
H
X
X
X
X
X
X
X
4)9)
L
H
H
H
4)5)
1) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.
2) “X” means “H or L (but a defined logic level)”.
3) Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
4) All DDR2 SDRAM commands are defined by states of CS, WE, RAS, CAS, and CKE at the rising edge of the clock.
5) Bank addresses BA[1:0] determine which bank is to be operated upon. For (E)MRS BA[1:0] selects an (Extended) Mode Register.
6) VREF must be maintained during Self Refresh operation.
7) Self Refresh Exit is asynchronous.
8) Burst reads or writes at BL = 4 cannot be terminated.
9) The Power Down Mode does not perform any refresh operations. The duration of Power Down is therefore limited by the refresh
requirements.
Rev. 1.3, 2007-05
07182006-DD60-22E6
21
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
TABLE 21
Clock Enable (CKE) Truth Table for Synchronous Transitions
Current State1)
CKE
Command (N)2) 3)
RAS, CAS, WE
Action (N)2)
Note4)5)
Previous Cycle6)
(N-1)
Current Cycle6)
(N)
L
L
X
Maintain Power-Down
7)8)11)
L
H
DESELECT or NOP
Power-Down Exit
7)9)10)11)
L
L
X
Maintain Self Refresh
8)11)12)
L
H
DESELECT or NOP
Self Refresh Exit
9)11)12)13)14)
Bank(s) Active
H
L
DESELECT or NOP
Active Power-Down Entry
7)9)10)11)15)
All Banks Idle
H
L
DESELECT or NOP
Precharge Power-Down
Entry
9)10)11)15)
H
L
AUTOREFRESH
Self Refresh Entry
7)11)14)16)
H
H
Refer to the Command Truth Table
Power-Down
Self Refresh
Any State other
than
listed above
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
17)
Current state is the state of the DDR2 SDRAM immediately prior to clock edge N.
Command (N) is the command registered at clock edge N, and Action (N) is a result of Command (N)
The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.
CKE must be maintained HIGH while the device is in OCD calibration mode.
Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
CKE (N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge.
The Power-Down Mode does not perform any refresh operations. The duration of Power-Down Mode is therefor limited by the refresh
requirements
“X” means “don’t care (including floating around VREF)” in Self Refresh and Power Down. However ODT must be driven HIGH or LOW in
Power Down if the ODT function is enabled (Bit A2 or A6 set to “1” in EMRS(1)).
All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document.
Valid commands for Power-Down Entry and Exit are NOP and DESELECT only.
tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the
entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during
the time period of tIS + 2 × tCK + tIH.
VREF must be maintained during Self Refresh operation.
On Self Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the tXSNR period. Read
commands may be issued only after tXSRD (200 clocks) is satisfied.
Valid commands for Self Refresh Exit are NOP and DESELCT only.
Power-Down and Self Refresh can not be entered while Read or Write operations, (Extended) mode Register operations, Precharge or
Refresh operations are in progress.
Self Refresh mode can only be entered from the All Banks Idle state.
Must be a legal command as defined in the Command Truth Table.
TABLE 22
Data Mask (DM) Truth Table
Name (Function)
DM
DQs
Note
Write Enable
L
Valid
1)
Write Inhibit
H
X
1)
1) Used to mask write data; provided coincident with the corresponding data.
Rev. 1.3, 2007-05
07182006-DD60-22E6
22
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
5
Electrical Characteristics
This chapter describes the electrical characteristics.
5.1
Absolute Maximum Ratings
Caution is needed not to exceed absolute maximum ratings of the DRAM device listed in Table 23 at any time.
TABLE 23
Absolute Maximum Ratings
Symbol
VDD
VDDQ
VDDL
VIN, VOUT
TSTG
Parameter
Rating
Unit
Note
Min.
Max.
Voltage on VDD pin relative to VSS
–1.0
+2.3
V
1)
Voltage on VDDQ pin relative to VSS
–0.5
+2.3
V
1)2)
Voltage on VDDL pin relative to VSS
–0.5
+2.3
V
1)2)
Voltage on any pin relative to VSS
–0.5
+2.3
V
1)
°C
1)2)
Storage Temperature
–55
+100
1) When VDD and VDDQ and VDDL are less than 500 mV; VREF may be equal to or less than 300 mV.
2) Storage Temperature is the case surface temperature on the center/top side of the DRAM.
Attention: Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to
the device. This is a stress rating only and functional operation of the device at these or any other
conditions above those indicated in the operational sections of this specification is not implied. Exposure
to absolute maximum rating conditions for extended periods may affect reliability.
TABLE 24
DRAM Component Operating Temperature Range
Symbol
TOPER
Parameter
Rating
Operating Temperature
Min.
Max.
0
95
Unit
Note
°C
1)2)3)4)
1) Operating Temperature is the case surface temperature on the center / top side of the DRAM.
2) The operating temperature range are the temperatures where all DRAM specification will be supported. During operation, the DRAM case
temperature must be maintained between 0 - 95 °C under all other specification parameters.
3) Above 85 °C the Auto-Refresh command interval has to be reduced to tREFI= 3.9 µs
4) When operating this product in the 85 °C to 95 °C TCASE temperature range, the High Temperature Self Refresh has to be enabled by
setting EMR(2) bit A7 to “1”. When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50%
Rev. 1.3, 2007-05
07182006-DD60-22E6
23
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
5.2
DC Characteristics
TABLE 25
Recommended DC Operating Conditions (SSTL_18)
Symbol
VDD
VDDDL
VDDQ
VREF
VTT
1)
2)
3)
4)
Parameter
Rating
Unit
Note
Min.
Typ.
Max.
Supply Voltage
1.7
1.8
1.9
V
1)
Supply Voltage for DLL
1.7
1.8
1.9
V
1)
Supply Voltage for Output
1.7
1.8
1.9
V
1)
Input Reference Voltage
0.49 × VDDQ
0.5 × VDDQ
0.51 × VDDQ
V
2)3)
4)
Termination Voltage
VREF – 0.04
VREF
VREF + 0.04
V
VDDQ tracks with VDD, VDDDL tracks with VDD. AC parameters are measured with VDD, VDDQ and VDDDL tied together.
The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is expected to
be about 0.5 × VDDQ of the transmitting device and VREF is expected to track variations in VDDQ.
Peak to peak ac noise on VREF may not exceed ± 2% VREF (dc)
VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF, and
must track variations in die dc level of VREF.
TABLE 26
ODT DC Electrical Characteristics
Parameter / Condition
Symbol
Min.
Nom.
Max.
Unit
Note
Termination resistor impedance value for
EMRS(1)[A6,A2] = [0,1]; 75 Ohm
Rtt1(eff)
60
75
90
Ω
1)
Termination resistor impedance value for
EMRS(1)[A6,A2] =[1,0]; 150 Ohm
Rtt2(eff)
120
150
180
Ω
1)
Termination resistor impedance value for
EMRS(1)(A6,A2)=[1,1]; 50 Ohm
Rtt3(eff)
40
50
60
Ω
1)
Deviation of VM with respect to VDDQ / 2
delta VM
–6.00
—
+ 6.00
%
2)
1)
Measurement Definition for Rtt(eff): Apply VIH(ac) and VIL(ac) to test pin separately, then measure current I(VIHac) and I(VILac) respectively.
Rtt(eff) = (VIH(ac) – VIL(ac)) /(I(VIHac) – I(VILac)).
2) Measurement Definition for VM: Turn ODT on and measure voltage (VM) at test pin (midpoint) with no load: delta VM = ((2 x VM / VDDQ) –
1) x 100%
TABLE 27
Input and Output Leakage Currents
Symbol
Parameter / Condition
Min.
Max.
Unit
Note
IIL
IOL
Input Leakage Current; any input 0 V < VIN < VDD
–2
+2
µA
1)
Output Leakage Current; 0 V < VOUT < VDDQ
–5
+5
µA
2)
1) All other pins not under test = 0 V
2) DQ’s, LDQS, LDQS, UDQS, UDQS, DQS, DQS, RDQS, RDQS are disabled and ODT is turned off
Rev. 1.3, 2007-05
07182006-DD60-22E6
24
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
5.3
DC & AC Characteristics
DDR2 SDRAM pin timing are specified for either single ended
or differential mode depending on the setting of the EMRS(1)
“Enable DQS” mode bit; timing advantages of differential
mode are realized in system design. The method by which the
DDR2 SDRAM pin timing are measured is mode dependent.
In single ended mode, timing relationships are measured
relative to the rising or falling edges of DQS crossing at VREF.
In differential mode, these timing relationships are measured
relative to the crosspoint of DQS and its complement, DQS.
This distinction in timing methods is verified by design and
characterization but not subject to production test. In single
ended mode, the DQS (and RDQS) signals are internally
disabled and don’t care.
TABLE 28
DC & AC Logic Input Levels for DDR2-667 and DDR2-800
Symbol
VIH(dc)
VIL(dc)
VIH(ac)
VIL(ac)
Parameter
DDR2-667, DDR2-800
Units
Min.
Max.
DC input logic high
VREF + 0.125
DC input low
–0.3
VDDQ + 0.3
VREF – 0.125
V
AC input logic high
VREF + 0.200
—
V
AC input low
—
VREF – 0.200
V
V
TABLE 29
DC & AC Logic Input Levels for DDR2-533 and DDR2-400
Symbol
VIH(dc)
VIL(dc)
VIH(ac)
VIL(ac)
Parameter
DDR2-533, DDR2-400
Units
Min.
Max.
VREF + 0.125
V
DC input low
–0.3
VDDQ + 0.3
VREF - 0.125
AC input logic high
VREF + 0.250
—
V
AC input low
—
VREF - 0.250
V
DC input logic high
V
TABLE 30
Single-ended AC Input Test Conditions
Symbol
Condition
Value
Unit
Note
VREF
VSWING.MAX
Input reference voltage
0.5 x VDDQ
V
1)
Input signal maximum peak to peak swing
1.0
V
1)
SLEW
Input signal minimum Slew Rate
1.0
V / ns
2)3)
1) Input waveform timing is referenced to the input signal crossing through the VREF level applied to the device under test.
2) The input signal minimum Slew Rate is to be maintained over the range from VIH(ac).MIN to VREF for rising edges and the range from VREF to
VIL(ac).MAX for falling edges as shown in Figure 3
3) AC timings are referenced with input waveforms switching from VIL(ac) to VIH(ac) on the positive transitions and VIH(ac) to VIL(ac) on the negative
transitions.
Rev. 1.3, 2007-05
07182006-DD60-22E6
25
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
FIGURE 3
Single-ended AC Input Test Conditions Diagram
9''4
9,+DFPLQ
9,+GFPLQ
96:,1*0$;
95()
9,/GFPD[
9,/DFPD[
966
'HOWD7)
)DOOLQJ6OHZ
'HOWD75
95()9,/DFPD[
5LVLQJ6OHZ
'HOWD7)
9,+DFPLQ95()
'HOWD75
03(7
TABLE 31
Differential DC and AC Input and Output Logic Levels
Symbol
Parameter
Min.
Max.
Unit
Note
VIN(dc)
VID(dc)
VID(ac)
VIX(ac)
VOX(ac)
DC input signal voltage
–0.3
—
1)
DC differential input voltage
0.25
—
2)
AC differential input voltage
0.5
V
3)
AC differential cross point input voltage
0.5 × VDDQ – 0.175
V
4)
AC differential cross point output voltage
0.5 × VDDQ – 0.125
VDDQ + 0.3
VDDQ + 0.6
VDDQ + 0.6
0.5 × VDDQ + 0.175
0.5 × VDDQ + 0.125
V
5)
1)
2)
3)
4)
VIN(dc) specifies the allowable DC execution of each input of differential pair such as CK, CK, DQS, DQS etc.
VID(dc) specifies the input differential voltage VTR– VCP required for switching. The minimum value is equal to VIH(dc) – VIL(dc).
VID(ac) specifies the input differential voltage VTR – VCP required for switching. The minimum value is equal to VIH(ac) – VIL(ac).
The value of VIX(ac) is expected to equal 0.5 × VDDQ of the transmitting device and VIX(ac) is expected to track variations in VDDQ. VIX(ac)
indicates the voltage at which differential input signals must cross.
5) The value of VOX(ac) is expected to equal 0.5 × VDDQ of the transmitting device and VOX(ac) is expected to track variations in VDDQ. VOX(ac)
indicates the voltage at which differential input signals must cross.
Rev. 1.3, 2007-05
07182006-DD60-22E6
26
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
FIGURE 4
Differential DC and AC Input and Output Logic Levels Diagram
9''
4
975
&URVVLQJ3RLQW
9,'
9&3
9,;RU9
2;
9664
5.4
Output Buffer Characteristics
This chapter describes the Output Buffer Characteristics.
TABLE 32
SSTL_18 Output DC Current Drive
Symbol
IOH
IOL
Parameter
SSTL_18
Output Minimum Source DC Current
–13.4
Unit
Note
mA
1)2)
2)3)
Output Minimum Sink DC Current
13.4
mA
1) VDDQ = 1.7 V; VOUT = 1.42 V. (VOUT–VDDQ) / IOH must be less than 21 Ohm for values of VOUT between VDDQ and VDDQ – 280 mV.
2) The values of IOH(dc) and IOL(dc) are based on the conditions given in 1) and 3). They are used to test drive current capability to ensure VIH.MIN.
plus a noise margin and VIL.MAX minus a noise margin are delivered to an SSTL_18 receiver. The actual current values are derived by
shifting the desired driver operating points along 21 Ohm load line to define a convenient current for measurement.
3) VDDQ = 1.7 V; VOUT = 280 mV. VOUT / IOL must be less than 21 Ohm for values of VOUT between 0 V and 280 mV.
TABLE 33
SSTL_18 Output AC Test Conditions
Symbol
Parameter
SSTL_18
Unit
Note
VOH
VOL
VOTR
Minimum Required Output Pull-up
VTT + 0.603
VTT – 0.603
0.5 × VDDQ
V
1)
V
1)
Maximum Required Output Pull-down
Output Timing Measurement Reference Level
V
1) SSTL_18 test load for VOH and VOL is different from the referenced load. The SSTL_18 test load has a 20 Ohm series resistor additionally
to the 25 Ohm termination resistor into VTT. The SSTL_18 definition assumes that ± 335 mV must be developed across the effectively
25 Ohm termination resistor (13.4 mA × 25 Ohm = 335 mV). With an additional series resistor of 20 Ohm this translates into a minimum
requirement of 603 mV swing relative to VTT, at the ouput device (13.4 mA × 45 Ohm = 603 mV).
Rev. 1.3, 2007-05
07182006-DD60-22E6
27
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
TABLE 34
OCD Default Characteristics
Symbol
Description
Min.
—
Output Impedance
See Chapter 5.5
—
Pull-up / Pull down mismatch
0
—
—
Output Impedance step size
for OCD calibration
0
1.5
SOUT
Output Slew Rate
1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V
Nominal
Max.
Unit
Note
Ω
1)2)
4
Ω
1)2)3)
—
1.5
Ω
4)
—
5.0
V / ns
1)5)6)7)
2) Impedance measurement condition for output source dc current: VDDQ = 1.7 V, VOUT = 1420 mV; (VOUT–VDDQ) / IOH must be less than
23.4 Ohm for values of VOUT between VDDQ and VDDQ – 280 mV. Impedance measurement condition for output sink dc current:
VDDQ = 1.7 V; VOUT = –280 mV; VOUT / IOL must be less than 23.4 Ohms for values of VOUT between 0 V and 280 mV.
3) Mismatch is absolute value between pull-up and pull-down, both measured at same temperature and voltage.
4) This represents the step size when the OCD is near 18 ohms at nominal conditions across all process parameters and represents only the
DRAM uncertainty. A 0 Ohm value (no calibration) can only be achieved if the OCD impedance is 18 ± 0.75 Ohms under nominal
conditions.
5) The absolute value of the Slew Rate as measured from DC to DC is equal to or greater than the Slew Rate as measured from AC to AC.
This is verified by design and characterization but not subject to production test.
6) Timing skew due to DRAM output Slew Rate mis-match between DQS / DQS and associated DQ’s is included in tDQSQ and tQHS
specification.
7) DRAM output Slew Rate specification applies to 400, 533 and 667 MT/s speed bins.
Rev. 1.3, 2007-05
07182006-DD60-22E6
28
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
5.5
Input / Output Capacitance
This chapter contains the input / output capacitance.
TABLE 35
Input / Output Capacitance for DDR2-800
Symbol
Parameter
DDR2-800
Min.
Max.
Unit
2.0
0.25
1.75
pF
pF
pF
CCK
Input capacitance, CK and CK
1.0
CDCK
Input capacitance delta, CK and CK
—
CI
Input capacitance, all other input-only pins
1.0
CDI
Input capacitance delta, all other input-only pins
—
CIO
Input/output capacitance,
DQ, DM, DQS, DQS, RDQS, RDQS
2.5
0.25
3.5
CDIO
Input/output capacitance delta,
DQ, DM, DQS, DQS, RDQS, RDQS
—
0.5
pF
pF
pF
TABLE 36
Input / Output Capacitance for DDR2-667
Symbol
Parameter
DDR2-667
Min.
Max.
Unit
2.0
0.25
2.0
pF
pF
pF
CCK
Input capacitance, CK and CK
1.0
CDCK
Input capacitance delta, CK and CK
—
CI
Input capacitance, all other input-only pins
1.0
CDI
Input capacitance delta, all other input-only pins
—
CIO
Input/output capacitance,
DQ, DM, DQS, DQS, RDQS, RDQS
2.5
0.25
3.5
CDIO
Input/output capacitance delta,
DQ, DM, DQS, DQS, RDQS, RDQS
—
0.5
Rev. 1.3, 2007-05
07182006-DD60-22E6
29
pF
pF
pF
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
TABLE 37
Input / Output Capacitance for DDR2-533
Symbol
Parameter
DDR2-533
Min.
Max.
Unit
2.0
0.25
2.0
pF
pF
pF
CCK
Input capacitance, CK and CK
1.0
CDCK
Input capacitance delta, CK and CK
—
CI
Input capacitance, all other input-only pins
1.0
CDI
Input capacitance delta, all other input-only pins
—
CIO
Input/output capacitance,
DQ, DM, DQS, DQS, RDQS, RDQS
2.5
0.25
4.0
CDIO
Input/output capacitance delta,
DQ, DM, DQS, DQS, RDQS, RDQS
—
0.5
pF
pF
pF
TABLE 38
Input / Output Capacitance for DDR2-400
Symbol
Parameter
DDR2-400
Min.
Max.
Unit
2.0
0.25
2.0
pF
pF
pF
CCK
Input capacitance, CK and CK
1.0
CDCK
Input capacitance delta, CK and CK
—
CI
Input capacitance, all other input-only pins
1.0
CDI
Input capacitance delta, all other input-only pins
—
CIO
Input/output capacitance,
DQ, DM, DQS, DQS, RDQS, RDQS
2.5
0.25
4.0
CDIO
Input/output capacitance delta,
DQ, DM, DQS, DQS, RDQS, RDQS
—
0.5
Rev. 1.3, 2007-05
07182006-DD60-22E6
30
pF
pF
pF
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
6
Specifications and Conditions
This chapter describes the Current Measurement, Specifications and Conditions.
TABLE 39
IDD Specification Parameters and Test Conditions
Parameter
Symbol
Note
Operating Current - One bank Active - Precharge
tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), CKE is HIGH, CS is HIGH between valid commands.
Address and control inputs are switching; Databus inputs are switching.
IDD0
1)2)3)4)5)6)
Operating Current - One bank Active - Read - Precharge
IOUT = 0 mA, BL = 4, tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), tRCD = tRCD(IDD), AL = 0, CL =
CL(IDD); CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are
switching; Databus inputs are switching.
IDD1
1)2)3)4)5)6)
Precharge Power-Down Current
IDD2P
All banks idle; CKE is LOW; tCK = tCK(IDD);Other control and address inputs are stable; Data bus inputs
are floating.
1)2)3)4)5)6)
Precharge Standby Current
IDD2N
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are switching,
Data bus inputs are switching.
1)2)3)4)5)6)
Precharge Quiet Standby Current
IDD2Q
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are stable,
Data bus inputs are floating.
1)2)3)4)5)6)
Active Power-Down Current
All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable; Data bus
inputs are floating. MRS A12 bit is set to “0” (Fast Power-down Exit).
IDD3P(0)
1)2)3)4)5)6)
Active Power-Down Current
All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable, Data bus
inputs are floating. MRS A12 bit is set to 1 (Slow Power-down Exit);
IDD3P(1)
1)2)3)4)5)6)
Active Standby Current
IDD3N
All banks open; tCK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid
commands. Address inputs are switching; Data Bus inputs are switching;
1)2)3)4)5)6)
Operating Current
IDD4R
Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS
= tRAS.MAX.(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are
switching; Data Bus inputs are switching; IOUT = 0 mA.
1)2)3)4)5)6)
Operating Current
IDD4W
Burst Write: All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS
= tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are
switching; Data Bus inputs are switching;
1)2)3)4)5)6)
Burst Refresh Current
IDD5B
tCK = tCK(IDD), Refresh command every tRFC = tRFC(IDD) interval, CKE is HIGH, CS is HIGH between valid
commands, Other control and address inputs are switching, Data bus inputs are switching.
1)2)3)4)5)6)
Distributed Refresh Current
IDD5D
tCK = tCK(IDD), Refresh command every tREFI = 7.8 µs interval, CKE is LOW and CS is HIGH between
valid commands, Other control and address inputs are switching, Data bus inputs are switching.
1)2)3)4)5)6)
Rev. 1.3, 2007-05
07182006-DD60-22E6
31
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol
IDD6
Self-Refresh Current
CKE ≤ 0.2 V; external clock off, CK and CK at 0 V; Other control and address inputs are floating, Data
bus inputs are floating.
Operating Bank Interleave Read Current
IDD7
All banks interleaving reads, IOUT = 0 mA; BL = 4, CL = CL(IDD), AL = tRCD(IDD) -1 × tCK(IDD); tCK = tCK(IDD),
tRC = tRC(IDD), tRRD = tRRD(IDD); CKE is HIGH, CS is HIGH between valid commands. Address bus inputs
are stable during deselects; Data pattern is same as IDD4R;
Refer to the following pages for detailed timing conditions
1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V
2) IDD specifications are tested after the device is properly initialized.
3) IDD parameter are specified with ODT disabled.
4)
5)
6)
7)
Note
1)2)3)4)5)6)
1)2)3)4)5)6)7)
Data Bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS and UDQS.
For IDD definition see Table 40
Timing parameter minimum and maximum values for IDD current measurements are defined in Chapter 7.
A - Activate, RA - Read with Auto-Precharge, D - Deselect
TABLE 40
Definition for IDD
Parameter
Description
LOW
Defined as VIN ≤ VIL(AC).MAX
HIGH
Defined as VIN ≥ VIH(AC).MIN
STABLE
Defined as inputs are stable at a HIGH or LOW level
FLOATING
Defined as inputs are VREF = VDDQ / 2
SWITCHING
Defined as: Inputs are changing between high and low every other clock (once per two clocks) for address
and control signals, and inputs changing between high and low every other clock (once per clock) for DQ
signals not including mask or strobes
Detailed IDD7
The detailed timings are shown below for IDD7. Changes will be required if timing parameter changes are made to the
specification.
Legend: A - Active; RA - Read with Autoprecharge; D - Deselect
IDD7: Operating Current: All Bank Interleave Read operation
All banks are being interleaved at minimum tRC(IDD) without violating tRRD(IDD) and ttFAW(IDD) using a burst length of 4. Control
and address bus inputs are STABLE during Deselect. IOUT = 0 mA
Timing Patterns for 4 bank devices with 1 KB or 2 KB page size
-DDR2-400 4-4-4: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D D D
-DDR2-400 3-3-3: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D
-DDR2-533 4-4-4: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D D
-DDR2-533 3-3-3: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D
-DDR2-667 5-5-5: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D
-DDR2-667 4-4-4: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D
-DDR2-800 6-6-6: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D D D D D
-DDR2-800 5-5-5: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D D D D
Rev. 1.3, 2007-05
07182006-DD60-22E6
32
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
-DDR2-800 4-4-4: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D D D
-DDR2-1066 7-7-7: A0 RA0 D D D D A1 RA1 D D D D A2 RA2 D D D D A3 RA3 D D D D D D D D D D D
-DDR2-1066 6-6-6: A0 RA0 D D D D A1 RA1 D D D D A2 RA2 D D D D A3 RA3 D D D D D D D D D D
TABLE 41
IDDSpecification
Symbol
IDD0
IDD1
IDD2P
IDD2N
IDD2Q
IDD3P
IDD3N
IDD4R
IDD4W
IDD5B
IDD5D
IDD6
IDD7
–2.5
–3
–3S
–3.7
–5
DDR2-800E
DDR2-667C
DDR2-667D
DDR2-533C
DDR2-400B
100
95
90
80
75
mA
115
105
100
90
83
mA
7
7
7
7
7
mA
51
45
45
38
34
mA
45
40
40
35
32
mA
39
33
33
28
24
mA
1)
9
9
9
9
9
mA
2)
60
50
50
43
39
mA
180
155
155
130
115
mA
200
170
170
145
130
mA
145
140
140
130
125
mA
9
9
9
9
9
mA
3)
7
7
7
7
7
mA
3)
255
252
240
230
220
mA
1) MRS(12)=0
2) MRS(12)=1
3) 0° ≤ TCASE ≤ 85°C.
Rev. 1.3, 2007-05
07182006-DD60-22E6
33
Unit
Note
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
7
Timing Characteristics
This chapter contains speed grade definition, AC timing parameter and ODT tables.
7.1
Speed Grade Definitions
All Speed grades faster than DDR2-400B comply with DDR2-400B timing specifications (tCK = 5ns with tRAS = 40ns).
TABLE 42
Speed Grade Definition Speed Bins for DDR2–800E
Speed Grade
DDR2–800E
QAG Sort Name
–2.5
CAS-RCD-RP latencies
6–6–6
Parameter
Clock Frequency
@ CL = 3
@ CL = 4
@ CL = 5
@ CL = 6
Row Active Time
Row Cycle Time
RAS-CAS-Delay
Row Precharge Time
Unit
Note
tCK
Symbol
Min.
Max.
—
tCK
tCK
tCK
tCK
tRAS
tRC
tRCD
tRP
5
8
ns
1)2)3)4)
3.75
8
ns
1)2)3)4)
3
8
ns
1)2)3)4)
2.5
8
ns
1)2)3)4)
45
70000
ns
1)2)3)4)5)
60
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal
OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements”.
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS,
RDQS / RDQS is defined.
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
4) The output timing reference voltage level is VTT.
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
Rev. 1.3, 2007-05
07182006-DD60-22E6
34
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
TABLE 43
Speed Grade Definition Speed Bins for DDR2–667
Speed Grade
DDR2–667C
DDR2–667D
QAG Sort Name
–3
–3S
CAS-RCD-RP latencies
4–4–4
5–5–5
Parameter
Clock Frequency
@ CL = 3
@ CL = 4
@ CL = 5
Row Active Time
Row Cycle Time
RAS-CAS-Delay
Row Precharge Time
Unit
Note
tCK
Symbol
Min.
Max.
Min.
Max.
—
tCK
tCK
tCK
tRAS
tRC
tRCD
tRP
5
8
5
8
ns
1)2)3)4)
3
8
3.75
8
ns
1)2)3)4)
3
8
3
8
ns
1)2)3)4)
45
70000
45
70000
ns
1)2)3)4)5)
57
—
60
—
ns
1)2)3)4)
12
—
15
—
ns
1)2)3)4)
12
—
15
—
ns
1)2)3)4)
1) imings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate
of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal OCD
drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements”.
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS,
RDQS / RDQS is defined.
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
4) The output timing reference voltage level is VTT.
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
TABLE 44
Speed Grade Definition Speed Bins for DDR2–533C
Speed Grade
DDR2–533C
QAG Sort Name
–3.7
CAS-RCD-RP latencies
4–4–4
Parameter
Clock Frequency
@ CL = 3
@ CL = 4
@ CL = 5
Row Active Time
Row Cycle Time
RAS-CAS-Delay
Row Precharge Time
Unit
Note
tCK
Symbol
Min.
Max.
—
tCK
tCK
tCK
tRAS
tRC
tRCD
tRP
5
8
ns
1)2)3)4)
3.75
8
ns
1)2)3)4)
3.75
8
ns
1)2)3)4)
45
70000
ns
1)2)3)4)5)
60
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal
OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements”.
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS,
RDQS / RDQS is defined.
Rev. 1.3, 2007-05
07182006-DD60-22E6
35
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
4) The output timing reference voltage level is VTT.
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
TABLE 45
Speed Grade Definition Speed Bins for DDR2-400B
Speed Grade
DDR2–400B
QAG Sort Name
–5
CAS-RCD-RP latencies
3–3–3
Parameter
Clock Frequency
@ CL = 3
@ CL = 4
@ CL = 5
Row Active Time
Row Cycle Time
RAS-CAS-Delay
Row Precharge Time
Unit
Note
tCK
Symbol
Min.
Max.
—
tCK
tCK
tCK
tRAS
tRC
tRCD
tRP
5
8
ns
1)2)3)4)
5
8
ns
1)2)3)4)
5
8
ns
1)2)3)4)
40
70000
ns
1)2)3)4)5)
55
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. For other Slew Rates see Chapter 8.Timings
are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements” according
to Chapter 8.1 only.
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS,
RDQS / RDQS is defined in Chapter 8.3.
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
4) The output timing reference voltage level is VTT. See section 8 for the reference load for timing measurements.
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
Rev. 1.3, 2007-05
07182006-DD60-22E6
36
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
7.2
Component AC Timing Parameters
List of Timing Parameters Tables.
TABLE 46
DRAM Component Timing Parameter by Speed Grade - DDR2–800
Parameter
Symbol
DDR2–800
Unit
Note1)2)3)4)5)6)7)
8)
Min.
Max.
tAC
tCCD
tCH.AVG
tCK.AVG
tCKE
–400
+400
ps
2
—
0.48
0.52
nCK
tCK.AVG
2500
8000
ps
9)10)
3
—
nCK
11)
tCL.AVG
Auto-Precharge write recovery + precharge time tDAL
Minimum time clocks remain ON after CKE
tDELAY
0.48
0.52
9)10)
WR + tnRP
—
tCK.AVG
nCK
tIS + tCK .AVG +
tIH
—
ns
tDH.BASE
DQ and DM input pulse width for each input
tDIPW
DQS output access time from CK / CK
tDQSCK
DQS input high pulse width
tDQSH
DQS input low pulse width
tDQSL
DQS-DQ skew for DQS & associated DQ signals tDQSQ
DQS latching rising transition to associated clock tDQSS
125
—
ps
0.35
—
tCK.AVG
–350
+350
ps
0.35
—
0.35
—
tCK.AVG
tCK.AVG
—
200
ps
15)
16)
DQ output access time from CK / CK
CAS to CAS command delay
Average clock high pulse width
Average clock period
CKE minimum pulse width ( high and low pulse
width)
Average clock low pulse width
asynchronously drops LOW
DQ and DM input hold time
9)10)
12)13)
18)19)14)
8)
– 0.25
+ 0.25
tCK.AVG
tDS.BASE
tDSH
tDSS
tHP
50
––
ps
17)18)19)
16)
tHZ
Address and control input hold time
tIH.BASE
Control & address input pulse width for each input tIPW
Address and control input setup time
tIS.BASE
DQ low impedance time from CK/CK
tLZ.DQ
DQS/DQS low-impedance time from CK / CK
tLZ.DQS
MRS command to ODT update delay
tMOD
Mode register set command cycle time
tMRD
OCD drive mode output delay
tOIT
DQ/DQS output hold time from DQS
tQH
DQ hold skew factor
tQHS
edges
DQ and DM input setup time
DQS falling edge hold time from CK
DQS falling edge to CK setup time
CK half pulse width
Data-out high-impedance time from CK / CK
Rev. 1.3, 2007-05
07182006-DD60-22E6
37
0.2
—
0.2
—
tCK.AVG
tCK.AVG
Min(tCH.ABS,
tCL.ABS)
__
ps
20)
—
tAC.MAX
ps
8)21)
250
—
ps
22)24)
0.6
—
tCK.AVG
175
—
ps
23)24)
2 x tAC.MIN
tAC.MAX
ps
8)21)
tAC.MIN
tAC.MAX
ps
8)21)
0
12
ns
34)
2
—
nCK
0
12
ns
34)
tHP – tQHS
—
ps
25)
—
300
ps
26)
16)
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
Parameter
Average periodic refresh Interval
Symbol
DDR2–800
tREFI
Unit
Note1)2)3)4)5)6)7)
Min.
Max.
—
7.8
µs
27)28)
—
3.9
µs
28)29)
30)
Auto-Refresh to Active/Auto-Refresh command
period
tRFC
75
—
ns
Precharge-All (4 banks) command period
tRP
tRPRE
tRPST
tRTP
tWPRE
tWPST
tWR
tWTR
tXARD
tXARDS
tRP
—
ns
0.9
1.1
31)32)
0.4
0.6
tCK.AVG
tCK.AVG
7.5
—
ns
34)
0.35
—
0.4
0.6
tCK.AVG
tCK.AVG
15
—
ns
34)
7.5
—
ns
34)35)
2
—
8 – AL
—
nCK
nCK
Exit precharge power-down to any valid
command (other than NOP or Deselect)
tXP
2
—
nCK
Exit self-refresh to a non-read command
tRFC +10
—
ns
Exit self-refresh to read command
tXSNR
tXSRD
200
—
Write command to DQS associated clock edges
WL
RL – 1
nCK
nCK
Read preamble
Read postamble
Internal Read to Precharge command delay
Write preamble
Write postamble
Write recovery time
Internal write to read command delay
Exit power down to read command
Exit active power-down mode to read command
(slow exit, lower power)
31)33)
34)
1) VDDQ = 1.8 V ± 0.1V; VDD = 1.8 V ± 0.1 V.
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.
4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode.
5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
6) The output timing reference voltage level is VTT.
7) New units, ‘tCK.AVG‘ and ‘nCK‘, are introduced in DDR2–667 and DDR2–800. Unit ‘tCK.AVG‘ represents the actual tCK.AVG of the input clock
under operation. Unit ‘nCK‘ represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2–400 and
DDR2–533, ‘tCK‘ is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may
be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min).
8) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has
tERR(6-10PER).MIN = – 272 ps and tERR(6- 10PER).MAX = + 293 ps, then
tDQSCK.MIN(DERATED) = tDQSCK.MIN – tERR(6-10PER).MAX = – 400 ps – 293 ps = – 693 ps and
tDQSCK.MAX(DERATED) = tDQSCK.MAX – tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps.
Similarly, tLZ.DQ for DDR2–667 derates to tLZ.DQ.MIN(DERATED) = - 900 ps – 293 ps = – 1193 ps and
tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!)
9) Input clock jitter spec parameter. These parameters and the ones in Chapter 7.3 are referred to as 'input clock jitter spec parameters' and
these parameters apply to DDR2–667 and DDR2–800 only. The jitter specified is a random jitter meeting a Gaussian distribution.
10) These parameters are specified per their average values, however it is understood that the relationship as defined in Chapter 7.3 between
the average timing and the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations
of Chapter 7.3).
11) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the
entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during
the time period of tIS + 2 x tCK + tIH.
Rev. 1.3, 2007-05
07182006-DD60-22E6
38
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
12) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result
of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For
DDR2–533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks.
13) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR.
14) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to
the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing
at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and
VIH.DC.MIN. See Figure 6.
15) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output
slew rate mismatch between DQS / DQS and associated DQ in any given cycle.
16) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing.
The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal
crossing. That is, these parameters should be met whether clock jitter is present or not.
17) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level
to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe
crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN.
See Figure 6.
18) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed.
19) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal
((L/U/R)DQS / DQS) crossing.
20) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter.
It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the
following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the
minimum of the actual instantaneous clock low time.
21) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level
which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) .
22) Input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied
to the device under test. See Figure 7.
23) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied
to the device under test. See Figure 7.
24) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to
its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC,
etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should
be met whether clock jitter is present or not.
25) tQH = tHP – tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under the
max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.}
Examples: 1) If the system provides tHP of 1315 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system
provides tHP of 1420 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 1080 ps minimum.
26) tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is
transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next
transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation
of the output drivers.
27) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C
and 95 °C.
28) 0 °C≤ TCASE ≤ 85 °C
29) 85 °C < TCASE ≤ 95 °C
30) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.
31) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving
(tRPST), or begins driving (tRPRE). Figure 5 shows a method to calculate these points when the device is no longer driving (tRPST), or begins
driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the
calculation is consistent.
32) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.PER.MIN = – 72 ps
and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG – 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX
+ tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!).
33) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.DUTY.MIN = – 72 ps
and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG – 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX
+ tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!).
Rev. 1.3, 2007-05
07182006-DD60-22E6
39
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
34) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in
clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which tRP = 15 ns, the device will support
tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at
Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter.
35) tWTR is at lease two clocks (2 x tCK) independent of operation frequency.
TABLE 47
DRAM Component Timing Parameter by Speed Grade - DDR2–667
Parameter
Symbol
DDR2–667
Unit
Note1)2)3)4)5)6)7)
8)
Min.
Max.
tAC
tCCD
tCH.AVG
tCK.AVG
tCKE
–450
+450
ps
2
—
0.48
0.52
nCK
tCK.AVG
3000
8000
ps
3
—
nCK
11)
tCL.AVG
Auto-Precharge write recovery + precharge time tDAL
Minimum time clocks remain ON after CKE
tDELAY
0.48
0.52
9)10)
WR + tnRP
—
tCK.AVG
nCK
tIS + tCK .AVG +
tIH
—
ns
tDH.BASE
DQ and DM input pulse width for each input
tDIPW
DQS output access time from CK / CK
tDQSCK
DQS input high pulse width
tDQSH
DQS input low pulse width
tDQSL
DQS-DQ skew for DQS & associated DQ signals tDQSQ
DQS latching rising transition to associated clock tDQSS
175
—
ps
0.35
—
tCK.AVG
–400
+400
ps
0.35
—
0.35
—
tCK.AVG
tCK.AVG
—
240
ps
15)
– 0.25
+ 0.25
tCK.AVG
16)
tDS.BASE
tDSH
tDSS
tHP
100
––
ps
17)18)19)
0.2
—
16)
0.2
—
tCK.AVG
tCK.AVG
Min(tCH.ABS,
tCL.ABS)
__
ps
20)
—
tAC.MAX
ps
8)21)
275
—
ps
24)22)
DQ output access time from CK / CK
CAS to CAS command delay
Average clock high pulse width
Average clock period
CKE minimum pulse width ( high and low pulse
width)
Average clock low pulse width
asynchronously drops LOW
DQ and DM input hold time
edges
DQ and DM input setup time
DQS falling edge hold time from CK
DQS falling edge to CK setup time
CK half pulse width
tHZ
Address and control input hold time
tIH.BASE
Control & address input pulse width for each input tIPW
Address and control input setup time
tIS.BASE
DQ low impedance time from CK/CK
tLZ.DQ
DQS/DQS low-impedance time from CK / CK
tLZ.DQS
MRS command to ODT update delay
tMOD
Mode register set command cycle time
tMRD
OCD drive mode output delay
tOIT
DQ/DQS output hold time from DQS
tQH
Data-out high-impedance time from CK / CK
Rev. 1.3, 2007-05
07182006-DD60-22E6
40
9)10)
12)13)
18)19)14)
8)
16)
0.6
—
tCK.AVG
200
—
ps
23)24)
2 x tAC.MIN
ps
8)21)
tAC.MIN
tAC.MAX
tAC.MAX
ps
8)21)
0
12
ns
34)
2
—
nCK
0
12
ns
34)
tHP – tQHS
—
ps
25)
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
Parameter
DQ hold skew factor
Average periodic refresh Interval
Symbol
DDR2–667
tQHS
tREFI
Unit
Note1)2)3)4)5)6)7)
Min.
Max.
—
340
ps
26)
—
7.8
µs
27)28)
—
3.9
µs
28)29)
30)
Auto-Refresh to Active/Auto-Refresh command
period
tRFC
75
—
ns
Precharge-All (4 banks) command period
tRP
tRPRE
tRPST
tRTP
tWPRE
tWPST
tWR
tWTR
tXARD
tXARDS
tRP
—
ns
0.9
1.1
31)32)
0.4
0.6
tCK.AVG
tCK.AVG
7.5
—
ns
34)
0.35
—
Exit precharge power-down to any valid
command (other than NOP or Deselect)
Exit self-refresh to a non-read command
Read preamble
Read postamble
Internal Read to Precharge command delay
Write preamble
Write postamble
Write recovery time
Internal write to read command delay
Exit power down to read command
Exit active power-down mode to read command
(slow exit, lower power)
Exit self-refresh to read command
Write command to DQS associated clock edges
1) VDDQ = 1.8 V ± 0.1V; VDD = 1.8 V ± 0.1 V.
31)33)
0.4
0.6
tCK.AVG
tCK.AVG
15
—
ns
34)
7.5
—
ns
34)35)
2
—
7 – AL
—
nCK
nCK
tXP
2
—
nCK
tXSNR
tXSRD
tRFC +10
—
ns
200
—
WL
RL–1
nCK
nCK
34)
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.
4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode.
5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
6) The output timing reference voltage level is VTT.
7) New units, ‘tCK.AVG‘ and ‘nCK‘, are introduced in DDR2–667 and DDR2–800. Unit ‘tCK.AVG‘ represents the actual tCK.AVG of the input clock
under operation. Unit ‘nCK‘ represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2–400 and
DDR2–533, ‘tCK‘ is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may
be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min).
8) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has
tERR(6-10PER).MIN = – 272 ps and tERR(6- 10PER).MAX = + 293 ps, then
tDQSCK.MIN(DERATED) = tDQSCK.MIN – tERR(6-10PER).MAX = – 400 ps – 293 ps = – 693 ps and
tDQSCK.MAX(DERATED) = tDQSCK.MAX – tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps.
Similarly, tLZ.DQ for DDR2–667 derates to tLZ.DQ.MIN(DERATED) = - 900 ps – 293 ps = – 1193 ps and
tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!)
9) Input clock jitter spec parameter. These parameters and the ones in Chapter 7.3 are referred to as 'input clock jitter spec parameters' and
these parameters apply to DDR2–667 and DDR2–800 only. The jitter specified is a random jitter meeting a Gaussian distribution.
10) These parameters are specified per their average values, however it is understood that the relationship as defined in Chapter 7.3 between
the average timing and the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations
of Chapter 7.3).
Rev. 1.3, 2007-05
07182006-DD60-22E6
41
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
11) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the
entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during
the time period of tIS + 2 x tCK + tIH.
12) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result
of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For
DDR2–533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks.
13) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR.
14) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to
the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing
at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and
VIH.DC.MIN. See Figure 6.
15) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output
slew rate mismatch between DQS / DQS and associated DQ in any given cycle.
16) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing.
The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal
crossing. That is, these parameters should be met whether clock jitter is present or not.
17) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level
to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe
crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN. See
Figure 6.
18) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed.
19) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal
((L/U/R)DQS / DQS) crossing.
20) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter.
It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the
following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the
minimum of the actual instantaneous clock low time.
21) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level
which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) .
22) Input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied
to the device under test. See Figure 7.
23) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied
to the device under test. See Figure 7.
24) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to
its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC,
etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should
be met whether clock jitter is present or not.
25) tQH = tHP – tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under the
max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.}
Examples: 1) If the system provides tHP of 1315 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system
provides tHP of 1420 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 1080 ps minimum.
26) tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is
transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next
transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation
of the output drivers.
27) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C
and 95 °C.
28) 0 °C≤ TCASE ≤ 85 °C
29) 85 °C < TCASE ≤ 95 °C
30) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.
31) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving
(tRPST), or begins driving (tRPRE). Figure 5 shows a method to calculate these points when the device is no longer driving (tRPST), or begins
driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the
calculation is consistent.
32) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.PER.MIN = – 72 ps
and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG – 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX
+ tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!).
Rev. 1.3, 2007-05
07182006-DD60-22E6
42
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
33) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.DUTY.MIN = – 72 ps
and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG – 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX
+ tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!).
34) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in
clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which tRP = 15 ns, the device will support
tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at
Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter.
35) tWTR is at lease two clocks (2 x tCK) independent of operation frequency.
Rev. 1.3, 2007-05
07182006-DD60-22E6
43
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
FIGURE 5
Method for calculating transitions and endpoint
92+[P9
977[P9
92+[P9
977[P9
W/=
W+=
W535(EHJLQSRLQW
W5367
H QGSRLQW
92/[P9
977[P9
92/[P9
977[P9
7 7
7 7
W+=W5367
HQGSRLQW 77
W/=W535(
E HJLQSRLQW 7
7
FIGURE 6
Differential input waveform timing - tDS and tDS
'46
'46
W'6
W'+
W'6
W'+
9''4
9,+DFPLQ
9,+GFPLQ
95()GF
9,/GF PD[
9,/DF PD[
966
FIGURE 7
Differential input waveform timing - tlS and tlH
&.
&.
W,6
W,+
W,6
W,+
9''4
9,+DFPLQ
9,+GFPLQ
95()GF
9,/GFPD[
9,/DFPD[
966
Rev. 1.3, 2007-05
07182006-DD60-22E6
44
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
TABLE 48
DRAM Component Timing Parameter by Speed Grade - DDR2–533
Parameter
Symbol
DDR2–533
Unit
Note1)2)3)4)5)
6)
Min.
Max.
tAC
tCCD
tCH
tCKE
tCL
tDAL
–500
+500
ps
2
—
0.45
0.55
3
—
0.45
0.55
WR + tRP
—
tCK
tCK
tCK
tCK
tCK
Minimum time clocks remain ON after CKE
asynchronously drops LOW
tDELAY
tIS + tCK + tIH
—
ns
8)
DQ and DM input hold time (differential data
strobe)
tDH(base)
225
—
ps
9)
–25
—
ps
10)
tDIPW
tDQSCK
tDQSL,H
tDQSQ
0.35
—
tCK
–450
+450
ps
0.35
—
tCK
—
300
ps
tDQSS
tDS(base)
– 0.25
+ 0.25
tCK
100
—
ps
10)
–25
—
ps
10)
tDSH
0.2
—
tCK
DQS falling edge to CK setup time (write cycle) tDSS
0.2
—
tCK
DQ output access time from CK / CK
CAS A to CAS B command period
CK, CK high-level width
CKE minimum high and low pulse width
CK, CK low-level width
Auto-Precharge write recovery + precharge
time
DQ and DM input hold time (single ended data tDH1(base)
strobe)
DQ and DM input pulse width (each input)
DQS output access time from CK / CK
DQS input low (high) pulse width (write cycle)
DQS-DQ skew (for DQS & associated DQ
signals)
Write command to 1st DQS latching transition
DQ and DM input setup time (differential data
strobe)
DQ and DM input setup time (single ended data tDS1(base)
strobe)
DQS falling edge hold time from CK (write
cycle)
Clock half period
Data-out high-impedance time from CK / CK
Address and control input hold time
Address and control input pulse width
(each input)
Address and control input setup time
DQ low-impedance time from CK / CK
DQS low-impedance from CK / CK
MRS command to ODT update delay
Mode register set command cycle time
OCD drive mode output delay
Data output hold time from DQS
Data hold skew factor
Rev. 1.3, 2007-05
07182006-DD60-22E6
tHP
tHZ
tIH(base)
tIPW
MIN. (tCL, tCH)
tIS(base)
tLZ(DQ)
tLZ(DQS)
tMOD
tMRD
tOIT
tQH
tQHS
45
7)17)
10)
—
11)
—
tAC.MAX
ps
12)
375
—
ps
10)
0.6
—
tCK
250
—
ps
10)
2 × tAC.MIN
ps
13)
tAC.MIN
tAC.MAX
tAC.MAX
ps
13)
0
12
ns
2
—
tCK
0
12
ns
tHP –tQHS
—
—
—
400
ps
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol
DDR2–533
Unit
Note1)2)3)4)5)
6)
Min.
Max.
tREFI
tREFI
tRFC
—
7.8
µs
13)14)
—
3.9
µs
15)17)
75
—
ns
16)
tRP
tRPRE
tRPST
tRRD
tRP
—
ns
0.9
1.1
13)
0.40
0.60
tCK
tCK
7.5
—
ns
13)17)
Active bank A to Active bank B command
period
tRRD
10
—
ns
15)21)
Internal Read to Precharge command delay
tRTP
tWPRE
tWPST
tWR
7.5
—
ns
0.25
—
0.40
0.60
tCK
tCK
15
—
ns
tWTR
tXARD
7.5
—
ns
19)
2
—
tCK
20)
Exit active power-down mode to Read
command (slow exit, lower power)
tXARDS
6 – AL
—
tCK
20)
Exit precharge power-down to any valid
command (other than NOP or Deselect)
tXP
2
—
tCK
Exit Self-Refresh to non-Read command
tXSNR
tXSRD
tRFC +10
—
ns
200
—
WR
tWR/tCK
—
tCK
tCK
Average periodic refresh Interval
Average periodic refresh Interval
Auto-Refresh to Active/Auto-Refresh
command period
Precharge-All (4 banks) command period
Read preamble
Read postamble
Active bank A to Active bank B command
period
Write preamble
Write postamble
Write recovery time for write without AutoPrecharge
Internal Write to Read command delay
Exit power down to any valid command
(other than NOP or Deselect)
Exit Self-Refresh to Read command
Write recovery time for write with AutoPrecharge
1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V.
13)
18)
21)
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.
4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode.
5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
6) The output timing reference voltage level is VTT.
7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to
the WR parameter stored in the MR.
8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode.
9) For timing definition, refer to the Component data sheet.
10) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate
mis-match between DQS / DQS and associated DQ in any given cycle.
11) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can
be greater than the minimum specification limits for tCL and tCH).
Rev. 1.3, 2007-05
07182006-DD60-22E6
46
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
12) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving
(tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These
parameters are verified by design and characterization, but not subject to production test.
13) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C
and 95 °C.
14) 0 °C≤ TCASE ≤ 85 °C
15) 85 °C < TCASE ≤ 95 °C
16) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.
17) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 5 “Ordering Information for Lead-Free
Products (RoHS Compliant)” on Page 5.
18) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system
performance (bus turnaround) degrades accordingly.
19) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz.
20) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active powerdown mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow
power-down exit timing tXARDS has to be satisfied.
21) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded
up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK
refers to the application clock period. WR refers to the WR parameter stored in the MRS.
TABLE 49
DRAM Component Timing Parameter by Speed Grade - DDR2-400
Parameter
Symbol
DDR2–400
Unit
Note1)2)3)4)5)
6)
Min.
Max.
tAC
tCCD
tCH
tCKE
tCL
tDAL
–600
+600
ps
2
—
0.45
0.55
3
—
0.45
0.55
WR + tRP
—
tCK
tCK
tCK
tCK
tCK
Minimum time clocks remain ON after CKE
asynchronously drops LOW
tDELAY
tIS + tCK + tIH
—
ns
8)
DQ and DM input hold time (differential data
strobe)
tDH(base)
275
—
ps
9)
–25
—
ps
10)
0.35
—
tCK
–500
+500
ps
0.35
—
tCK
—
350
ps
– 0.25
+ 0.25
tCK
DQ output access time from CK / CK
CAS A to CAS B command period
CK, CK high-level width
CKE minimum high and low pulse width
CK, CK low-level width
Auto-Precharge write recovery + precharge
time
DQ and DM input hold time (single ended data tDH1(base)
strobe)
DQ and DM input pulse width (each input)
DQS output access time from CK / CK
DQS input low (high) pulse width (write cycle)
DQS-DQ skew (for DQS & associated DQ
signals)
tDIPW
tDQSCK
tDQSL,H
tDQSQ
Write command to 1st DQS latching transition tDQSS
7)20)
10)
DQ and DM input setup time (differential data
strobe)
tDS(base)
150
—
ps
10)
DQ and DM input setup time (single ended
data strobe)
tDS1(base)
–25
—
ps
10)
Rev. 1.3, 2007-05
07182006-DD60-22E6
47
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol
DDR2–400
Unit
Note1)2)3)4)5)
6)
Min.
Max.
tDSH
0.2
—
DQS falling edge to CK setup time (write cycle) tDSS
0.2
—
DQS falling edge hold time from CK (write
cycle)
Clock half period
tHP
tHZ
tIH(base)
tIPW
MIN. (tCL, tCH)
tCK
tCK
—
11)
—
tAC.MAX
ps
12)
475
—
ps
10)
0.6
—
tCK
350
—
ps
10)
2 × tAC.MIN
ps
13)
tAC.MIN
tAC.MAX
tAC.MAX
ps
13)
0
12
ns
2
—
tCK
0
12
ns
tHP –tQHS
—
—
—
450
ps
—
7.8
µs
13)14)
—
3.9
µs
15)17)
75
—
ns
16)
tRP
tRPRE
tRPST
tRRD
tRP
—
ns
0.9
1.1
13)
0.40
0.60
tCK
tCK
7.5
—
ns
13)17)
Active bank A to Active bank B command
period
tRRD
10
—
ns
15)21)
Internal Read to Precharge command delay
tRTP
tWPRE
tWPST
tWR
7.5
—
ns
0.25
—
0.40
0.60
tCK
tCK
15
—
ns
tWTR
tXARD
10
—
ns
19)
2
—
tCK
20)
Exit active power-down mode to Read
command (slow exit, lower power)
tXARDS
6 – AL
—
tCK
20)
Exit precharge power-down to any valid
command (other than NOP or Deselect)
tXP
2
—
tCK
Exit Self-Refresh to non-Read command
tXSNR
tRFC +10
—
ns
Data-out high-impedance time from CK / CK
Address and control input hold time
Address and control input pulse width
(each input)
Address and control input setup time
DQ low-impedance time from CK / CK
DQS low-impedance from CK / CK
MRS command to ODT update delay
Mode register set command cycle time
OCD drive mode output delay
Data output hold time from DQS
Data hold skew factor
Average periodic refresh Interval
Average periodic refresh Interval
Auto-Refresh to Active/Auto-Refresh
command period
Precharge-All (4 banks) command period
Read preamble
Read postamble
Active bank A to Active bank B command
period
Write preamble
Write postamble
Write recovery time for write without AutoPrecharge
Internal Write to Read command delay
Exit power down to any valid command
(other than NOP or Deselect)
Rev. 1.3, 2007-05
07182006-DD60-22E6
tIS(base)
tLZ(DQ)
tLZ(DQS)
tMOD
tMRD
tOIT
tQH
tQHS
tREFI
tREFI
tRFC
48
13)
18)
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol
DDR2–400
Unit
Note1)2)3)4)5)
6)
Exit Self-Refresh to Read command
Write recovery time for write with AutoPrecharge
1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V.
Min.
Max.
tXSRD
200
—
WR
tWR/tCK
—
tCK
tCK
21)
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.
4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode.
5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
6) The output timing reference voltage level is VTT.
7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to
the WR parameter stored in the MR.
8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode.
9) For timing definition, refer to the Component data sheet.
10) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate
mis-match between DQS / DQS and associated DQ in any given cycle.
11) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can
be greater than the minimum specification limits for tCL and tCH).
12) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving
(tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These
parameters are verified by design and characterization, but not subject to production test.
13) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C
and 95 °C.
14) 0 °C≤ TCASE ≤ 85 °C
15) 85 °C < TCASE ≤ 95 °C
16) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.
17) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 5 “Ordering Information for Lead-Free
Products (RoHS Compliant)” on Page 5.
18) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system
performance (bus turnaround) degrades accordingly.
19) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz.
20) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active powerdown mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow
power-down exit timing tXARDS has to be satisfied.
21) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded
up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK
refers to the application clock period. WR refers to the WR parameter stored in the MRS.
Rev. 1.3, 2007-05
07182006-DD60-22E6
49
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
7.3
Jitter Definition and Clock Jitter Specification
Generally, jitter is defined as “the short-term variation of a signal with respect to its ideal position in time”. The following table
provides an overview of the terminology.
TABLE 50
Average Clock and Jitter Symbols and Definition
Symbol
Parameter
Description
Units
tCK.AVG
Average clock period tCK.AVG is calculated as the average clock period within any consecutive
200-cycle window:
⎛ N
⎞
1
tCK.AVG = ---- . ⎜ ∑ tCK j⎟
⎟
N⎜
⎝j = 1
⎠
ps
(1)
N = 200
tJIT.PER
tJIT(PER, LCK)
tJIT.CC
Clock-period jitter
Clock-period jitter
during DLL-locking
period
Cycle-to-cycle clock
period jitter
tJIT(CC, LCK)
Cycle-to-cycle clock
period jitter during
DLL-locking period
tERR.2PER
Cumulative error
across 2 cycles
tJIT.PER is defined as the largest deviation of any single tCK from tCK.AVG:
tJIT.PER = Min/Max of {tCKi – tCK.AVG} where i = 1 to 200
tJIT.PER defines the single-period jitter when the DLL is already locked.
tJIT.PER is not guaranteed through final production testing.
tJIT(PER,LCK) uses the same definition as tJIT.PER, during the DLL-locking ps
period only.
tJIT(PER,LCK) is not guaranteed through final production testing.
tJIT.CC is defined as the absolute difference in clock period between two
ps
tJIT.CC defines the cycle- to- cycle jitter when the DLL is already locked.
tJIT.CC is not guaranteed through final production testing.
tJIT(CC,LCK) uses the same definition as tJIT.CC during the DLL-locking
ps
consecutive clock cycles:
tJIT.CC = Max of ABS{tCKi+1 – tCKi}
period only.
tJIT(CC,LCK) is not guaranteed through final production testing.
tERR.2PER is defined as the cumulative error across 2 consecutive cycles
from tCK.AVG:
⎛i + n – 1
⎞
⎜
tERR ( 2per ) =
tCK j⎟ – n × tCK ( avg )
⎜ ∑
⎟
⎝ j=i
⎠
n = 2 for tERR(2per)
where i = 1 to 200
Rev. 1.3, 2007-05
07182006-DD60-22E6
ps
50
(2)
ps
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
Symbol
Parameter
Description
Units
tERR.nPER
Cumulative error
across n cycles
tERR.2PER is defined as the cumulative error across n consecutive cycles
from tCK.AVG:
ps
⎛i + n – 1
⎞
tERR ( nper ) = ⎜ ∑ tCK j⎟ – n × tCK ( avg )
⎜
⎟
⎝ j=i
⎠
(3)
where, i = 1 to 200 and
n = 3 for tERR.3PER
n = 4 for tERR.4PER
n = 5 for tERR.5PER
6 ≤ n ≤ 10 for tERR.6-10PER
11 ≤ n ≤ 50 for tERR.11-50PER
tCH.AVG
Average high-pulse
width
tCH.AVG is defined as the average high-pulse width, as calculated across
tCK.AVG
any consecutive 200 high pulses:
⎛ N
⎞
1
⎜
.
tCH ( avg ) = ---------------------------------------- ∑ tCH j⎟
⎟
( N × tCK ( avg ) ) ⎜
⎝j = 1
⎠
(4)
N = 200
tCL.AVG
Average low-pulse
width
tCL.AVG is defined as the average low-pulse width, as calculated across any tCK.AVG
consecutive 200 low pulses:
⎛ N
⎞
1
tCL ( avg ) = ---------------------------------------- . ⎜ ∑ tCL j⎟
⎟
( N × tCK ( avg ) ) ⎜
⎝j = 1
⎠
(5)
N = 200
tJIT.DUTY
Duty-cycle jitter
tJIT.DUTY = Min/Max of {tJIT.CH , tJIT.CL}, where:
tJIT.CH is the largest deviation of any single tCH from tCH.AVG
tJIT.CL is the largest deviation of any single tCL from tCL.AVG
tJIT.CH = {tCHi - tCH.AVG × tCK.AVG} where i=1 to 200
tJIT.CL = {tCLi - tCL.AVG × tCK.AVG} where i=1 to 200
ps
The following parameters are specified per their average values however, it is understood that the following relationship
between the average timing and the absolute instantaneous timing holds all the time.
TABLE 51
Absolute Jitter Value Definitions
Symbol
Parameter
Min.
tCK.ABS
tCH.ABS
Clock period
tCL.ABS
Clock low-pulse width
tCK.AVG(Min) + tJIT.PER(Min)
tCK.AVG(Max) + tJIT.PER(Max)
tCH.AVG(Min) x tCK.AVG(Min) + tJIT.DUTY(Min) tCH.AVG(Max) x tCK.AVG(Max) +
tJIT.DUTY(Max)
tCL.AVG(Min) x tCK.AVG(Min) + tJIT.DUTY(Min) tCL.AVG(Max) x tCK.AVG(Max) +
tJIT.DUTY(Max)
Clock high-pulse width
Rev. 1.3, 2007-05
07182006-DD60-22E6
Max.
51
Unit
ps
ps
ps
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
Example: for DDR2-667, tCH.ABS(Min) = (0.48 x 3000ps) – 125 ps = 1315 ps = 0.438 x 3000 ps.
Table 64 shows clock-jitter specifications.
TABLE 52
Clock-Jitter Specifications for –667 and –800
Symbol
Parameter
DDR2 -667
DDR2 -800
Min.
Max.
Min.
Max.
Unit
tCK.AVG
tJIT.PER
tJIT(PER,LCK)
tJIT.CC
tJIT(CC,LCK)
Average clock period nominal w/o jitter
3000
8000
2500
8000
ps
Clock-period jitter
–125
+125
–100
+100
ps
Clock-period jitter during DLL locking period
–100
+100
–80
+80
ps
Cycle-to-cycle clock-period jitter
–250
+250
–200
+200
ps
Cycle-to-cycle clock-period jitter during DLLlocking period
–200
+200
–160
+160
ps
tERR.2PER
tERR.3PER
tERR.4PER
tERR.5PER
tERR(6-10PER)
Cumulative error across 2 cycles
–175
+175
–150
+150
ps
Cumulative error across 3 cycles
–225
+225
–175
+175
ps
Cumulative error across 4 cycles
–250
+250
–200
+200
ps
Cumulative error across 5 cycles
–250
+250
–200
+200
ps
Cumulative error across n cycles with n = 6 ..
10, inclusive
–350
+350
–300
+300
ps
tERR(11-50PER)
Cumulative error across n cycles with n = 11 .. –450
50, inclusive
+450
–450
+450
ps
tCH.AVG
tCL.AVG
tJIT.DUTY
Average high-pulse width
0.52
0.48
0.52
Average low-pulse width
0.48
0.52
0.48
0.52
tCK.AVG
tCK.AVG
Duty-cycle jitter
–125
+125
–100
+100
ps
Rev. 1.3, 2007-05
07182006-DD60-22E6
0.48
52
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
7.4
ODT AC Electrical Characteristics
This chapter describes the ODT AC electrical characteristics.
TABLE 53
ODT AC Characteristics and Operating Conditions for DDR2-533 and DDR2-400
Symbol
Parameter / Condition
Values
Min.
tAOND
tAON
tAONPD
tAOFD
tAOF
tAOFPD
tANPD
tAXPD
Unit
Note
Max.
ODT turn-on delay
2
2
tCK
ODT turn-on
tAC.MAX + 1 ns
2 tCK + tAC.MAX + 1 ns
ns
ODT turn-on (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
ODT turn-off delay
2.5
2.5
tCK
ODT turn-off
tAC.MAX + 0.6 ns
2.5 tCK + tAC.MAX + 1 ns
ns
ODT turn-off (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
ODT to Power Down Mode Entry Latency
3
—
ODT Power Down Exit Latency
8
—
tCK
tCK
1)
ns
2)
ns
1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when
the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-400/533, tAOND is
10 ns (= 2 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns.
2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance.
Both are measured from tAOFD. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-400/533, tAOFD is
12.5 ns (= 2.5 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns.
Rev. 1.3, 2007-05
07182006-DD60-22E6
53
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
TABLE 54
ODT AC Characteristics and Operating Conditions for DDR2-667 and DDR2-800
Symbol
tAOND
tAON
tAONPD
tAOFD
tAOF
tAOFPD
tANPD
tAXPD
Parameter / Condition
ODT turn-on delay
Values
Unit
Min.
Max.
2
2
Note
nCK
1)
tAC.MAX + 0.7 ns
2 tCK + tAC.MAX + 1 ns
ns
ODT turn-on (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
1)2)
ns
1)
ODT turn-off delay
2.5
2.5
nCK
1)
ODT turn-on
tAC.MAX + 0.6 ns
2.5 tCK + tAC.MAX + 1 ns
ns
ODT turn-off (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
1)3)
ns
1)
ODT to Power Down Mode Entry Latency
3
—
nCK
nCK
1)
ODT turn-off
1)
ODT Power Down Exit Latency
8
—
1) New units, “tCK.AVG” and “nCK”, are introduced in DDR2-667 and DDR2-800. Unit “tCK.AVG” represents the actual tCK.AVG of the input clock
under operation. Unit “nCK” represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2-400 and
DDR2-533, “tCK” is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may
be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min).
2) ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when
the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-667/800, tAOND is
2 clock cycles after the clock edge that registered a first ODT HIGH counting the actual input clock edges.
3) ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance.
Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-667/800, if tCK(avg) = 3 ns is assumed, tAOFD is 1.5
ns (= 0.5 x 3 ns) after the second trailing clock edge counting from the clock edge that registered a first ODT LOW and by counting the
actual input clock edges.
Rev. 1.3, 2007-05
07182006-DD60-22E6
54
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
8
Package Dimensions
This chapter describes the package dimensions.
FIGURE 8
Package Outline PG-TFBGA-84
0$
;
[ $
[ 0
$
;
%
0$
;
&
0
$;
0
,1
&
¡ “ [
¡ 0 & $ %
¡ 0 &
'
XPP
\ SD
GVZ
LWK RXWE DOO
0
LGGOHRISDFN DJHVHGJ HV
3
D FN D JHRULHQWDWLRQP
DUN$
%
DGXQLWP
DUNLQJ %80
*3$
Notes
1. Drawing according to ISO 8015
2. Dimensions in mm
3. General tolerances +/- 0.15
Rev. 1.3, 2007-05
07182006-DD60-22E6
*3
/$1(
& 6($7 ,1
55
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
FIGURE 9
Package Outline PG-TFBGA-60
0
$;
[
$
[ 0
$;
%
0
$;
&
0,1
0$
;
&
¡ “ [
¡ 0 & $ %
¡ 0 &
'X PP
\ SDGVZLWK RXWE DOO
0LGGOHR IS DFN D JHVHGJHV
3D FN DJHRULH QWDWLRQPD UN$
%D GXQLWPD UNLQJ %80
3*7)%
*
$ Notes
1. Drawing according to ISO 8015
2. Dimensions in mm
3. General tolerances +/- 0.15
Rev. 1.3, 2007-05
07182006-DD60-22E6
,1*
3
/$1(
& 6($7
56
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
9
Product Nomenclature
For reference the Qimonda SDRAM component nomenclature is enclosed in this chapter.
TABLE 55
Examples for Nomenclature Fields
Example for
DDR2 DRAM
Field Number
1
2
3
4
5
6
HYB
18
TC
256
16
7
8
9
10
0
A
C
–3.7
11
TABLE 56
DDR2 Memory Components
Field
Description
1
Qimonda Component Prefix
HYB
Constant
2
Interface Voltage [V]
18
SSTL_18
3
DRAM Technology, consumer variant
TC
DDR2
4
Component Density [Mbit]
256
256 M
512
512 M
5+6
Number of I/Os
7
Product Variations
8
Die Revision
9
10
11
Values
Coding
1G
1 Gb
40
ξ4
80
x8
16
x16
0 .. 9
look up table
A
First
B
Second
C
Third
Package,
Lead-Free Status
C
FBGA, lead-containing
F
FBGA, lead-free
Speed Grade
–1.9
DDR2–1066
N/A for Components
Rev. 1.3, 2007-05
07182006-DD60-22E6
57
–2.5F
DDR2–800 5–5–5
–2.5
DDR2–800 6–6–6
–3
DDR2–667 4–4–4
–3S
DDR2–667 5–5–5
–3.7
DDR2–533 4–4–4
–5
DDR2–400 3–3–3
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
List of Figures
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Chip Configuration for ×8 components, PG-TFBGA-60 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Ball Configuration for ×16 components, PG-TFBGA-84 (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Single-ended AC Input Test Conditions Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Differential DC and AC Input and Output Logic Levels Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Method for calculating transitions and endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Differential input waveform timing - tDS and tDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Differential input waveform timing - tlS and tlH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Package Outline PG-TFBGA-84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Package Outline PG-TFBGA-60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Rev. 1.3, 2007-05
07182006-DD60-22E6
58
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
List of Tables
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23
Table 24
Table 25
Table 26
Table 27
Table 28
Table 29
Table 30
Table 31
Table 32
Table 33
Table 34
Table 35
Table 36
Table 37
Table 38
Table 39
Table 40
Table 41
Table 42
Table 43
Table 44
Table 45
Table 46
Table 47
Table 48
Table 49
Performance tables for –2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Performance table for –3(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Performance table for –3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Performance table for –5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Ordering Information for Lead-Free Products (RoHS Compliant). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Chip Configuration of DDR2 SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Abbreviations for Ball Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Chip Configuration of DDR SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Abbreviations for Ball Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
DDR2 Addressing for ×8 Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
DDR2 Addressing for ×16 Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Mode Register Definition (BA[2:0] = 000B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Extended Mode Register Definition (BA[2:0] = 001B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
EMRS(2) Programming Extended Mode Register Definition (BA[2:0]=010B) . . . . . . . . . . . . . . . . . . . . . . . . . . 18
EMR(3) Programming Extended Mode Register Definition(BA[2:0]=011B) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
ODT Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Burst Length and Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Command Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Clock Enable (CKE) Truth Table for Synchronous Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Data Mask (DM) Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
DRAM Component Operating Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Recommended DC Operating Conditions (SSTL_18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
ODT DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Input and Output Leakage Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
DC & AC Logic Input Levels for DDR2-667 and DDR2-800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
DC & AC Logic Input Levels for DDR2-533 and DDR2-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Single-ended AC Input Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Differential DC and AC Input and Output Logic Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
SSTL_18 Output DC Current Drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
SSTL_18 Output AC Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
OCD Default Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Input / Output Capacitance for DDR2-800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Input / Output Capacitance for DDR2-667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Input / Output Capacitance for DDR2-533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Input / Output Capacitance for DDR2-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
IDD Specification Parameters and Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Definition for IDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
IDDSpecification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Speed Grade Definition Speed Bins for DDR2–800E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Speed Grade Definition Speed Bins for DDR2–667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Speed Grade Definition Speed Bins for DDR2–533C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Speed Grade Definition Speed Bins for DDR2-400B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
DRAM Component Timing Parameter by Speed Grade - DDR2–800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
DRAM Component Timing Parameter by Speed Grade - DDR2–667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
DRAM Component Timing Parameter by Speed Grade - DDR2–533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
DRAM Component Timing Parameter by Speed Grade - DDR2-400. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Rev. 1.3, 2007-05
07182006-DD60-22E6
59
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
Table 50
Table 51
Table 52
Table 53
Table 54
Table 55
Table 56
Average Clock and Jitter Symbols and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Jitter Value Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clock-Jitter Specifications for –667 and –800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ODT AC Characteristics and Operating Conditions for DDR2-533 and DDR2-400 . . . . . . . . . . . . . . . . . . . . .
ODT AC Characteristics and Operating Conditions for DDR2-667 and DDR2-800 . . . . . . . . . . . . . . . . . . . . .
Examples for Nomenclature Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DDR2 Memory Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rev. 1.3, 2007-05
07182006-DD60-22E6
60
50
51
52
53
54
57
57
Internet Data Sheet
HYB18TC256[80/16]0BF
256-Mbit Double-Data-Rate-Two SDRAM
Table of Contents
1
1.1
1.2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
2.1
2.2
2.3
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Chip Configuration for PG-TFBGA-60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Chip Configuration for PG-TFBGA-84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
256-Mbit DDR2 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4
Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5
5.1
5.2
5.3
5.4
5.5
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC & AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Buffer Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input / Output Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
Specifications and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7
7.1
7.2
7.3
7.4
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Speed Grade Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Component AC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Jitter Definition and Clock Jitter Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ODT AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9
Product Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
23
23
24
25
27
29
34
34
37
50
53
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Rev. 1.3, 2007-05
07182006-DD60-22E6
61
Internet Data Sheet
Edition 2007-05
Published by Qimonda AG
Gustav-Heinemann-Ring 212
D-81739 München, Germany
© Qimonda AG 2007.
All Rights Reserved.
Legal Disclaimer
The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics
(“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind,
including without limitation warranties of non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office.
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please
contact your nearest Qimonda Office.
Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a
failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect
the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human
body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
www.qimonda.com