May 2007 HYB18T C25680 0 BF HYB18T C25616 0 BF 256-Mbit Double-Data-Rate-Two SDRAM DDR2 SDRAM RoHS Compliant Products Internet Data Sheet Rev. 1.3 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM Revision History: Rev. 1.3, 2007-05 All Adapted internet edition 2 Added product type HYB18TC256800BF Previous Revision: Rev. 1.21, 2007-02 All Qimonda template update Previous Revision: Rev. 1.2, 2006-07 We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] qag_techdoc_rev400 / 3.2 QAG / 2006-08-01 07182006-DD60-22E6 2 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 1 Overview This chapter gives an overview of the 256-Mbit Double-Data-Rate-Two SDRAM product family and describes its main characteristics. 1.1 Features The 256-Mbit Double-Data-Rate-Two SDRAM offers the following key features: • Off-Chip-Driver impedance adjustment (OCD) and On• 1.8 V ± 0.1 V Power Supply • 1.8 V ± 0.1 V (SSTL_18) compatible I/O Die-Termination (ODT) for better signal quality • DRAM organizations with 8 and 16 data in/outputs • Auto-Precharge operation for read and write bursts • Double Data Rate architecture: two data transfers per • Auto-Refresh, Self-Refresh and power saving Powerclock cycle four internal banks for concurrent operation Down modes • Programmable CAS Latency: 3, 4, 5 and 6 • Average Refresh Period 7.8 µs at a TCASE lower than • Programmable Burst Length: 4 and 8 85 °C, 3.9 µs between 85 °C and 95 °C • Differential clock inputs (CK and CK) • Programmable self refresh rate via EMRS2 setting • Programmable partial array refresh via EMRS2 settings • Bi-directional, differential data strobes (DQS and DQS) are transmitted / received with data. Edge aligned with read • DCC enabling via EMRS2 setting • Full and reduced Strength Data-Output Drivers data and center-aligned with write data. • 1K page size • DLL aligns DQ and DQS transitions with clock • Packages: PG-TFBGA-84, PG-TFBGA-60 • DQS can be disabled for single-ended data strobe operation • RoHS Compliant Products1) • Commands entered on each positive clock edge, data and • All Speed grades faster than DDR400 comply with data mask are referenced to both edges of DQS DDR400 timing specifications when run at a clock rate of • Data masks (DM) for write data 200 MHz • Posted CAS by programmable additive latency for better command and data bus efficiency TABLE 1 Performance tables for –2.5 Product Type Speed Code –2.5 Unit Speed Grade DDR2–800E 6–6–6 — 400 MHz 333 MHz 266 MHz 200 MHz 15 ns 15 ns 45 ns 60 ns Max. Clock Frequency @CL6 @CL5 @CL4 @CL3 Min. RAS-CAS-Delay Min. Row Precharge Time Min. Row Active Time Min. Row Cycle Time fCK6 fCK5 fCK4 fCK3 tRCD tRP tRAS tRC 1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers. Rev. 1.3, 2007-05 07182006-DD60-22E6 3 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM TABLE 2 Performance table for –3(S) Product Type Speed Code –3 –3S Unit Speed Grade DDR2–667C 4–4–4 DDR2–667D 5–5–5 — 333 333 MHz 333 266 MHz 200 200 MHz 12 15 ns 12 15 ns 45 45 ns 57 60 ns Max. Clock Frequency @CL5 @CL4 @CL3 Min. RAS-CAS-Delay Min. Row Precharge Time Min. Row Active Time Min. Row Cycle Time fCK5 fCK4 fCK3 tRCD tRP tRAS tRC TABLE 3 Performance table for –3.7 Product Type Speed Code –3.7 Unit Speed Grade DDR2–533C 4–4–4 — 266 MHz 266 MHz Max. Clock Frequency @CL5 @CL4 @CL3 Min. RAS-CAS-Delay Min. Row Precharge Time Min. Row Active Time Min. Row Cycle Time fCK5 fCK4 fCK3 tRCD tRP tRAS tRC 200 MHz 15 ns 15 ns 45 ns 60 ns TABLE 4 Performance table for –5 Product Type Speed Code –5 Units Speed Grade DDR2–400B 3–3–3 — 200 MHz 200 MHz 200 MHz 15 ns 15 ns 40 ns 55 ns Max. Clock Frequency fCK5 fCK4 fCK3 tRCD tRP tRAS tRC @CL5 @CL4 @CL3 Min. RAS-CAS-Delay Min. Row Precharge Time Min. Row Active Time Min. Row Cycle Time Rev. 1.3, 2007-05 07182006-DD60-22E6 4 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 1.2 Description All of the control and address inputs are synchronized with a pair of externally supplied differential clocks. Inputs are latched at the cross point of differential clocks (CK rising and CK falling). All I/Os are synchronized with a single ended DQS or differential DQS-DQS pair in a source synchronous fashion. A 15 bit address bus is used to convey row, column and bank address information in a RAS-CAS multiplexing style. The DDR2 device operates with a 1.8 V ± 0.1 V power supply. An Auto-Refresh and Self-Refresh mode is provided along with various power-saving power-down modes. The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation. The DDR2 SDRAM is available in PG-TFBGA package. The 256-Mb DDR2 DRAM is a high-speed Double-DataRate-Two CMOS DRAM device containing 536,870,912 bits and internally configured as a quad -bank DRAM. The 256Mb device is organized as either 8 Mbit ×8 I/O ×4 banks or 4 Mbit ×16 I/O ×4 banks chip. These devices achieve high speed transfer rates starting at 400 Mb/sec/pin for general applications. See Table 1 to Table 4 for performance figures. The device is designed to comply with all DDR2 DRAM key features: 1. Posted CAS with additive latency 2. Write latency = read latency - 1 3. Normal and weak strength data-output driver 4. Off-Chip Driver (OCD) impedance adjustment 5. On-Die Termination (ODT) function TABLE 5 Ordering Information for Lead-Free Products (RoHS Compliant) Product Type1) Org. CAS-RCD-RP Latencies2)3)4) Clock (MHz) Speed Package Note HYB18TC256800BF-2.5 ×8 6-6-6 400 DDR2-800E PG-TFBGA-60 5) HYB18TC256160BF-2.5 ×16 HYB18TC256800BF-3 ×8 HYB18TC256160BF-3 ×16 HYB18TC256800BF-3S ×8 HYB18TC256160BF-3S ×16 HYB18TC256800BF-3.7 ×8 HYB18TC256160BF-3.7 ×16 HYB18TC256800BF-5 ×8 HYB18TC256160BF-5 ×16 PG-TFBGA-84 4-4-4 333 DDR2-667C PG-TFBGA-60 PG-TFBGA-84 5-5-5 333 DDR2-667D PG-TFBGA-60 4-4-4 266 DDR2-533C PG-TFBGA-60 3-3-3 200 DDR2-400B PG-TFBGA-60 PG-TFBGA-84 PG-TFBGA-84 PG-TFBGA-84 1) Please check with your Qimonda representative that leadtime and availability of your preferred device type and version meet your project requirements. 2) CAS: Column Address Strobe 3) RCD: Row Column Delay 4) RP: Row Precharge 5) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers. Note: For product nomenclature see Chapter 9 of this data sheet Rev. 1.3, 2007-05 07182006-DD60-22E6 5 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 2 Configuration This chapter contains the chip configuration, addressing. 2.1 Chip Configuration for PG-TFBGA-60 The chip configuration of a DDR2 SDRAM is listed by function in Table 6. The abbreviations used in the Ball# columns are explained in Table 7 and Table 8 respectively. The ball numbering for the FBGA package is depicted in figures. TABLE 6 Chip Configuration of DDR2 SDRAM Ball# Name Ball Type Buffer Type Function Clock Signal CK, CK Clock Signals ×8 organization E8 CK I SSTL F8 CK I SSTL F2 CKE I SSTL Clock Enable Row Address Strobe (RAS), Column Address Strobe (CAS), Write Enable (WE) Control Signals ×8 organizations F7 RAS I SSTL G7 CAS I SSTL F3 WE I SSTL G8 CS I SSTL Chip Select SSTL Bank Address Bus 1:0 Address Signals ×8 organizations G2 BA0 I G3 BA1 I SSTL H8 A0 I SSTL H3 A1 I SSTL H7 A2 I SSTL J2 A3 I SSTL J8 A4 I SSTL J3 A5 I SSTL J7 A6 I SSTL K2 A7 I SSTL K8 A8 I SSTL K3 A9 I SSTL H2 A10 I SSTL AP I SSTL K7 A11 I SSTL L2 A12 I SSTL Rev. 1.3, 2007-05 07182006-DD60-22E6 Address Signal 12:0, Address Signal 10/Autoprecharge 6 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM Ball# Name Ball Type Buffer Type Function L8 A13 I SSTL Address Signal 13 NC – – Note: 256 Mbit components and Data Signal 3:0 Note: Bi-directional data bus Data Signals ×8 organization C8 DQ0 I/O SSTL C2 DQ1 I/O SSTL D7 DQ2 I/O SSTL D3 DQ3 I/O SSTL D1 DQ4 I/O SSTL D9 DQ5 I/O SSTL B1 DQ6 I/O SSTL B9 DQ7 I/O SSTL Data Signal 7:4 Note: Bi-directional data bus Data Strobe×8 organizations B7 DQS I/O SSTL A8 DQS I/O SSTL Data Strobe Data Strobe ×8 organisation B3 RDQS O SSTL A2 RDQS O SSTL Read Data Strobe Data Mask ×8 organizations B3 DM I SSTL Data Mask Power Supplies ×8 organization A9,C1,C3,C7,C VDDQ 9 PWR – I/O Driver Power Supply VDD A7,B2,B8,D2,D VSSQ PWR – Power Supply PWR – I/O Driver Power Supply PWR – Power Supply AI – I/O Reference Voltage PWR – Power Supply PWR – Power Supply PWR – Power Supply PWR – Power Supply – Not Connected Note: No internal electrical connection is present SSTL On-Die Termination Control A1 8 A3,E3 VSS Power Supplies ×8 organizations E2 E1 E9,H9,L1 E7 J1,K9 VREF VDDL VDD VSSDL VSS Not Connected ×8 organization G1, L3,L7, L8 NC NC Other Balls ×8 organizations F9 ODT Rev. 1.3, 2007-05 07182006-DD60-22E6 I 7 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM TABLE 7 Abbreviations for Ball Type Abbreviation Description I Standard input-only ball. Digital levels. O Output. Digital levels. I/O I/O is a bidirectional input/output signal. AI Input. Analog levels. PWR Power GND Ground NC Not Connected TABLE 8 Abbreviations for Buffer Type Abbreviation Description SSTL Serial Stub Terminated Logic (SSTL_18) LV-CMOS Low Voltage CMOS CMOS CMOS Levels OD Open Drain. The corresponding ball has 2 operational states, active low and tristate, and allows multiple devices to share as a wire-OR. Rev. 1.3, 2007-05 07182006-DD60-22E6 8 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM FIGURE 1 Chip Configuration for ×8 components, PG-TFBGA-60 (top view) $ 9664 '46 9''4 '05'46 % '46 9664 '4 '4 9''4 & 9''4 '4 9''4 '4 9664 '4 ' '4 9664 '4 9''/ 95() 966 ( 966'/ &. 9'' &.( :( ) 5$6 &. 2'7 %$ %$ * &$6 &6 $$3 $ + $ $ $ $ - $ $ $ $ . $ $ $ 1& / 1& 1&$ 9'' 1&5'46 966 '4 9664 9''4 1& 966 9'' 9'' 966 0337 Notes 1. 2. 3. 4. RDQS / RDQS are enabled by EMRS(1) command. If RDQS / RDQS is enabled, the DM function is disabled When enabled, RDQS & RDQS are used as strobe signals during reads. VDDL and VSSDL are power and ground for the DLL. VDDL is connected to VDD on the device. VDD, VDDQ, VSSDL, VSS, and VSSQ are isolated on the device. 5. Ball position L8 is A13 for 512-Mbit and is Not Connected on 256-Mbit. Rev. 1.3, 2007-05 07182006-DD60-22E6 9 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 2.2 Chip Configuration for PG-TFBGA-84 The chip configuration of a DDR2 SDRAM is listed by function in Table 6. The abbreviations used in the Ball# columns are explained in Table 7 and Table 8 respectively. TABLE 9 Chip Configuration of DDR SDRAM Ball# Name Ball Type Buffer Type Function Clock Signal CK, CK Clock Signals ×16 Organization J8 CK I SSTL K8 CK I SSTL K2 CKE I SSTL Clock Enable Row Address Strobe (RAS), Column Address Strobe (CAS), Write Enable (WE) Control Signals ×16 Organization K7 RAS I SSTL L7 CAS I SSTL K3 WE I SSTL L8 CS I SSTL Chip Select Bank Address Bus 1:0 Address Signals ×16 Organization L2 BA0 I SSTL L3 BA1 I SSTL M8 A0 I SSTL M3 A1 I SSTL M7 A2 I SSTL N2 A3 I SSTL N8 A4 I SSTL N3 A5 I SSTL N7 A6 I SSTL P2 A7 I SSTL P8 A8 I SSTL P3 A9 I SSTL M2 A10 I SSTL AP I SSTL P7 A11 I SSTL R2 A12 I SSTL Rev. 1.3, 2007-05 07182006-DD60-22E6 Address Signal 12:0,Address Signal 10/Autoprecharge 10 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM Ball# Name Ball Type Buffer Type Function Data Signal 15:0 Note: Bi-directional data bus. DQ[15:0] for ×16 components Data Signals ×16 Organization G8 DQ0 I/O SSTL G2 DQ1 I/O SSTL H7 DQ2 I/O SSTL H3 DQ3 I/O SSTL H1 DQ4 I/O SSTL H9 DQ5 I/O SSTL F1 DQ6 I/O SSTL F9 DQ7 I/O SSTL C8 DQ8 I/O SSTL C2 DQ9 I/O SSTL D7 DQ10 I/O SSTL D3 DQ11 I/O SSTL D1 DQ12 I/O SSTL D9 DQ13 I/O SSTL B1 DQ14 I/O SSTL B9 DQ15 I/O SSTL Data Strobe ×16 Organization B7 UDQS I/O SSTL A8 UDQS I/O SSTL F7 LDQS I/O SSTL E8 LDQS I/O SSTL Data Strobe Upper Byte Data Strobe Lower Byte Data Mask ×16 Organization B3 UDM I SSTL Data Mask Upper Byte F3 LDM I SSTL Data Mask Lower Byte Power Supplies ×16 Organization VREF C1, C3, C7, C9, VDDQ AI – I/O Reference Voltage PWR – I/O Driver Power Supply VDDL A1, E1, J9, M9, VDD PWR – Power Supply PWR – Power Supply A7, A9, D2, D8, VSSQ E7, F2, F8, H2, H8 PWR – Power Supply PWR – Power Supply PWR – Power Supply – Not Connected J2 E9, G1, G3, G7, G9 J1 R1 J7 VSSDL A3, E3, J3, N1, VSS P9 Not Connected ×16 Organization A2, E2, L1, R3, NC R7, R8 Rev. 1.3, 2007-05 07182006-DD60-22E6 NC 11 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM Ball# Name Ball Type Buffer Type Function SSTL On-Die Termination Control Other Balls ×16 Organization K9 ODT I TABLE 10 Abbreviations for Ball Type Abbreviation Description I Standard input-only ball. Digital levels. O Output. Digital levels. I/O I/O is a bidirectional input/output signal. AI Input. Analog levels. PWR Power GND Ground NC Not Connected TABLE 11 Abbreviations for Buffer Type Abbreviation Description SSTL Serial Stub Terminated Logic (SSTL_18) LV-CMOS Low Voltage CMOS CMOS CMOS Levels OD Open Drain. The corresponding ball has 2 operational states, active low and tristate, and allows multiple devices to share as a wire-OR. Rev. 1.3, 2007-05 07182006-DD60-22E6 12 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM FIGURE 2 Ball Configuration for ×16 components, PG-TFBGA-84 (top view) $ 6664 8'46 6''4 8'0 % 8'46 6664 '4 '4 6''4 & 6''4 '4 6''4 '4 6664 '4 ' '4 6664 '4 6'' 1& 666 ( 6664 /'46 6''4 '4 6664 /'0 ) /'46 6664 '4 6''4 '4 6''4 * 6''4 '4 6''4 '4 6664 '4 + '4 6664 '4 6''/ 65() 666 - 966 '/ &. 6'' &.( :( . 5$6 &. 2'7 %$ %$ / &$6 &6 $ $3 $ 0 $ $ $ $ 1 $ $ $ $ 3 $ $ $ 1& 5 1& 1& 6'' .# 666 '4 6664 6''4 1& 666 6'' 6'' 666 0337 Notes 1. UDQS/UDQS is data strobe for DQ[15:8], LDQS/LDQS is data strobe for DQ[7:0] 2. LDM is the data mask signal for DQ[7:0], UDM is the data mask signal for DQ[15:8] 3. VDDL and VSSDL are power and ground for the DLL. VDDL is connected to VDD on the device. VDD, VDDQ, VSSDL, VSS, and VSSQ are isolated on the device. Rev. 1.3, 2007-05 07182006-DD60-22E6 13 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 2.3 256-Mbit DDR2 Addressing This chapter describes the 256-Mbit DDR2 addressing. TABLE 12 DDR2 Addressing for ×8 Organization Configuration 32Mb x 8 Bank Address BA[1:0] Number of Banks 4 Auto-Precharge A10 / AP Row Address A[12:0] Column Address A[9:0] Number of Column Address Bits 10 1) Number of I/Os 8 Page Size [Bytes] 1024 (1K) Note 2) 3) 1) Referred to as ’org’ 2) Referred to as ’colbits’ 3) PageSize = 2colbits × org/8 [Bytes] TABLE 13 DDR2 Addressing for ×16 Organization Configuration 16Mb x 16 Bank Address BA[1:0] Number of Banks 4 Auto-Precharge A10 / AP Row Address A[12:0] Column Address A[8:0] Number of Column Address Bits 9 Number of I/Os 16 Page Size [Bytes] 1024 (1K) 1) Referred to as ’org’ 2) Referred to as ’colbits’ 3) PageSize = 2colbits × org/8 [Bytes] Rev. 1.3, 2007-05 07182006-DD60-22E6 14 1) Note 2) 3) Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 3 Functional Description This chapter contains the functional description. %$ %$ %$ $ $ $ $ $ $ $ $ $ $ $ $ $ 3' :5 '// 70 &/ %7 %/ Z Z Z Z Z Z Z UHJDGGU $ 03%7 TABLE 14 Mode Register Definition (BA[2:0] = 000B) Field Bits Type1) Description BA2 16 reg. addr. Bank Address [2] Note: BA2 not available on 256 Mbit and 512 Mbit components BA1 15 Bank Address [1] BA1 Bank Address 0B BA0 14 Bank Address [0] 0B BA0 Bank Address A13 13 Address Bus[13] Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration PD 12 w Active Power-Down Mode Select 0B PD Fast exit 1B PD Slow exit WR [11:9] w Write Recovery2) Note: All other bit combinations are illegal. 0B 0B 001B 010B 011B 100B 101B BA2 Bank Address A13 Address bit 13 WR 2 WR 3 WR 4 WR 5 WR 6 DLL 8 w DLL Reset 0B DLL No 1B DLL Yes TM 7 w Test Mode 0B TM Normal Mode 1B TM Vendor specific test mode Rev. 1.3, 2007-05 07182006-DD60-22E6 15 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM Field Bits Type1) Description CL [6:4] w CAS Latency Note: All other bit combinations are illegal. 011B 100B 101B 110B 111B CL 3 CL 4 CL 5 CL 6 CL 7 BT 3 w Burst Type 0B BT Sequential BT Interleaved 1B BL [2:0] w Burst Length Note: All other bit combinations are illegal. 010B BL 4 011B BL 8 1) w = write only register bits 2) Number of clock cycles for write recovery during auto-precharge. WR in clock cycles is calculated by dividing tWR (in ns) by tCK (in ns) and rounding up to the next integer: WR [cycles] ≥ tWR (ns) / tCK (ns). The mode register must be programmed to fulfill the minimum requirement for the analogue tWR timing WRMIN is determined by tCK.MAX and WRMAX is determined by tCK.MIN. %$ %$ %$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ 6 '46 4RII 5'4 2&' 3URJUDP 5WW $/ 5WW ',& '// Z Z Z Z Z Z Z UHJ D GGU Z 03%7 TABLE 15 Extended Mode Register Definition (BA[2:0] = 001B) Field Bits Type1) Description BA2 16 reg. addr. Bank Address [2] Note: BA2 not available on 256 Mbit and 512 Mbit components 0B BA2 Bank Address BA1 15 Bank Address [1] 0B BA1 Bank Address BA0 14 Bank Address [0] 1B BA0 Bank Address A13 13 w Address Bus [13] Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration 0B A13 Address bit 13 Qoff 12 w Output Disable 0B QOff Output buffers enabled 1B QOff Output buffers disabled RDQS 11 w Read Data Strobe Output (RDQS, RDQS) RDQS Disable 0B 1B RDQS Enable Rev. 1.3, 2007-05 07182006-DD60-22E6 16 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM Field Bits Type1) Description DQS 10 w Complement Data Strobe (DQS Output) 0B DQS Enable DQS Disable 1B OCD [9:7] Program w Off-Chip Driver Calibration Program 000B OCD OCD calibration mode exit, maintain setting 001B OCD Drive (1) 010B OCD Drive (0) 100B OCD Adjust mode 111B OCD OCD calibration default AL w Additive Latency Note: All other bit combinations are illegal. [5:3] 000B 001B 010B 011B 100B 101B RTT 6,2 w AL 0 AL 1 AL 2 AL 3 AL 4 AL 5 Nominal Termination Resistance of ODT Note: See Table 26 “ODT DC Electrical Characteristics” on Page 24 00B 01B 10B 11B RTT ∞ (ODT disabled) RTT 75 Ohm RTT 150 Ohm RTT 50 Ohm DIC 1 w Off-chip Driver Impedance Control DIC Full (Driver Size = 100%) 0B 1B DIC Reduced DLL 0 w DLL Enable 0B DLL Enable 1B DLL Disable 1) w = write only register bits Rev. 1.3, 2007-05 07182006-DD60-22E6 17 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM %$ %$ %$ $ $ $ $ $ $ $ $ 65) $ $ $ $ '&& UHJDGGU $ $ 3$65 03%7 TABLE 16 EMRS(2) Programming Extended Mode Register Definition (BA[2:0]=010B) Field Bits Type1) Description BA [15:14] w Bank Adress 00B BA MRS 01B BA EMRS(1) 10B BA EMRS(2) 11B BA EMRS(3): Reserved SRF 7 w Address Bus, High Temperature Self Refresh Rate for TCASE > 85°C 0B A7 disable 1B A7 enable 2) A [6:4] w Address Bus 000B A Address bits DCC 3 w Address Bus, Duty Cycle Correction (DCC) 0B A3 DCC disabled 1B A3 DCC enabled Partial Self Refresh for 4 banks PASR [2:0] w Address Bus, Partial Array Self Refresh for 4 Banks3) Note: Only for 256 Mbit and 512 Mbit components 000B 001B 010B 011B 100B 101B 110B 111B PASR0 Full Array PASR1 Half Array (BA[1:0]=00, 01) PASR2 Quarter Array (BA[1:0]=00) PASR3 Not defined PASR4 3/4 array (BA[1:0]=01, 10, 11) PASR5 Half array (BA[1:0]=10, 11) PASR6 Quarter array (BA[1:0]=11) PASR7 Not defined 1) w = write only 2) When DRAM is operated at 85 °C ≤ TCase ≤ 95 °C the extended self refresh rate must be enabled by setting bit A7 to "1" before the self refresh mode can be entered. 3) If PASR (Partial Array Self Refresh) is enabled, data located in areas of the array beyond the specified location will be lost if self refresh is entered. Data integrity will be maintained if tREF conditions are met and no Self Refresh command is issued Rev. 1.3, 2007-05 07182006-DD60-22E6 18 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM %$ %$ %$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ UHJD GG U 03%7 TABLE 17 EMR(3) Programming Extended Mode Register Definition(BA[2:0]=011B) Field Bits Type1) Description BA2 16 reg.addr Bank Address[2] Note: BA2 is not available on 256Mbit and 512Mbit components 0B BA2 Bank Address BA1 15 Bank Adress[1] 1B BA1 Bank Address BA0 14 Bank Adress[0] BA0 Bank Address 1B A [13:0] w Address Bus[13:0] Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration 00000000000000BA[13:0] Address bits 1) w = write only TABLE 18 ODT Truth Table Input Pin EMRS(1) Address Bit A10 EMRS(1) Address Bit A11 ×8 Components DQ[7:0] X DQS X DQS 0 X RDQS X 1 RDQS 0 1 DM X 0 ×16 Components DQ[7:0] X DQ[15:8] X LDQS X LDQS 0 UDQS X UDQS 0 LDM X UDM X X X Note: X = don’t care; 0 = bit set to low; 1 = bit set to high Rev. 1.3, 2007-05 07182006-DD60-22E6 19 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM TABLE 19 Burst Length and Sequence Burst Length Starting Address (A2 A1 A0) Sequential Addressing (decimal) 4 ×00 0, 1, 2, 3 0, 1, 2, 3 ×01 1, 2, 3, 0 1, 0, 3, 2 ×1 0 2, 3, 0, 1 2, 3, 0, 1 ×1 1 3, 0, 1, 2 3, 2, 1, 0 000 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, 3, 4, 5, 6, 7 001 1, 2, 3, 0, 5, 6, 7, 4 1, 0, 3, 2, 5, 4, 7, 6 010 2, 3, 0, 1, 6, 7, 4, 5 2, 3, 0, 1, 6, 7, 4, 5 011 3, 0, 1, 2, 7, 4, 5, 6 3, 2, 1, 0, 7, 6, 5, 4 100 4, 5, 6, 7, 0, 1, 2, 3 4, 5, 6, 7, 0, 1, 2, 3 101 5, 6, 7, 4, 1, 2, 3, 0 5, 4, 7, 6, 1, 0, 3, 2 8 Rev. 1.3, 2007-05 07182006-DD60-22E6 Interleave Addressing (decimal) 110 6, 7, 4, 5, 2, 3, 0, 1 6, 7, 4, 5, 2, 3, 0, 1 111 7, 4, 5, 6, 3, 0, 1, 2 7, 6, 5, 4, 3, 2, 1, 0 20 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 4 Truth Tables The truth tables in this chapter summarize the commands and there signal coding to control a standard Double-Data-Rate-Two SDRAM. TABLE 20 Command Truth Table Function CKE CS RAS CAS WE BA0 BA1 A[12:11] A10 A[9:0] Note1)2)3) Previous Cycle Current Cycle (Extended) Mode Register Set H H L L L L BA OP Code Auto-Refresh H H L L L H X X X X 4) Self-Refresh Entry H L L L L H X X X X 4)6) Self-Refresh Exit L H H X X X X X X X 4)6)7) L H H H 4)5) Single Bank Precharge H H L L H L BA X L X 4)5) Precharge all Banks H H L L H L X X H X 4) Bank Activate H H L L H H BA Row Address Write H H L H L L BA Column L Column 4)5)8) Write with AutoPrecharge H H L H L L BA Column H Column 4)5)8) Read H H L H L H BA Column L Column 4)5)8) Read with AutoPrecharge H H L H L H BA Column H Column 4)5)8) No Operation H X L H H H X X X X 4) Device Deselect H X H X X X X X X X 4) Power Down Entry H L H X X X X X X X 4)9) L H H H Power Down Exit L H H X X X X X X X 4)9) L H H H 4)5) 1) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh. 2) “X” means “H or L (but a defined logic level)”. 3) Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 4) All DDR2 SDRAM commands are defined by states of CS, WE, RAS, CAS, and CKE at the rising edge of the clock. 5) Bank addresses BA[1:0] determine which bank is to be operated upon. For (E)MRS BA[1:0] selects an (Extended) Mode Register. 6) VREF must be maintained during Self Refresh operation. 7) Self Refresh Exit is asynchronous. 8) Burst reads or writes at BL = 4 cannot be terminated. 9) The Power Down Mode does not perform any refresh operations. The duration of Power Down is therefore limited by the refresh requirements. Rev. 1.3, 2007-05 07182006-DD60-22E6 21 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM TABLE 21 Clock Enable (CKE) Truth Table for Synchronous Transitions Current State1) CKE Command (N)2) 3) RAS, CAS, WE Action (N)2) Note4)5) Previous Cycle6) (N-1) Current Cycle6) (N) L L X Maintain Power-Down 7)8)11) L H DESELECT or NOP Power-Down Exit 7)9)10)11) L L X Maintain Self Refresh 8)11)12) L H DESELECT or NOP Self Refresh Exit 9)11)12)13)14) Bank(s) Active H L DESELECT or NOP Active Power-Down Entry 7)9)10)11)15) All Banks Idle H L DESELECT or NOP Precharge Power-Down Entry 9)10)11)15) H L AUTOREFRESH Self Refresh Entry 7)11)14)16) H H Refer to the Command Truth Table Power-Down Self Refresh Any State other than listed above 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 17) Current state is the state of the DDR2 SDRAM immediately prior to clock edge N. Command (N) is the command registered at clock edge N, and Action (N) is a result of Command (N) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh. CKE must be maintained HIGH while the device is in OCD calibration mode. Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. CKE (N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge. The Power-Down Mode does not perform any refresh operations. The duration of Power-Down Mode is therefor limited by the refresh requirements “X” means “don’t care (including floating around VREF)” in Self Refresh and Power Down. However ODT must be driven HIGH or LOW in Power Down if the ODT function is enabled (Bit A2 or A6 set to “1” in EMRS(1)). All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document. Valid commands for Power-Down Entry and Exit are NOP and DESELECT only. tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of tIS + 2 × tCK + tIH. VREF must be maintained during Self Refresh operation. On Self Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the tXSNR period. Read commands may be issued only after tXSRD (200 clocks) is satisfied. Valid commands for Self Refresh Exit are NOP and DESELCT only. Power-Down and Self Refresh can not be entered while Read or Write operations, (Extended) mode Register operations, Precharge or Refresh operations are in progress. Self Refresh mode can only be entered from the All Banks Idle state. Must be a legal command as defined in the Command Truth Table. TABLE 22 Data Mask (DM) Truth Table Name (Function) DM DQs Note Write Enable L Valid 1) Write Inhibit H X 1) 1) Used to mask write data; provided coincident with the corresponding data. Rev. 1.3, 2007-05 07182006-DD60-22E6 22 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 5 Electrical Characteristics This chapter describes the electrical characteristics. 5.1 Absolute Maximum Ratings Caution is needed not to exceed absolute maximum ratings of the DRAM device listed in Table 23 at any time. TABLE 23 Absolute Maximum Ratings Symbol VDD VDDQ VDDL VIN, VOUT TSTG Parameter Rating Unit Note Min. Max. Voltage on VDD pin relative to VSS –1.0 +2.3 V 1) Voltage on VDDQ pin relative to VSS –0.5 +2.3 V 1)2) Voltage on VDDL pin relative to VSS –0.5 +2.3 V 1)2) Voltage on any pin relative to VSS –0.5 +2.3 V 1) °C 1)2) Storage Temperature –55 +100 1) When VDD and VDDQ and VDDL are less than 500 mV; VREF may be equal to or less than 300 mV. 2) Storage Temperature is the case surface temperature on the center/top side of the DRAM. Attention: Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. TABLE 24 DRAM Component Operating Temperature Range Symbol TOPER Parameter Rating Operating Temperature Min. Max. 0 95 Unit Note °C 1)2)3)4) 1) Operating Temperature is the case surface temperature on the center / top side of the DRAM. 2) The operating temperature range are the temperatures where all DRAM specification will be supported. During operation, the DRAM case temperature must be maintained between 0 - 95 °C under all other specification parameters. 3) Above 85 °C the Auto-Refresh command interval has to be reduced to tREFI= 3.9 µs 4) When operating this product in the 85 °C to 95 °C TCASE temperature range, the High Temperature Self Refresh has to be enabled by setting EMR(2) bit A7 to “1”. When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50% Rev. 1.3, 2007-05 07182006-DD60-22E6 23 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 5.2 DC Characteristics TABLE 25 Recommended DC Operating Conditions (SSTL_18) Symbol VDD VDDDL VDDQ VREF VTT 1) 2) 3) 4) Parameter Rating Unit Note Min. Typ. Max. Supply Voltage 1.7 1.8 1.9 V 1) Supply Voltage for DLL 1.7 1.8 1.9 V 1) Supply Voltage for Output 1.7 1.8 1.9 V 1) Input Reference Voltage 0.49 × VDDQ 0.5 × VDDQ 0.51 × VDDQ V 2)3) 4) Termination Voltage VREF – 0.04 VREF VREF + 0.04 V VDDQ tracks with VDD, VDDDL tracks with VDD. AC parameters are measured with VDD, VDDQ and VDDDL tied together. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is expected to be about 0.5 × VDDQ of the transmitting device and VREF is expected to track variations in VDDQ. Peak to peak ac noise on VREF may not exceed ± 2% VREF (dc) VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF, and must track variations in die dc level of VREF. TABLE 26 ODT DC Electrical Characteristics Parameter / Condition Symbol Min. Nom. Max. Unit Note Termination resistor impedance value for EMRS(1)[A6,A2] = [0,1]; 75 Ohm Rtt1(eff) 60 75 90 Ω 1) Termination resistor impedance value for EMRS(1)[A6,A2] =[1,0]; 150 Ohm Rtt2(eff) 120 150 180 Ω 1) Termination resistor impedance value for EMRS(1)(A6,A2)=[1,1]; 50 Ohm Rtt3(eff) 40 50 60 Ω 1) Deviation of VM with respect to VDDQ / 2 delta VM –6.00 — + 6.00 % 2) 1) Measurement Definition for Rtt(eff): Apply VIH(ac) and VIL(ac) to test pin separately, then measure current I(VIHac) and I(VILac) respectively. Rtt(eff) = (VIH(ac) – VIL(ac)) /(I(VIHac) – I(VILac)). 2) Measurement Definition for VM: Turn ODT on and measure voltage (VM) at test pin (midpoint) with no load: delta VM = ((2 x VM / VDDQ) – 1) x 100% TABLE 27 Input and Output Leakage Currents Symbol Parameter / Condition Min. Max. Unit Note IIL IOL Input Leakage Current; any input 0 V < VIN < VDD –2 +2 µA 1) Output Leakage Current; 0 V < VOUT < VDDQ –5 +5 µA 2) 1) All other pins not under test = 0 V 2) DQ’s, LDQS, LDQS, UDQS, UDQS, DQS, DQS, RDQS, RDQS are disabled and ODT is turned off Rev. 1.3, 2007-05 07182006-DD60-22E6 24 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 5.3 DC & AC Characteristics DDR2 SDRAM pin timing are specified for either single ended or differential mode depending on the setting of the EMRS(1) “Enable DQS” mode bit; timing advantages of differential mode are realized in system design. The method by which the DDR2 SDRAM pin timing are measured is mode dependent. In single ended mode, timing relationships are measured relative to the rising or falling edges of DQS crossing at VREF. In differential mode, these timing relationships are measured relative to the crosspoint of DQS and its complement, DQS. This distinction in timing methods is verified by design and characterization but not subject to production test. In single ended mode, the DQS (and RDQS) signals are internally disabled and don’t care. TABLE 28 DC & AC Logic Input Levels for DDR2-667 and DDR2-800 Symbol VIH(dc) VIL(dc) VIH(ac) VIL(ac) Parameter DDR2-667, DDR2-800 Units Min. Max. DC input logic high VREF + 0.125 DC input low –0.3 VDDQ + 0.3 VREF – 0.125 V AC input logic high VREF + 0.200 — V AC input low — VREF – 0.200 V V TABLE 29 DC & AC Logic Input Levels for DDR2-533 and DDR2-400 Symbol VIH(dc) VIL(dc) VIH(ac) VIL(ac) Parameter DDR2-533, DDR2-400 Units Min. Max. VREF + 0.125 V DC input low –0.3 VDDQ + 0.3 VREF - 0.125 AC input logic high VREF + 0.250 — V AC input low — VREF - 0.250 V DC input logic high V TABLE 30 Single-ended AC Input Test Conditions Symbol Condition Value Unit Note VREF VSWING.MAX Input reference voltage 0.5 x VDDQ V 1) Input signal maximum peak to peak swing 1.0 V 1) SLEW Input signal minimum Slew Rate 1.0 V / ns 2)3) 1) Input waveform timing is referenced to the input signal crossing through the VREF level applied to the device under test. 2) The input signal minimum Slew Rate is to be maintained over the range from VIH(ac).MIN to VREF for rising edges and the range from VREF to VIL(ac).MAX for falling edges as shown in Figure 3 3) AC timings are referenced with input waveforms switching from VIL(ac) to VIH(ac) on the positive transitions and VIH(ac) to VIL(ac) on the negative transitions. Rev. 1.3, 2007-05 07182006-DD60-22E6 25 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM FIGURE 3 Single-ended AC Input Test Conditions Diagram 9''4 9,+DFPLQ 9,+GFPLQ 96:,1*0$; 95() 9,/GFPD[ 9,/DFPD[ 966 'HOWD7) )DOOLQJ6OHZ 'HOWD75 95()9,/DFPD[ 5LVLQJ6OHZ 'HOWD7) 9,+DFPLQ95() 'HOWD75 03(7 TABLE 31 Differential DC and AC Input and Output Logic Levels Symbol Parameter Min. Max. Unit Note VIN(dc) VID(dc) VID(ac) VIX(ac) VOX(ac) DC input signal voltage –0.3 — 1) DC differential input voltage 0.25 — 2) AC differential input voltage 0.5 V 3) AC differential cross point input voltage 0.5 × VDDQ – 0.175 V 4) AC differential cross point output voltage 0.5 × VDDQ – 0.125 VDDQ + 0.3 VDDQ + 0.6 VDDQ + 0.6 0.5 × VDDQ + 0.175 0.5 × VDDQ + 0.125 V 5) 1) 2) 3) 4) VIN(dc) specifies the allowable DC execution of each input of differential pair such as CK, CK, DQS, DQS etc. VID(dc) specifies the input differential voltage VTR– VCP required for switching. The minimum value is equal to VIH(dc) – VIL(dc). VID(ac) specifies the input differential voltage VTR – VCP required for switching. The minimum value is equal to VIH(ac) – VIL(ac). The value of VIX(ac) is expected to equal 0.5 × VDDQ of the transmitting device and VIX(ac) is expected to track variations in VDDQ. VIX(ac) indicates the voltage at which differential input signals must cross. 5) The value of VOX(ac) is expected to equal 0.5 × VDDQ of the transmitting device and VOX(ac) is expected to track variations in VDDQ. VOX(ac) indicates the voltage at which differential input signals must cross. Rev. 1.3, 2007-05 07182006-DD60-22E6 26 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM FIGURE 4 Differential DC and AC Input and Output Logic Levels Diagram 9'' 4 975 &URVVLQJ3RLQW 9,' 9&3 9,;RU9 2; 9664 5.4 Output Buffer Characteristics This chapter describes the Output Buffer Characteristics. TABLE 32 SSTL_18 Output DC Current Drive Symbol IOH IOL Parameter SSTL_18 Output Minimum Source DC Current –13.4 Unit Note mA 1)2) 2)3) Output Minimum Sink DC Current 13.4 mA 1) VDDQ = 1.7 V; VOUT = 1.42 V. (VOUT–VDDQ) / IOH must be less than 21 Ohm for values of VOUT between VDDQ and VDDQ – 280 mV. 2) The values of IOH(dc) and IOL(dc) are based on the conditions given in 1) and 3). They are used to test drive current capability to ensure VIH.MIN. plus a noise margin and VIL.MAX minus a noise margin are delivered to an SSTL_18 receiver. The actual current values are derived by shifting the desired driver operating points along 21 Ohm load line to define a convenient current for measurement. 3) VDDQ = 1.7 V; VOUT = 280 mV. VOUT / IOL must be less than 21 Ohm for values of VOUT between 0 V and 280 mV. TABLE 33 SSTL_18 Output AC Test Conditions Symbol Parameter SSTL_18 Unit Note VOH VOL VOTR Minimum Required Output Pull-up VTT + 0.603 VTT – 0.603 0.5 × VDDQ V 1) V 1) Maximum Required Output Pull-down Output Timing Measurement Reference Level V 1) SSTL_18 test load for VOH and VOL is different from the referenced load. The SSTL_18 test load has a 20 Ohm series resistor additionally to the 25 Ohm termination resistor into VTT. The SSTL_18 definition assumes that ± 335 mV must be developed across the effectively 25 Ohm termination resistor (13.4 mA × 25 Ohm = 335 mV). With an additional series resistor of 20 Ohm this translates into a minimum requirement of 603 mV swing relative to VTT, at the ouput device (13.4 mA × 45 Ohm = 603 mV). Rev. 1.3, 2007-05 07182006-DD60-22E6 27 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM TABLE 34 OCD Default Characteristics Symbol Description Min. — Output Impedance See Chapter 5.5 — Pull-up / Pull down mismatch 0 — — Output Impedance step size for OCD calibration 0 1.5 SOUT Output Slew Rate 1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V Nominal Max. Unit Note Ω 1)2) 4 Ω 1)2)3) — 1.5 Ω 4) — 5.0 V / ns 1)5)6)7) 2) Impedance measurement condition for output source dc current: VDDQ = 1.7 V, VOUT = 1420 mV; (VOUT–VDDQ) / IOH must be less than 23.4 Ohm for values of VOUT between VDDQ and VDDQ – 280 mV. Impedance measurement condition for output sink dc current: VDDQ = 1.7 V; VOUT = –280 mV; VOUT / IOL must be less than 23.4 Ohms for values of VOUT between 0 V and 280 mV. 3) Mismatch is absolute value between pull-up and pull-down, both measured at same temperature and voltage. 4) This represents the step size when the OCD is near 18 ohms at nominal conditions across all process parameters and represents only the DRAM uncertainty. A 0 Ohm value (no calibration) can only be achieved if the OCD impedance is 18 ± 0.75 Ohms under nominal conditions. 5) The absolute value of the Slew Rate as measured from DC to DC is equal to or greater than the Slew Rate as measured from AC to AC. This is verified by design and characterization but not subject to production test. 6) Timing skew due to DRAM output Slew Rate mis-match between DQS / DQS and associated DQ’s is included in tDQSQ and tQHS specification. 7) DRAM output Slew Rate specification applies to 400, 533 and 667 MT/s speed bins. Rev. 1.3, 2007-05 07182006-DD60-22E6 28 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 5.5 Input / Output Capacitance This chapter contains the input / output capacitance. TABLE 35 Input / Output Capacitance for DDR2-800 Symbol Parameter DDR2-800 Min. Max. Unit 2.0 0.25 1.75 pF pF pF CCK Input capacitance, CK and CK 1.0 CDCK Input capacitance delta, CK and CK — CI Input capacitance, all other input-only pins 1.0 CDI Input capacitance delta, all other input-only pins — CIO Input/output capacitance, DQ, DM, DQS, DQS, RDQS, RDQS 2.5 0.25 3.5 CDIO Input/output capacitance delta, DQ, DM, DQS, DQS, RDQS, RDQS — 0.5 pF pF pF TABLE 36 Input / Output Capacitance for DDR2-667 Symbol Parameter DDR2-667 Min. Max. Unit 2.0 0.25 2.0 pF pF pF CCK Input capacitance, CK and CK 1.0 CDCK Input capacitance delta, CK and CK — CI Input capacitance, all other input-only pins 1.0 CDI Input capacitance delta, all other input-only pins — CIO Input/output capacitance, DQ, DM, DQS, DQS, RDQS, RDQS 2.5 0.25 3.5 CDIO Input/output capacitance delta, DQ, DM, DQS, DQS, RDQS, RDQS — 0.5 Rev. 1.3, 2007-05 07182006-DD60-22E6 29 pF pF pF Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM TABLE 37 Input / Output Capacitance for DDR2-533 Symbol Parameter DDR2-533 Min. Max. Unit 2.0 0.25 2.0 pF pF pF CCK Input capacitance, CK and CK 1.0 CDCK Input capacitance delta, CK and CK — CI Input capacitance, all other input-only pins 1.0 CDI Input capacitance delta, all other input-only pins — CIO Input/output capacitance, DQ, DM, DQS, DQS, RDQS, RDQS 2.5 0.25 4.0 CDIO Input/output capacitance delta, DQ, DM, DQS, DQS, RDQS, RDQS — 0.5 pF pF pF TABLE 38 Input / Output Capacitance for DDR2-400 Symbol Parameter DDR2-400 Min. Max. Unit 2.0 0.25 2.0 pF pF pF CCK Input capacitance, CK and CK 1.0 CDCK Input capacitance delta, CK and CK — CI Input capacitance, all other input-only pins 1.0 CDI Input capacitance delta, all other input-only pins — CIO Input/output capacitance, DQ, DM, DQS, DQS, RDQS, RDQS 2.5 0.25 4.0 CDIO Input/output capacitance delta, DQ, DM, DQS, DQS, RDQS, RDQS — 0.5 Rev. 1.3, 2007-05 07182006-DD60-22E6 30 pF pF pF Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 6 Specifications and Conditions This chapter describes the Current Measurement, Specifications and Conditions. TABLE 39 IDD Specification Parameters and Test Conditions Parameter Symbol Note Operating Current - One bank Active - Precharge tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are switching; Databus inputs are switching. IDD0 1)2)3)4)5)6) Operating Current - One bank Active - Read - Precharge IOUT = 0 mA, BL = 4, tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), tRCD = tRCD(IDD), AL = 0, CL = CL(IDD); CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are switching; Databus inputs are switching. IDD1 1)2)3)4)5)6) Precharge Power-Down Current IDD2P All banks idle; CKE is LOW; tCK = tCK(IDD);Other control and address inputs are stable; Data bus inputs are floating. 1)2)3)4)5)6) Precharge Standby Current IDD2N All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are switching, Data bus inputs are switching. 1)2)3)4)5)6) Precharge Quiet Standby Current IDD2Q All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are stable, Data bus inputs are floating. 1)2)3)4)5)6) Active Power-Down Current All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable; Data bus inputs are floating. MRS A12 bit is set to “0” (Fast Power-down Exit). IDD3P(0) 1)2)3)4)5)6) Active Power-Down Current All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable, Data bus inputs are floating. MRS A12 bit is set to 1 (Slow Power-down Exit); IDD3P(1) 1)2)3)4)5)6) Active Standby Current IDD3N All banks open; tCK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are switching; Data Bus inputs are switching; 1)2)3)4)5)6) Operating Current IDD4R Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS = tRAS.MAX.(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are switching; Data Bus inputs are switching; IOUT = 0 mA. 1)2)3)4)5)6) Operating Current IDD4W Burst Write: All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are switching; Data Bus inputs are switching; 1)2)3)4)5)6) Burst Refresh Current IDD5B tCK = tCK(IDD), Refresh command every tRFC = tRFC(IDD) interval, CKE is HIGH, CS is HIGH between valid commands, Other control and address inputs are switching, Data bus inputs are switching. 1)2)3)4)5)6) Distributed Refresh Current IDD5D tCK = tCK(IDD), Refresh command every tREFI = 7.8 µs interval, CKE is LOW and CS is HIGH between valid commands, Other control and address inputs are switching, Data bus inputs are switching. 1)2)3)4)5)6) Rev. 1.3, 2007-05 07182006-DD60-22E6 31 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM Parameter Symbol IDD6 Self-Refresh Current CKE ≤ 0.2 V; external clock off, CK and CK at 0 V; Other control and address inputs are floating, Data bus inputs are floating. Operating Bank Interleave Read Current IDD7 All banks interleaving reads, IOUT = 0 mA; BL = 4, CL = CL(IDD), AL = tRCD(IDD) -1 × tCK(IDD); tCK = tCK(IDD), tRC = tRC(IDD), tRRD = tRRD(IDD); CKE is HIGH, CS is HIGH between valid commands. Address bus inputs are stable during deselects; Data pattern is same as IDD4R; Refer to the following pages for detailed timing conditions 1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V 2) IDD specifications are tested after the device is properly initialized. 3) IDD parameter are specified with ODT disabled. 4) 5) 6) 7) Note 1)2)3)4)5)6) 1)2)3)4)5)6)7) Data Bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS and UDQS. For IDD definition see Table 40 Timing parameter minimum and maximum values for IDD current measurements are defined in Chapter 7. A - Activate, RA - Read with Auto-Precharge, D - Deselect TABLE 40 Definition for IDD Parameter Description LOW Defined as VIN ≤ VIL(AC).MAX HIGH Defined as VIN ≥ VIH(AC).MIN STABLE Defined as inputs are stable at a HIGH or LOW level FLOATING Defined as inputs are VREF = VDDQ / 2 SWITCHING Defined as: Inputs are changing between high and low every other clock (once per two clocks) for address and control signals, and inputs changing between high and low every other clock (once per clock) for DQ signals not including mask or strobes Detailed IDD7 The detailed timings are shown below for IDD7. Changes will be required if timing parameter changes are made to the specification. Legend: A - Active; RA - Read with Autoprecharge; D - Deselect IDD7: Operating Current: All Bank Interleave Read operation All banks are being interleaved at minimum tRC(IDD) without violating tRRD(IDD) and ttFAW(IDD) using a burst length of 4. Control and address bus inputs are STABLE during Deselect. IOUT = 0 mA Timing Patterns for 4 bank devices with 1 KB or 2 KB page size -DDR2-400 4-4-4: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D D D -DDR2-400 3-3-3: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D -DDR2-533 4-4-4: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D D -DDR2-533 3-3-3: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D -DDR2-667 5-5-5: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D -DDR2-667 4-4-4: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D -DDR2-800 6-6-6: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D D D D D -DDR2-800 5-5-5: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D D D D Rev. 1.3, 2007-05 07182006-DD60-22E6 32 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM -DDR2-800 4-4-4: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D D D -DDR2-1066 7-7-7: A0 RA0 D D D D A1 RA1 D D D D A2 RA2 D D D D A3 RA3 D D D D D D D D D D D -DDR2-1066 6-6-6: A0 RA0 D D D D A1 RA1 D D D D A2 RA2 D D D D A3 RA3 D D D D D D D D D D TABLE 41 IDDSpecification Symbol IDD0 IDD1 IDD2P IDD2N IDD2Q IDD3P IDD3N IDD4R IDD4W IDD5B IDD5D IDD6 IDD7 –2.5 –3 –3S –3.7 –5 DDR2-800E DDR2-667C DDR2-667D DDR2-533C DDR2-400B 100 95 90 80 75 mA 115 105 100 90 83 mA 7 7 7 7 7 mA 51 45 45 38 34 mA 45 40 40 35 32 mA 39 33 33 28 24 mA 1) 9 9 9 9 9 mA 2) 60 50 50 43 39 mA 180 155 155 130 115 mA 200 170 170 145 130 mA 145 140 140 130 125 mA 9 9 9 9 9 mA 3) 7 7 7 7 7 mA 3) 255 252 240 230 220 mA 1) MRS(12)=0 2) MRS(12)=1 3) 0° ≤ TCASE ≤ 85°C. Rev. 1.3, 2007-05 07182006-DD60-22E6 33 Unit Note Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 7 Timing Characteristics This chapter contains speed grade definition, AC timing parameter and ODT tables. 7.1 Speed Grade Definitions All Speed grades faster than DDR2-400B comply with DDR2-400B timing specifications (tCK = 5ns with tRAS = 40ns). TABLE 42 Speed Grade Definition Speed Bins for DDR2–800E Speed Grade DDR2–800E QAG Sort Name –2.5 CAS-RCD-RP latencies 6–6–6 Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 @ CL = 6 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Unit Note tCK Symbol Min. Max. — tCK tCK tCK tCK tRAS tRC tRCD tRP 5 8 ns 1)2)3)4) 3.75 8 ns 1)2)3)4) 3 8 ns 1)2)3)4) 2.5 8 ns 1)2)3)4) 45 70000 ns 1)2)3)4)5) 60 — ns 1)2)3)4) 15 — ns 1)2)3)4) 15 — ns 1)2)3)4) 1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements”. 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS, RDQS / RDQS is defined. 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI. Rev. 1.3, 2007-05 07182006-DD60-22E6 34 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM TABLE 43 Speed Grade Definition Speed Bins for DDR2–667 Speed Grade DDR2–667C DDR2–667D QAG Sort Name –3 –3S CAS-RCD-RP latencies 4–4–4 5–5–5 Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Unit Note tCK Symbol Min. Max. Min. Max. — tCK tCK tCK tRAS tRC tRCD tRP 5 8 5 8 ns 1)2)3)4) 3 8 3.75 8 ns 1)2)3)4) 3 8 3 8 ns 1)2)3)4) 45 70000 45 70000 ns 1)2)3)4)5) 57 — 60 — ns 1)2)3)4) 12 — 15 — ns 1)2)3)4) 12 — 15 — ns 1)2)3)4) 1) imings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements”. 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS, RDQS / RDQS is defined. 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI. TABLE 44 Speed Grade Definition Speed Bins for DDR2–533C Speed Grade DDR2–533C QAG Sort Name –3.7 CAS-RCD-RP latencies 4–4–4 Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Unit Note tCK Symbol Min. Max. — tCK tCK tCK tRAS tRC tRCD tRP 5 8 ns 1)2)3)4) 3.75 8 ns 1)2)3)4) 3.75 8 ns 1)2)3)4) 45 70000 ns 1)2)3)4)5) 60 — ns 1)2)3)4) 15 — ns 1)2)3)4) 15 — ns 1)2)3)4) 1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements”. 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS, RDQS / RDQS is defined. Rev. 1.3, 2007-05 07182006-DD60-22E6 35 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI. TABLE 45 Speed Grade Definition Speed Bins for DDR2-400B Speed Grade DDR2–400B QAG Sort Name –5 CAS-RCD-RP latencies 3–3–3 Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Unit Note tCK Symbol Min. Max. — tCK tCK tCK tRAS tRC tRCD tRP 5 8 ns 1)2)3)4) 5 8 ns 1)2)3)4) 5 8 ns 1)2)3)4) 40 70000 ns 1)2)3)4)5) 55 — ns 1)2)3)4) 15 — ns 1)2)3)4) 15 — ns 1)2)3)4) 1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. For other Slew Rates see Chapter 8.Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements” according to Chapter 8.1 only. 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS, RDQS / RDQS is defined in Chapter 8.3. 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. See section 8 for the reference load for timing measurements. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI. Rev. 1.3, 2007-05 07182006-DD60-22E6 36 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 7.2 Component AC Timing Parameters List of Timing Parameters Tables. TABLE 46 DRAM Component Timing Parameter by Speed Grade - DDR2–800 Parameter Symbol DDR2–800 Unit Note1)2)3)4)5)6)7) 8) Min. Max. tAC tCCD tCH.AVG tCK.AVG tCKE –400 +400 ps 2 — 0.48 0.52 nCK tCK.AVG 2500 8000 ps 9)10) 3 — nCK 11) tCL.AVG Auto-Precharge write recovery + precharge time tDAL Minimum time clocks remain ON after CKE tDELAY 0.48 0.52 9)10) WR + tnRP — tCK.AVG nCK tIS + tCK .AVG + tIH — ns tDH.BASE DQ and DM input pulse width for each input tDIPW DQS output access time from CK / CK tDQSCK DQS input high pulse width tDQSH DQS input low pulse width tDQSL DQS-DQ skew for DQS & associated DQ signals tDQSQ DQS latching rising transition to associated clock tDQSS 125 — ps 0.35 — tCK.AVG –350 +350 ps 0.35 — 0.35 — tCK.AVG tCK.AVG — 200 ps 15) 16) DQ output access time from CK / CK CAS to CAS command delay Average clock high pulse width Average clock period CKE minimum pulse width ( high and low pulse width) Average clock low pulse width asynchronously drops LOW DQ and DM input hold time 9)10) 12)13) 18)19)14) 8) – 0.25 + 0.25 tCK.AVG tDS.BASE tDSH tDSS tHP 50 –– ps 17)18)19) 16) tHZ Address and control input hold time tIH.BASE Control & address input pulse width for each input tIPW Address and control input setup time tIS.BASE DQ low impedance time from CK/CK tLZ.DQ DQS/DQS low-impedance time from CK / CK tLZ.DQS MRS command to ODT update delay tMOD Mode register set command cycle time tMRD OCD drive mode output delay tOIT DQ/DQS output hold time from DQS tQH DQ hold skew factor tQHS edges DQ and DM input setup time DQS falling edge hold time from CK DQS falling edge to CK setup time CK half pulse width Data-out high-impedance time from CK / CK Rev. 1.3, 2007-05 07182006-DD60-22E6 37 0.2 — 0.2 — tCK.AVG tCK.AVG Min(tCH.ABS, tCL.ABS) __ ps 20) — tAC.MAX ps 8)21) 250 — ps 22)24) 0.6 — tCK.AVG 175 — ps 23)24) 2 x tAC.MIN tAC.MAX ps 8)21) tAC.MIN tAC.MAX ps 8)21) 0 12 ns 34) 2 — nCK 0 12 ns 34) tHP – tQHS — ps 25) — 300 ps 26) 16) Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM Parameter Average periodic refresh Interval Symbol DDR2–800 tREFI Unit Note1)2)3)4)5)6)7) Min. Max. — 7.8 µs 27)28) — 3.9 µs 28)29) 30) Auto-Refresh to Active/Auto-Refresh command period tRFC 75 — ns Precharge-All (4 banks) command period tRP tRPRE tRPST tRTP tWPRE tWPST tWR tWTR tXARD tXARDS tRP — ns 0.9 1.1 31)32) 0.4 0.6 tCK.AVG tCK.AVG 7.5 — ns 34) 0.35 — 0.4 0.6 tCK.AVG tCK.AVG 15 — ns 34) 7.5 — ns 34)35) 2 — 8 – AL — nCK nCK Exit precharge power-down to any valid command (other than NOP or Deselect) tXP 2 — nCK Exit self-refresh to a non-read command tRFC +10 — ns Exit self-refresh to read command tXSNR tXSRD 200 — Write command to DQS associated clock edges WL RL – 1 nCK nCK Read preamble Read postamble Internal Read to Precharge command delay Write preamble Write postamble Write recovery time Internal write to read command delay Exit power down to read command Exit active power-down mode to read command (slow exit, lower power) 31)33) 34) 1) VDDQ = 1.8 V ± 0.1V; VDD = 1.8 V ± 0.1 V. 2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. 5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 6) The output timing reference voltage level is VTT. 7) New units, ‘tCK.AVG‘ and ‘nCK‘, are introduced in DDR2–667 and DDR2–800. Unit ‘tCK.AVG‘ represents the actual tCK.AVG of the input clock under operation. Unit ‘nCK‘ represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2–400 and DDR2–533, ‘tCK‘ is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min). 8) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tERR(6-10PER).MIN = – 272 ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN – tERR(6-10PER).MAX = – 400 ps – 293 ps = – 693 ps and tDQSCK.MAX(DERATED) = tDQSCK.MAX – tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2–667 derates to tLZ.DQ.MIN(DERATED) = - 900 ps – 293 ps = – 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!) 9) Input clock jitter spec parameter. These parameters and the ones in Chapter 7.3 are referred to as 'input clock jitter spec parameters' and these parameters apply to DDR2–667 and DDR2–800 only. The jitter specified is a random jitter meeting a Gaussian distribution. 10) These parameters are specified per their average values, however it is understood that the relationship as defined in Chapter 7.3 between the average timing and the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations of Chapter 7.3). 11) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of tIS + 2 x tCK + tIH. Rev. 1.3, 2007-05 07182006-DD60-22E6 38 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 12) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For DDR2–533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks. 13) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR. 14) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and VIH.DC.MIN. See Figure 6. 15) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output slew rate mismatch between DQS / DQS and associated DQ in any given cycle. 16) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not. 17) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN. See Figure 6. 18) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed. 19) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal ((L/U/R)DQS / DQS) crossing. 20) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter. It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the minimum of the actual instantaneous clock low time. 21) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) . 22) Input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied to the device under test. See Figure 7. 23) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied to the device under test. See Figure 7. 24) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not. 25) tQH = tHP – tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under the max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.} Examples: 1) If the system provides tHP of 1315 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system provides tHP of 1420 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 1080 ps minimum. 26) tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation of the output drivers. 27) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C and 95 °C. 28) 0 °C≤ TCASE ≤ 85 °C 29) 85 °C < TCASE ≤ 95 °C 30) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device. 31) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (tRPST), or begins driving (tRPRE). Figure 5 shows a method to calculate these points when the device is no longer driving (tRPST), or begins driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent. 32) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.PER.MIN = – 72 ps and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG – 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX + tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!). 33) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.DUTY.MIN = – 72 ps and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG – 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX + tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!). Rev. 1.3, 2007-05 07182006-DD60-22E6 39 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 34) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which tRP = 15 ns, the device will support tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter. 35) tWTR is at lease two clocks (2 x tCK) independent of operation frequency. TABLE 47 DRAM Component Timing Parameter by Speed Grade - DDR2–667 Parameter Symbol DDR2–667 Unit Note1)2)3)4)5)6)7) 8) Min. Max. tAC tCCD tCH.AVG tCK.AVG tCKE –450 +450 ps 2 — 0.48 0.52 nCK tCK.AVG 3000 8000 ps 3 — nCK 11) tCL.AVG Auto-Precharge write recovery + precharge time tDAL Minimum time clocks remain ON after CKE tDELAY 0.48 0.52 9)10) WR + tnRP — tCK.AVG nCK tIS + tCK .AVG + tIH — ns tDH.BASE DQ and DM input pulse width for each input tDIPW DQS output access time from CK / CK tDQSCK DQS input high pulse width tDQSH DQS input low pulse width tDQSL DQS-DQ skew for DQS & associated DQ signals tDQSQ DQS latching rising transition to associated clock tDQSS 175 — ps 0.35 — tCK.AVG –400 +400 ps 0.35 — 0.35 — tCK.AVG tCK.AVG — 240 ps 15) – 0.25 + 0.25 tCK.AVG 16) tDS.BASE tDSH tDSS tHP 100 –– ps 17)18)19) 0.2 — 16) 0.2 — tCK.AVG tCK.AVG Min(tCH.ABS, tCL.ABS) __ ps 20) — tAC.MAX ps 8)21) 275 — ps 24)22) DQ output access time from CK / CK CAS to CAS command delay Average clock high pulse width Average clock period CKE minimum pulse width ( high and low pulse width) Average clock low pulse width asynchronously drops LOW DQ and DM input hold time edges DQ and DM input setup time DQS falling edge hold time from CK DQS falling edge to CK setup time CK half pulse width tHZ Address and control input hold time tIH.BASE Control & address input pulse width for each input tIPW Address and control input setup time tIS.BASE DQ low impedance time from CK/CK tLZ.DQ DQS/DQS low-impedance time from CK / CK tLZ.DQS MRS command to ODT update delay tMOD Mode register set command cycle time tMRD OCD drive mode output delay tOIT DQ/DQS output hold time from DQS tQH Data-out high-impedance time from CK / CK Rev. 1.3, 2007-05 07182006-DD60-22E6 40 9)10) 12)13) 18)19)14) 8) 16) 0.6 — tCK.AVG 200 — ps 23)24) 2 x tAC.MIN ps 8)21) tAC.MIN tAC.MAX tAC.MAX ps 8)21) 0 12 ns 34) 2 — nCK 0 12 ns 34) tHP – tQHS — ps 25) Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM Parameter DQ hold skew factor Average periodic refresh Interval Symbol DDR2–667 tQHS tREFI Unit Note1)2)3)4)5)6)7) Min. Max. — 340 ps 26) — 7.8 µs 27)28) — 3.9 µs 28)29) 30) Auto-Refresh to Active/Auto-Refresh command period tRFC 75 — ns Precharge-All (4 banks) command period tRP tRPRE tRPST tRTP tWPRE tWPST tWR tWTR tXARD tXARDS tRP — ns 0.9 1.1 31)32) 0.4 0.6 tCK.AVG tCK.AVG 7.5 — ns 34) 0.35 — Exit precharge power-down to any valid command (other than NOP or Deselect) Exit self-refresh to a non-read command Read preamble Read postamble Internal Read to Precharge command delay Write preamble Write postamble Write recovery time Internal write to read command delay Exit power down to read command Exit active power-down mode to read command (slow exit, lower power) Exit self-refresh to read command Write command to DQS associated clock edges 1) VDDQ = 1.8 V ± 0.1V; VDD = 1.8 V ± 0.1 V. 31)33) 0.4 0.6 tCK.AVG tCK.AVG 15 — ns 34) 7.5 — ns 34)35) 2 — 7 – AL — nCK nCK tXP 2 — nCK tXSNR tXSRD tRFC +10 — ns 200 — WL RL–1 nCK nCK 34) 2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. 5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 6) The output timing reference voltage level is VTT. 7) New units, ‘tCK.AVG‘ and ‘nCK‘, are introduced in DDR2–667 and DDR2–800. Unit ‘tCK.AVG‘ represents the actual tCK.AVG of the input clock under operation. Unit ‘nCK‘ represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2–400 and DDR2–533, ‘tCK‘ is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min). 8) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tERR(6-10PER).MIN = – 272 ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN – tERR(6-10PER).MAX = – 400 ps – 293 ps = – 693 ps and tDQSCK.MAX(DERATED) = tDQSCK.MAX – tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2–667 derates to tLZ.DQ.MIN(DERATED) = - 900 ps – 293 ps = – 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!) 9) Input clock jitter spec parameter. These parameters and the ones in Chapter 7.3 are referred to as 'input clock jitter spec parameters' and these parameters apply to DDR2–667 and DDR2–800 only. The jitter specified is a random jitter meeting a Gaussian distribution. 10) These parameters are specified per their average values, however it is understood that the relationship as defined in Chapter 7.3 between the average timing and the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations of Chapter 7.3). Rev. 1.3, 2007-05 07182006-DD60-22E6 41 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 11) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of tIS + 2 x tCK + tIH. 12) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For DDR2–533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks. 13) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR. 14) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and VIH.DC.MIN. See Figure 6. 15) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output slew rate mismatch between DQS / DQS and associated DQ in any given cycle. 16) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not. 17) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN. See Figure 6. 18) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed. 19) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal ((L/U/R)DQS / DQS) crossing. 20) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter. It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the minimum of the actual instantaneous clock low time. 21) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) . 22) Input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied to the device under test. See Figure 7. 23) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied to the device under test. See Figure 7. 24) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not. 25) tQH = tHP – tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under the max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.} Examples: 1) If the system provides tHP of 1315 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system provides tHP of 1420 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 1080 ps minimum. 26) tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation of the output drivers. 27) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C and 95 °C. 28) 0 °C≤ TCASE ≤ 85 °C 29) 85 °C < TCASE ≤ 95 °C 30) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device. 31) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (tRPST), or begins driving (tRPRE). Figure 5 shows a method to calculate these points when the device is no longer driving (tRPST), or begins driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent. 32) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.PER.MIN = – 72 ps and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG – 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX + tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!). Rev. 1.3, 2007-05 07182006-DD60-22E6 42 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 33) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.DUTY.MIN = – 72 ps and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG – 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX + tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!). 34) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which tRP = 15 ns, the device will support tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter. 35) tWTR is at lease two clocks (2 x tCK) independent of operation frequency. Rev. 1.3, 2007-05 07182006-DD60-22E6 43 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM FIGURE 5 Method for calculating transitions and endpoint 92+[P9 977[P9 92+[P9 977[P9 W/= W+= W535(EHJLQSRLQW W5367 H QGSRLQW 92/[P9 977[P9 92/[P9 977[P9 7 7 7 7 W+=W5367 HQGSRLQW 77 W/=W535( E HJLQSRLQW 7 7 FIGURE 6 Differential input waveform timing - tDS and tDS '46 '46 W'6 W'+ W'6 W'+ 9''4 9,+DFPLQ 9,+GFPLQ 95()GF 9,/GF PD[ 9,/DF PD[ 966 FIGURE 7 Differential input waveform timing - tlS and tlH &. &. W,6 W,+ W,6 W,+ 9''4 9,+DFPLQ 9,+GFPLQ 95()GF 9,/GFPD[ 9,/DFPD[ 966 Rev. 1.3, 2007-05 07182006-DD60-22E6 44 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM TABLE 48 DRAM Component Timing Parameter by Speed Grade - DDR2–533 Parameter Symbol DDR2–533 Unit Note1)2)3)4)5) 6) Min. Max. tAC tCCD tCH tCKE tCL tDAL –500 +500 ps 2 — 0.45 0.55 3 — 0.45 0.55 WR + tRP — tCK tCK tCK tCK tCK Minimum time clocks remain ON after CKE asynchronously drops LOW tDELAY tIS + tCK + tIH — ns 8) DQ and DM input hold time (differential data strobe) tDH(base) 225 — ps 9) –25 — ps 10) tDIPW tDQSCK tDQSL,H tDQSQ 0.35 — tCK –450 +450 ps 0.35 — tCK — 300 ps tDQSS tDS(base) – 0.25 + 0.25 tCK 100 — ps 10) –25 — ps 10) tDSH 0.2 — tCK DQS falling edge to CK setup time (write cycle) tDSS 0.2 — tCK DQ output access time from CK / CK CAS A to CAS B command period CK, CK high-level width CKE minimum high and low pulse width CK, CK low-level width Auto-Precharge write recovery + precharge time DQ and DM input hold time (single ended data tDH1(base) strobe) DQ and DM input pulse width (each input) DQS output access time from CK / CK DQS input low (high) pulse width (write cycle) DQS-DQ skew (for DQS & associated DQ signals) Write command to 1st DQS latching transition DQ and DM input setup time (differential data strobe) DQ and DM input setup time (single ended data tDS1(base) strobe) DQS falling edge hold time from CK (write cycle) Clock half period Data-out high-impedance time from CK / CK Address and control input hold time Address and control input pulse width (each input) Address and control input setup time DQ low-impedance time from CK / CK DQS low-impedance from CK / CK MRS command to ODT update delay Mode register set command cycle time OCD drive mode output delay Data output hold time from DQS Data hold skew factor Rev. 1.3, 2007-05 07182006-DD60-22E6 tHP tHZ tIH(base) tIPW MIN. (tCL, tCH) tIS(base) tLZ(DQ) tLZ(DQS) tMOD tMRD tOIT tQH tQHS 45 7)17) 10) — 11) — tAC.MAX ps 12) 375 — ps 10) 0.6 — tCK 250 — ps 10) 2 × tAC.MIN ps 13) tAC.MIN tAC.MAX tAC.MAX ps 13) 0 12 ns 2 — tCK 0 12 ns tHP –tQHS — — — 400 ps Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM Parameter Symbol DDR2–533 Unit Note1)2)3)4)5) 6) Min. Max. tREFI tREFI tRFC — 7.8 µs 13)14) — 3.9 µs 15)17) 75 — ns 16) tRP tRPRE tRPST tRRD tRP — ns 0.9 1.1 13) 0.40 0.60 tCK tCK 7.5 — ns 13)17) Active bank A to Active bank B command period tRRD 10 — ns 15)21) Internal Read to Precharge command delay tRTP tWPRE tWPST tWR 7.5 — ns 0.25 — 0.40 0.60 tCK tCK 15 — ns tWTR tXARD 7.5 — ns 19) 2 — tCK 20) Exit active power-down mode to Read command (slow exit, lower power) tXARDS 6 – AL — tCK 20) Exit precharge power-down to any valid command (other than NOP or Deselect) tXP 2 — tCK Exit Self-Refresh to non-Read command tXSNR tXSRD tRFC +10 — ns 200 — WR tWR/tCK — tCK tCK Average periodic refresh Interval Average periodic refresh Interval Auto-Refresh to Active/Auto-Refresh command period Precharge-All (4 banks) command period Read preamble Read postamble Active bank A to Active bank B command period Write preamble Write postamble Write recovery time for write without AutoPrecharge Internal Write to Read command delay Exit power down to any valid command (other than NOP or Deselect) Exit Self-Refresh to Read command Write recovery time for write with AutoPrecharge 1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V. 13) 18) 21) 2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. 5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 6) The output timing reference voltage level is VTT. 7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MR. 8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. 9) For timing definition, refer to the Component data sheet. 10) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate mis-match between DQS / DQS and associated DQ in any given cycle. 11) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for tCL and tCH). Rev. 1.3, 2007-05 07182006-DD60-22E6 46 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 12) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These parameters are verified by design and characterization, but not subject to production test. 13) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C and 95 °C. 14) 0 °C≤ TCASE ≤ 85 °C 15) 85 °C < TCASE ≤ 95 °C 16) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device. 17) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 5 “Ordering Information for Lead-Free Products (RoHS Compliant)” on Page 5. 18) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 19) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz. 20) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active powerdown mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow power-down exit timing tXARDS has to be satisfied. 21) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MRS. TABLE 49 DRAM Component Timing Parameter by Speed Grade - DDR2-400 Parameter Symbol DDR2–400 Unit Note1)2)3)4)5) 6) Min. Max. tAC tCCD tCH tCKE tCL tDAL –600 +600 ps 2 — 0.45 0.55 3 — 0.45 0.55 WR + tRP — tCK tCK tCK tCK tCK Minimum time clocks remain ON after CKE asynchronously drops LOW tDELAY tIS + tCK + tIH — ns 8) DQ and DM input hold time (differential data strobe) tDH(base) 275 — ps 9) –25 — ps 10) 0.35 — tCK –500 +500 ps 0.35 — tCK — 350 ps – 0.25 + 0.25 tCK DQ output access time from CK / CK CAS A to CAS B command period CK, CK high-level width CKE minimum high and low pulse width CK, CK low-level width Auto-Precharge write recovery + precharge time DQ and DM input hold time (single ended data tDH1(base) strobe) DQ and DM input pulse width (each input) DQS output access time from CK / CK DQS input low (high) pulse width (write cycle) DQS-DQ skew (for DQS & associated DQ signals) tDIPW tDQSCK tDQSL,H tDQSQ Write command to 1st DQS latching transition tDQSS 7)20) 10) DQ and DM input setup time (differential data strobe) tDS(base) 150 — ps 10) DQ and DM input setup time (single ended data strobe) tDS1(base) –25 — ps 10) Rev. 1.3, 2007-05 07182006-DD60-22E6 47 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM Parameter Symbol DDR2–400 Unit Note1)2)3)4)5) 6) Min. Max. tDSH 0.2 — DQS falling edge to CK setup time (write cycle) tDSS 0.2 — DQS falling edge hold time from CK (write cycle) Clock half period tHP tHZ tIH(base) tIPW MIN. (tCL, tCH) tCK tCK — 11) — tAC.MAX ps 12) 475 — ps 10) 0.6 — tCK 350 — ps 10) 2 × tAC.MIN ps 13) tAC.MIN tAC.MAX tAC.MAX ps 13) 0 12 ns 2 — tCK 0 12 ns tHP –tQHS — — — 450 ps — 7.8 µs 13)14) — 3.9 µs 15)17) 75 — ns 16) tRP tRPRE tRPST tRRD tRP — ns 0.9 1.1 13) 0.40 0.60 tCK tCK 7.5 — ns 13)17) Active bank A to Active bank B command period tRRD 10 — ns 15)21) Internal Read to Precharge command delay tRTP tWPRE tWPST tWR 7.5 — ns 0.25 — 0.40 0.60 tCK tCK 15 — ns tWTR tXARD 10 — ns 19) 2 — tCK 20) Exit active power-down mode to Read command (slow exit, lower power) tXARDS 6 – AL — tCK 20) Exit precharge power-down to any valid command (other than NOP or Deselect) tXP 2 — tCK Exit Self-Refresh to non-Read command tXSNR tRFC +10 — ns Data-out high-impedance time from CK / CK Address and control input hold time Address and control input pulse width (each input) Address and control input setup time DQ low-impedance time from CK / CK DQS low-impedance from CK / CK MRS command to ODT update delay Mode register set command cycle time OCD drive mode output delay Data output hold time from DQS Data hold skew factor Average periodic refresh Interval Average periodic refresh Interval Auto-Refresh to Active/Auto-Refresh command period Precharge-All (4 banks) command period Read preamble Read postamble Active bank A to Active bank B command period Write preamble Write postamble Write recovery time for write without AutoPrecharge Internal Write to Read command delay Exit power down to any valid command (other than NOP or Deselect) Rev. 1.3, 2007-05 07182006-DD60-22E6 tIS(base) tLZ(DQ) tLZ(DQS) tMOD tMRD tOIT tQH tQHS tREFI tREFI tRFC 48 13) 18) Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM Parameter Symbol DDR2–400 Unit Note1)2)3)4)5) 6) Exit Self-Refresh to Read command Write recovery time for write with AutoPrecharge 1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V. Min. Max. tXSRD 200 — WR tWR/tCK — tCK tCK 21) 2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. 5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 6) The output timing reference voltage level is VTT. 7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MR. 8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. 9) For timing definition, refer to the Component data sheet. 10) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate mis-match between DQS / DQS and associated DQ in any given cycle. 11) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for tCL and tCH). 12) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These parameters are verified by design and characterization, but not subject to production test. 13) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C and 95 °C. 14) 0 °C≤ TCASE ≤ 85 °C 15) 85 °C < TCASE ≤ 95 °C 16) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device. 17) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 5 “Ordering Information for Lead-Free Products (RoHS Compliant)” on Page 5. 18) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 19) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz. 20) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active powerdown mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow power-down exit timing tXARDS has to be satisfied. 21) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MRS. Rev. 1.3, 2007-05 07182006-DD60-22E6 49 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 7.3 Jitter Definition and Clock Jitter Specification Generally, jitter is defined as “the short-term variation of a signal with respect to its ideal position in time”. The following table provides an overview of the terminology. TABLE 50 Average Clock and Jitter Symbols and Definition Symbol Parameter Description Units tCK.AVG Average clock period tCK.AVG is calculated as the average clock period within any consecutive 200-cycle window: ⎛ N ⎞ 1 tCK.AVG = ---- . ⎜ ∑ tCK j⎟ ⎟ N⎜ ⎝j = 1 ⎠ ps (1) N = 200 tJIT.PER tJIT(PER, LCK) tJIT.CC Clock-period jitter Clock-period jitter during DLL-locking period Cycle-to-cycle clock period jitter tJIT(CC, LCK) Cycle-to-cycle clock period jitter during DLL-locking period tERR.2PER Cumulative error across 2 cycles tJIT.PER is defined as the largest deviation of any single tCK from tCK.AVG: tJIT.PER = Min/Max of {tCKi – tCK.AVG} where i = 1 to 200 tJIT.PER defines the single-period jitter when the DLL is already locked. tJIT.PER is not guaranteed through final production testing. tJIT(PER,LCK) uses the same definition as tJIT.PER, during the DLL-locking ps period only. tJIT(PER,LCK) is not guaranteed through final production testing. tJIT.CC is defined as the absolute difference in clock period between two ps tJIT.CC defines the cycle- to- cycle jitter when the DLL is already locked. tJIT.CC is not guaranteed through final production testing. tJIT(CC,LCK) uses the same definition as tJIT.CC during the DLL-locking ps consecutive clock cycles: tJIT.CC = Max of ABS{tCKi+1 – tCKi} period only. tJIT(CC,LCK) is not guaranteed through final production testing. tERR.2PER is defined as the cumulative error across 2 consecutive cycles from tCK.AVG: ⎛i + n – 1 ⎞ ⎜ tERR ( 2per ) = tCK j⎟ – n × tCK ( avg ) ⎜ ∑ ⎟ ⎝ j=i ⎠ n = 2 for tERR(2per) where i = 1 to 200 Rev. 1.3, 2007-05 07182006-DD60-22E6 ps 50 (2) ps Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM Symbol Parameter Description Units tERR.nPER Cumulative error across n cycles tERR.2PER is defined as the cumulative error across n consecutive cycles from tCK.AVG: ps ⎛i + n – 1 ⎞ tERR ( nper ) = ⎜ ∑ tCK j⎟ – n × tCK ( avg ) ⎜ ⎟ ⎝ j=i ⎠ (3) where, i = 1 to 200 and n = 3 for tERR.3PER n = 4 for tERR.4PER n = 5 for tERR.5PER 6 ≤ n ≤ 10 for tERR.6-10PER 11 ≤ n ≤ 50 for tERR.11-50PER tCH.AVG Average high-pulse width tCH.AVG is defined as the average high-pulse width, as calculated across tCK.AVG any consecutive 200 high pulses: ⎛ N ⎞ 1 ⎜ . tCH ( avg ) = ---------------------------------------- ∑ tCH j⎟ ⎟ ( N × tCK ( avg ) ) ⎜ ⎝j = 1 ⎠ (4) N = 200 tCL.AVG Average low-pulse width tCL.AVG is defined as the average low-pulse width, as calculated across any tCK.AVG consecutive 200 low pulses: ⎛ N ⎞ 1 tCL ( avg ) = ---------------------------------------- . ⎜ ∑ tCL j⎟ ⎟ ( N × tCK ( avg ) ) ⎜ ⎝j = 1 ⎠ (5) N = 200 tJIT.DUTY Duty-cycle jitter tJIT.DUTY = Min/Max of {tJIT.CH , tJIT.CL}, where: tJIT.CH is the largest deviation of any single tCH from tCH.AVG tJIT.CL is the largest deviation of any single tCL from tCL.AVG tJIT.CH = {tCHi - tCH.AVG × tCK.AVG} where i=1 to 200 tJIT.CL = {tCLi - tCL.AVG × tCK.AVG} where i=1 to 200 ps The following parameters are specified per their average values however, it is understood that the following relationship between the average timing and the absolute instantaneous timing holds all the time. TABLE 51 Absolute Jitter Value Definitions Symbol Parameter Min. tCK.ABS tCH.ABS Clock period tCL.ABS Clock low-pulse width tCK.AVG(Min) + tJIT.PER(Min) tCK.AVG(Max) + tJIT.PER(Max) tCH.AVG(Min) x tCK.AVG(Min) + tJIT.DUTY(Min) tCH.AVG(Max) x tCK.AVG(Max) + tJIT.DUTY(Max) tCL.AVG(Min) x tCK.AVG(Min) + tJIT.DUTY(Min) tCL.AVG(Max) x tCK.AVG(Max) + tJIT.DUTY(Max) Clock high-pulse width Rev. 1.3, 2007-05 07182006-DD60-22E6 Max. 51 Unit ps ps ps Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM Example: for DDR2-667, tCH.ABS(Min) = (0.48 x 3000ps) – 125 ps = 1315 ps = 0.438 x 3000 ps. Table 64 shows clock-jitter specifications. TABLE 52 Clock-Jitter Specifications for –667 and –800 Symbol Parameter DDR2 -667 DDR2 -800 Min. Max. Min. Max. Unit tCK.AVG tJIT.PER tJIT(PER,LCK) tJIT.CC tJIT(CC,LCK) Average clock period nominal w/o jitter 3000 8000 2500 8000 ps Clock-period jitter –125 +125 –100 +100 ps Clock-period jitter during DLL locking period –100 +100 –80 +80 ps Cycle-to-cycle clock-period jitter –250 +250 –200 +200 ps Cycle-to-cycle clock-period jitter during DLLlocking period –200 +200 –160 +160 ps tERR.2PER tERR.3PER tERR.4PER tERR.5PER tERR(6-10PER) Cumulative error across 2 cycles –175 +175 –150 +150 ps Cumulative error across 3 cycles –225 +225 –175 +175 ps Cumulative error across 4 cycles –250 +250 –200 +200 ps Cumulative error across 5 cycles –250 +250 –200 +200 ps Cumulative error across n cycles with n = 6 .. 10, inclusive –350 +350 –300 +300 ps tERR(11-50PER) Cumulative error across n cycles with n = 11 .. –450 50, inclusive +450 –450 +450 ps tCH.AVG tCL.AVG tJIT.DUTY Average high-pulse width 0.52 0.48 0.52 Average low-pulse width 0.48 0.52 0.48 0.52 tCK.AVG tCK.AVG Duty-cycle jitter –125 +125 –100 +100 ps Rev. 1.3, 2007-05 07182006-DD60-22E6 0.48 52 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 7.4 ODT AC Electrical Characteristics This chapter describes the ODT AC electrical characteristics. TABLE 53 ODT AC Characteristics and Operating Conditions for DDR2-533 and DDR2-400 Symbol Parameter / Condition Values Min. tAOND tAON tAONPD tAOFD tAOF tAOFPD tANPD tAXPD Unit Note Max. ODT turn-on delay 2 2 tCK ODT turn-on tAC.MAX + 1 ns 2 tCK + tAC.MAX + 1 ns ns ODT turn-on (Power-Down Modes) tAC.MIN tAC.MIN + 2 ns ODT turn-off delay 2.5 2.5 tCK ODT turn-off tAC.MAX + 0.6 ns 2.5 tCK + tAC.MAX + 1 ns ns ODT turn-off (Power-Down Modes) tAC.MIN tAC.MIN + 2 ns ODT to Power Down Mode Entry Latency 3 — ODT Power Down Exit Latency 8 — tCK tCK 1) ns 2) ns 1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-400/533, tAOND is 10 ns (= 2 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns. 2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-400/533, tAOFD is 12.5 ns (= 2.5 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns. Rev. 1.3, 2007-05 07182006-DD60-22E6 53 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM TABLE 54 ODT AC Characteristics and Operating Conditions for DDR2-667 and DDR2-800 Symbol tAOND tAON tAONPD tAOFD tAOF tAOFPD tANPD tAXPD Parameter / Condition ODT turn-on delay Values Unit Min. Max. 2 2 Note nCK 1) tAC.MAX + 0.7 ns 2 tCK + tAC.MAX + 1 ns ns ODT turn-on (Power-Down Modes) tAC.MIN tAC.MIN + 2 ns 1)2) ns 1) ODT turn-off delay 2.5 2.5 nCK 1) ODT turn-on tAC.MAX + 0.6 ns 2.5 tCK + tAC.MAX + 1 ns ns ODT turn-off (Power-Down Modes) tAC.MIN tAC.MIN + 2 ns 1)3) ns 1) ODT to Power Down Mode Entry Latency 3 — nCK nCK 1) ODT turn-off 1) ODT Power Down Exit Latency 8 — 1) New units, “tCK.AVG” and “nCK”, are introduced in DDR2-667 and DDR2-800. Unit “tCK.AVG” represents the actual tCK.AVG of the input clock under operation. Unit “nCK” represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2-400 and DDR2-533, “tCK” is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min). 2) ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-667/800, tAOND is 2 clock cycles after the clock edge that registered a first ODT HIGH counting the actual input clock edges. 3) ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-667/800, if tCK(avg) = 3 ns is assumed, tAOFD is 1.5 ns (= 0.5 x 3 ns) after the second trailing clock edge counting from the clock edge that registered a first ODT LOW and by counting the actual input clock edges. Rev. 1.3, 2007-05 07182006-DD60-22E6 54 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 8 Package Dimensions This chapter describes the package dimensions. FIGURE 8 Package Outline PG-TFBGA-84 0$ ; [ $ [ 0 $ ; % 0$ ; & 0 $; 0 ,1 & ¡ [ ¡ 0 & $ % ¡ 0 & ' XPP \ SD GVZ LWK RXWE DOO 0 LGGOHRISDFN DJHVHGJ HV 3 D FN D JHRULHQWDWLRQP DUN$ % DGXQLWP DUNLQJ %80 *3$ Notes 1. Drawing according to ISO 8015 2. Dimensions in mm 3. General tolerances +/- 0.15 Rev. 1.3, 2007-05 07182006-DD60-22E6 *3 /$1( & 6($7 ,1 55 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM FIGURE 9 Package Outline PG-TFBGA-60 0 $; [ $ [ 0 $; % 0 $; & 0,1 0$ ; & ¡ [ ¡ 0 & $ % ¡ 0 & 'X PP \ SDGVZLWK RXWE DOO 0LGGOHR IS DFN D JHVHGJHV 3D FN DJHRULH QWDWLRQPD UN$ %D GXQLWPD UNLQJ %80 3*7)% * $ Notes 1. Drawing according to ISO 8015 2. Dimensions in mm 3. General tolerances +/- 0.15 Rev. 1.3, 2007-05 07182006-DD60-22E6 ,1* 3 /$1( & 6($7 56 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM 9 Product Nomenclature For reference the Qimonda SDRAM component nomenclature is enclosed in this chapter. TABLE 55 Examples for Nomenclature Fields Example for DDR2 DRAM Field Number 1 2 3 4 5 6 HYB 18 TC 256 16 7 8 9 10 0 A C –3.7 11 TABLE 56 DDR2 Memory Components Field Description 1 Qimonda Component Prefix HYB Constant 2 Interface Voltage [V] 18 SSTL_18 3 DRAM Technology, consumer variant TC DDR2 4 Component Density [Mbit] 256 256 M 512 512 M 5+6 Number of I/Os 7 Product Variations 8 Die Revision 9 10 11 Values Coding 1G 1 Gb 40 ξ4 80 x8 16 x16 0 .. 9 look up table A First B Second C Third Package, Lead-Free Status C FBGA, lead-containing F FBGA, lead-free Speed Grade –1.9 DDR2–1066 N/A for Components Rev. 1.3, 2007-05 07182006-DD60-22E6 57 –2.5F DDR2–800 5–5–5 –2.5 DDR2–800 6–6–6 –3 DDR2–667 4–4–4 –3S DDR2–667 5–5–5 –3.7 DDR2–533 4–4–4 –5 DDR2–400 3–3–3 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Chip Configuration for ×8 components, PG-TFBGA-60 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Ball Configuration for ×16 components, PG-TFBGA-84 (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Single-ended AC Input Test Conditions Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Differential DC and AC Input and Output Logic Levels Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Method for calculating transitions and endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Differential input waveform timing - tDS and tDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Differential input waveform timing - tlS and tlH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Package Outline PG-TFBGA-84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Package Outline PG-TFBGA-60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Rev. 1.3, 2007-05 07182006-DD60-22E6 58 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21 Table 22 Table 23 Table 24 Table 25 Table 26 Table 27 Table 28 Table 29 Table 30 Table 31 Table 32 Table 33 Table 34 Table 35 Table 36 Table 37 Table 38 Table 39 Table 40 Table 41 Table 42 Table 43 Table 44 Table 45 Table 46 Table 47 Table 48 Table 49 Performance tables for –2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Performance table for –3(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Performance table for –3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Performance table for –5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Ordering Information for Lead-Free Products (RoHS Compliant). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Chip Configuration of DDR2 SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Abbreviations for Ball Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chip Configuration of DDR SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Abbreviations for Ball Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 DDR2 Addressing for ×8 Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 DDR2 Addressing for ×16 Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Mode Register Definition (BA[2:0] = 000B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Extended Mode Register Definition (BA[2:0] = 001B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 EMRS(2) Programming Extended Mode Register Definition (BA[2:0]=010B) . . . . . . . . . . . . . . . . . . . . . . . . . . 18 EMR(3) Programming Extended Mode Register Definition(BA[2:0]=011B) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 ODT Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Burst Length and Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Command Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Clock Enable (CKE) Truth Table for Synchronous Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Data Mask (DM) Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 DRAM Component Operating Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Recommended DC Operating Conditions (SSTL_18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 ODT DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Input and Output Leakage Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 DC & AC Logic Input Levels for DDR2-667 and DDR2-800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 DC & AC Logic Input Levels for DDR2-533 and DDR2-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Single-ended AC Input Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Differential DC and AC Input and Output Logic Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 SSTL_18 Output DC Current Drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 SSTL_18 Output AC Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 OCD Default Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Input / Output Capacitance for DDR2-800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Input / Output Capacitance for DDR2-667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Input / Output Capacitance for DDR2-533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Input / Output Capacitance for DDR2-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 IDD Specification Parameters and Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Definition for IDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 IDDSpecification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Speed Grade Definition Speed Bins for DDR2–800E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Speed Grade Definition Speed Bins for DDR2–667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Speed Grade Definition Speed Bins for DDR2–533C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Speed Grade Definition Speed Bins for DDR2-400B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 DRAM Component Timing Parameter by Speed Grade - DDR2–800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 DRAM Component Timing Parameter by Speed Grade - DDR2–667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 DRAM Component Timing Parameter by Speed Grade - DDR2–533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 DRAM Component Timing Parameter by Speed Grade - DDR2-400. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Rev. 1.3, 2007-05 07182006-DD60-22E6 59 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM Table 50 Table 51 Table 52 Table 53 Table 54 Table 55 Table 56 Average Clock and Jitter Symbols and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Jitter Value Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock-Jitter Specifications for –667 and –800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ODT AC Characteristics and Operating Conditions for DDR2-533 and DDR2-400 . . . . . . . . . . . . . . . . . . . . . ODT AC Characteristics and Operating Conditions for DDR2-667 and DDR2-800 . . . . . . . . . . . . . . . . . . . . . Examples for Nomenclature Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DDR2 Memory Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 1.3, 2007-05 07182006-DD60-22E6 60 50 51 52 53 54 57 57 Internet Data Sheet HYB18TC256[80/16]0BF 256-Mbit Double-Data-Rate-Two SDRAM Table of Contents 1 1.1 1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 2.1 2.2 2.3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chip Configuration for PG-TFBGA-60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chip Configuration for PG-TFBGA-84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 256-Mbit DDR2 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5 5.1 5.2 5.3 5.4 5.5 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC & AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Buffer Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input / Output Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Specifications and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7 7.1 7.2 7.3 7.4 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Speed Grade Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Component AC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jitter Definition and Clock Jitter Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ODT AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 9 Product Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 23 23 24 25 27 29 34 34 37 50 53 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Rev. 1.3, 2007-05 07182006-DD60-22E6 61 Internet Data Sheet Edition 2007-05 Published by Qimonda AG Gustav-Heinemann-Ring 212 D-81739 München, Germany © Qimonda AG 2007. All Rights Reserved. Legal Disclaimer The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office. Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Qimonda Office. Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. www.qimonda.com