November 2006 HYS64T256022EDL–[25F/2.5]–B HYS64T256022EDL–[3/3S]–B HYS64T256022EDL–3.7–B 200-Pin Dual Die Small-Outline-DDR2-SDRAM Modules DDR2 SDRAM SO-DIMM SDRAM RoHS Compliant Internet Data Sheet Rev. 1.0 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules HYS64T256022EDL–[25F/2.5]–B; HYS64T256022EDL–[3/3S]–B; HYS64T256022EDL–3.7–B Revision History: 2006-11, Rev. 1.0 Page Subjects (major changes since last revision) All Adapted internet edition All Initial Document We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] qag_techdoc_rev400 / 3.2 QAG / 2006-08-01 11172006-DXYK-2PPW 2 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules 1 Overview This chapter gives an overview of the 200-Pin Dual Die Small-Outline-DDR2-SDRAM Modules product family and describes its main characteristics. 1.1 Features • 200-Pin PC2-6400, PC2–5300 and PC2-4200 DDR2 SDRAM memory modules. • 256M × 64 module organization, and 2 × 128M × 8 chip organization • Standard Double-Data-Rate-Two Synchronous DRAMs (DDR2 SDRAM) with a single + 1.8 V (± 0.1 V) power supply • 2GB Modules built with stacked 1Gb DDR2 SDRAMs in PG-TFBGA-71 chipsize packages • All speed grades faster than DDR2-400 comply with DDR2-400 timing specifications. • Programmable CAS Latencies (3, 4, 5 and 6), Burst Length (8 & 4) and Burst Type • Burst Refresh, Distributed Refresh and Self Refresh • Programmable self refresh rate via EMRS2 setting • Programmable partial array refresh via EMRS2 settings • Average Refresh Period 7.8 µs at a TCASE lower than 85°C, 3.9µs between 85°C and 95°C. • DCC enabling via EMRS2 setting • All inputs and outputs SSTL_18 compatible • Off-Chip Driver Impedance Adjustment (OCD) and On-Die Termination (ODT) • Serial Presence Detect with E2PROM • SO-DIMM Dimensions (nominal): 30 mm high, 67.6 mm wide • Based on Standard reference layouts Raw Card “D” • RoHS Compliant Products1) TABLE 1 Performance Table Product Type Speed Code –25F –2.5 –3 –3S –3.7 Unit Speed Grade PC2–6400 5–5–5 PC2–6400 6–6–6 PC2–5300 4–4–4 PC2–5300 5–5–5 PC2–4200 4–4–4 — 400 400 – – – MHz 400 333 333 333 266 MHz 266 266 333 266 266 MHz 200 200 200 200 200 MHz 12.5 15 12 15 15 ns 12.5 15 12 15 15 ns 45 45 45 45 45 ns 57.5 60 57 60 60 ns Max. Clock Frequency @CL6 @CL5 @CL4 @CL3 Min. RAS-CAS-Delay Min. Row Precharge Time Min. Row Active Time Min. Row Cycle Time fCK6 fCK5 fCK4 fCK3 tRCD tRP tRAS tRC 1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers. Rev. 1.0, 2006-11 11172006-DXYK-2PPW 3 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules 1.2 Description The Qimonda HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B module family are Small Outline modules “SO-DIMMs” with 30 mm height based on DDR2 technology. DIMMs are available as non-ECC modules in 256M × 64 (2 GB) organization and density, intended for mounting into 200-pin connector sockets. The memory array is designed with stacked 1 Gbit DoubleData-Rate-Two (DDR2) Synchronous DRAMs. Decoupling capacitors are mounted on the PCB. The DIMMs feature serial presence detect based on a serial E2PROM device using the 2-pin I2C protocol. The first 128 bytes are programmed with configuration data and are write protected; the second 128 bytes are available to the customer. TABLE 2 Ordering Information for RoHS Compliant Products Product Type 1) Compliance Code 2) Description SDRAM Technology 2GB 2R×8 PC2–6400S–555–12–D0 2 Ranks, Non-ECC 1 Gbit (×8) 2GB 2R×8 PC2–6400S–666–12–D0 2 Ranks, Non-ECC 1 Gbit (×8) 2GB 2R×8 PC2–5300S–444–12–D0 2 Ranks, Non-ECC 1 Gbit (×8) 2GB 2R×8 PC2–5300S–555–12–D0 2 Ranks, Non-ECC 1 Gbit (×8) 2GB 2R×8 PC2–4200S–444–12–D0 2 Ranks, Non-ECC 1 Gbit (×8) PC2–6400 HYS64T256022EDL–25F–B PC2–6400 HYS64T256022EDL–2.5–B PC2–5300 HYS64T256022EDL–3–B PC2–5300 HYS64T256022EDL–3S–B PC2–4200 HYS64T256022EDL–3.7–B 1) All Product Type numbers end with a place code, designating the silicon die revision. Example: HYS64T256022EDL–3.7–B, indicating Rev. “B” dies are used for DDR2 SDRAM components. For all Qimonda DDR2 module and component nomenclature see Chapter 6 of this data sheet. 2) The Compliance Code is printed on the module label and describes the speed grade, for example “PC2–4200S–444–12–D0”, where 4200S means SO-DIMM modules with 4.26 GB/sec Module Bandwidth and “444–12” means Column Address Strobe (CAS) latency = 4, Row Column Delay (RCD) latency = 4 and Row Precharge (RP) latency = 4 using the latest JEDEC SPD Revision 1.2 and produced on the Raw Card “D”. TABLE 3 Address Format DIMM Density Module Organization Memory Ranks ECC/ Non-ECC # of SDRAMs # of row/bank/columns bits Raw Card 2 GByte 256M ×64 2 Non-ECC 16 14/3/10 D TABLE 4 Components on Modules Product Type 1) HYS64T256022EDL 1) DRAM Components HYB18T2G802BF DRAM Density 2 ×1 Gbit DRAM Organisation Note 2× 128M ×8 2) 1) Green Product 2) For a detailed description of all functionalities of the DRAM components on these modules see the component data sheet. Rev. 1.0, 2006-11 11172006-DXYK-2PPW 4 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules 2 Pin Configuration The pin configuration of the Small Outline DDR2 SDRAM DIMM is listed by function in Table 5 (200 pins). The abbreviations used in columns Pin and Buffer Type are explained in Table 6 and Table 7 respectively. The pin numbering is depicted in Figure 1 TABLE 5 Pin Configuration of SO-DIMM Ball No. Name Pin Type Buffer Type Function 30 CK0 I SSTL Clock Signals 2:0, Complement Clock Signals 2:0 164 CK1 I SSTL 32 CK0 I SSTL 166 CK1 I SSTL 79 CKE0 I SSTL 80 CKE1 I SSTL NC NC — Not Connected Note: 1-rank module 110 S0 I SSTL Chip Select Rank 1:0 115 S1 I SSTL NC NC — Not Connected Note: 1-rank module 108 RAS I SSTL Row Address Strobe 113 CAS I SSTL Column Address Strobe 109 WE I SSTL Write Enable 107 BA0 I SSTL Bank Address Bus 2:0 106 BA1 I SSTL 85 BA2 I SSTL Bank Address Bus 2 Greater than 512Mb DDR2 SDRAMS NC NC SSTL Less than 1Gb DDR2 SDRAMS Clock Signals Clock Enable Rank 1:0 Note: 2 Ranks module Control Signals Address Signals Rev. 1.0, 2006-11 11172006-DXYK-2PPW 5 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules Ball No. Name Pin Type Buffer Type Function 102 A0 I SSTL Address Bus 12:0 101 A1 I SSTL 100 A2 I SSTL 99 A3 I SSTL 98 A4 I SSTL 97 A5 I SSTL 94 A6 I SSTL 92 A7 I SSTL 93 A8 I SSTL 91 A9 I SSTL 105 A10 I SSTL AP I SSTL 90 A11 I SSTL 89 A12 I SSTL Address Signal 12 Note: Module based on 256 Mbit or larger dies 116 A13 I SSTL Address Signal 13 Note: 1 Gbit based module NC NC — Not Connected Note: Module based on 512 Mbit or smaller dies 5 DQ0 I/O SSTL 7 DQ1 I/O SSTL Data Bus 63:0 Note: Data Input/Output pins 17 DQ2 I/O SSTL 19 DQ3 I/O SSTL 4 DQ4 I/O SSTL 6 DQ5 I/O SSTL 14 DQ6 I/O SSTL 16 DQ7 I/O SSTL 23 DQ8 I/O SSTL 25 DQ9 I/O SSTL 35 DQ10 I/O SSTL 37 DQ11 I/O SSTL Data Signals Rev. 1.0, 2006-11 11172006-DXYK-2PPW 6 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules Ball No. Name Pin Type Buffer Type Function 20 DQ12 I/O SSTL 22 DQ13 I/O SSTL Data Bus 63:0 Data Input/Output pins 36 DQ14 I/O SSTL 38 DQ15 I/O SSTL 43 DQ16 I/O SSTL 45 DQ17 I/O SSTL 55 DQ18 I/O SSTL 57 DQ19 I/O SSTL 44 DQ20 I/O SSTL 46 DQ21 I/O SSTL 56 DQ22 I/O SSTL 58 DQ23 I/O SSTL 61 DQ24 I/O SSTL 63 DQ25 I/O SSTL 73 DQ26 I/O SSTL 75 DQ27 I/O SSTL 62 DQ28 I/O SSTL 64 DQ29 I/O SSTL 74 DQ30 I/O SSTL 76 DQ31 I/O SSTL 123 DQ32 I/O SSTL 125 DQ33 I/O SSTL 135 DQ34 I/O SSTL 137 DQ35 I/O SSTL 124 DQ36 I/O SSTL 126 DQ37 I/O SSTL 134 DQ38 I/O SSTL 136 DQ39 I/O SSTL 141 DQ40 I/O SSTL 143 DQ41 I/O SSTL 151 DQ42 I/O SSTL 153 DQ43 I/O SSTL 140 DQ44 I/O SSTL 142 DQ45 I/O SSTL 152 DQ46 I/O SSTL 154 DQ47 I/O SSTL 157 DQ48 I/O SSTL 159 DQ49 I/O SSTL 173 DQ50 I/O SSTL 175 DQ51 I/O SSTL Rev. 1.0, 2006-11 11172006-DXYK-2PPW 7 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules Ball No. Name Pin Type Buffer Type Function 158 DQ52 I/O SSTL Data Bus 63:0 160 DQ53 I/O SSTL 174 DQ54 I/O SSTL 176 DQ55 I/O SSTL 179 DQ56 I/O SSTL 181 DQ57 I/O SSTL 189 DQ58 I/O SSTL 191 DQ59 I/O SSTL 180 DQ60 I/O SSTL 182 DQ61 I/O SSTL 192 DQ62 I/O SSTL 194 DQ63 I/O SSTL 13 DQS0 I/O SSTL 11 DQS0 I/O SSTL 31 DQS1 I/O SSTL 29 DQS1 I/O SSTL 51 DQS2 I/O SSTL 49 DQS2 I/O SSTL 70 DQS3 I/O SSTL 68 DQS3 I/O SSTL 131 DQS4 I/O SSTL 129 DQS4 I/O SSTL 148 DQS5 I/O SSTL 146 DQS5 I/O SSTL 169 DQS6 I/O SSTL 167 DQS6 I/O SSTL 188 DQS7 I/O SSTL 186 DQS7 I/O SSTL 10 DM0 I SSTL 26 DM1 I SSTL 52 DM2 I SSTL 67 DM3 I SSTL 130 DM4 I SSTL 147 DM5 I SSTL 170 DM6 I SSTL 185 DM7 I SSTL Data Strobe Signals Data Strobe Bus 7:0 Data Mask Signals Rev. 1.0, 2006-11 11172006-DXYK-2PPW Data Mask Bus 7:0 8 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules Ball No. Name Pin Type Buffer Type Function 197 SCL I CMOS Serial Bus Clock 195 SDA I/O OD Serial Bus Data 198 SA0 I CMOS Serial Address Select Bus 2:0 200 SA1 I CMOS VREF VDDSPD VDD AI — I/O Reference Voltage PWR — EEPROM Power Supply PWR — Power Supply GND — Ground Plane EEPROM Power Supplies 1 199 81,82,87,88,95,96,103,104, 111,112,117,118 2,3,8,9,12,15,18,21,24,27,28, VSS 33,34,39,40,41,42,47,48,53, 54,59,60,65,66,71,72,77,78, 121,122,127,128,132,133,138,13 9,144,145,149,150,155,156,, 161,162,165,171,172,177, 178,183,184,187,190,193,196 Other Pins 114 ODT0 I SSTL On-Die Termination Control 1:0 119 ODT1 I SSTL On-Die Termination Control 1 Note: 2 Rank modules NC NC — Not Connected Note: 1 Rank modules NC NC — Not connected 50,69,83,84,120,163,168 Rev. 1.0, 2006-11 11172006-DXYK-2PPW 9 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules TABLE 6 Abbreviations for Pin Type Abbreviation Description I Standard input-only pin. Digital levels. O Output. Digital levels. I/O I/O is a bidirectional input/output signal. AI Input. Analog levels. PWR Power GND Ground NC Not Connected TABLE 7 Abbreviations for Buffer Type Abbreviation Description SSTL Serial Stub Terminated Logic (SSTL_18) LV-CMOS Low Voltage CMOS CMOS CMOS Levels OD Open Drain. The corresponding pin has 2 operational states, active low and tristate, and allows multiple devices to share as a wire-OR. Rev. 1.0, 2006-11 11172006-DXYK-2PPW 10 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules FIGURE 1 Pin Configuration SO-DIMM (200 Pin) 95() 3LQ '4 3LQ 966 3LQ '46 3LQ '4 3LQ 966 3LQ '4 3LQ '46 3LQ 966 3LQ '4 3LQ 966 3LQ '4 3LQ '46 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ 1& 3LQ '4 3LQ 966 3LQ 9'' 3LQ 1&%$ 3LQ $ 3LQ $ 3LQ $ 3LQ $ 3LQ $$3 3LQ :( 3LQ &$6 3LQ 9'' 3LQ 966 3LQ '4 3LQ '46 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ 966 3LQ '46 3LQ '4 3LQ 966 3LQ '4 3LQ '0 3LQ '4 3LQ 966 3LQ 6&/ 3LQ 966 3LQ 3LQ '4 3LQ 966 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ 966 3LQ &. 3LQ '4 3LQ 966 '4 3LQ '46 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ '46 3LQ '4 3LQ 966 3LQ '4 3LQ 966 3LQ '46 3LQ '4 3LQ 966 3LQ '4 3LQ '0 3LQ 966 3LQ '4 3LQ &.( 3LQ 1& 3LQ 9'' 3LQ $ 3LQ 9'' 3LQ $ 3LQ 9'' 3LQ %$ 3LQ 9'' 3LQ 1&6 3LQ 1&2'7 3LQ '4 3LQ 966 3LQ '46 3LQ '4 3LQ 966 3LQ '4 3LQ '0 3LQ '4 3LQ 966 3LQ '4 3LQ 1& 3LQ '46 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ 966 3LQ '4 3LQ 6'$ 3LQ 9''63' 3LQ ) 5 2 1 7 6 , ' ( % $ & . 6 , ' ( 3LQ '4 3LQ 966 3LQ '0 3LQ '4 3LQ 966 3LQ '4 3LQ '46 3LQ 966 3LQ '4 3LQ 1&&.( 3LQ 1& 3LQ 9'' 3LQ $ 3LQ 9'' 3LQ $ 3LQ 9'' 3LQ 5$6 3LQ 9'' 3LQ 1&$ 3LQ 1& 3LQ '4 3LQ 966 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ '46 3LQ '4 3LQ 966 3LQ '4 3LQ &. 3LQ 966 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ '46 3LQ '4 3LQ 966 3LQ 6$ 3LQ 966 3LQ '4 3LQ '0 3LQ '4 3LQ 966 3LQ '4 3LQ '0 3LQ &. 3LQ 966 3LQ '4 3LQ 966 3LQ '4 3LQ 1&(9(17 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ '46 3LQ '4 3LQ 966 3LQ 9'' 3LQ 1&$ 3LQ $ 3LQ $ 3LQ $ 3LQ $ 3LQ %$ 3LQ 6 3LQ 2'7 3LQ 9'' 3LQ 966 3LQ '4 3LQ '0 3LQ '4 3LQ 966 3LQ '4 3LQ '46 3LQ 966 3LQ '4 3LQ '4 3LQ 966 3LQ &. 3LQ '0 3LQ '4 3LQ 966 3LQ '4 3LQ '46 3LQ 966 3LQ '4 3LQ 6$ 033 7 Rev. 1.0, 2006-11 11172006-DXYK-2PPW 11 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules 3 Electrical Characteristics 3.1 Absolute Maximum Ratings Caution is needed not to exceed absolute maximum ratings of the DRAM device listed in Table 8 at any time. TABLE 8 Absolute Maximum Ratings Symbol VDD VDDQ VDDL VIN, VOUT TSTG Parameter Rating Unit Note Min. Max. Voltage on VDD pin relative to VSS –1.0 +2.3 V 1) Voltage on VDDQ pin relative to VSS –0.5 +2.3 V 1)2) Voltage on VDDL pin relative to VSS –0.5 +2.3 V 1)2) Voltage on any pin relative to VSS –0.5 +2.3 V 1) °C 1)2) Storage Temperature –55 +100 1) When VDD and VDDQ and VDDL are less than 500 mV; VREF may be equal to or less than 300 mV. 2) Storage Temperature is the case surface temperature on the center/top side of the DRAM. Attention: Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. TABLE 9 DRAM Component Operating Temperature Range Symbol TOPER Parameter Rating Operating Temperature Min. Max. 0 95 Unit Note °C 1)2)3)4) 1) Operating Temperature is the case surface temperature on the center / top side of the DRAM. 2) The operating temperature range are the temperatures where all DRAM specification will be supported. During operation, the DRAM case temperature must be maintained between 0 - 95 °C under all other specification parameters. 3) Above 85 °C the Auto-Refresh command interval has to be reduced to tREFI= 3.9 µs 4) When operating this product in the 85 °C to 95 °C TCASE temperature range, the High Temperature Self Refresh has to be enabled by setting EMR(2) bit A7 to “1”. When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50% Rev. 1.0, 2006-11 11172006-DXYK-2PPW 12 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules 3.2 DC Operating Conditions TABLE 10 Operating Conditions Parameter Symbol Values Unit Min. Max. 0 +65 °C 0 +95 °C Storage Temperature TOPR TCASE TSTG – 50 +100 °C Barometric Pressure (operating & storage) PBar +69 +105 kPa Operating Humidity (relative) HOPR 10 90 % Operating temperature (ambient) DRAM Case Temperature Note 1)2)3)4) 5) 1) 2) 3) 4) DRAM Component Case Temperature is the surface temperature in the center on the top side of any of the DRAMs. Within the DRAM Component Case Temperature Range all DRAM specifications will be supported Above 85 °C DRAM Case Temperature the Auto-Refresh command interval has to be reduced to tREFI = 3.9 µs When operating this product in the 85 °C to 95 °C TCASE temperature range, the High Temperature Self Refresh has to be enabled by setting EMR(2) bit A7 to “1”. When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50%. 5) Up to 3000 m. TABLE 11 Supply Voltage Levels and DC Operating Conditions Parameter Device Supply Voltage Output Supply Voltage Input Reference Voltage SPD Supply Voltage DC Input Logic High DC Input Logic Low Symbol VDD VDDQ VREF VDDSPD VIH(DC) VIL (DC) IL Values Unit Min. Typ. Max. 1.7 1.8 1.9 V 1.7 1.8 1.9 V 1) 0.49 × VDDQ 0.5 × VDDQ 0.51 × VDDQ V 2) 1.7 — 3.6 V VREF + 0.125 — V – 0.30 — VDDQ + 0.3 VREF – 0.125 V In / Output Leakage Current –5 — 5 µA 1) Under all conditions, VDDQ must be less than or equal to VDD 2) Peak to peak AC noise on VREF may not exceed ± 2% VREF (DC).VREF is also expected to track noise in VDDQ. 3) Input voltage for any connector pin under test of 0 V ≤ VIN ≤ VDDQ + 0.3 V; all other pins at 0 V. Current is per pin Rev. 1.0, 2006-11 11172006-DXYK-2PPW Note 13 3) Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules 3.3 Timing Characteristics 3.3.1 Speed Grade Definitions All Speed grades faster than DDR2-400B comply with DDR2-400B timing specifications(tCK = 5ns with tRAS = 40ns). Speed Grade Definition: Table 12 for DDR2–800, Table 13 for DDR2–667D and Table 14 for DDR2–533C TABLE 12 Speed Grade Definition Speed Bins for DDR2–800 Speed Grade DDR2–800D DDR2–800E QAG Sort Name –2.5F –2.5 CAS-RCD-RP latencies 5–5–5 6–6–6 Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 @ CL = 6 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Unit Note tCK Symbol Min. Max. Min. Max. — tCK tCK tCK tCK tRAS tRC tRCD tRP 5 8 5 8 ns 1)2)3)4) 3.75 8 3.75 8 ns 1)2)3)4) 2.5 8 3 8 ns 1)2)3)4) 2.5 8 2.5 8 ns 1)2)3)4) 45 70000 45 70000 ns 1)2)3)4)5) 57.5 — 60 — ns 1)2)3)4) 12.5 — 15 — ns 1)2)3)4) 12.5 — 15 — ns 1)2)3)4) 1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI. Rev. 1.0, 2006-11 11172006-DXYK-2PPW 14 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules TABLE 13 Speed Grade Definition Speed Bins for DDR2–667 Speed Grade DDR2–667C DDR2–667D QAG Sort Name –3 –3S CAS-RCD-RP latencies 4–4–4 5–5–5 Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Unit Note tCK Symbol Min. Max. Min. Max. — tCK tCK tCK tRAS tRC tRCD tRP 5 8 5 8 ns 1)2)3)4) 3 8 3.75 8 ns 1)2)3)4) 3 8 3 8 ns 1)2)3)4) 45 70000 45 70000 ns 1)2)3)4)5) 57 — 60 — ns 1)2)3)4) 12 — 15 — ns 1)2)3)4) 12 — 15 — ns 1)2)3)4) 1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) . 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI. Rev. 1.0, 2006-11 11172006-DXYK-2PPW 15 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules TABLE 14 Speed Grade Definition Speed Bins for DDR2–533C Speed Grade DDR2–533C QAG Sort Name –3.7 CAS-RCD-RP latencies 4–4–4 Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Unit Note tCK Symbol Min. Max. — tCK tCK tCK tRAS tRC tRCD tRP 5 8 ns 1)2)3)4) 3.75 8 ns 1)2)3)4) 3.75 8 ns 1)2)3)4) 45 70000 ns 1)2)3)4)5) 60 — ns 1)2)3)4) 15 — ns 1)2)3)4) 15 — ns 1)2)3)4) 1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI. Rev. 1.0, 2006-11 11172006-DXYK-2PPW 16 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules 3.3.2 Component AC Timing Parameters Timing Parameters: Table 15 for DDR2–800, Table 16 for DDR2–667D and Table 17 for DDR2–533C TABLE 15 DRAM Component Timing Parameter by Speed Grade - DDR2–800 Parameter Symbol DDR2–800 Unit Note 1)2)3)4)5)6)7)8) Min. Max. tAC tCCD tCH.AVG tCK.AVG tCKE –400 +400 ps 2 — nCK 0.48 0.52 tCK.AVG 10)11) 2500 8000 ps 10)11) 3 — nCK 12) tCL.AVG Auto-Precharge write recovery + precharge time tDAL Minimum time clocks remain ON after CKE tDELAY 0.48 0.52 tCK.AVG 10)11) WR + tnRP — nCK 13)14) tIS + tCK .AVG + tIH — ns tDH.BASE DQ and DM input pulse width for each input tDIPW DQS output access time from CK / CK tDQSCK DQS input high pulse width tDQSH DQS input low pulse width tDQSL DQS-DQ skew for DQS & associated DQ signals tDQSQ DQS latching rising transition to associated clock tDQSS 125 — ps 0.35 — tCK.AVG –350 +350 ps 0.35 — 0.35 — tCK.AVG tCK.AVG — 200 ps 16) – 0.25 + 0.25 tCK.AVG 17) tDS.BASE DQS falling edge hold time from CK tDSH DQS falling edge to CK setup time tDSS Four Activate Window for 1KB page size products tFAW Four Activate Window for 2KB page size products tFAW CK half pulse width tHP 50 — ps 18)19)20) 17) tHZ Address and control input hold time tIH.BASE Control & address input pulse width for each input tIPW Address and control input setup time tIS.BASE DQ low impedance time from CK/CK tLZ.DQ DQS/DQS low-impedance time from CK / CK tLZ.DQS MRS command to ODT update delay tMOD Mode register set command cycle time tMRD tOIT OCD drive mode output delay DQ/DQS output hold time from DQS tQH DQ output access time from CK / CK CAS to CAS command delay Average clock high pulse width Average clock period CKE minimum pulse width ( high and low pulse width) Average clock low pulse width asynchronously drops LOW DQ and DM input hold time edges DQ and DM input setup time Data-out high-impedance time from CK / CK Rev. 1.0, 2006-11 11172006-DXYK-2PPW 17 9) 19)20)15) 9) 0.2 — 0.2 — tCK.AVG tCK.AVG 35 — ns 31) 45 — ns 31) Min(tCH.ABS, tCL.ABS) __ ps 21) — tAC.MAX ps 9)22) 250 — ps 23)25) 17) 0.6 — tCK.AVG 175 — ps 24)25) 2 × tAC.MIN tAC.MAX ps 9)22) tAC.MIN tAC.MAX ps 9)22) 0 12 ns 31) 2 — nCK 0 12 ns 31) tHP – tQHS — ps 26) Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules Parameter Symbol DDR2–800 Unit Note 1)2)3)4)5)6)7)8) Min. Max. tQHS tRPRE tRPST tRRD — 300 ps 27) 0.9 1.1 28)29) 0.4 0.6 tCK.AVG tCK.AVG 7.5 — ns 31) Active to active command period for 2KB page size products tRRD 10 — ns 31) Internal Read to Precharge command delay tRTP tWPRE tWPST tWR tWTR tXARD tXARDS 7.5 — ns 31) 0.35 — 0.4 0.6 tCK.AVG tCK.AVG 15 — ns 31) 7.5 — ns 31)32) 2 — nCK 8 – AL — nCK Exit precharge power-down to any valid command (other than NOP or Deselect) tXP 2 — nCK Exit self-refresh to a non-read command tRFC +10 — ns Exit self-refresh to read command tXSNR tXSRD 200 — nCK Write command to DQS associated clock edges WL RL – 1 DQ hold skew factor Read preamble Read postamble Active to active command period for 1KB page size products Write preamble Write postamble Write recovery time Internal write to read command delay Exit power down to read command Exit active power-down mode to read command (slow exit, lower power) 28)30) 31) nCK 1) For details and notes see the relevant Qimonda component data sheet 2) VDDQ = 1.8 V ± 0.1V; VDD = 1.8 V ± 0.1 V. See notes 5)6)7)8) 3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. 6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 7) The output timing reference voltage level is VTT. 8) New units, ‘tCK.AVG‘ and ‘nCK‘, are introduced in DDR2–667 and DDR2–800. Unit ‘tCK.AVG‘ represents the actual tCK.AVG of the input clock under operation. Unit ‘nCK‘ represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2–400 and DDR2–533, ‘tCK‘ is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min). 9) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tERR(6-10PER).MIN = – 272 ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN – tERR(6-10PER).MAX = – 400 ps – 293 ps = – 693 ps and tDQSCK.MAX(DERATED) = tDQSCK.MAX – tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2–667 derates to tLZ.DQ.MIN(DERATED) = - 900 ps – 293 ps = – 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!) 10) Input clock jitter spec parameter. These parameters are referred to as 'input clock jitter spec parameters' and these parameters apply to DDR2–667 and DDR2–800 only. The jitter specified is a random jitter meeting a Gaussian distribution. 11) These parameters are specified per their average values, however it is understood that the relationship between the average timing and the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations ). 12) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of tIS + 2 x tCK + tIH. Rev. 1.0, 2006-11 11172006-DXYK-2PPW 18 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules 13) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For DDR2–533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks. 14) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR. 15) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and VIH.DC.MIN. See Figure 3. 16) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output slew rate mismatch between DQS / DQS and associated DQ in any given cycle. 17) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not. 18) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN. See Figure 3. 19) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed. 20) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal ((L/U/R)DQS / DQS) crossing. 21) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter. It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the minimum of the actual instantaneous clock low time. 22) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) . 23) Input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied to the device under test. See Figure 4. 24) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied to the device under test. See Figure 4. 25) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not. 26) tQH = tHP – tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under the max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.} Examples: 1) If the system provides tHP of 1315 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system provides tHP of 1420 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 1080 ps minimum. 27) tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation of the output drivers. 28) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (tRPST), or begins driving (tRPRE). Figure 2 shows a method to calculate these points when the device is no longer driving (tRPST), or begins driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent. 29) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.PER.MIN = – 72 ps and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG – 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX + tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!). 30) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.DUTY.MIN = – 72 ps and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG – 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX + tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!). 31) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which tRP = 15 ns, the device will support tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter. Rev. 1.0, 2006-11 11172006-DXYK-2PPW 19 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules 32) tWTR is at lease two clocks (2 x tCK) independent of operation frequency. TABLE 16 DRAM Component Timing Parameter by Speed Grade - DDR2–667 Parameter Symbol DDR2–667 Unit Note 1)2)3)4)5)6)7)8) Min. Max. tAC tCCD tCH.AVG tCK.AVG tCKE –450 +450 ps 2 — nCK 0.48 0.52 tCK.AVG 3000 8000 ps 3 — nCK 12) tCL.AVG Auto-Precharge write recovery + precharge time tDAL Minimum time clocks remain ON after CKE tDELAY 0.48 0.52 tCK.AVG 10)11) WR + tnRP — nCK 13)14) tIS + tCK .AVG + tIH — ns tDH.BASE DQ and DM input pulse width for each input tDIPW DQS output access time from CK / CK tDQSCK DQS input high pulse width tDQSH DQS input low pulse width tDQSL DQS-DQ skew for DQS & associated DQ signals tDQSQ DQS latching rising transition to associated clock tDQSS 175 — ps 0.35 — tCK.AVG –400 +400 ps 0.35 — 0.35 — tCK.AVG tCK.AVG — 240 ps 16) – 0.25 + 0.25 tCK.AVG 17) tDS.BASE DQS falling edge hold time from CK tDSH DQS falling edge to CK setup time tDSS Four Activate Window for 1KB page size products tFAW Four Activate Window for 2KB page size products tFAW CK half pulse width tHP 100 –– ps 18)19)20) 0.2 — 17) 0.2 — tCK.AVG tCK.AVG 37.5 — ns 31) 50 — ns 31) Min(tCH.ABS, tCL.ABS) — ps 21) tHZ Address and control input hold time tIH.BASE Control & address input pulse width for each input tIPW Address and control input setup time tIS.BASE DQ low impedance time from CK/CK tLZ.DQ DQS/DQS low-impedance time from CK / CK tLZ.DQS MRS command to ODT update delay tMOD Mode register set command cycle time tMRD OCD drive mode output delay tOIT DQ/DQS output hold time from DQS tQH DQ hold skew factor tQHS — tAC.MAX ps 9)22) 275 — ps 25)23) 0.6 — tCK.AVG 200 — ps 24)25) 2 × tAC.MIN ps 9)22) tAC.MIN tAC.MAX tAC.MAX ps 9)22) 0 12 ns 31) 2 — nCK 0 12 ns 31) tHP – tQHS — ps 26) — 340 ps 27) DQ output access time from CK / CK CAS to CAS command delay Average clock high pulse width Average clock period CKE minimum pulse width ( high and low pulse width) Average clock low pulse width asynchronously drops LOW DQ and DM input hold time edges DQ and DM input setup time Data-out high-impedance time from CK / CK Rev. 1.0, 2006-11 11172006-DXYK-2PPW 20 9) 10)11) 19)20)15) 9) 17) Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules Parameter Symbol DDR2–667 Unit Note 1)2)3)4)5)6)7)8) Min. Max. tRPRE tRPST tRRD 0.9 1.1 0.4 Active to active command period for 2KB page size products Internal Read to Precharge command delay 28)29) 0.6 tCK.AVG tCK.AVG 7.5 — ns 31) tRRD 10 — ns 31) tRTP tWPRE tWPST tWR tWTR tXARD tXARDS 7.5 — ns 31) 0.35 — Exit precharge power-down to any valid command (other than NOP or Deselect) Exit self-refresh to a non-read command Read preamble Read postamble Active to active command period for 1KB page size products 28)30) 0.4 0.6 tCK.AVG tCK.AVG 15 — ns 31) 7.5 — ns 31)32) 2 — nCK 7 – AL — nCK tXP 2 — nCK tRFC +10 — ns Exit self-refresh to read command tXSNR tXSRD 200 — Write command to DQS associated clock edges WL RL–1 Write preamble Write postamble Write recovery time Internal write to read command delay Exit power down to read command Exit active power-down mode to read command (slow exit, lower power) 31) nCK nCK 1) For details and notes see the relevant Qimonda component data sheet 2) VDDQ = 1.8 V ± 0.1V; VDD = 1.8 V ± 0.1 V. See notes 5)6)7)8) 3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. 6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 7) The output timing reference voltage level is VTT. 8) New units, ‘tCK.AVG‘ and ‘nCK‘, are introduced in DDR2–667 and DDR2–800. Unit ‘tCK.AVG‘ represents the actual tCK.AVG of the input clock under operation. Unit ‘nCK‘ represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2–400 and DDR2–533, ‘tCK‘ is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min). 9) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tERR(6-10PER).MIN = – 272 ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN – tERR(6-10PER).MAX = – 400 ps – 293 ps = – 693 ps and tDQSCK.MAX(DERATED) = tDQSCK.MAX – tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2–667 derates to tLZ.DQ.MIN(DERATED) = - 900 ps – 293 ps = – 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!) 10) Input clock jitter spec parameter. These parameters are referred to as 'input clock jitter spec parameters' and these parameters apply to DDR2–667 and DDR2–800 only. The jitter specified is a random jitter meeting a Gaussian distribution. 11) These parameters are specified per their average values, however it is understood that the relationship between the average timing and the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations ). 12) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of tIS + 2 x tCK + tIH. 13) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For DDR2–533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks. Rev. 1.0, 2006-11 11172006-DXYK-2PPW 21 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules 14) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR. 15) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and VIH.DC.MIN. See Figure 3. 16) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output slew rate mismatch between DQS / DQS and associated DQ in any given cycle. 17) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not. 18) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN. See Figure 3. 19) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed. 20) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal ((L/U/R)DQS / DQS) crossing. 21) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter. It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the minimum of the actual instantaneous clock low time. 22) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) . 23) Input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied to the device under test. See Figure 4. 24) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied to the device under test. See Figure 4. 25) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not. 26) tQH = tHP – tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under the max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.} Examples: 1) If the system provides tHP of 1315 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system provides tHP of 1420 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 1080 ps minimum. 27) tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation of the output drivers. 28) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (tRPST), or begins driving (tRPRE). Figure 2 shows a method to calculate these points when the device is no longer driving (tRPST), or begins driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent. 29) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.PER.MIN = – 72 ps and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG – 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX + tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!). 30) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.DUTY.MIN = – 72 ps and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG – 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX + tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!). 31) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which tRP = 15 ns, the device will support tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter. 32) tWTR is at lease two clocks (2 x tCK) independent of operation frequency. Rev. 1.0, 2006-11 11172006-DXYK-2PPW 22 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules FIGURE 2 Method for calculating transitions and endpoint 92+[P9 977[P9 92+[P9 977[P9 W/= W+= W535(EHJLQSRLQW W5367 H QGSRLQW 92/[P9 977[P9 92/[P9 977[P9 7 7 7 7 W+=W5367 HQGSRLQW 77 W/=W535( E HJLQSRLQW 7 7 FIGURE 3 Differential input waveform timing - tDS and tDS '46 '46 W'6 W'+ W'6 W'+ 9''4 9,+DFPLQ 9,+GFPLQ 95()GF 9,/GF PD[ 9,/DF PD[ 966 FIGURE 4 Differential input waveform timing - tlS and tlH &. &. W,6 W,+ W,6 W,+ 9''4 9,+DFPLQ 9,+GFPLQ 95()GF 9,/GFPD[ 9,/DFPD[ 966 Rev. 1.0, 2006-11 11172006-DXYK-2PPW 23 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules TABLE 17 DRAM Component Timing Parameter by Speed Grade - DDR2–533 Parameter Symbol DDR2–533 Unit Note 1)2)3)4)5)6)7) Min. Max. tAC tCCD tCH tCKE tCL tDAL –500 +500 ps 2 — 0.45 0.55 3 — 0.45 0.55 WR + tRP — tCK tCK tCK tCK tCK Minimum time clocks remain ON after CKE asynchronously drops LOW tDELAY tIS + tCK + tIH — ns 9) DQ and DM input hold time (differential data strobe) tDH(base) 225 — ps 10) –25 — ps 11) tDIPW tDQSCK tDQSL,H tDQSQ 0.35 — tCK –450 +450 ps 0.35 — tCK — 300 ps tDQSS tDS(base) – 0.25 + 0.25 tCK 100 — ps 11) –25 — ps 11) tDSH 0.2 — tCK DQS falling edge to CK setup time (write cycle) tDSS 0.2 — tCK tFAW tFAW tHP tHZ tIH(base) tIPW 37.5 — ns 50 — ns tIS(base) tLZ(DQ) tLZ(DQS) tMRD tOIT tQH DQ output access time from CK / CK CAS A to CAS B command period CK, CK high-level width CKE minimum high and low pulse width CK, CK low-level width Auto-Precharge write recovery + precharge time DQ and DM input hold time (single ended data tDH1(base) strobe) DQ and DM input pulse width (each input) DQS output access time from CK / CK DQS input low (high) pulse width (write cycle) DQS-DQ skew (for DQS & associated DQ signals) Write command to 1st DQS latching transition DQ and DM input setup time (differential data strobe) DQ and DM input setup time (single ended data tDS1(base) strobe) DQS falling edge hold time from CK (write cycle) Four Activate Window period Four Activate Window period Clock half period Data-out high-impedance time from CK / CK Address and control input hold time Address and control input pulse width (each input) Address and control input setup time DQ low-impedance time from CK / CK DQS low-impedance from CK / CK Mode register set command cycle time OCD drive mode output delay Data output hold time from DQS Rev. 1.0, 2006-11 11172006-DXYK-2PPW 11) 13) 12) MIN. (tCL, tCH) 24 8)18) — tAC.MAX ps 13) 375 — ps 11) 0.6 — tCK 250 — ps 11) 2 × tAC.MIN ps 14) tAC.MIN tAC.MAX tAC.MAX ps 14) 2 — tCK 0 12 ns tHP –tQHS — Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules Parameter Symbol DDR2–533 Unit Note 1)2)3)4)5)6)7) Min. Max. tQHS tREFI tREFI tRFC — 400 ps — 7.8 µs 14)15) — 3.9 µs 16)18) 127.5 — ns 17) tRP tRP tRPRE tRPST tRRD tRP + 1tCK 15 + 1tCK — ns — ns 0.9 1.1 14) 0.40 0.60 tCK tCK 7.5 — ns 14)18) Active bank A to Active bank B command period tRRD 10 — ns 16)22) Internal Read to Precharge command delay tRTP tWPRE tWPST tWR 7.5 — ns 0.25 — 0.40 0.60 tCK tCK 15 — ns tWTR tXARD 7.5 — ns 20) 2 — tCK 21) Exit active power-down mode to Read command (slow exit, lower power) tXARDS 6 – AL — tCK 21) Exit precharge power-down to any valid command (other than NOP or Deselect) tXP 2 — tCK Exit Self-Refresh to non-Read command tXSNR tXSRD tRFC +10 — ns 200 — WR tWR/tCK — tCK tCK Data hold skew factor Average periodic refresh Interval Average periodic refresh Interval Auto-Refresh to Active/Auto-Refresh command period Precharge-All (4 banks) command period Precharge-All (8 banks) command period Read preamble Read postamble Active bank A to Active bank B command period Write preamble Write postamble Write recovery time for write without AutoPrecharge Internal Write to Read command delay Exit power down to any valid command (other than NOP or Deselect) Exit Self-Refresh to Read command Write recovery time for write with AutoPrecharge 14) 19) 22) 1) For details and notes see the relevant Qimonda component data sheet 2) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V. See notes 5)6)7)8) 3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS/ RDQS, input reference level is the crosspoint when in differential strobe mode. 6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 7) The output timing reference voltage level is VTT. 8) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MR. 9) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. 10) For timing definition, refer to the Component data sheet. 11) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate mis-match between DQS / DQS and associated DQ in any given cycle. Rev. 1.0, 2006-11 11172006-DXYK-2PPW 25 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules 12) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for tCL and tCH). 13) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These parameters are verified by design and characterization, but not subject to production test. 14) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C and 95 °C. 15) 0 °C≤ TCASE ≤ 85 °C 16) 85 °C < TCASE ≤ 95 °C 17) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device. 18) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 2 “Ordering Information for RoHS Compliant Products” on Page 4. 19) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 20) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz. 21) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active powerdown mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow power-down exit timing tXARDS has to be satisfied. 22) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MRS. 3.3.3 ODT AC Electrical Characteristics ODT AC Character. & Operating Conditions: Table 18 for DDR2–800 & DDR2–667 and Table 19 for DDR2–533 TABLE 18 ODT AC Character. and Operating Conditions for DDR2-800 and DDR2-667 Symbol tAOND tAON tAONPD tAOFD tAOF tAOFPD tANPD tAXPD Parameter / Condition Values Unit Note Min. Max. ODT turn-on delay 2 2 nCK 1) ODT turn-on tAC.MAX + 0.7 ns 2 tCK + tAC.MAX + 1 ns ns 1)2) ODT turn-on (Power-Down Modes) tAC.MIN tAC.MIN + 2 ns ns 1) ODT turn-off delay 2.5 2.5 nCK 1) ODT turn-off tAC.MAX + 0.6 ns 2.5 tCK + tAC.MAX + 1 ns ns 1)3) ODT turn-off (Power-Down Modes) tAC.MIN tAC.MIN + 2 ns ns 1) ODT to Power Down Mode Entry Latency 3 — nCK 1) 1) ODT Power Down Exit Latency 8 — nCK 1) New units, 'tCK.AVG' and 'nCK', are introduced in DDR2-667 and DDR2-800. Unit 'tCK.AVG' represents the actual tCK.AVG of the input clock under operation. Unit 'nCK' represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2-400 and DDR2-533, 'tCK' is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 × tCK.AVG+ tEPR.2PER(MIN). 2) ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-667/800, tAOND is 2 clock cycles after the clock edge that registered a first ODT HIGH counting the actual input clock edges. 3) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-667/800,if tCK.AVG = 3 ns is assumed, tAOFD= 1.5 ns (0.5 × 3 ns) after the second trailing clock edge counting from the clock edge that registered a first ODT LOW and by counting the actual input clock edge. Rev. 1.0, 2006-11 11172006-DXYK-2PPW 26 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules TABLE 19 ODT AC Character. and Operating Conditions for DDR2-533 Symbol Parameter / Condition Values Min. tAOND tAON tAONPD tAOFD tAOF tAOFPD tANPD tAXPD Unit Note Max. ODT turn-on delay 2 2 tCK ODT turn-on tAC.MAX + 1 ns 2 tCK + tAC.MAX + 1 ns ns ODT turn-on (Power-Down Modes) tAC.MIN tAC.MIN + 2 ns ODT turn-off delay 2.5 2.5 tCK ODT turn-off tAC.MAX + 0.6 ns 2.5 tCK + tAC.MAX + 1 ns ns ODT turn-off (Power-Down Modes) tAC.MIN tAC.MIN + 2 ns ODT to Power Down Mode Entry Latency 3 — ODT Power Down Exit Latency 8 — tCK tCK 1) ns 2) ns 1) ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-400/533, tAOND is 10 ns (= 2 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns. 2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-400/533, tAOFD is 12.5 ns (= 2.5 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns. Rev. 1.0, 2006-11 11172006-DXYK-2PPW 27 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules 3.4 IDD Specifications and Conditions List of Idd Specification Tables: • Table 20 “IDD Measurement Conditions” on Page 28 • Table 21 “Definitions for IDD” on Page 29 • Table 22 “IDD Specification for HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B” on Page 30 TABLE 20 IDD Measurement Conditions Parameter Symbol Note 1)2)3)4)5) Operating Current 0 IDD0 One bank Active - Precharge; tCK = tCK.MIN, tRC = tRC.MIN, tRAS = tRAS.MIN, CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are SWITCHING, Databus inputs are SWITCHING. Operating Current 1 One bank Active - Read - Precharge; IOUT = 0 mA, BL = 4, tCK = tCK.MIN, tRC = tRC.MIN, tRAS = tRAS.MIN, tRCD = tRCD.MIN, AL = 0, CL = CLMIN; CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are SWITCHING, Databus inputs are SWITCHING. IDD1 6) Precharge Standby Current IDD2N All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK.MIN; Other control and address inputs are SWITCHING, Databus inputs are SWITCHING. Precharge Power-Down Current Other control and address inputs are STABLE, Data bus inputs are FLOATING. IDD2P Precharge Quiet Standby Current All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK.MIN; Other control and address inputs are STABLE, Data bus inputs are FLOATING. IDD2Q Active Standby Current Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CLMIN; tCK = tCK.MIN; tRAS = tRAS.MAX, tRP = tRP.MIN; CKE is HIGH, CS is HIGH between valid commands. Address inputs are SWITCHING; Data Bus inputs are SWITCHING; IOUT = 0 mA. IDD3N Active Power-Down Current IDD3P(0) All banks open; tCK = tCK.MIN, CKE is LOW; Other control and address inputs are STABLE, Data bus inputs are FLOATING. MRS A12 bit is set to LOW (Fast Power-down Exit); Active Power-Down Current IDD3P(1) All banks open; tCK = tCK.MIN, CKE is LOW; Other control and address inputs are STABLE, Data bus inputs are FLOATING. MRS A12 bit is set to HIGH (Slow Power-down Exit); Operating Current - Burst Read IDD4R All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CLMIN; tCK = tCKMIN; tRAS = tRASMAX; tRP = tRPMIN; CKE is HIGH, CS is HIGH between valid commands; Address inputs are SWITCHING; Data bus inputs are SWITCHING; IOUT = 0mA. Operating Current - Burst Write All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CLMIN; tCK = tCK.MIN; tRAS = tRAS.MAX., tRP = tRP.MAX; CKE is HIGH, CS is HIGH between valid commands. Address inputs are SWITCHING; Data Bus inputs are SWITCHING; IDD4W Burst Refresh Current tCK = tCK.MIN., Refresh command every tRFC = tRFC.MIN interval, CKE is HIGH, CS is HIGH between valid commands, Other control and address inputs are SWITCHING, Data bus inputs are SWITCHING. IDD5B Rev. 1.0, 2006-11 11172006-DXYK-2PPW 28 6) Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules Parameter Symbol Note 1)2)3)4)5) Distributed Refresh Current tCK = tCK.MIN., Refresh command every tRFC = tREFI interval, CKE is LOW and CS is HIGH between valid commands, Other control and address inputs are SWITCHING, Data bus inputs are SWITCHING. IDD5D Self-Refresh Current IDD6 CKE ≤ 0.2 V; external clock off, CK and CK at 0 V; Other control and address inputs are FLOATING, Data bus inputs are FLOATING. IDD6 current values are guaranteed up to TCASE of 85 °C max. All Bank Interleave Read Current IDD7 All banks are being interleaved at minimum tRC without violating tRRD using a burst length of 4. Control and address bus inputs are STABLE during DESELECTS. Iout = 0 mA. 1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V 2) IDD specifications are tested after the device is properly initialized and IDD parameter are specified with ODT disabled. 3) Definitions for IDD see Table 21 4) For two rank modules: for all active current measurements the other rank is in Precharge Power-Down Mode IDD2P 6) 5) For details and notes see the relevant Qimonda component data sheet 6) IDD1, IDD4R and IDD7 current measurements are defined with the outputs disabled (IOUT = 0 mA). To achieve this on module level the output buffers can be disabled using an EMRS(1) (Extended Mode Register Command) by setting A12 bit to HIGH. TABLE 21 Definitions for IDD Parameter Description LOW VIN ≤ VIL(ac).MAX, HIGH is defined as VIN ≥ VIH(ac).MIN STABLE Inputs are stable at a HIGH or LOW level FLOATING Inputs are VREF = VDDQ /2 SWITCHING Inputs are changing between HIGH and LOW every other clock (once per 2 cycles) for address and control signals, and inputs changing between HIGH and LOW every other data transfer (once per cycle) for DQ signals not including mask or strobes Rev. 1.0, 2006-11 11172006-DXYK-2PPW 29 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules TABLE 22 Product Type HYS64T256022EDL–25F–B HYS64T256022EDL–2.5–B HYS64T256022EDL–3–B HYS64T256022EDL–3S–B HYS64T256022EDL–3.7–B IDD Specification for HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Organization 2 GB 2 GB 2 GB 2 GB 2 GB ×64 ×64 ×64 ×64 ×64 2 Ranks 2 Ranks 2 Ranks 2 Ranks 2 Ranks –25F –2.5 –3 –3S –3.7 1096 1096 976 980 1176 1176 1056 1120 1120 192 IDD0 IDD1 IDD2N IDD2P IDD2Q IDD3N IDD3P_0 (fast) IDD3P_1 (slow) IDD4R IDD4W IDD5B IDD5D IDD6 IDD7 Units Note1) 900 mA 2) 1060 940 mA 2) 1040 1040 880 mA 3) 192 192 190 190 mA 3) 1040 1040 960 960 800 mA 3) 1440 1440 1120 1120 960 mA 3) 768 768 720 720 610 mA 3)4) 240 240 240 240 240 mA 3)5) 1696 1696 1456 1460 1300 mA 2) 1696 1696 1456 1460 1300 mA 2) 1896 1896 1776 1780 1700 mA 2) 208 208 208 210 210 mA 3)6) 128 128 128 128 128 mA 3)6) 2256 2256 1936 1940 1900 mA 1) Calculated values from component data. ODT disabled. IDD1, IDD4R, and IDD7, are defined with the outputs disabled. 2) The other rank is in IDD2P Precharge Power-Down Current mode 3) Both ranks are in the same IDDcurrent mode 4) Fast: MRS(12)=0 5) Slow: MRS(12)=1 6) IDD5D and IDD6 values are for 0°C ≤ TCase ≤ 85°C Rev. 1.0, 2006-11 11172006-DXYK-2PPW 30 2) Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules 4 SPD Codes This chapter lists all hexadecimal byte values stored in the EEPROM of the products described in this data sheet. SPD stands for serial presence detect. All values with XX in the table are module specific bytes which are defined during production. TABLE 23 Product Type HYS64T256022EDL–25F–B HYS64T256022EDL–2.5–B HYS64T256022EDL–3–B HYS64T256022EDL–3S–B HYS64T256022EDL–3.7–B SPD codes for HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Organization 2 GByte 2 GByte 2 GByte 2 GByte 2 GByte ×64 ×64 ×64 ×64 ×64 2 Ranks (×8) 2 Ranks (×8) 2 Ranks (×8) 2 Ranks (×8) 2 Ranks (×8) Label Code PC2– 6400S– 555 PC2– 6400S– 666 PC2– 5300S– 444 PC2– 5300S– 555 PC2– 4200S– 444 JEDEC SPD Revision Rev. 1.2 Rev. 1.2 Rev. 1.2 Rev. 1.2 Rev. 1.2 Byte# Description HEX HEX HEX HEX HEX 0 Programmed SPD Bytes in EEPROM 80 80 80 80 80 1 Total number of Bytes in EEPROM 08 08 08 08 08 2 Memory Type (DDR2) 08 08 08 08 08 3 Number of Row Addresses 0E 0E 0E 0E 0E 4 Number of Column Addresses 0A 0A 0A 0A 0A 5 DIMM Rank and Stacking Information 71 71 71 71 71 6 Data Width 40 40 40 40 40 7 Not used 00 00 00 00 00 8 Interface Voltage Level 05 05 05 05 05 9 tCK @ CLMAX (Byte 18) [ns] tAC SDRAM @ CLMAX (Byte 18) [ns] 25 25 30 30 3D 10 40 40 45 45 50 11 Error Correction Support (non-ECC, ECC) 00 00 00 00 00 12 Refresh Rate and Type 82 82 82 82 82 13 Primary SDRAM Width 08 08 08 08 08 14 Error Checking SDRAM Width 00 00 00 00 00 Rev. 1.0, 2006-11 11172006-DXYK-2PPW 31 Internet Data Sheet Product Type HYS64T256022EDL–25F–B HYS64T256022EDL–2.5–B HYS64T256022EDL–3–B HYS64T256022EDL–3S–B HYS64T256022EDL–3.7–B HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules Organization 2 GByte 2 GByte 2 GByte 2 GByte 2 GByte ×64 ×64 ×64 ×64 ×64 2 Ranks (×8) 2 Ranks (×8) 2 Ranks (×8) 2 Ranks (×8) 2 Ranks (×8) Label Code PC2– 6400S– 555 PC2– 6400S– 666 PC2– 5300S– 444 PC2– 5300S– 555 PC2– 4200S– 444 JEDEC SPD Revision Rev. 1.2 Rev. 1.2 Rev. 1.2 Rev. 1.2 Rev. 1.2 Byte# Description HEX HEX HEX HEX HEX 15 Not used 00 00 00 00 00 16 Burst Length Supported 0C 0C 0C 0C 0C 17 Number of Banks on SDRAM Device 08 08 08 08 08 18 Supported CAS Latencies 70 70 38 38 38 19 DIMM Mechanical Characteristics 01 01 01 01 01 20 DIMM Type Information 04 04 04 04 04 21 DIMM Attributes 00 00 00 00 00 22 Component Attributes 07 07 07 07 07 23 25 30 30 3D 3D 30 tCK @ CLMAX -1 (Byte 18) [ns] tAC SDRAM @ CLMAX -1 [ns] tCK @ CLMAX -2 (Byte 18) [ns] tAC SDRAM @ CLMAX -2 [ns] tRP.MIN [ns] tRRD.MIN [ns] tRCD.MIN [ns] tRAS.MIN [ns] 2D 2D 2D 2D 2D 31 Module Density per Rank 01 01 01 01 01 32 tAS.MIN and tCS.MIN [ns] tAH.MIN and tCH.MIN [ns] tDS.MIN [ns] tDH.MIN [ns] tWR.MIN [ns] tWTR.MIN [ns] 24 25 26 27 28 29 33 34 35 36 37 Rev. 1.0, 2006-11 11172006-DXYK-2PPW 32 40 45 45 50 50 3D 3D 50 50 50 50 50 60 60 60 32 3C 30 3C 3C 1E 1E 1E 1E 1E 32 3C 30 3C 3C 17 17 20 20 25 25 25 27 27 37 05 05 10 10 10 12 12 17 17 22 3C 3C 3C 3C 3C 1E 1E 1E 1E 1E Internet Data Sheet Product Type HYS64T256022EDL–25F–B HYS64T256022EDL–2.5–B HYS64T256022EDL–3–B HYS64T256022EDL–3S–B HYS64T256022EDL–3.7–B HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules Organization 2 GByte 2 GByte 2 GByte 2 GByte 2 GByte ×64 ×64 ×64 ×64 ×64 2 Ranks (×8) 2 Ranks (×8) 2 Ranks (×8) 2 Ranks (×8) 2 Ranks (×8) Label Code PC2– 6400S– 555 PC2– 6400S– 666 PC2– 5300S– 444 PC2– 5300S– 555 PC2– 4200S– 444 JEDEC SPD Revision Rev. 1.2 Rev. 1.2 Rev. 1.2 Rev. 1.2 Rev. 1.2 Byte# Description HEX HEX HEX HEX HEX 38 tRTP.MIN [ns] 1E 1E 1E 1E 1E 39 Analysis Characteristics 00 00 00 00 00 40 06 06 06 06 06 39 3C 39 3C 3C 7F 7F 7F 7F 7F 80 80 80 80 80 14 14 18 18 1E 45 tRC and tRFC Extension tRC.MIN [ns] tRFC.MIN [ns] tCK.MAX [ns] tDQSQ.MAX [ns] tQHS.MAX [ns] 1E 1E 22 22 28 46 PLL Relock Time 00 00 00 00 00 41 42 43 44 47 TCASE.MAX Delta / ∆T4R4W Delta 57 50 50 50 50 48 Psi(T-A) DRAM 60 00 00 00 00 49 ∆T0 (DT0) 5F 00 00 00 00 50 ∆T2N (DT2N, UDIMM) or ∆T2Q (DT2Q, RDIMM) 40 00 00 00 00 51 ∆T2P (DT2P) 2B 00 00 00 00 52 ∆T3N (DT3N) 2E 00 00 00 00 53 ∆T3P.fast (DT3P fast) 49 00 00 00 00 54 ∆T3P.slow (DT3P slow) 21 00 00 00 00 55 ∆T4R (DT4R) / ∆T4R4W Sign (DT4R4W) 4E 00 00 00 00 56 ∆T5B (DT5B) 25 00 00 00 00 57 ∆T7 (DT7) 39 00 00 00 00 58 Psi(ca) PLL 00 00 00 00 00 59 Psi(ca) REG 00 00 00 00 00 60 ∆TPLL (DTPLL) 00 00 00 00 00 Rev. 1.0, 2006-11 11172006-DXYK-2PPW 33 Internet Data Sheet Product Type HYS64T256022EDL–25F–B HYS64T256022EDL–2.5–B HYS64T256022EDL–3–B HYS64T256022EDL–3S–B HYS64T256022EDL–3.7–B HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules Organization 2 GByte 2 GByte 2 GByte 2 GByte 2 GByte ×64 ×64 ×64 ×64 ×64 2 Ranks (×8) 2 Ranks (×8) 2 Ranks (×8) 2 Ranks (×8) 2 Ranks (×8) Label Code PC2– 6400S– 555 PC2– 6400S– 666 PC2– 5300S– 444 PC2– 5300S– 555 PC2– 4200S– 444 JEDEC SPD Revision Rev. 1.2 Rev. 1.2 Rev. 1.2 Rev. 1.2 Rev. 1.2 Byte# Description HEX HEX HEX HEX HEX 61 ∆TREG (DTREG) / Toggle Rate 00 00 00 00 00 62 SPD Revision 12 12 12 12 12 63 Checksum of Bytes 0-62 91 43 46 79 BD 64 Manufacturer’s JEDEC ID Code (1) 7F 7F 7F 7F 7F 65 Manufacturer’s JEDEC ID Code (2) 7F 7F 7F 7F 7F 66 Manufacturer’s JEDEC ID Code (3) 7F 7F 7F 7F 7F 67 Manufacturer’s JEDEC ID Code (4) 7F 7F 7F 7F 7F 68 Manufacturer’s JEDEC ID Code (5) 7F 7F 7F 7F 7F 69 Manufacturer’s JEDEC ID Code (6) 51 51 51 51 51 70 Manufacturer’s JEDEC ID Code (7) 00 00 00 00 00 71 Manufacturer’s JEDEC ID Code (8) 00 00 00 00 00 72 Module Manufacturer Location xx xx xx xx xx 73 Product Type, Char 1 36 36 36 36 36 74 Product Type, Char 2 34 34 34 34 34 75 Product Type, Char 3 54 54 54 54 54 76 Product Type, Char 4 32 32 32 32 32 77 Product Type, Char 5 35 35 35 35 35 78 Product Type, Char 6 36 36 36 36 36 79 Product Type, Char 7 30 30 30 30 30 80 Product Type, Char 8 32 32 32 32 32 81 Product Type, Char 9 32 32 32 32 32 82 Product Type, Char 10 45 45 45 45 45 83 Product Type, Char 11 44 44 44 44 44 Rev. 1.0, 2006-11 11172006-DXYK-2PPW 34 Internet Data Sheet Product Type HYS64T256022EDL–25F–B HYS64T256022EDL–2.5–B HYS64T256022EDL–3–B HYS64T256022EDL–3S–B HYS64T256022EDL–3.7–B HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules Organization 2 GByte 2 GByte 2 GByte 2 GByte 2 GByte ×64 ×64 ×64 ×64 ×64 2 Ranks (×8) 2 Ranks (×8) 2 Ranks (×8) 2 Ranks (×8) 2 Ranks (×8) Label Code PC2– 6400S– 555 PC2– 6400S– 666 PC2– 5300S– 444 PC2– 5300S– 555 PC2– 4200S– 444 JEDEC SPD Revision Rev. 1.2 Rev. 1.2 Rev. 1.2 Rev. 1.2 Rev. 1.2 Byte# Description HEX HEX HEX HEX HEX 84 Product Type, Char 12 4C 4C 4C 4C 4C 85 Product Type, Char 13 32 32 33 33 33 86 Product Type, Char 14 35 2E 42 53 2E 87 Product Type, Char 15 46 35 20 42 37 88 Product Type, Char 16 42 42 20 20 42 89 Product Type, Char 17 20 20 20 20 20 90 Product Type, Char 18 20 20 20 20 20 91 Module Revision Code 0x 3x 3x 3x 3x 92 Test Program Revision Code xx xx xx xx xx 93 Module Manufacturing Date Year xx xx xx xx xx 94 Module Manufacturing Date Week xx xx xx xx xx 95 - 98 Module Serial Number xx xx xx xx xx 99 - 127 Not used 00 00 00 00 00 128 255 FF FF FF FF FF Blank for customer use Rev. 1.0, 2006-11 11172006-DXYK-2PPW 35 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules 5 Package Outlines FIGURE 5 Package Outline Raw Card D L-DIM-200-33 0$; 63' 7KHUPDO 6HQVRU RSWLRQDO 0,1 'HWDLO RI FRQWDFWV */' Notes 1. Drawing according to ISO 8015 2. Dimensions in mm 3. General tolerances +/- 0.15 Rev. 1.0, 2006-11 11172006-DXYK-2PPW 36 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules 6 Product Type Nomenclature Qimonda’s nomenclature uses simple coding combined with some proprietary coding. Table 24 provides examples for module and component product type number as well as the field number. The detailed field description together with possible values and coding explanation is listed for modules in Table 25 and for components in Table 26. TABLE 24 Nomenclature Fields and Examples Example for Field Number 1 2 3 4 5 6 7 8 9 10 11 Micro-DIMM HYS 64 T 64/128 0 2 0 K M –5 –A DDR2 DRAM HYB 18 T 512/1G 16 0 A C –5 TABLE 25 DDR2 DIMM Nomenclature Field Description Values Coding 1 Qimonda Module Prefix HYS Constant 2 Module Data Width [bit] 64 Non-ECC 72 ECC 3 DRAM Technology T DDR2 4 Memory Density per I/O [Mbit]; Module Density1) 32 256 MByte 64 512 MByte 128 1 GByte 256 2 GByte 512 4 GByte 5 Raw Card Generation 0 .. 9 Look up table 6 Number of Module Ranks 0, 2, 4 1, 2, 4 7 Product Variations 0 .. 9 Look up table 8 Package, Lead-Free Status A .. Z Look up table 9 Module Type D SO-DIMM M Micro-DIMM R Registered U Unbuffered F Fully Buffered Rev. 1.0, 2006-11 11172006-DXYK-2PPW 37 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules Field Description Values Coding 10 Speed Grade –2.5F PC2–6400 5–5–5 –2.5 PC2–6400 6–6–6 11 Die Revision –3 PC2–5300 4–4–4 –3S PC2–5300 5–5–5 –3.7 PC2–4200 4–4–4 –5 PC2–3200 3–3–3 –A First –B Second 1) Multiplying “Memory Density per I/O” with “Module Data Width” and dividing by 8 for Non-ECC and 9 for ECC modules gives the overall module memory density in MBytes as listed in column “Coding”. TABLE 26 DDR2 DRAM Nomenclature Field Description Values Coding 1 Qimonda Component Prefix HYB Constant 2 Interface Voltage [V] 18 SSTL_18 3 DRAM Technology T DDR2 4 Component Density [Mbit] 256 256 Mbit 512 512 Mbit 1G 1 Gbit 2G 2 Gbit 40 ×4 80 ×8 16 ×16 5+6 Number of I/Os 7 Product Variations 0 .. 9 Look up table 8 Die Revision A First B Second 9 10 Package, Lead-Free Status Speed Grade Rev. 1.0, 2006-11 11172006-DXYK-2PPW C FBGA, lead-containing F FBGA, lead-free –25F DDR2-800 5-5-5 –2.5 DDR2-800 6-6-6 –3 DDR2-667 4-4-4 –3S DDR2-667 5-5-5 –3.7 DDR2-533 4-4-4 –5 DDR2-400 3-3-3 38 Internet Data Sheet HYS64T256022EDL–[25F/2.5/3/3S/3.7]–B Small Outline DDR2 SDRAM Modules Table of Contents 1 1.1 1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 3.1 3.2 3.3 3.3.1 3.3.2 3.3.3 3.4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Speed Grade Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Component AC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ODT AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDD Specifications and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 SPD Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6 Product Type Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 12 12 13 14 14 17 26 28 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Rev. 1.0, 2006-11 11172006-DXYK-2PPW 39 Internet Data Sheet Edition 2006-11 Published by Qimonda AG Gustav-Heinemann-Ring 212 D-81739 München, Germany © Qimonda AG 2006. All Rights Reserved. Legal Disclaimer The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office. Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Qimonda Office. Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. www.qimonda.com