QIMONDA HYB18TC256160AF

February 2007
HYB18T C25616 0 AF
256-Mbit Double-Data-Rate-Two SDRAM
DDR2 SDRAM
RoHS Compliant Products
Internet Data Sheet
Rev. 1.1
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
HYB18TC256160AF
Revision History: 2007-02, Rev. 1.1
Page
Subjects (major changes since last revision)
All
Adapted internet edition
All
Various editorial changes
Previous Revision: 2005-07, Rev. 1.0
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
[email protected]
qag_techdoc_rev400 / 3.2 QAG / 2006-07-21
03062006-H3V1-XJT4
2
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
1
Overview
This chapter gives an overview of the 256-Mbit Double-Data-Rate-Two SDRAM product family and describes its main
characteristics.
1.1
Features
The 256-Mbit Double-Data-Rate-Two SDRAM offers the following key features:
• Data masks (DM) for write data
• 1.8 V ± 0.1 V Power Supply 1.8 V ± 0.1 V (SSTL_18)
compatible I/O
• Posted CAS by programmable additive latency for better
• DRAM organizations with 4, 8 and 16 data in/outputs
command and data bus efficiency
• Double-Data-Rate-Two architecture: two data transfers
• Off-Chip-Driver impedance adjustment (OCD) and Onper clock cycle four internal banks for concurrent operation
Die-Termination (ODT) for better signal quality
• CAS Latency: 3, 4, 5
• Auto-Precharge operation for read and write bursts
• Burst Length: 4 and 8
• Auto-Refresh, Self-Refresh and power saving Power• Differential clock inputs (CK and CK)
Down modes
• Bi-directional, differential data strobes (DQS and DQS) are
• Average Refresh Period 7.8 µs at a TCASE lower than
transmitted / received with data. Edge aligned with read
85 °C, 3.9 µs between 85 °C and 95 °C
data and center-aligned with write data
• High Temperature Self Refresh Mode is supported
• DLL aligns DQ and DQS transitions with clock
(EMR2 A7)
• DQS can be disabled for single-ended data strobe
• Full and reduced Strength Data-Output Drivers
operation
• 1K page size
• Commands entered on each positive clock edge, data and
• Package: PG-TFBGA-84
data mask are referenced to both edges of DQS
• RoHS Compliant Products1)
TABLE 1
Performance table for –3S
Product Type Speed Code
–3S
Unit
Speed Grade
DDR2–667D 5–5–5
—
333
MHz
266
MHz
200
MHz
15
ns
15
ns
45
ns
60
ns
Max. Clock Frequency
@CL5
@CL4
@CL3
Min. RAS-CAS-Delay
Min. Row Precharge Time
Min. Row Active Time
Min. Row Cycle Time
fCK5
fCK4
fCK3
tRCD
tRP
tRAS
tRC
1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined
in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury,
lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
3
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
TABLE 2
Performance table for –3.7
Product Type Speed Code
–3.7
Unit
Speed Grade
DDR2–533C 4–4–4
—
266
MHz
266
MHz
Max. Clock Frequency
@CL5
@CL4
@CL3
Min. RAS-CAS-Delay
Min. Row Precharge Time
Min. Row Active Time
Min. Row Cycle Time
fCK5
fCK4
fCK3
tRCD
tRP
tRAS
tRC
200
MHz
15
ns
15
ns
45
ns
60
ns
TABLE 3
Performance Table for –5
Product Type Speed Code
–5
Units
Speed Grade
DDR2–400B 3–3–3
—
200
MHz
200
MHz
200
MHz
15
ns
15
ns
40
ns
55
ns
Max. Clock Frequency
fCK5
fCK4
fCK3
tRCD
tRP
tRAS
tRC
@CL5
@CL4
@CL3
Min. RAS-CAS-Delay
Min. Row Precharge Time
Min. Row Active Time
Min. Row Cycle Time
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
4
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
1.2
Description
All of the control and address inputs are synchronized with a
pair of externally supplied differential clocks. Inputs are
latched at the cross point of differential clocks (CK rising and
CK falling). All I/Os are synchronized with a single ended
DQS or differential DQS-DQS pair in a source synchronous
fashion.
A 15 bit address bus is used to convey row, column and bank
address information in a RAS-CAS multiplexing style.
The DDR2 device operates with a 1.8 V ± 0.1 V power
supply. An Auto-Refresh and Self-Refresh mode is provided
along with various power-saving power-down modes.
The functionality described and the timing specifications
included in this data sheet are for the DLL Enabled mode of
operation.
The DDR2 SDRAM is available in PG-TFBGA-84 package.
The 256-Mbit DDR2 DRAM is a high-speed Double-DataRate-Two CMOS Synchronous DRAM device. The DRAM
contains 268,435,456 bits and internally configured as a
quad-bank DRAM. The 256-Mbit device is organized as either
16 Mbit ×4 I/O ×4 banks, 8 Mbit ×8 I/O ×4 banks or 4 Mbit ×16
I/O ×4 banks chip. These synchronous devices achieve high
speed transfer rates starting at 400 Mb/sec/pin for general
applications. See tables for performance figures.
The device is designed to comply with all DDR2 DRAM key
features:
1. Posted CAS with additive latency,
2. Write latency = read latency - 1,
3. Normal and weak strength data-output driver,
4. Off-Chip Driver (OCD) impedance adjustment
5. On-Die Termination (ODT) function.
TABLE 4
Ordering Information for RoHS Compliant Products
Part Number
Org. Speed
CAS1)RCD2)RP3) Latencies
Clock(MHz) Package
Note
HYB18TC256160AF–3S
×16
DDR2–667
5–5–5
333
PG-TFBGA-84
4)
HYB18TC256160AF–3.7
×16
DDR2–533
4–4–4
266
PG-TFBGA-84
HYB18TC256160AF–5
×16
DDR2–400
3–3–3
200
PG-TFBGA-84
1)
2)
3)
4)
CAS: Column Adress Strobe
RCD: Row Column Delay
RP: Row Precharge
RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined
in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury,
lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.
Note: For product nomenclature see Chapter 9 of this data sheet
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
5
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
2
Configuration
The chip configuration of a DDR2 SDRAM is listed by function in Table 5. The abbreviations used in the Ball# and Buffer Type
columns are explained in Table 6 and Table 7 respectively. The ball numbering for the FBGA package is depicted in Figure 1
for ×16 components.
TABLE 5
Chip Configuration
Ball#
Name
Ball
Type
Buffer
Type
Function
Clock Signal CK, Complementary Clock Signal CK
Clock Signals ×16 organization
J8
CK
I
SSTL
K8
CK
I
SSTL
K2
CKE
I
SSTL
Clock Enable
Row Address Strobe (RAS), Column Address Strobe (CAS), Write
Enable (WE)
Control Signals ×16 organization
K7
RAS
I
SSTL
L7
CAS
I
SSTL
K3
WE
I
SSTL
L8
CS
I
SSTL
Chip Select
Bank Address Bus 1:0
Address Signals ×16 organization
L2
BA0
I
SSTL
L3
BA1
I
SSTL
L1
NC
—
—
M8
A0
I
SSTL
M3
A1
I
SSTL
M7
A2
I
SSTL
N2
A3
I
SSTL
N8
A4
I
SSTL
N3
A5
I
SSTL
N7
A6
I
SSTL
P2
A7
I
SSTL
P8
A8
I
SSTL
P3
A9
I
SSTL
M2
A10
I
SSTL
AP
I
SSTL
P7
A11
I
SSTL
R2
A12
I
SSTL
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
Address Signal 12:0, Address Signal 10/Autoprecharge
6
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
Ball#
Name
Ball
Type
Buffer
Type
Function
Data Signal 15:0
Data Signals ×16 organization
G8
DQ0
I/O
SSTL
G2
DQ1
I/O
SSTL
H7
DQ2
I/O
SSTL
H3
DQ3
I/O
SSTL
H1
DQ4
I/O
SSTL
H9
DQ5
I/O
SSTL
F1
DQ6
I/O
SSTL
F9
DQ7
I/O
SSTL
C8
DQ8
I/O
SSTL
C2
DQ9
I/O
SSTL
D7
DQ10
I/O
SSTL
D3
DQ11
I/O
SSTL
D1
DQ12
I/O
SSTL
D9
DQ13
I/O
SSTL
B1
DQ14
I/O
SSTL
B9
DQ15
I/O
SSTL
Data Strobe ×16 organization
B7
UDQS
I/O
SSTL
A8
UDQS
I/O
SSTL
F7
LDQS
I/O
SSTL
E8
LDQS
I/O
SSTL
Data Strobe Upper Byte
Data Strobe Lower Byte
Data Mask ×16 organization
B3
UDM
I
SSTL
F3
LDM
I
SSTL
Data Mask Upper/Lower Byte
Power Supplies ×16 organization
A9,C1,C3,C7,
C9
VDDQ
PWR
—
I/O Driver Power Supply
A1
VDD
VSSQ
PWR
—
Power Supply
PWR
—
I/O Driver Power Supply
VSS
PWR
—
Power Supply
A7,B2,B8,D2,
D8
A3,E3
Power Supplies ×16 organization
VREF
E9, G1, G3, G7, VDDQ
AI
—
I/O Reference Voltage
PWR
—
I/O Driver Power Supply
VDDL
E1, J9, M9, R1 VDD
E7, F2, F8, H2, VSSQ
PWR
—
Power Supply
PWR
—
Power Supply
PWR
—
I/O Driver Power Supply
PWR
—
Power Supply
J2
G9
J1
H8
J7
VSSDL
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
7
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
Ball#
Name
A3, E3, J3, N1, VSS
P9
Ball
Type
Buffer
Type
Function
PWR
—
Power Supply
—
Not Connected
SSTL
On-Die Termination Control
Not Connected ×16 organization
A2, E2, L1, R3, NC
R7, R8
NC
Other Balls ×16 organization
K9
ODT
I
TABLE 6
Abbreviations for Ball Type
Abbreviation
Description
I
Standard input-only ball. Digital levels.
O
Output. Digital levels.
I/O
I/O is a bidirectional input/output signal.
AI
Input. Analog levels.
PWR
Power
GND
Ground
NC
Not Connected
TABLE 7
Abbreviations for Buffer Type
Abbreviation
Description
SSTL
Serial Stub Terminated Logic (SSTL_18)
LV-CMOS
Low Voltage CMOS
CMOS
CMOS Levels
OD
Open Drain. The corresponding ball has 2 operational states, active low and tristate, and
allows multiple devices to share as a wire-OR.
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
8
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
FIGURE 1
Chip Configuration for ×16 components, PG-TFBGA-84 (top view)
$
9664
8'46
9''4
8'0
%
8'46
9664
'4
'4
9''4
&
9''4
'4
9''4
'4
9664
'4
'
'4
9664
'4
9''
1&
966
(
9664
/'46
9''4
'4
9664
/'0
)
/'46
9664
'4
9''4
'4
9''4
*
9''4
'4
9''4
'4
9664
'4
+
'4
9664
'4
9''/
95()
966
-
966
'/
&.
9''
&.(
:(
.
5$6
&.
2'7
%$
%$
/
&$6
&6
$
$3
$
0
$
$
$
$
1
$
$
$
$
3
$
$
$
1&
5
1&
1&
9''
1&
966
'4
9664
9''4
1&
966
9''
9''
966
0337
Notes
2. LDM is the data mask signal for DQ[7:0], UDM is the data
mask signal for DQ[15:8]
3. VDDL and VSSDL are power and ground for the DLL. VDDL is
connected to VDD on the device. VDD, VDDQ, VSSDL, VSS,
and VSSQ are isolated on the device.
1. UDQS/UDQS is data strobe for DQ[15:8], LDQS/LDQS is
data strobe for DQ[7:0]
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
9
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
TABLE 8
DDR2 Addressing for ×16 Organization
Configuration
16Mb × 161)
Note
Bank Address
BA[1:0]
—
Number of Banks
4
—
Auto-Precharge
A10 / AP
—
Row Address
A[12:0]
—
Column Address
A[8:0]
—
Number of Column Address Bits
9
2)
Number of I/Os
16
—
Page Size [Bytes]
1024 (1K)
3)
1) Referred to as ’org’
2) Referred to as ’colbits’
3) PageSize = 2colbits × org/8 [Bytes]
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
10
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
3
Functional Description
%$ %$ %$ $
UHJDGGU
$
$
$
$
$
$
$
$
$
$
$
$
3'
:5
'//
70
&/
%7
%/
Z
Z
Z
Z
Z
Z
Z
$
03%7
TABLE 9
Mode Register Definition (BA[2:0] = 000B)
Field
Bits
Type1)
Description
BA2
16
reg. addr.
Bank Address [2]
Note: BA2 not available on 256 Mbit and 512 Mbit components
0B
BA2 Bank Address
BA1
15
Bank Address [1]
BA1 Bank Address
0B
BA0
14
Bank Address [0]
0B
BA0 Bank Address
A13
13
Address Bus [13]
Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration
0B
A13 Address bit 13
PD
12
w
Active Power-Down Mode Select
0B
PD Fast exit
1B
PD Slow exit
WR
[11:9]
w
Write Recovery 2)
Note: All other bit combinations are illegal.
001B
010B
011B
100B
101B
WR 2
WR 3
WR 4
WR 5
WR 6
DLL
8
w
DLL Reset
0B
DLL No
1B
DLL Yes
TM
7
w
Test Mode
0B
TM Normal Mode
1B
TM Vendor specific test mode
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
11
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
Field
Bits
Type1)
Description
CL
[6:4]
w
CAS Latency
Note: All other bit combinations are illegal.
011B
100B
101B
110B
111B
CL 3
CL 4
CL 5
CL 6
CL 7
BT
3
w
Burst Type
0B
BT Sequential
BT Interleaved
1B
BL
[2:0]
w
Burst Length
Note: All other bit combinations are illegal.
010B BL 4
011B BL 8
1) w = write only register bits
2) Number of clock cycles for write recovery during auto-precharge. WR in clock cycles is calculated by dividing tWR (in ns) by tCK (in ns) and
rounding up to the next integer: WR [cycles] ≥ tWR (ns) / tCK (ns). The mode register must be programmed to fulfill the minimum requirement
for the analogue tWR timing WRMIN is determined by tCK.MAX and WRMAX is determined by tCK.MIN.
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
12
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
%$ %$ %$ $ $ $
$
$
$
$
$
$
$
$
$
$
$
6 '46
4RII 5'4
2&'
3URJUDP
5WW
$/
5WW
',&
'//
Z
Z
Z
Z
Z
Z
Z
UHJ
D
GGU
Z
03%7
TABLE 10
Extended Mode Register Definition (BA[2:0] = 001B)
1)
Field
Bits
Type
Description
BA2
16
reg. addr.
BA1
15
Bank Address [1]
BA1 Bank Address
0B
BA0
14
Bank Address [0]
1B
BA0 Bank Address
A13
13
w
Qoff
12
w
Output Disable
0B
QOff Output buffers enabled
1B
QOff Output buffers disabled
RDQS
11
w
Read Data Strobe Output (RDQS, RDQS)
0B
RDQS Disable
1B
RDQS Enable
DQS
10
w
Complement Data Strobe (DQS Output)
0B
DQS Enable
1B
DQS Disable
OCD
[9:7]
Program
w
Off-Chip Driver Calibration Program
000B OCD OCD calibration mode exit, maintain setting
001B OCD Drive (1)
010B OCD Drive (0)
100B OCD Adjust mode
111B OCD OCD calibration default
AL
w
Additive Latency
Note: All other bit combinations are illegal.
Bank Address [2]
Note: BA2 not available on 256 Mbit and 512 Mbit components
0B
Address Bus [13]
Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration
0B
[5:3]
000B
001B
010B
011B
100B
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
BA2 Bank Address
A13 Address bit 13
AL 0
AL 1
AL 2
AL 3
AL 4
13
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
Field
Bits
Type1)
Description
RTT
6,2
w
Nominal Termination Resistance of ODT
Note: See Table 21 “ODT DC Electrical Characteristics” on Page 21
00B
01B
10B
11B
RTT ∞ (ODT disabled)
RTT 75 Ohm
RTT 150 Ohm
RTT 50 Ohm
DIC
1
w
Off-chip Driver Impedance Control
0B
DIC Full (Driver Size = 100%)
1B
DIC Reduced
DLL
0
w
DLL Enable
DLL Enable
0B
DLL Disable
1B
1) w = write only register bits
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
14
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
%$
%$
%$
$
$
$
$
$
$
$
$
65)
$
$
$
'&&
UHJDGGU
$
$
$
3$65
03%7
TABLE 11
EMRS(2) Programming Extended Mode Register Definition (BA[2:0]=010B)
Field
Bits
Type1)
Description
BA2
16
w
Bank Address
Note: BA2 is not available on 256 Mbit and 512 Mbit components
0B
BA2 Bank Address
BA
[15:14]
w
Bank Adress
00B BA MRS
01B BA EMRS(1)
10B BA EMRS(2)
11B BA EMRS(3): Reserved
A
[13:8]
w
Address Bus
Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration
000000B
A Address bits
SRF
7
w
Address Bus, High Temperature Self Refresh Rate for TCASE > 85°C
0B
A7 disable
1B
A7 enable 2)
A
[6:4]
w
Address Bus
000B A Address bits
DCC
3
w
Address Bus, Duty Cycle Correction (DCC)
A3 DCC disabled
0B
1B
A3 DCC enabled
Partial Self Refresh for 4 banks
PASR [2:0]
w
Address Bus, Partial Array Self Refresh for 4 Banks 3)
Note: Only for 256 Mbit and 512 Mbit components
000B
001B
010B
011B
100B
101B
110B
111B
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
PASR0 Full Array
PASR1 Half Array (BA[1:0]=00, 01)
PASR2 Quarter Array (BA[1:0]=00)
PASR3 Not defined
PASR4 3/4 array (BA[1:0]=01, 10, 11)
PASR5 Half array (BA[1:0]=10, 11)
PASR6 Quarter array (BA[1:0]=11)
PASR7 Not defined
15
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
Field
Bits
Type1)
Description
Partial Self Refresh for 8 banks
PASR [2:0]
w
Address Bus, Partial Array Self Refresh for 8 Banks 3)
Note: Only for 1G and 2G components
000B
001B
010B
011B
100B
101B
110B
111B
PASR0 Full Array
PASR1 Half Array (BA[2:0]=000, 001, 010 & 011)
PASR2 Quarter Array (BA[2:0]=000, 001)
PASR3 1/8 array (BA[2:0] = 000)
PASR4 3/4 array (BA[2:0]= 010, 011, 100, 101, 110 & 111)
PASR5 Half array (BA[2:0]=100, 101, 110 & 111)
PASR6 Quarter array (BA[2:0]= 110 & 111)
PASR7 1/8 array(BA[2:0]=111)
1) w = write only
2) When DRAM is operated at 85°C ≤ TCase ≤ 95°C the extended self refresh rate must be enabled by setting bit A7 to "1" before the self
refresh mode can be entered.
3) If PASR (Partial Array Self Refresh) is enabled, data located in areas of the array beyond the specified location will be lost if self refresh
is entered. Data integrity will be maintained if tREF conditions are met and no Self Refresh command is issued
%$ %$ %$ $ $ $
$
$
$
$
$
$
$
$
$
$
$
UHJD
GG
U
03%7
TABLE 12
EMR(3) Programming Extended Mode Register Definition( BA[2:0]=011B)
Field
Bits
Type1)
Description
BA2
16
reg.addr
Bank Address [2]
Note: BA2 is not available on 256 Mbit and 512Mbit components
0B
BA2 Bank Address
BA1
15
Bank Adress [1]
BA1 Bank Address
1B
BA0
14
Bank Adress [0]
1B
BA0 Bank Address
A
[13:0]
w
Address Bus [13:0]
Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration
00000000000000B A [13:0] Address bits
1) w = write only
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
16
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
ODT Truth Tables
The ODT Truth Table shows which of the input pins are
terminated depending on the state of address bit A10 and
A11 in the EMRS(1). To activate termination of any of these
pins, the ODT function has to be enabled in the EMRS(1) by
address bits A6 and A2.
TABLE 13
ODT Truth Table
Input Pin
EMRS(1) Address Bit A10
EMRS(1) Address Bit A11
×16 Components
DQ[7:0]
X
DQ[15:8]
X
LDQS
X
LDQS
0
UDQS
X
UDQS
0
LDM
X
UDM
X
X
X
Note: X = don’t care; 0 = bit set to low; 1 = bit set to high
TABLE 14
Burst Length and Sequence
Burst Length
Starting Address
(A2 A1 A0)
Sequential Addressing
(decimal)
Interleave Addressing
(decimal)
4
×00
0, 1, 2, 3
0, 1, 2, 3
×01
1, 2, 3, 0
1, 0, 3, 2
×1 0
2, 3, 0, 1
2, 3, 0, 1
×1 1
3, 0, 1, 2
3, 2, 1, 0
000
0, 1, 2, 3, 4, 5, 6, 7
0, 1, 2, 3, 4, 5, 6, 7
001
1, 2, 3, 0, 5, 6, 7, 4
1, 0, 3, 2, 5, 4, 7, 6
010
2, 3, 0, 1, 6, 7, 4, 5
2, 3, 0, 1, 6, 7, 4, 5
011
3, 0, 1, 2, 7, 4, 5, 6
3, 2, 1, 0, 7, 6, 5, 4
100
4, 5, 6, 7, 0, 1, 2, 3
4, 5, 6, 7, 0, 1, 2, 3
101
5, 6, 7, 4, 1, 2, 3, 0
5, 4, 7, 6, 1, 0, 3, 2
110
6, 7, 4, 5, 2, 3, 0, 1
6, 7, 4, 5, 2, 3, 0, 1
111
7, 4, 5, 6, 3, 0, 1, 2
7, 6, 5, 4, 3, 2, 1, 0
8
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
17
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
4
Truth Tables
This chapter describes the truth tables.
TABLE 15
Command Truth Table
Function
CKE
CS RAS
CAS WE BA0
BA1
A[13:11]
A10 A[9:0]
Note1)2)3)
Previous
Cycle
Current
Cycle
(Extended) Mode
Register Set
H
H
L
L
L
L
BA
OP Code
Auto-Refresh
H
H
L
L
L
H
X
X
X
X
4)
Self-Refresh Entry
H
L
L
L
L
H
X
X
X
X
4)7)
Self-Refresh Exit
L
H
H
X
X
X
X
X
X
X
4)7)8)
L
H
H
H
4)5)6)
Single Bank Precharge
H
H
L
L
H
L
BA
X
L
X
4)5)
Precharge all Banks
H
H
L
L
H
L
X
X
H
X
4)5)
Bank Activate
H
H
L
L
H
H
BA
Row Address
Write
H
H
L
H
L
L
BA
Column
L
Column
4)5)9)
Write with AutoPrecharge
H
H
L
H
L
L
BA
Column
H
Column
4)5)9)
Read
H
H
L
H
L
H
BA
Column
L
Column
4)5)9)
Read with AutoPrecharge
H
H
L
H
L
H
BA
Column
H
Column
4)5)9)
No Operation
H
X
L
H
H
H
X
X
X
X
4)
Device Deselect
H
X
H
X
X
X
X
X
X
X
4)
Power Down Entry
H
L
H
X
X
X
X
X
X
X
4)10)
L
H
H
H
H
X
X
X
X
X
X
X
4)10)
L
H
H
H
Power Down Exit
L
H
4)5)
1) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.
2) “X” means H or L (but a defined logic level)”.
3) Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
4) All DDR2 SDRAM commands are defined by states of CS, WE, RAS, CAS, and CKE at the rising edge of the clock.
5) Bank addresses BA[1:0] determine which bank is to be operated upon. For (E)MRS BA[1:0] selects an (Extended) Mode Register.
6) All banks must be in a precharged idle state, CKE must be high at least for tXP and all read/write bursts must be finished before the
(Extended) Mode Register set Command is issued.
7) VREF must be maintained during Self Refresh operation.
8) Self Refresh Exit is asynchronous.
9) Burst reads or writes at BL = 4 cannot be terminated.
10) The Power Down Mode does not perform any refresh operations. The duration of Power Down is therefore limited by the refresh
requirements.
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
18
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
TABLE 16
Clock Enable (CKE) Truth Table for Synchronous Transitions
Current State1)
CKE
Command (N)2)3)
RAS, CAS, WE, CS
Action (N)2)
Note4)5)
Previous Cycle6)
(N-1)
Current Cycle6)
(N)
L
L
X
Maintain Power-Down
7)8)11)
L
H
DESELECT or NOP
Power-Down Exit
7)9)10)11)
L
L
X
Maintain Self Refresh
8)11)12)
L
H
DESELECT or NOP
Self Refresh Exit
9)12)13)14)
Bank(s) Active
H
L
DESELECT or NOP
Active Power-Down Entry
7)9)10)11)15)
All Banks Idle
H
L
DESELECT or NOP
Precharge Power-Down
Entry
9)10)11)15)
H
L
AUTOREFRESH
Self Refresh Entry
7)11)14)16)
H
H
Refer to the Command Truth Table
Power-Down
Self Refresh
Any State other
than
listed above
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
17)
Current state is the state of the DDR2 SDRAM immediately prior to clock edge N.
Command (N) is the command registered at clock edge N, and Action (N) is a result of Command (N)
The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.
CKE must be maintained HIGH while the device is in OCD calibration mode.
Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
CKE (N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge.
The Power-Down Mode does not perform any refresh operations. The duration of Power-Down Mode is therefor limited by the refresh
requirements
“X” means “don’t care (including floating around VREF)” in Self Refresh and Power Down. However ODT must be driven HIGH or LOW in
Power Down if the ODT function is enabled (Bit A2 or A6 set to “1” in EMRS(1)).
All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document.
Valid commands for Power-Down Entry and Exit are NOP and DESELECT only.
tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the
entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during
the time period of tIS + 2 × tCK + tIH.
VREF must be maintained during Self Refresh operation.
On Self Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the tXSNR period. Read
commands may be issued only after tXSRD (200 clocks) is satisfied.
Valid commands for Self Refresh Exit are NOP and DESELCT only.
Power-Down and Self Refresh can not be entered while Read or Write operations, (Extended) mode Register operations, Precharge or
Refresh operations are in progress.
Self Refresh mode can only be entered from the All Banks Idle state.
Must be a legal command as defined in the Command Truth Table.
TABLE 17
Data Mask (DM) Truth Table
Name (Function)
DM
DQs
Note
Write Enable
L
Valid
1)
Write Inhibit
H
X
1)
1) Used to mask write data; provided coincident with the corresponding data.
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
19
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
5
Electrical Characteristics
This chapter describes the Electrical Characteristics.
5.1
Absolute Maximum Ratings
Caution is needed not to exceed absolute maximum ratings of the DRAM device listed in Table 18 at any time.
TABLE 18
Absolute Maximum Ratings
Symbol
VDD
VDDQ
VDDL
VIN, VOUT
TSTG
Parameter
Rating
Unit
Note
Min.
Max.
Voltage on VDD pin relative to VSS
–1.0
+2.3
V
1)
Voltage on VDDQ pin relative to VSS
–0.5
+2.3
V
1)2)
Voltage on VDDL pin relative to VSS
–0.5
+2.3
V
1)2)
Voltage on any pin relative to VSS
–0.5
+2.3
V
1)
°C
1)2)
Storage Temperature
–55
+100
1) When VDD and VDDQ and VDDL are less than 500 mV; VREF may be equal to or less than 300 mV.
2) Storage Temperature is the case surface temperature on the center/top side of the DRAM.
Attention: Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to
the device. This is a stress rating only and functional operation of the device at these or any other
conditions above those indicated in the operational sections of this specification is not implied. Exposure
to absolute maximum rating conditions for extended periods may affect reliability.
TABLE 19
DRAM Component Operating Temperature Range
Symbol
TOPER
Parameter
Rating
Operating Temperature
Min.
Max.
0
95
Unit
Note
°C
1)2)3)4)
1) Operating Temperature is the case surface temperature on the center / top side of the DRAM.
2) The operating temperature range are the temperatures where all DRAM specification will be supported. During operation, the DRAM case
temperature must be maintained between 0 - 95 °C under all other specification parameters.
3) Above 85 °C the Auto-Refresh command interval has to be reduced to tREFI= 3.9 µs
4) When operating this product in the 85 °C to 95 °C TCASE temperature range, the High Temperature Self Refresh has to be enabled by
setting EMR(2) bit A7 to “1”. When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50 %
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
20
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
5.2
DC Characteristics
TABLE 20
Recommended DC Operating Conditions (SSTL_18)
Symbol
VDD
VDDDL
VDDQ
VREF
VTT
1)
2)
3)
4)
Parameter
Rating
Unit
Note
Min.
Typ.
Max.
Supply Voltage
1.7
1.8
1.9
V
1)
Supply Voltage for DLL
1.7
1.8
1.9
V
1)
Supply Voltage for Output
1.7
1.8
1.9
V
1)
Input Reference Voltage
0.49 × VDDQ
0.5 × VDDQ
0.51 × VDDQ
V
2)3)
4)
Termination Voltage
VREF – 0.04
VREF
VREF + 0.04
V
VDDQ tracks with VDD, VDDDL tracks with VDD. AC parameters are measured with VDD, VDDQ and VDDDL tied together.
The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is expected to
be about 0.5 × VDDQ of the transmitting device and VREF is expected to track variations in VDDQ.
Peak to peak ac noise on VREF may not exceed ± 2% VREF (dc)
VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF, and
must track variations in die dc level of VREF.
TABLE 21
ODT DC Electrical Characteristics
Parameter / Condition
Symbol
Min.
Nom.
Max.
Unit
Note
Termination resistor impedance value for
EMRS(1)[A6,A2] = [0,1]; 75 Ohm
Rtt1(eff)
60
75
90
Ω
1)
Termination resistor impedance value for
EMRS(1)[A6,A2] =[1,0]; 150 Ohm
Rtt2(eff)
120
150
180
Ω
1)
Termination resistor impedance value for
EMRS(1)(A6,A2)=[1,1]; 50 Ohm
Rtt3(eff)
40
50
60
Ω
1)
2)
+ 6.00
%
1) Measurement Definition for Rtt(eff): Apply VIH(ac) and VIL(ac) to test pin separately, then measure current I(VIHac) and I(VILac) respectively.
Rtt(eff) = (VIH(ac) – VIL(ac)) /(I(VIHac) – I(VILac)).
2) Measurement Definition for VM: Turn ODT on and measure voltage (VM) at test pin (midpoint) with no load: delta VM = ((2 x VM / VDDQ) –
Deviation of VM with respect to VDDQ / 2
delta VM
–6.00
—
1) x 100%
TABLE 22
Input and Output Leakage Currents
Symbol
Parameter / Condition
Min.
Max.
Unit
Note
IIL
IOL
Input Leakage Current; any input 0 V < VIN < VDD
–2
+2
µA
1)
Output Leakage Current; 0 V < VOUT < VDDQ
–5
+5
µA
2)
1) All other pins not under test = 0 V
2) DQ’s, LDQS, LDQS, UDQS, UDQS, DQS, DQS, RDQS, RDQS are disabled and ODT is turned off
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
21
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
5.3
DC & AC Characteristics
DDR2 SDRAM pin timing are specified for either single ended
or differential mode depending on the setting of the EMRS(1)
“Enable DQS” mode bit; timing advantages of differential
mode are realized in system design. The method by which the
DDR2 SDRAM pin timing are measured is mode dependent.
In single ended mode, timing relationships are measured
relative to the rising or falling edges of DQS crossing at VREF.
In differential mode, these timing relationships are measured
relative to the crosspoint of DQS and its complement, DQS.
This distinction in timing methods is verified by design and
characterization but not subject to production test. In single
ended mode, the DQS (and RDQS) signals are internally
disabled and don’t care.
TABLE 23
DC & AC Logic Input Levels for DDR2-667 and DDR2-800
Symbol
VIH(dc)
VIL(dc)
VIH(ac)
VIL(ac)
Parameter
DDR2-667, DDR2-800
Units
Min.
Max.
DC input logic high
VREF + 0.125
–0.3
VDDQ + 0.3
VREF – 0.125
V
DC input low
AC input logic high
VREF + 0.200
—
V
AC input low
—
VREF – 0.200
V
V
TABLE 24
DC & AC Logic Input Levels for DDR2-533 and DDR2-400
Symbol
VIH(dc)
VIL(dc)
VIH(ac)
VIL(ac)
Parameter
DDR2-533, DDR2-400
Units
Min.
Max.
VREF + 0.125
V
DC input low
–0.3
VDDQ + 0.3
VREF - 0.125
AC input logic high
VREF + 0.250
—
V
AC input low
—
VREF - 0.250
V
DC input logic high
V
TABLE 25
Single-ended AC Input Test Conditions
Symbol
Condition
Value
Unit
Note
VREF
VSWING.MAX
Input reference voltage
0.5 x VDDQ
V
1)
Input signal maximum peak to peak swing
1.0
V
1)
SLEW
Input signal minimum Slew Rate
1.0
V / ns
2)3)
1) Input waveform timing is referenced to the input signal crossing through the VREF level applied to the device under test.
2) The input signal minimum Slew Rate is to be maintained over the range from VIH(ac).MIN to VREF for rising edges and the range from VREF to
VIL(ac).MAX for falling edges as shown in Figure 2
3) AC timings are referenced with input waveforms switching from VIL(ac) to VIH(ac) on the positive transitions and VIH(ac) to VIL(ac) on the negative
transitions.
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
22
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
FIGURE 2
Single-ended AC Input Test Conditions Diagram
9''4
9,+DFPLQ
9,+GFPLQ
96:,1*0$;
95()
9,/GFPD[
9,/DFPD[
966
'HOWD7)
)DOOLQJ6OHZ
'HOWD75
95()9,/DFPD[
5LVLQJ6OHZ
'HOWD7)
9,+DFPLQ95()
'HOWD75
03(7
TABLE 26
Differential DC and AC Input and Output Logic Levels
Symbol
Parameter
Min.
Max.
Unit
Note
VIN(dc)
VID(dc)
VID(ac)
VIX(ac)
VOX(ac)
DC input signal voltage
–0.3
—
1)
DC differential input voltage
0.25
—
2)
AC differential input voltage
0.5
V
3)
AC differential cross point input voltage
0.5 × VDDQ – 0.175
V
4)
AC differential cross point output voltage
0.5 × VDDQ – 0.125
VDDQ + 0.3
VDDQ + 0.6
VDDQ + 0.6
0.5 × VDDQ + 0.175
0.5 × VDDQ + 0.125
V
5)
1)
2)
3)
4)
VIN(dc) specifies the allowable DC execution of each input of differential pair such as CK, CK, DQS, DQS etc.
VID(dc) specifies the input differential voltage VTR– VCP required for switching. The minimum value is equal to VIH(dc) – VIL(dc).
VID(ac) specifies the input differential voltage VTR – VCP required for switching. The minimum value is equal to VIH(ac) – VIL(ac).
The value of VIX(ac) is expected to equal 0.5 × VDDQ of the transmitting device and VIX(ac) is expected to track variations in VDDQ. VIX(ac)
indicates the voltage at which differential input signals must cross.
5) The value of VOX(ac) is expected to equal 0.5 × VDDQ of the transmitting device and VOX(ac) is expected to track variations in VDDQ. VOX(ac)
indicates the voltage at which differential input signals must cross.
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
23
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
FIGURE 3
Differential DC and AC Input and Output Logic Levels Diagram
9''
4
975
&URVVLQJ3RLQW
9,'
9,;RU9
2;
9&3
9664
5.4
Output Buffer Characteristics
This chapter describes the Output Buffer Characteristics.
TABLE 27
SSTL_18 Output DC Current Drive
Symbol
IOH
IOL
Parameter
SSTL_18
Output Minimum Source DC Current
–13.4
Unit
Note
mA
1)2)
2)3)
Output Minimum Sink DC Current
13.4
mA
1) VDDQ = 1.7 V; VOUT = 1.42 V. (VOUT–VDDQ) / IOH must be less than 21 Ohm for values of VOUT between VDDQ and VDDQ – 280 mV.
2) The values of IOH(dc) and IOL(dc) are based on the conditions given in 1) and 3). They are used to test drive current capability to ensure VIH.MIN.
plus a noise margin and VIL.MAX minus a noise margin are delivered to an SSTL_18 receiver. The actual current values are derived by
shifting the desired driver operating points along 21 Ohm load line to define a convenient current for measurement.
3) VDDQ = 1.7 V; VOUT = 280 mV. VOUT / IOL must be less than 21 Ohm for values of VOUT between 0 V and 280 mV.
TABLE 28
SSTL_18 Output AC Test Conditions
Symbol
Parameter
SSTL_18
Unit
Note
VOH
VOL
VOTR
Minimum Required Output Pull-up
VTT + 0.603
VTT – 0.603
0.5 × VDDQ
V
1)
V
1)
V
—
Maximum Required Output Pull-down
Output Timing Measurement Reference Level
1) SSTL_18 test load for VOH and VOL is different from the referenced load. The SSTL_18 test load has a 20 Ohm series resistor additionally
to the 25 Ohm termination resistor into VTT. The SSTL_18 definition assumes that ± 335 mV must be developed across the effectively 25
Ohm termination resistor (13.4 mA × 25 Ohm = 335 mV). With an additional series resistor of 20 Ohm this translates into a minimum
requirement of 603 mV swing relative to VTT, at the ouput device (13.4 mA × 45 Ohm = 603 mV).
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
24
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
TABLE 29
OCD Default Characteristics
Symbol
Description
Min.
—
Output Impedance
—
—
Pull-up / Pull down mismatch
0
—
—
Output Impedance step size
for OCD calibration
0
1.5
SOUT
Output Slew Rate
1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V
Nominal
Max.
Unit
Note
Ω
1)2)
4
Ω
1)2)3)
—
1.5
Ω
4)
—
5.0
V / ns
1)5)6)7)
2) Impedance measurement condition for output source dc current: VDDQ = 1.7 V, VOUT = 1420 mV; (VOUT–VDDQ) / IOH must be less than 23.4
ohms for values of VOUT between VDDQ and VDDQ – 280 mV. Impedance measurement condition for output sink dc current: VDDQ = 1.7 V;
VOUT = –280 mV; VOUT / IOL must be less than 23.4 Ohms for values of VOUT between 0 V and 280 mV.
3) Mismatch is absolute value between pull-up and pull-down, both measured at same temperature and voltage.
4) This represents the step size when the OCD is near 18 ohms at nominal conditions across all process parameters and represents only the
DRAM uncertainty. A 0 Ohm value (no calibration) can only be achieved if the OCD impedance is 18 ± 0.75 Ohms under nominal
conditions.
5) The absolute value of the Slew Rate as measured from DC to DC is equal to or greater than the Slew Rate as measured from AC to AC.
This is verified by design and characterization but not subject to production test.
6) Timing skew due to DRAM output Slew Rate mis-match between DQS / DQS and associated DQ’s is included in tDQSQ and tQHS
specification.
7) DRAM output Slew Rate specification applies to 400, 533 and 667 MT/s speed bins.
5.5
Input / Output Capacitance
This chapter contains the Input / Output Capacitance.
TABLE 30
Input / Output Capacitance for DDR2-667
Symbol
Parameter
DDR2-667
Min.
Max.
Unit
CCK
Input capacitance, CK and CK
1.0
2.0
pF
CDCK
Input capacitance delta, CK and CK
—
0.25
pF
CI
Input capacitance, all other input-only pins
1.0
2.0
pF
CDI
Input capacitance delta, all other input-only pins
—
0.25
pF
CIO
Input/output capacitance,
DQ, DM, DQS, DQS, RDQS, RDQS
2.5
3.5
pF
CDIO
Input/output capacitance delta,
DQ, DM, DQS, DQS, RDQS, RDQS
—
0.5
pF
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
25
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
TABLE 31
Input / Output Capacitance for DDR2-533
Symbol
Parameter
DDR2-533
Min.
Max.
Unit
CCK
Input capacitance, CK and CK
1.0
2.0
pF
CDCK
Input capacitance delta, CK and CK
—
0.25
pF
CI
Input capacitance, all other input-only pins
1.0
2.0
pF
CDI
Input capacitance delta, all other input-only pins
—
0.25
pF
CIO
Input/output capacitance,
DQ, DM, DQS, DQS, RDQS, RDQS
2.5
4.0
pF
CDIO
Input/output capacitance delta,
DQ, DM, DQS, DQS, RDQS, RDQS
—
0.5
pF
TABLE 32
Input / Output Capacitance for DDR2-400
Symbol
Parameter
DDR2-400
Min.
Max.
Unit
CCK
Input capacitance, CK and CK
1.0
2.0
pF
CDCK
Input capacitance delta, CK and CK
—
0.25
pF
CI
Input capacitance, all other input-only pins
1.0
2.0
pF
CDI
Input capacitance delta, all other input-only pins
—
0.25
pF
CIO
Input/output capacitance,
DQ, DM, DQS, DQS, RDQS, RDQS
2.5
4.0
pF
CDIO
Input/output capacitance delta,
DQ, DM, DQS, DQS, RDQS, RDQS
—
0.5
pF
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
26
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
5.6
Overshoot and Undershoot Specification
This chapter contains Overshoot and Undershoot Specification.
TABLE 33
AC Overshoot / Undershoot Specification for Address and Control Pins
Parameter
DDR2-400
DDR2-533
DDR2-667
DDR2-800
Unit
Maximum peak amplitude allowed for overshoot area
0.9
0.9
0.9
0.9
V
Maximum peak amplitude allowed for undershoot area
0.9
0.9
0.9
0.9
V
Maximum overshoot area above VDD
1.33
1.00
0.80
0.66
V.ns
Maximum undershoot area below VSS
1.33
1.00
0.80
0.66
V.ns
FIGURE 4
AC Overshoot / Undershoot Diagram for Address and Control Pins
0D[LPXP$PSOLWXGH
9ROWV9
2YHUVKRRW$UHD
9''
966
8QGHUVKRRW$UHD
0D[LPXP$PSOLWXGH
7LPHQV
03(7
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
27
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
TABLE 34
AC Overshoot / Undershoot Spec. for Clock, Data, Strobe and Mask Pins
Parameter
DDR2-400
DDR2-533
DDR2-667
DDR2-800
Unit
Maximum peak amplitude allowed for overshoot area
0.9
0.9
0.9
0.9
V
Maximum peak amplitude allowed for undershoot area
0.9
0.9
0.9
0.9
V
Maximum overshoot area above VDDQ
0.38
0.28
0.23
0.23
V.ns
Maximum undershoot area below VSSQ
0.38
0.28
0.23
0.23
V.ns
FIGURE 5
AC Overshoot / Undershoot Diagram for Clock, Data, Strobe and Mask Pins
0D[LPXP$PSOLWXGH
9ROWV9
2YHUVKRRW$UHD
9''4
9664
8QGHUVKRRW$UHD
0D[LPXP$PSOLWXGH
7LPHQV
03(7
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
28
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
6
Currents Measurement Conditions
This chapter describes the Current Measurement, Specifications and Conditions.
TABLE 35
IDD Measurement Conditions
Parameter
Symbol Note
Operating Current - One bank Active - Precharge
IDD0
tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), CKE is HIGH, CS is HIGH between valid commands. Address
and control inputs are switching; Databus inputs are switching.
1)2)3)4)5)
IDD1
1)2)3)4)5)
Operating Current - One bank Active - Read - Precharge
IOUT = 0 mA, BL = 4, tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), tRCD = tRCD(IDD), AL = 0, CL = CL(IDD);
CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are switching; Databus
inputs are switching.
6)
6)
Precharge Power-Down Current
IDD2P
All banks idle; CKE is LOW; tCK = tCK(IDD);Other control and address inputs are stable; Data bus inputs are
floating.
1)2)3)4)5)
IDD2N
1)2)3)4)5)
Precharge Quiet Standby Current
IDD2Q
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are stable, Data
bus inputs are floating.
1)2)3)4)5)
Precharge Standby Current
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are switching,
Data bus inputs are switching.
6)
6)
6)
Active Power-Down Current
All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable; Data bus inputs
are floating. MRS A12 bit is set to “0” (Fast Power-down Exit).
IDD3P(0)
1)2)3)4)5)
Active Power-Down Current
All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable, Data bus inputs
are floating. MRS A12 bit is set to 1 (Slow Power-down Exit);
IDD3P(1)
1)2)3)4)5)
Active Standby Current
All banks open; tCK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid
commands. Address inputs are switching; Data Bus inputs are switching;
IDD3N
1)2)3)4)5)
Operating Current
Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS =
tRAS.MAX.(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are
switching; Data Bus inputs are switching; IOUT = 0 mA.
IDD4R
1)2)3)4)5)
Operating Current
Burst Write: All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS =
tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are
switching; Data Bus inputs are switching.
IDD4W
1)2)3)4)5)
Burst Refresh Current
tCK = tCK(IDD), Refresh command every tRFC = tRFC(IDD) interval, CKE is HIGH, CS is HIGH between valid
commands, Other control and address inputs are switching, Data bus inputs are switching.
IDD5B
1)2)3)4)5)
Distributed Refresh Current
IDD5D
tCK = tCK(IDD), Refresh command every tREFI = 7.8 µs interval, CKE is LOW and CS is HIGH between valid
commands, Other control and address inputs are switching, Data bus inputs are switching.
1)2)3)4)5)
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
29
6)
6)
6)
6)
6)
6)
6)
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol Note
Self-Refresh Current
IDD6
CKE ≤ 0.2 V; external clock off, CK and CK at 0 V; Other control and address inputs are floating, Data bus
inputs are floating.
1)2)3)4)5)
Operating Bank Interleave Read Current
IDD7
1. All banks interleaving reads, IOUT = 0 mA; BL = 4, CL = CL(IDD), AL = tRCD(IDD) -1 × tCK(IDD); tCK = tCK(IDD),
tRC = tRC(IDD), tRRD = tRRD(IDD); CKE is HIGH, CS is HIGH between valid commands. Address bus inputs
are stable during deselects; Data bus is switching.
2. Timing pattern:
1)2)3)4)5)
6)
6)7)
DDR2-400-333: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D (11 clocks)
DDR2-533-333: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D (15 clocks)
DDR2-667-555: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D (20 clocks)
VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V
IDD specifications are tested after the device is properly initialized.
IDD parameter are specified with ODT disabled.
1)
2)
3)
4)
5)
6)
7)
Data Bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS and UDQS.
Definitions for IDD: see Table 36
Timing parameter minimum and maximum values for IDD current measurements are defined in Chapter 7.
A = Activate, RA = Read with Auto-Precharge, D=DESELECT
TABLE 36
Definition for IDD
Parameter
Description
LOW
defined as VIN ≤ VIL(ac).MAX
HIGH
defined as VIN ≥ VIH(ac).MIN
STABLE
defined as inputs are stable at a HIGH or LOW level
FLOATING
defined as inputs are VREF = VDDQ / 2
SWITCHING
defined as: Inputs are changing between high and low every other clock (once per two clocks) for address
and control signals, and inputs changing between high and low every other clock (once per clock) for DQ
signals not including mask or strobes
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
30
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
TABLE 37
IDD Specification
Symbol
IDD0
IDD1
IDD2N
IDD2P
IDD2Q
IDD3N
IDD3P(MRS= 0)
IDD3P(MRS= 1)
IDD4R
IDD4W
IDD5B
IDD5D
IDD6
IDD7
–3S
–3.7
–5
Unit
Note
DDR2–667
DDR2–533
DDR2–400
62
55
50
mA
—
71
45
60
55
mA
—
35
28
mA
—
5
4.5
4
mA
—
30
25
20
mA
—
45
35
30
mA
—
19
16
13
mA
1)
5
4.5
4
mA
2)
145
115
90
mA
—
160
130
90
mA
—
95
90
80
mA
—
6
6
6
mA
3)
4
4.5
4
mA
—
157
150
140
mA
—
1) MRS(12)=0
2) MRS(12)=1
3) 0 ≤ TCASE ≤ 85°C
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
31
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
7
Timing Characteristics
This chapter contains speed grade definition, AC timing parameter and ODT tables.
7.1
Speed Grade Definitions
All Speed grades faster than DDR2-DDR400B comply with DDR2-DDR400B timing specifications (tCK = 5ns with tRAS = 40ns).
List of Speed Grade Definition tables:
TABLE 38
Speed Grade Definition Speed Bins for DDR2–667D
Speed Grade
DDR2–667D
QAG Sort Name
–3S
CAS-RCD-RP latencies
5–5–5
Parameter
Clock Frequency
@ CL = 3
@ CL = 4
@ CL = 5
Row Active Time
Row Cycle Time
RAS-CAS-Delay
Row Precharge Time
Unit
Note
tCK
Symbol
Min.
Max.
—
tCK
tCK
tCK
tRAS
tRC
tRCD
tRP
5
8
ns
1)2)3)4)
3.75
8
ns
1)2)3)4)
3
8
ns
1)2)3)4)
45
70000
ns
1)2)3)4)5)
60
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.Timings are further guaranteed for normal
OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements”.
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS,
RDQS / RDQS is defined.
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
4) The output timing reference voltage level is VTT.
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
32
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
TABLE 39
Speed Grade Definition Speed Bins for DDR2–533C
Speed Grade
DDR2–533C
QAG Sort Name
–3.7
CAS-RCD-RP latencies
4–4–4
Parameter
Clock Frequency
@ CL = 3
@ CL = 4
@ CL = 5
Row Active Time
Row Cycle Time
RAS-CAS-Delay
Row Precharge Time
Unit
Note
tCK
Symbol
Min.
Max.
—
tCK
tCK
tCK
tRAS
tRC
tRCD
tRP
5
8
ns
1)2)3)4)
3.75
8
ns
1)2)3)4)
3.75
8
ns
1)2)3)4)
45
70000
ns
1)2)3)4)5)
60
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal
OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements”.
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS,
RDQS / RDQS is defined.
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
4) The output timing reference voltage level is VTT.
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
TABLE 40
Speed Grade Definition Speed Bins for DDR2-400B
Speed Grade
DDR2–400B
QAG Sort Name
–5
CAS-RCD-RP latencies
3–3–3
Parameter
Clock Frequency
@ CL = 3
@ CL = 4
@ CL = 5
Row Active Time
Row Cycle Time
RAS-CAS-Delay
Row Precharge Time
Unit
Note
tCK
Symbol
Min.
Max.
—
tCK
tCK
tCK
tRAS
tRC
tRCD
tRP
5
8
ns
1)2)3)4)
5
8
ns
1)2)3)4)
5
8
ns
1)2)3)4)
40
70000
ns
1)2)3)4)5)
55
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal
OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements”.
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode.
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
33
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
4) The output timing reference voltage level is VTT.
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
7.2
Component AC Timing Parameters
List of Timing Parameters Tables.
TABLE 41
DRAM Component Timing Parameter by Speed Grade - DDR2–667
Parameter
Symbol
DDR2–667
Unit
Note1)2)3)4)5)6)7)
Min.
Max.
tAC
tCCD
tCH.AVG
tCK.AVG
tCKE
–450
+450
ps
8)
2
—
nCK
—
0.48
0.52
tCK.AVG
9)10)
3000
8000
ps
—
3
—
nCK
11)
tCL.AVG
Auto-Precharge write recovery + precharge time tDAL
Minimum time clocks remain ON after CKE
tDELAY
0.48
0.52
tCK.AVG
10)11)
WR + tnRP
—
nCK
12)13)
tIS + tCK .AVG +
tIH
––
ns
—
tDH.BASE
DQ and DM input pulse width for each input
tDIPW
DQS output access time from CK / CK
tDQSCK
DQS input high pulse width
tDQSH
DQS input low pulse width
tDQSL
DQS-DQ skew for DQS & associated DQ signals tDQSQ
DQS latching rising transition to associated clock tDQSS
175
––
ps
18)19)14)
tDS.BASE
tDSH
tDSS
tHP
DQ output access time from CK / CK
CAS to CAS command delay
Average clock high pulse width
Average clock period
CKE minimum pulse width ( high and low pulse
width)
Average clock low pulse width
asynchronously drops LOW
DQ and DM input hold time
0.35
—
tCK.AVG —
–400
+400
ps
0.35
—
0.35
—
tCK.AVG —
tCK.AVG —
—
240
ps
15)
– 0.25
+ 0.25
tCK.AVG
16)
100
––
ps
17)18)19)
0.2
—
16)
0.2
—
tCK.AVG
tCK.AVG
Min (tCH.ABS,
tCL.ABS)
__
ps
20)
—
tAC.MAX
ps
8)21)
275
—
ps
24)22)
edges
DQ and DM input setup time
DQS falling edge hold time from CK
DQS falling edge to CK setup time
CK half pulse width
tHZ
Address and control input hold time
tIH.BASE
Control & address input pulse width for each input tIPW
Address and control input setup time
tIS.BASE
DQ low impedance time from CK/CK
tLZ.DQ
DQS/DQS low-impedance time from CK / CK
tLZ.DQS
MRS command to ODT update delay
tMOD
Mode register set command cycle time
tMRD
OCD drive mode output delay
tOIT
Data-out high-impedance time from CK / CK
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
34
8)
16)
0.6
—
tCK.AVG —
200
—
ps
23)24)
2 x tAC.MIN
ps
8)21)
tAC.MIN
tAC.MAX
tAC.MAX
ps
8)21)
0
12
ns
31)
2
—
nCK
—
0
12
ns
31)
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol
DDR2–667
Unit
Note1)2)3)4)5)6)7)
Min.
Max.
tQH
tQHS
tRPRE
tRPST
tRTP
tWPRE
tWPST
tWR
tWTR
tXARD
tXARDS
tHP – tQHS
—
ps
25)
—
340
ps
26)
0.9
1.1
27)28)
0.4
0.6
tCK.AVG
tCK.AVG
7.5
—
ns
30)
0.35
—
0.4
0.6
tCK.AVG —
tCK.AVG —
15
—
ns
30)
7.5
—
ns
30)31)
Exit precharge power-down to any valid
command (other than NOP or Deselect)
Exit self-refresh to a non-read command
DQ/DQS output hold time from DQS
DQ hold skew factor
Read preamble
Read postamble
Internal Read to Precharge command delay
Write preamble
Write postamble
Write recovery time
Internal write to read command delay
Exit power down to read command
27)29)
2
—
nCK
—
7 – AL
—
nCK
—
tXP
2
—
nCK
—
tRFC +10
—
ns
30)
Exit self-refresh to read command
tXSNR
tXSRD
200
—
nCK
—
Write command to DQS associated clock edges
WL
RL–1
nCK
—
Exit active power-down mode to read command
(slow exit, lower power)
1) VDDQ = 1.8 V ± 0.1V; VDD = 1.8 V ± 0.1 V.
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.
4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode. The input reference level for signals other than CK/CK, DQS/DQS,
RDQS / RDQS is defined.
5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
6) The output timing reference voltage level is VTT.
7) New units, ‘tCK.AVG‘ and ‘nCK‘, are introduced in DDR2–667 and DDR2–800. Unit ‘tCK.AVG‘ represents the actual tCK.AVG of the input clock
under operation. Unit ‘nCK‘ represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2–400 and
DDR2–533, ‘tCK‘ is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command
may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min).
8) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tERR(6-10PER).MIN = – 272
ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN – tERR(6-10PER).MAX = – 400 ps – 293 ps = – 693 ps and
tDQSCK.MAX(DERATED) = tDQSCK.MAX – tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2–667 derates to tLZ.DQ.MIN(DERATED)
= - 900 ps – 293 ps = – 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!)
9) Input clock jitter spec parameter. These parameters are referred to as 'input clock jitter spec parameters' and these parameters apply to
DDR2–667 and DDR2–800 only. The jitter specified is a random jitter meeting a Gaussian distribution.
10) These parameters are specified per their average values, however it is understood that the relationship between the average timing and
the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations).
11) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the
entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during
the time period of tIS + 2 x tCK + tIH.
12) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result
of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For
DDR2–533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks.
13) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR.
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
35
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
14) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to
the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing
at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and
VIH.DC.MIN. See Figure 7.
15) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output
slew rate mismatch between DQS / DQS and associated DQ in any given cycle.
16) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing.
The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal
crossing. That is, these parameters should be met whether clock jitter is present or not.
17) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level
to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe
crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN. See
Figure 7.
18) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed.
19) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal
((L/U/R)DQS / DQS) crossing.
20) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter.
It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the
following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the
minimum of the actual instantaneous clock low time.
21) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level
which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) .
22) Input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied
to the device under test. See Figure 8.
23) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied
to the device under test. See Figure 8.
24) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to
its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC,
etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should
be met whether clock jitter is present or not.
25) tQH = tHP – tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under
the max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.}
Examples: 1) If the system provides tHP of 1315 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system
provides tHP of 1420 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 1080 ps minimum.
26) tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is
transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next
transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation
of the output drivers.
27) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving
(tRPST), or begins driving (tRPRE). Figure 6 shows a method to calculate these points when the device is no longer driving (tRPST), or begins
driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the
calculation is consistent.
28) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.PER.MIN = – 72 ps
and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG – 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX
+ tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!).
29) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.DUTY.MIN = – 72 ps
and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG – 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX
+ tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!).
30) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in
clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which tRP = 15 ns, the device will support
tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at
Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter.
31) tWTR is at lease two clocks (2 x tCK) independent of operation frequency.
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
36
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
FIGURE 6
Method for calculating transitions and endpoint
92+[P9
977[P9
92+[P9
977[P9
W/=
W+=
W535(EHJLQSRLQW
W5367
H
QGSRLQW
92/[P9
977[P9
92/[P9
977[P9
7 7
7 7
W+=W5367
HQGSRLQW 77
W/=W535(
E HJLQSRLQW 7
7
FIGURE 7
Differential input waveform timing - tDS and tDS
'46
'46
W'6
W'+
W'6
W'+
9''4
9,+DFPLQ
9,+GFPLQ
95()GF
9,/GF PD[
9,/DF PD[
966
FIGURE 8
Differential input waveform timing - tlS and tlH
&.
&.
W,6
W,+
W,6
W,+
9''4
9,+DFPLQ
9,+GFPLQ
95()GF
9,/GFPD[
9,/DFPD[
966
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
37
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
TABLE 42
DRAM Component Timing Parameter by Speed Grade - DDR2–533
Parameter
Symbol
DDR2–533
Unit
Note1)2)3)4)5)
6)
Min.
Max.
tAC
tCCD
tCH
tCKE
tCL
tDAL
–500
+500
ps
—
2
—
—
0.45
0.55
3
—
0.45
0.55
WR + tRP
—
tCK
tCK
tCK
tCK
tCK
Minimum time clocks remain ON after CKE
asynchronously drops LOW
tDELAY
tIS + tCK + tIH
––
ns
8)
DQ and DM input hold time (differential data
strobe)
tDH(base)
225
––
ps
9)
–25
—
ps
10)
tDIPW
tDQSCK
tDQSL,H
tDQSQ
0.35
—
tCK
—
–450
+450
ps
—
0.35
—
tCK
—
—
300
ps
10)
tDQSS
tDS (base)
– 0.25
+ 0.25
tCK
—
100
—
ps
10)
–25
—
ps
10)
tDSH
0.2
—
tCK
—
DQS falling edge to CK setup time (write cycle) tDSS
0.2
—
tCK
—
—
11)
DQ output access time from CK / CK
CAS A to CAS B command period
CK, CK high-level width
CKE minimum high and low pulse width
CK, CK low-level width
Auto-Precharge write recovery + precharge
time
DQ and DM input hold time (single ended data tDH1(base)
strobe)
DQ and DM input pulse width (each input)
DQS output access time from CK / CK
DQS input low (high) pulse width (write cycle)
DQS-DQ skew (for DQS & associated DQ
signals)
Write command to 1st DQS latching transition
DQ and DM input setup time (differential data
strobe)
DQ and DM input setup time (single ended data tDS1 (base)
strobe)
DQS falling edge hold time from CK (write
cycle)
Clock half period
Data-out high-impedance time from CK / CK
Address and control input hold time
Address and control input pulse width
(each input)
Address and control input setup time
DQ low-impedance time from CK / CK
DQS low-impedance from CK / CK
Mode register set command cycle time
OCD drive mode output delay
Data output hold time from DQS
Data hold skew factor
Average periodic refresh Interval
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
tHP
tHZ
tIH (base)
tIPW
MIN. (tCL, tCH)
tIS (base)
tLZ(DQ)
tLZ(DQS)
tMRD
tOIT
tQH
tQHS
tREFI
38
—
—
—
7)17)
—
tAC.MAX
ps
12)
375
—
ps
10)
0.6
—
tCK
—
250
—
ps
10)
2 × tAC.MIN
ps
13)
tAC.MIN
tAC.MAX
tAC.MAX
ps
13)
2
—
tCK
—
0
12
ns
—
tHP – tQHS
—
—
—
—
400
ps
—
—
7.8
µs
13)14)
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol
DDR2–533
Unit
Note1)2)3)4)5)
6)
Min.
Max.
tREFI
tRFC
—
3.9
µs
15)17)
75
—
ns
16)
tRP
tRP
tRPRE
tRPST
tRRD
tRP + 1tCK
15 + 1tCK
—
ns
—
—
ns
—
0.9
1.1
13)
0.40
0.60
tCK
tCK
7.5
—
ns
13)17)
Active bank A to Active bank B command
period
tRRD
10
—
ns
15)21)
Internal Read to Precharge command delay
tRTP
tWPRE
tWPST
tWR
7.5
—
ns
—
0.25
—
—
0.40
0.60
tCK
tCK
15
—
ns
—
tWTR
tXARD
7.5
—
ns
19)
2
—
tCK
20)
Exit active power-down mode to Read
command (slow exit, lower power)
tXARDS
6 – AL
—
tCK
20)
Exit precharge power-down to any valid
command (other than NOP or Deselect)
tXP
2
—
tCK
—
Exit Self-Refresh to non-Read command
tXSNR
tXSRD
tRFC +10
—
ns
—
200
—
tWR/tCK
tCK
tCK
—
WR
Average periodic refresh Interval
Auto-Refresh to Active/Auto-Refresh
command period
Precharge-All (4 banks) command period
Precharge-All (8 banks) command period
Read preamble
Read postamble
Active bank A to Active bank B command
period
Write preamble
Write postamble
Write recovery time for write without AutoPrecharge
Internal Write to Read command delay
Exit power down to any valid command
(other than NOP or Deselect)
Exit Self-Refresh to Read command
Write recovery time for write with AutoPrecharge
1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V.
13)
18)
21)
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. .
4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode. The input reference level for signals other than CK/CK, DQS/DQS,
RDQS / RDQS is defined.
5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
6) The output timing reference voltage level is VTT.
7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to
the WR parameter stored in the MR.
8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode.
9) For timing definition, refer to the Component data sheet.
10) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate
mis-match between DQS / DQS and associated DQ in any given cycle.
11) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can
be greater than the minimum specification limits for tCL and tCH).
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
39
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
12) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving
(tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These
parameters are verified by design and characterization, but not subject to production test.
13) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C
and 95 °C.
14) 0 °C≤ TCASE ≤ 85 °C
15) 85 °C < TCASE ≤ 95 °C
16) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.
17) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 4 “Ordering Information for RoHS
Compliant Products” on Page 5.
18) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system
performance (bus turnaround) degrades accordingly.
19) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz.
20) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active powerdown mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow
power-down exit timing tXARDS has to be satisfied.
21) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded
up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK
refers to the application clock period. WR refers to the WR parameter stored in the MRS.
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
40
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
TABLE 43
DRAM Component Timing Parameter by Speed Grade - DDR2-400
Parameter
Symbol
DDR2–400
Unit
Note1)2)3)4)5)
6)
Min.
Max.
tAC
tCCD
tCH
tCKE
tCL
tDAL
–600
+600
ps
—
2
—
—
0.45
0.55
3
—
0.45
0.55
WR + tRP
—
tCK
tCK
tCK
tCK
tCK
Minimum time clocks remain ON after CKE
asynchronously drops LOW
tDELAY
tIS + tCK + tIH
––
ns
8)
DQ and DM input hold time (differential data
strobe)
tDH (base)
275
––
ps
9)
–25
—
ps
10)
0.35
—
tCK
—
–500
+500
ps
—
0.35
—
tCK
—
—
350
ps
10)
– 0.25
+ 0.25
tCK
DQ output access time from CK / CK
CAS A to CAS B command period
CK, CK high-level width
CKE minimum high and low pulse width
CK, CK low-level width
Auto-Precharge write recovery + precharge
time
DQ and DM input hold time (single ended data tDH1 (base)
strobe)
DQ and DM input pulse width (each input)
DQS output access time from CK / CK
DQS input low (high) pulse width (write cycle)
DQS-DQ skew (for DQS & associated DQ
signals)
tDIPW
tDQSCK
tDQSL,H
tDQSQ
Write command to 1st DQS latching transition tDQSS
—
—
—
7)20)
DQ and DM input setup time (differential data
strobe)
tDS (base)
150
—
ps
10)
DQ and DM input setup time (single ended
data strobe)
tDS1(base)
–25
—
ps
10)
DQS falling edge hold time from CK (write
cycle)
tDSH
0.2
—
tCK
—
DQS falling edge to CK setup time (write cycle) tDSS
0.2
—
tCK
—
Clock half period
Data-out high-impedance time from CK / CK
Address and control input hold time
Address and control input pulse width
(each input)
Address and control input setup time
DQ low-impedance time from CK / CK
DQS low-impedance from CK / CK
Mode register set command cycle time
OCD drive mode output delay
Data output hold time from DQS
Data hold skew factor
Average periodic refresh Interval
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
tHP
tHZ
tIH (base)
tIPW
11)
MIN. (tCL, tCH)
tIS (base)
tLZ(DQ)
tLZ(DQS)
tMRD
tOIT
tQH
tQHS
tREFI
41
—
tAC.MAX
ps
12)
475
—
ps
10)
0.6
—
tCK
—
350
—
ps
10)
2 × tAC.MIN
ps
13)
tAC.MIN
tAC.MAX
tAC.MAX
ps
13)
2
—
tCK
—
0
12
ns
—
tHP –tQHS
—
—
—
450
ps
—
7.8
µs
13)14)
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol
DDR2–400
Unit
Note1)2)3)4)5)
6)
Min.
Max.
—
3.9
µs
15)17)
75
—
ns
16)
tRP
tRP
tRPRE
tRPST
tRRD
tRP + 1tCK
15 + 1tCK
—
ns
—
—
ns
—
0.9
1.1
13)
0.40
0.60
tCK
tCK
7.5
—
ns
13)17)
Active bank A to Active bank B command
period
tRRD
10
—
ns
15)21)
Internal Read to Precharge command delay
tRTP
tWPRE
tWPST
tWR
7.5
—
ns
—
0.25
—
—
0.40
0.60
tCK
tCK
15
—
ns
—
tWTR
tXARD
10
—
ns
19)
2
—
tCK
20)
Exit active power-down mode to Read
command (slow exit, lower power)
tXARDS
6 – AL
—
tCK
20)
Exit precharge power-down to any valid
command (other than NOP or Deselect)
tXP
2
—
tCK
—
Exit Self-Refresh to non-Read command
tXSNR
tXSRD
tRFC + 10
—
ns
—
200
—
tWR/tCK
—
tCK
tCK
—
WR
Average periodic refresh Interval
Auto-Refresh to Active/Auto-Refresh
command period
Precharge-All (4 banks) command period
Precharge-All (8 banks) command period
Read preamble
Read postamble
Active bank A to Active bank B command
period
Write preamble
Write postamble
Write recovery time for write without AutoPrecharge
Internal Write to Read command delay
Exit power down to any valid command
(other than NOP or Deselect)
Exit Self-Refresh to Read command
Write recovery time for write with AutoPrecharge
1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V.
tREFI
tRFC
13)
18)
21)
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.
4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode. The input reference level for signals other than CK/CK, DQS/DQS,
RDQS / RDQS is defined.
5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
6) The output timing reference voltage level is VTT.
7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to
the WR parameter stored in the MR.
8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode.
9) For timing definition, refer to the Component data sheet.
10) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate
mis-match between DQS / DQS and associated DQ in any given cycle.
11) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can
be greater than the minimum specification limits for tCL and tCH).
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
42
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
12) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving
(tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These
parameters are verified by design and characterization, but not subject to production test.
13) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C
and 95 °C.
14) 0 °C≤ TCASE ≤ 85 °C
15) 85 °C < TCASE ≤ 95 °C
16) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.
17) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 4 “Ordering Information for RoHS
Compliant Products” on Page 5.
18) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system
performance (bus turnaround) degrades accordingly.
19) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz.
20) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active powerdown mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow
power-down exit timing tXARDS has to be satisfied.
21) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded
up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK
refers to the application clock period. WR refers to the WR parameter stored in the MRS.
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
43
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
7.3
Jitter Definition and Clock Jitter Specification
Generally, jitter is defined as “the short-term variation of a signal with respect to its ideal position in time”. The following table
provides an overview of the terminology.
TABLE 44
Average Clock and Jitter Symbols and Definition
Symbol
Parameter
Description
Units
tCK.AVG
Average clock period tCK.AVG is calculated as the average clock period within any consecutive
200-cycle window:
⎛ N
⎞
1
tCK.AVG = ---- . ⎜ ∑ tCK j⎟
⎟
N⎜
⎝j = 1
⎠
ps
(1)
N = 200
tJIT.PER
Clock-period jitter
tJIT(PER, LCK)
Clock-period jitter
during DLL-locking
period
tJIT.CC
Cycle-to-cycle clock
period jitter
tJIT(CC, LCK)
Cycle-to-cycle clock
period jitter during
DLL-locking period
tERR.2PER
Cumulative error
across 2 cycles
tJIT.PER is defined as the largest deviation of any single tCK from tCK.AVG:
tJIT.PER = Min/Max of {tCKi – tCK.AVG} where i = 1 to 200
tJIT.PER defines the single-period jitter when the DLL is already locked.
tJIT.PER is not guaranteed through final production testing.
tJIT(PER,LCK) uses the same definition as tJIT.PER, during the DLL-locking ps
period only.
tJIT(PER,LCK) is not guaranteed through final production testing.
tJIT.CC is defined as the absolute difference in clock period between two
ps
tJIT.CC defines the cycle- to- cycle jitter when the DLL is already locked.
tJIT.CC is not guaranteed through final production testing.
tJIT(CC,LCK) uses the same definition as tJIT.CC during the DLL-locking
ps
consecutive clock cycles:
tJIT.CC = Max of ABS{tCKi+1 – tCKi}
period only.
tJIT(CC,LCK) is not guaranteed through final production testing.
tERR.2PER is defined as the cumulative error across 2 consecutive cycles
from tCK.AVG:
⎛i + n – 1
⎞
⎜
tERR ( 2per ) =
tCK j⎟ – n × tCK ( avg )
⎜ ∑
⎟
⎝ j=i
⎠
n = 2 for tERR(2per)
where i = 1 to 200
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
ps
44
(2)
ps
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
Symbol
Parameter
Description
Units
tERR.nPER
Cumulative error
across n cycles
tERR.2PER is defined as the cumulative error across n consecutive cycles
from tCK.AVG:
ps
⎛i + n – 1
⎞
tERR ( nper ) = ⎜ ∑ tCK j⎟ – n × tCK ( avg )
⎜
⎟
⎝ j=i
⎠
(3)
where, i = 1 to 200 and
n = 3 for tERR.3PER
n = 4 for tERR.4PER
n = 5 for tERR.5PER
6 ≤ n ≤ 10 for tERR.6-10PER
11 ≤ n ≤ 50 for tERR.11-50PER
tCH.AVG
Average high-pulse
width
tCH.AVG is defined as the average high-pulse width, as calculated across
any consecutive 200 high pulses:
⎛ N
⎞
1
⎜
.
tCH ( avg ) = ---------------------------------------- ∑ tCH j⎟
⎟
( N × tCK ( avg ) ) ⎜
⎝j = 1
⎠
tCK.AVG
(4)
N = 200
tCL.AVG
Average low-pulse
width
tCL.AVG is defined as the average low-pulse width, as calculated across any tCK.AVG
consecutive 200 low pulses:
⎛ N
⎞
1
tCL ( avg ) = ---------------------------------------- . ⎜ ∑ tCL j⎟
⎟
( N × tCK ( avg ) ) ⎜
⎝j = 1
⎠
(5)
N = 200
tJIT.DUTY
Duty-cycle jitter
tJIT.DUTY = Min/Max of {tJIT.CH , tJIT.CL}, where:
tJIT.CH is the largest deviation of any single tCH from tCH.AVG
tJIT.CL is the largest deviation of any single tCL from tCL.AVG
tJIT.CH = {tCHi - tCH.AVG × tCK.AVG} where i=1 to 200
tJIT.CL = {tCLi - tCL.AVG × tCK.AVG} where i=1 to 200
ps
The following parameters are specified per their average values however, it is understood that the following relationship
between the average timing and the absolute instantaneous timing holds all the time.
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
45
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
TABLE 45
Absolute Jitter Value Definitions
Symbol
Parameter
Min.
tCK.ABS
tCH.ABS
Clock period
tCL.ABS
Clock low-pulse width
tCK.AVG(Min) + tJIT.PER(Min)
tCK.AVG(Max) + tJIT.PER(Max)
tCH.AVG(Min) x tCK.AVG(Min) + tJIT.DUTY(Min) tCH.AVG(Max) x tCK.AVG(Max) +
tJIT.DUTY(Max)
tCL.AVG(Min) x tCK.AVG(Min) + tJIT.DUTY(Min) tCL.AVG(Max) x tCK.AVG(Max) +
tJIT.DUTY(Max)
Clock high-pulse width
Max.
Unit
ps
ps
ps
Example: for DDR2-667, tCH.ABS.MIN = (0.48 x 3000ps) – 125 ps = 1315 ps = 0.438 x 3000 ps.
Table 46 shows clock-jitter specifications.
TABLE 46
Clock-Jitter Specifications for –667 and –800
Symbol
Parameter
DDR2 -667
DDR2 -800
Min.
Max.
Min.
Max.
Unit
tCK.AVG
tJIT.PER
tJIT(PER,LCK)
tJIT.CC
tJIT(CC,LCK)
Average clock period nominal w/o jitter
3000
8000
2500
8000
ps
Clock-period jitter
–125
+125
–100
+100
ps
Clock-period jitter during DLL locking period
–100
+100
–80
+80
ps
Cycle-to-cycle clock-period jitter
–250
+250
–200
+200
ps
Cycle-to-cycle clock-period jitter during DLLlocking period
–200
+200
–160
+160
ps
tERR.2PER
tERR.3PER
tERR.4PER
tERR.5PER
tERR(6-10PER)
Cumulative error across 2 cycles
–175
+175
–150
+150
ps
Cumulative error across 3 cycles
–225
+225
–175
+175
ps
Cumulative error across 4 cycles
–250
+250
–200
+200
ps
Cumulative error across 5 cycles
–250
+250
–200
+200
ps
Cumulative error across n cycles with n = 6 ..
10, inclusive
–350
+350
–300
+300
ps
tERR(11-50PER)
Cumulative error across n cycles with n = 11 .. –450
50, inclusive
+450
–450
+450
ps
tCH.AVG
tCL.AVG
tJIT.DUTY
Average high-pulse width
0.52
0.48
0.52
Average low-pulse width
0.48
0.52
0.48
0.52
tCK.AVG
tCK.AVG
Duty-cycle jitter
–125
+125
–100
+100
ps
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
0.48
46
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
7.4
ODT AC Electrical Characteristics
This chapter describes the ODT AC electrical characteristics.
TABLE 47
ODT AC Characteristics and Operating Conditions for DDR2-667& DDR2-800
Symbol
tAOND
tAON
tAONPD
tAOFD
tAOF
tAOFPD
tANPD
tAXPD
Parameter / Condition
Values
Unit
Note
Min.
Max.
ODT turn-on delay
2
2
nCK
1)
ODT turn-on
tAC.MAX + 0.7 ns
2 tCK + tAC.MAX + 1 ns
ns
1)2)
ODT turn-on (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
ns
1)
ODT turn-off delay
2.5
2.5
nCK
1)
ns
1)3)
ns
1)
nCK
nCK
1)
ODT turn-off (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
tAC.MAX + 0.6 ns
2.5 tCK + tAC.MAX + 1 ns
ODT to Power Down Mode Entry Latency
3
—
ODT turn-off
1)
ODT Power Down Exit Latency
8
—
1) New units, “tCK.AVG” and “nCK”, are introduced in DDR2-667 and DDR2-800. Unit “tCK.AVG” represents the actual tCK.AVG of the input clock
under operation. Unit “nCK” represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2-400 and
DDR2-533, “tCK” is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may
be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min).
2) ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the
ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-667/800, tAOND is 2 clock
cycles after the clock edge that registered a first ODT HIGH counting the actual input clock edges.
3) ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance.
Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-667/800, if tCK(avg) = 3 ns is assumed, tAOFD is 1.5
ns (= 0.5 x 3 ns) after the second trailing clock edge counting from the clock edge that registered a first ODT LOW and by counting the
actual input clock edges.
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
47
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
TABLE 48
ODT AC Characteristics and Operating Conditions for DDR2-533 & DDR2-400
Symbol
tAOND
tAON
tAONPD
tAOFD
tAOF
tAOFPD
tANPD
tAXPD
Parameter / Condition
Values
Unit
Note
Min.
Max.
ODT turn-on delay
2
2
tCK
—
ODT turn-on
tAC.MAX + 1 ns
2 tCK + tAC.MAX + 1 ns
ns
1)
ODT turn-on (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
ns
—
ODT turn-off delay
2.5
2.5
tCK
—
ODT turn-off
tAC.MAX + 0.6 ns
2.5 tCK + tAC.MAX + 1 ns
ns
2)
ODT turn-off (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
ns
—
ODT to Power Down Mode Entry Latency
3
—
—
ODT Power Down Exit Latency
8
—
tCK
tCK
—
1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when
the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-400/533, tAOND is
10 ns (= 2 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns.
2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance.
Both are measured from tAOFD. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-400/533, tAOFD is
12.5 ns (= 2.5 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns.
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
48
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
8
Package Dimensions
This chapter describes the package dimensions.
FIGURE 9
Package Outline PG-TFBGA-84
[ $
[ 0
$;
%
0$
;
&
0
$;
0
,1
&
¡ “ [
¡ 0 $ %
&
¡ 0
'
XPP
\ SDGV Z
LWK RXWE DOO
0
LGGOHRISDFN DJHVHGJ HV
3
D FN D JHRULHQWDWLRQP
DUN$
%
DGX QLWP
DUNLQJ %8
0 '
LHVR UWILGXFLDO
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
49
*3
/$1(
& 6($7 ,1
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
9
Product Nomenclature
For reference the Qimonda SDRAM component nomenclature is enclosed in this chapter.
TABLE 49
Nomenclature Fields and Examples
Example for
DDR2 DRAM
Field Number
1
2
3
4
5
6
HYB
18
TC
256
16
7
8
9
10
11
0
A
C
–3.7
—
TABLE 50
DDR2 Memory Components
Field
Description
Values
Coding
1
Qimonda
Component Prefix
HYB
Constant
2
Interface Voltage [V]
18
SSTL_18
3
DRAM Technology, consumer variant
TC
DDR2
4
Component Density [Mbit]
256
256 M
512
512 M
1G
1 Gb
40
x4
5+6
Number of I/Os
7
Product Variations
8
Die Revision
9
10
11
80
x8
16
x16
0 .. 9
look up table
A
First
B
Second
C
Third
Package,
Lead-Free Status
C
FBGA, lead-containing
F
FBGA, lead-free
Speed Grade
–1.9
DDR2–1066
–2.5F
DDR2–800 5–5–5
–2.5
DDR2–800 6–6–6
–3
DDR2–667 4–4–4
–3S
DDR2–667 5–5–5
–3.7
DDR2–533 4–4–4
N/A for Components
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
50
–5
DDR2–400 3–3–3
—
—
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
List of Figures
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Chip Configuration for ×16 components, PG-TFBGA-84 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Single-ended AC Input Test Conditions Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Differential DC and AC Input and Output Logic Levels Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
AC Overshoot / Undershoot Diagram for Address and Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
AC Overshoot / Undershoot Diagram for Clock, Data, Strobe and Mask Pins . . . . . . . . . . . . . . . . . . . . . . . . . 28
Method for calculating transitions and endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Differential input waveform timing - tDS and tDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Differential input waveform timing - tlS and tlH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Package Outline PG-TFBGA-84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
51
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
List of Tables
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23
Table 24
Table 25
Table 26
Table 27
Table 28
Table 29
Table 30
Table 31
Table 32
Table 33
Table 34
Table 35
Table 36
Table 37
Table 38
Table 39
Table 40
Table 41
Table 42
Table 43
Table 44
Table 45
Table 46
Table 47
Table 48
Table 49
Table 50
Performance table for –3S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Performance table for –3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Performance Table for –5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Ordering Information for RoHS Compliant Products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Chip Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Abbreviations for Ball Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
DDR2 Addressing for ×16 Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Mode Register Definition (BA[2:0] = 000B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Extended Mode Register Definition (BA[2:0] = 001B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
EMRS(2) Programming Extended Mode Register Definition (BA[2:0]=010B) . . . . . . . . . . . . . . . . . . . . . . . . . . 15
EMR(3) Programming Extended Mode Register Definition( BA[2:0]=011B) . . . . . . . . . . . . . . . . . . . . . . . . . . 16
ODT Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Burst Length and Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Command Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Clock Enable (CKE) Truth Table for Synchronous Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Data Mask (DM) Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
DRAM Component Operating Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Recommended DC Operating Conditions (SSTL_18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
ODT DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Input and Output Leakage Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DC & AC Logic Input Levels for DDR2-667 and DDR2-800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
DC & AC Logic Input Levels for DDR2-533 and DDR2-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Single-ended AC Input Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Differential DC and AC Input and Output Logic Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
SSTL_18 Output DC Current Drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
SSTL_18 Output AC Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
OCD Default Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Input / Output Capacitance for DDR2-667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Input / Output Capacitance for DDR2-533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Input / Output Capacitance for DDR2-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
AC Overshoot / Undershoot Specification for Address and Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
AC Overshoot / Undershoot Spec. for Clock, Data, Strobe and Mask Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
IDD Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Definition for IDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
IDD Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Speed Grade Definition Speed Bins for DDR2–667D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Speed Grade Definition Speed Bins for DDR2–533C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Speed Grade Definition Speed Bins for DDR2-400B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
DRAM Component Timing Parameter by Speed Grade - DDR2–667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
DRAM Component Timing Parameter by Speed Grade - DDR2–533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
DRAM Component Timing Parameter by Speed Grade - DDR2-400. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Average Clock and Jitter Symbols and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Absolute Jitter Value Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Clock-Jitter Specifications for –667 and –800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
ODT AC Characteristics and Operating Conditions for DDR2-667& DDR2-800 . . . . . . . . . . . . . . . . . . . . . . . 47
ODT AC Characteristics and Operating Conditions for DDR2-533 & DDR2-400 . . . . . . . . . . . . . . . . . . . . . . . 48
Nomenclature Fields and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
DDR2 Memory Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
52
Internet Data Sheet
HYB18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM
Table of Contents
1
1.1
1.2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4
Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5
5.1
5.2
5.3
5.4
5.5
5.6
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC & AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Buffer Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input / Output Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overshoot and Undershoot Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
Currents Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7
7.1
7.2
7.3
7.4
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Speed Grade Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Component AC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Jitter Definition and Clock Jitter Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ODT AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9
Product Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Rev. 1.1, 2007-02
03062006-H3V1-XJT4
53
20
20
21
22
24
25
27
32
32
34
44
47
Internet Data Sheet
Edition 2007-02
Published by Qimonda AG
Gustav-Heinemann-Ring 212
D-81739 München, Germany
© Qimonda AG 2007.
All Rights Reserved.
Legal Disclaimer
The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics
(“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind,
including without limitation warranties of non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office.
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please
contact your nearest Qimonda Office.
Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a
failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect
the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human
body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
www.qimonda.com