SII S-817A59APF

Rev.4.2_00
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
The S-817 Series is a 3-terminal positive voltage
regulator, developed using CMOS technology. Small
ceramic capacitors can be used as the output
capacitor, and the S-817 series provides stable
operation with low loads down to 1 µA.
Compared with the conventional voltage regulator, it is
of low current consumption, and with a lineup of the
super small package (SNT-4A:1.2 x 1.6mm). It is
optimal as a power supply of small portable device.
„ Features
• Ultra-low current consumption:
• Output voltage:
• Output voltage accuracy:
• Output current:
Operating current: Typ. 1.2 µA, Max. 2.5 µA
1.1 to 6.0 V, selectable in 0.1 V steps.
±2.0%
50 mA capable (3.0 V output product, VIN=5 V) *1
75 mA capable (5.0 V output product, VIN=7 V) *1
• Dropout voltage:
Typ. 160 mV (VOUT = 5.0 V, IOUT = 10 mA)
• Low ESR capacitor Ceramic capacitor of 0.1 µF or more can be used as an output capacitor.
• Short circuit protection for:
Series A
• Excellent Line Regulation:
Stable operation at light load of 1 µA
• Lead-free product
*1. Attention should be paid to the power dissipation of the package when the load is large.
„ Applications
• Power source for battery-powered devices
• Power source for personal communication devices
• Power source for home electric/electronic appliances
„ Packages
Package name
SNT-4A
SC-82AB
SOT-23-5
SOT-89-3
TO-92 (Bulk)
TO-92 (Tape and reel)
TO-92 (Tape and ammo)
Package
PF004-A
NP004-A
MP005-A
UP003-A
YS003-B
YF003-A
YF003-A
Tape
PF004-A
NP004-A
MP005-A
UP003-A

YF003-A
YZ003-C
Drawing code
Reel
PF004-A
NP004-A
MP005-A
UP003-A

YF003-A

Seiko Instruments Inc.
Zigzag






YZ003-C
Land
PF004-A






1
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
„ Block Diagrams
1. S-817A Series
*1
VIN
VOUT
+
−
Reference
voltage circuit
Short circuit
protection
VSS
*1. Parasitic diode
Figure 1
2. S-817B Series
*1
VIN
VOUT
+
−
Reference
voltage circuit
VSS
*1. Parasitic diode
Figure 2
2
Seiko Instruments Inc.
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
„ Product Name Structure
• The product types and output voltage for the S-817 Series can be selected at the user’s request. Refer
to the “Product name” for the meanings of the characters in the product name and “Product name list” for
the full product names.
1. Product name
1. 1 S-817A series
S-817
A
xx
A
xx
-
xxx
xx
G
IC direction in tape specifications*1
TF : SNT-4A
T2 : SC-82AB, SOT-23-5
Product name (abbreviation)
Package name (abbreviation)
PF : SNT-4A
NB : SC-82AB
MC : SOT-23-5
*2
Output voltage
11 to 60
(e.g. When the output voltage is
1.5 V, it is expressed 15)
Short circuit protection
A:
Yes
*1. Refer to the specifications at the end of this book.
*2. Refer to the “2. Product name list”.
Seiko Instruments Inc.
3
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
1. 2 S-817B series
1. 2. 1 SOT-23-5 and SOT-89-3 package
S-817
B
xx
A
xx
-
xxx
T2
G
IC direction in tape specifications
*1
Product name (abbreviation)
Package name (abbreviation)*2
MC : SOT-23-5
UA : SOT-89-3
Output voltage
11 to 60
(e.g. When the output voltage is
1.5 V, it is expressed 15)
Short circuit protection
B:
No
*1. Refer to the specifications at the end of this book.
*2. Refer to the “2. Product name list”.
1. 2. 2 TO-92 package
S-817
B
xx
A
Y
-
x
-
G
Packing form
B:
Bulk
T:
Tape and reel
Z:
Tape and ammo
Package name (abbreviation)*1
Y:
TO-92
Output voltage
11 to 60
(e.g. When the output voltage is
1.5 V, it is expressed 15)
Short circuit protection
B:
No
*1. Refer to the “2. Product name list”.
4
Seiko Instruments Inc.
Rev.4.2_00
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
2. Product name list
2. 1 S-817A series
Table 1
Output voltage
1.1 V ± 2.0 %
1.2 V ± 2.0 %
1.3 V ± 2.0 %
1.4 V ± 2.0 %
1.5 V ± 2.0 %
1.6 V ± 2.0 %
1.7 V ± 2.0 %
1.8 V ± 2.0 %
1.9 V ± 2.0 %
2.0 V ± 2.0 %
2.1 V ± 2.0 %
2.2 V ± 2.0 %
2.3 V ± 2.0 %
2.4 V ± 2.0 %
2.5 V ± 2.0 %
2.6 V ± 2.0 %
2.7 V ± 2.0 %
2.8 V ± 2.0 %
2.9 V ± 2.0 %
3.0 V ± 2.0 %
3.1 V ± 2.0 %
3.2 V ± 2.0 %
3.3 V ± 2.0 %
3.4 V ± 2.0 %
3.5 V ± 2.0 %
3.6 V ± 2.0 %
3.7 V ± 2.0 %
3.8 V ± 2.0 %
3.9 V ± 2.0 %
4.0 V ± 2.0 %
4.1 V ± 2.0 %
4.2 V ± 2.0 %
4.3 V ± 2.0 %
4.4 V ± 2.0 %
4.5 V ± 2.0 %
4.6 V ± 2.0 %
4.7 V ± 2.0 %
4.8 V ± 2.0 %
4.9 V ± 2.0 %
5.0 V ± 2.0 %
5.1 V ± 2.0 %
5.2 V ± 2.0 %
5.3 V ± 2.0 %
5.4 V ± 2.0 %
5.5 V ± 2.0 %
5.6 V ± 2.0 %
5.7 V ± 2.0 %
5.8 V ± 2.0 %
5.9 V ± 2.0 %
6.0 V ± 2.0 %
SNT-4A
S-817A11APF-CUATFG
S-817A12APF-CUBTFG
S-817A13APF-CUCTFG
S-817A14APF-CUDTFG
S-817A15APF-CUETFG
S-817A16APF-CUFTFG
S-817A17APF-CUGTFG
S-817A18APF-CUHTFG
S-817A19APF-CUITFG
S-817A20APF-CUJTFG
S-817A21APF-CUKTFG
S-817A22APF-CULTFG
S-817A23APF-CUMTFG
S-817A24APF-CUNTFG
S-817A25APF-CUOTFG
S-817A26APF-CUPTFG
S-817A27APF-CUQTFG
S-817A28APF-CURTFG
S-817A29APF-CUSTFG
S-817A30APF-CUTTFG
S-817A31APF-CUUTFG
S-817A32APF-CUVTFG
S-817A33APF-CUWTFG
S-817A34APF-CUXTFG
S-817A35APF-CUYTFG
S-817A36APF-CUZTFG
S-817A37APF-CVATFG
S-817A38APF-CVBTFG
S-817A39APF-CVCTFG
S-817A40APF-CVDTFG
S-817A41APF-CVETFG
S-817A42APF-CVFTFG
S-817A43APF-CVGTFG
S-817A44APF-CVHTFG
S-817A45APF-CVITFG
S-817A46APF-CVJTFG
S-817A47APF-CVKTFG
S-817A48APF-CVLTFG
S-817A49APF-CVMTFG
S-817A50APF-CVNTFG
S-817A51APF-CVOTFG
S-817A52APF-CVPTFG
S-817A53APF-CVQTFG
S-817A54APF-CVRTFG
S-817A55APF-CVSTFG
S-817A56APF-CVTTFG
S-817A57APF-CVUTFG
S-817A58APF-CVVTFG
S-817A59APF-CVWTFG
S-817A60APF-CVXTFG
SC-82AB
S-817A11ANB-CUAT2G
S-817A12ANB-CUBT2G
S-817A13ANB-CUCT2G
S-817A14ANB-CUDT2G
S-817A15ANB-CUET2G
S-817A16ANB-CUFT2G
S-817A17ANB-CUGT2G
S-817A18ANB-CUHT2G
S-817A19ANB-CUIT2G
S-817A20ANB-CUJT2G
S-817A21ANB-CUKT2G
S-817A22ANB-CULT2G
S-817A23ANB-CUMT2G
S-817A24ANB-CUNT2G
S-817A25ANB-CUOT2G
S-817A26ANB-CUPT2G
S-817A27ANB-CUQT2G
S-817A28ANB-CURT2G
S-817A29ANB-CUST2G
S-817A30ANB-CUTT2G
S-817A31ANB-CUUT2G
S-817A32ANB-CUVT2G
S-817A33ANB-CUWT2G
S-817A34ANB-CUXT2G
S-817A35ANB-CUYT2G
S-817A36ANB-CUZT2G
S-817A37ANB-CVAT2G
S-817A38ANB-CVBT2G
S-817A39ANB-CVCT2G
S-817A40ANB-CVDT2G
S-817A41ANB-CVET2G
S-817A42ANB-CVFT2G
S-817A43ANB-CVGT2G
S-817A44ANB-CVHT2G
S-817A45ANB-CVIT2G
S-817A46ANB-CVJT2G
S-817A47ANB-CVKT2G
S-817A48ANB-CVLT2G
S-817A49ANB-CVMT2G
S-817A50ANB-CVNT2G
S-817A51ANB-CVOT2G
S-817A52ANB-CVPT2G
S-817A53ANB-CVQT2G
S-817A54ANB-CVRT2G
S-817A55ANB-CVST2G
S-817A56ANB-CVTT2G
S-817A57ANB-CVUT2G
S-817A58ANB-CVVT2G
S-817A59ANB-CVWT2G
S-817A60ANB-CVXT2G
SOT-23-5



S-817A14AMC-CUDT2G

S-817A16AMC-CUFT2G












































Remark Please contact the SII marketing department for products with an output voltage over than those
specified above.
Seiko Instruments Inc.
5
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
2. 2 S-817B series
Table 2
Output voltage
1.1 V ± 2.0 %
1.2 V ± 2.0 %
1.3 V ± 2.0 %
1.4 V ± 2.0 %
1.5 V ± 2.0 %
1.6 V ± 2.0 %
1.7 V ± 2.0 %
1.8 V ± 2.0 %
1.9 V ± 2.0 %
2.0 V ± 2.0 %
2.1 V ± 2.0 %
2.2 V ± 2.0 %
2.3 V ± 2.0 %
2.4 V ± 2.0 %
2.5 V ± 2.0 %
2.6 V ± 2.0 %
2.7 V ± 2.0 %
2.8 V ± 2.0 %
2.9 V ± 2.0 %
3.0 V ± 2.0 %
3.1 V ± 2.0 %
3.2 V ± 2.0 %
3.3 V ± 2.0 %
3.4 V ± 2.0 %
3.5 V ± 2.0 %
3.6 V ± 2.0 %
3.7 V ± 2.0 %
3.8 V ± 2.0 %
3.9 V ± 2.0 %
4.0 V ± 2.0 %
4.1 V ± 2.0 %
4.2 V ± 2.0 %
4.3 V ± 2.0 %
4.4 V ± 2.0 %
4.5 V ± 2.0 %
4.6 V ± 2.0 %
4.7 V ± 2.0 %
4.8 V ± 2.0 %
4.9 V ± 2.0 %
5.0 V ± 2.0 %
5.1 V ± 2.0 %
5.2 V ± 2.0 %
5.3 V ± 2.0 %
5.4 V ± 2.0 %
5.5 V ± 2.0 %
5.6 V ± 2.0 %
5.7 V ± 2.0 %
5.8 V ± 2.0 %
5.9 V ± 2.0 %
6.0 V ± 2.0 %
SOT-23-5
S-817B11AMC-CWAT2G
S-817B12AMC-CWBT2G
S-817B13AMC-CWCT2G
S-817B14AMC-CWDT2G
S-817B15AMC-CWET2G
S-817B16AMC-CWFT2G
S-817B17AMC-CWGT2G
S-817B18AMC-CWHT2G
S-817B19AMC-CWIT2G
S-817B20AMC-CWJT2G
S-817B21AMC-CWKT2G
S-817B22AMC-CWLT2G
S-817B23AMC-CWMT2G
S-817B24AMC-CWNT2G
S-817B25AMC-CWOT2G
S-817B26AMC-CWPT2G
S-817B27AMC-CWQT2G
S-817B28AMC-CWRT2G
S-817B29AMC-CWST2G
S-817B30AMC-CWTT2G
S-817B31AMC-CWUT2G
S-817B32AMC-CWVT2G
S-817B33AMC-CWWT2G
S-817B34AMC-CWXT2G
S-817B35AMC-CWYT2G
S-817B36AMC-CWZT2G
S-817B37AMC-CXAT2G
S-817B38AMC-CXBT2G
S-817B39AMC-CXCT2G
S-817B40AMC-CXDT2G
S-817B41AMC-CXET2G
S-817B42AMC-CXFT2G
S-817B43AMC-CXGT2G
S-817B44AMC-CXHT2G
S-817B45AMC-CXIT2G
S-817B46AMC-CXJT2G
S-817B47AMC-CXKT2G
S-817B48AMC-CXLT2G
S-817B49AMC-CXMT2G
S-817B50AMC-CXNT2G
S-817B51AMC-CXOT2G
S-817B52AMC-CXPT2G
S-817B53AMC-CXQT2G
S-817B54AMC-CXRT2G
S-817B55AMC-CXST2G
S-817B56AMC-CXTT2G
S-817B57AMC-CXUT2G
S-817B58AMC-CXVT2G
S-817B59AMC-CXWT2G
S-817B60AMC-CXXT2G
SOT-89-3
S-817B11AUA-CWAT2G
S-817B12AUA-CWBT2G
S-817B13AUA-CWCT2G
S-817B14AUA-CWDT2G
S-817B15AUA-CWET2G
S-817B16AUA-CWFT2G
S-817B17AUA-CWGT2G
S-817B18AUA-CWHT2G
S-817B19AUA-CWIT2G
S-817B20AUA-CWJT2G
S-817B21AUA-CWKT2G
S-817B22AUA-CWLT2G
S-817B23AUA-CWMT2G
S-817B24AUA-CWNT2G
S-817B25AUA-CWOT2G
S-817B26AUA-CWPT2G
S-817B27AUA-CWQT2G
S-817B28AUA-CWRT2G
S-817B29AUA-CWST2G
S-817B30AUA-CWTT2G
S-817B31AUA-CWUT2G
S-817B32AUA-CWVT2G
S-817B33AUA-CWWT2G
S-817B34AUA-CWXT2G
S-817B35AUA-CWYT2G
S-817B36AUA-CWZT2G
S-817B37AUA-CXAT2G
S-817B38AUA-CXBT2G
S-817B39AUA-CXCT2G
S-817B40AUA-CXDT2G
S-817B41AUA-CXET2G
S-817B42AUA-CXFT2G
S-817B43AUA-CXGT2G
S-817B44AUA-CXHT2G
S-817B45AUA-CXIT2G
S-817B46AUA-CXJT2G
S-817B47AUA-CXKT2G
S-817B48AUA-CXLT2G
S-817B49AUA-CXMT2G
S-817B50AUA-CXNT2G
S-817B51AUA-CXOT2G
S-817B52AUA-CXPT2G
S-817B53AUA-CXQT2G
S-817B54AUA-CXRT2G
S-817B55AUA-CXST2G
S-817B56AUA-CXTT2G
S-817B57AUA-CXUT2G
S-817B58AUA-CXVT2G
S-817B59AUA-CXWT2G
S-817B60AUA-CXXT2G
*1. X changes according to the packing form in TO-92.
B: Bulk, T: Tape and Reel, Z: Tape and ammo.
6
Seiko Instruments Inc.
TO-92*1
S-817B11AY-X-G
S-817B12AY-X-G
S-817B13AY-X-G
S-817B14AY-X-G
S-817B15AY-X-G
S-817B16AY-X-G
S-817B17AY-X-G
S-817B18AY-X-G
S-817B19AY-X-G
S-817B20AY-X-G
S-817B21AY-X-G
S-817B22AY-X-G
S-817B23AY-X-G
S-817B24AY-X-G
S-817B25AY-X-G
S-817B26AY-X-G
S-817B27AY-X-G
S-817B28AY-X-G
S-817B29AY-X-G
S-817B30AY-X-G
S-817B31AY-X-G
S-817B32AY-X-G
S-817B33AY-X-G
S-817B34AY-X-G
S-817B35AY-X-G
S-817B36AY-X-G
S-817B37AY-X-G
S-817B38AY-X-G
S-817B39AY-X-G
S-817B40AY-X-G
S-817B41AY-X-G
S-817B42AY-X-G
S-817B43AY-X-G
S-817B44AY-X-G
S-817B45AY-X-G
S-817B46AY-X-G
S-817B47AY-X-G
S-817B48AY-X-G
S-817B49AY-X-G
S-817B50AY-X-G
S-817B51AY-X-G
S-817B52AY-X-G
S-817B53AY-X-G
S-817B54AY-X-G
S-817B55AY-X-G
S-817B56AY-X-G
S-817B57AY-X-G
S-817B58AY-X-G
S-817B59AY-X-G
S-817B60AY-X-G
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
„ Pin Configurations
Table 3
SNT-4A
Top view
1
4
2
3
Pin No.
Symbol
Description
1
VOUT
Output voltage pin
2
VIN
Input voltage pin
3
VSS
GND pin
NC*1
No connection
4
*1. The NC pin is electrically open.
The NC pin can be connected to VIN or VSS.
Figure 3
SC-82AB
Top view
4
3
1
Table 4
Pin No.
Symbol
Description
1
VSS
GND pin
2
VIN
Input voltage pin
3
VOUT
Output voltage pin
NC*1
No connection
4
*1. The NC pin is electrically open.
The NC pin can be connected to VIN or VSS.
2
Figure 4
SOT-23-5
Top view
5
1
4
2
3
Table 5
Pin No.
Symbol
Description
1
VSS
GND pin
2
VIN
Input voltage pin
3
VOUT
Output voltage pin
4
NC*1
No connection
*1
5
NC
No connection
*1. The NC pin is electrically open.
The NC pin can be connected to VIN or VSS.
Figure 5
SOT-89-3
Top view
1
2
Table 6
Pin No.
1
2
3
Symbol
VSS
VIN
VOUT
Description
GND pin
Input voltage pin
Output voltage pin
3
Figure 6
Seiko Instruments Inc.
7
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
Table 7
TO-92
Bottom view
Pin No.
1
2
3
1 2 3
Symbol
VSS
VIN
VOUT
Description
GND pin
Input voltage pin
Output voltage pin
Figure 7
„ Absolute Maximum Ratings
Table 8
(Ta=25°C unless otherwise specified)
Item
Symbol
Absolute Maximum Rating
Units
VIN
VOUT
VSS−0.3 to VSS+12
VSS−0.3 to VIN+0.3
300*1
150 (When not mounted on board)
400*1
250 (When not mounted on board)
600*1
500 (When not mounted on board)
1000*1
400 (When not mounted on board)
800*1
−40 to +85
−40 to +125
V
V
Input voltage
Output voltage
SNT-4A
SC-82AB
Power
dissipation
SOT-23-5
PD
SOT-89-3
TO-92
Operating temperature range
Storage temperature
Topr
Tstg
mW
mW
mW
mW
mW
mW
mW
mW
mW
°C
°C
*1. When mounted on board
[Mounted board]
(1) Board size : 114.3 mm × 76.2 mm × t1.6 mm
(2) Board name : JEDEC STANDARD51-7
Power dissipation (PD) [mW]
Caution The absolute maximum ratings are rated values exceeding which the product could suffer
physical damage. These values must therefore not be exceeded under any conditions.
1200
SOT-89-3
1000
TO-92
800
SOT-23-5
600
SC-82AB
400
200
0
SNT-4A
0
150
100
50
Ambient temperature (Ta) [°C]
Figure 8 Power dissipation of The package (When mounted on board)
8
Seiko Instruments Inc.
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
„ Electrical Characteristics
1. S-817A series
Table 9
Item
Symbol
Output voltage *1
Output current
*2
VOUT(E)
IOUT
Dropout voltage *3
Vdrop
Line regulation 1
∆ VOUT1
Line regulation 2
∆ VOUT2
Load regulation
∆ VOUT3
Conditions
VIN=VOUT(S)+2 V, IOUT=10 mA
VOUT(S)+2 V 1.1 V ≤ VOUT(S) ≤ 1.9 V
≤ VIN≤10 V 2.0 V ≤ VOUT(S) ≤ 2.9 V
3.0 V ≤ VOUT(S) ≤ 3.9 V
4.0 V ≤ VOUT(S) ≤ 4.9 V
5.0 V ≤ VOUT(S) ≤ 6.0 V
IOUT = 10 mA 1.1 V ≤ VOUT(S) ≤ 1.4 V
1.5 V ≤ VOUT(S) ≤ 1.9 V
2.0 V ≤ VOUT(S) ≤ 2.4 V
2.5 V ≤ VOUT(S) ≤ 2.9 V
3.0 V ≤ VOUT(S) ≤ 3.4 V
3.5 V ≤ VOUT(S) ≤ 3.9 V
4.0 V ≤ VOUT(S) ≤ 4.4 V
4.5 V ≤ VOUT(S) ≤ 4.9 V
5.0 V ≤ VOUT(S) ≤ 5.4 V
5.5 V ≤ VOUT(S) ≤ 6.0 V
VOUT(S) + 1 V ≤ VIN ≤ 10 V,
IOUT = 1 mA
VOUT(S) + 1 V ≤ VIN ≤ 10 V,
IOUT = 1 µA
VIN=VOUT(S)+ 1.1 V ≤ VOUT(S) ≤ 1.9 V,
2V
1 µA ≤ IOUT ≤ 10 mA
2.0 V ≤ VOUT(S) ≤ 2.9 V,
1 µA ≤ IOUT ≤ 20 mA
3.0 V ≤ VOUT(S) ≤ 3.9 V,
1 µA ≤ IOUT ≤ 30 mA
4.0 V ≤ VOUT(S) ≤ 4.9 V,
1 µA ≤ IOUT ≤ 40 mA
5.0 V ≤ VOUT(S) ≤ 6.0 V,
1 µA ≤ IOUT ≤ 50 mA
VIN = VOUT(S) + 1 V, IOUT = 10 mA,
−40°C ≤ Ta ≤ 85°C
VIN = VOUT(S) + 2 V, no load
−
VIN = VOUT(S) + 2 V, VOUT pin = 0 V
(Ta=25°C unless otherwise specified)
MeasurMin. Typ. Max. Units ement
circuits
VOUT(S)
VOUT(S)
V
V
1
× 0.98 OUT(S) × 1.02
20
−
−
mA
3
35
−
−
50
−
−
65
−
−
75
−
−
0.92 1.58
V
1
−
0.58 0.99
−
0.40 0.67
−
0.31 0.51
−
0.25 0.41
−
0.22 0.35
−
0.19 0.30
−
0.18 0.27
−
0.16 0.25
−
0.15 0.23
−
−
5
20
−
5
20
−
5
20
−
10
30
−
20
45
−
25
65
−
35
80
mV
∆VOUT
ppm
Output voltage
−
±100
−
/°C
temperature coefficient *4 ∆Ta • VOUT
Current consumption
ISS
−
1.2
2.5
µA
2
Input voltage
VIN
−
−
10
V
1
Short current limit
IOS
−
40
−
mA
3
*1. VOUT(S): Specified output voltage
VOUT(E): Effective output voltage
i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V.
*2. Output current at which output voltage becomes 95% of VOUT(E) after gradually increasing output current.
*3. Vdrop = VIN1−(VOUT(E) × 0.98), where VIN1 is the Input voltage at which output voltage becomes 98% of VOUT(E)
after gradually decreasing input voltage.
*4. Temperature change ratio for the output voltage [mV/°C] is calculated using the following equation.
∆VOUT
[mV/ °C]*1 = VOUT(S)[V ]*2 × ∆VOUT [ppm/ °C]*3 ÷ 1000
∆Ta
∆Ta • VOUT
*1. Temperature change ratio of the output voltage
*2. Specified output voltage
*3. Output voltage temperature coefficient
Seiko Instruments Inc.
9
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
2. S-817B series
Table 10
Item
Symbol
Output voltage *1
Output current
*2
Dropout voltage *3
VOUT(E)
IOUT
Vdrop
Line regulation 1
∆ VOUT1
Line regulation 2
∆ VOUT2
Load regulation
∆ VOUT3
Conditions
VIN=VOUT(S)+2 V, IOUT=10 mA
VOUT(S)+2 V 1.1 V ≤ VOUT(S) ≤ 1.9 V
≤ VIN≤10 V 2.0 V ≤ VOUT(S) ≤ 2.9 V
3.0 V ≤ VOUT(S) ≤ 3.9 V
4.0 V ≤ VOUT(S) ≤ 4.9 V
5.0 V ≤ VOUT(S) ≤ 6.0 V
IOUT = 10
1.1 V ≤ VOUT(S) ≤ 1.4 V
mA
1.5 V ≤ VOUT(S) ≤ 1.9 V
2.0 V ≤ VOUT(S) ≤ 2.4 V
2.5 V ≤ VOUT(S) ≤ 2.9 V
3.0 V ≤ VOUT(S) ≤ 3.4 V
3.5 V ≤ VOUT(S) ≤ 3.9 V
4.0 V ≤ VOUT(S) ≤ 4.4 V
4.5 V ≤ VOUT(S) ≤ 4.9 V
5.0 V ≤ VOUT(S) ≤ 5.4 V
5.5 V ≤ VOUT(S) ≤ 6.0 V
VOUT(S) + 1 V ≤ VIN ≤ 10 V,
IOUT = 1 mA
VOUT(S) + 1 V ≤ VIN ≤ 10 V, IOUT = 1 µA
VIN=VOUT(S)+ 1.1 V ≤ VOUT(S) ≤ 1.9 V,
1 µA ≤ IOUT ≤ 10 mA
2V
2.0 V ≤ VOUT(S) ≤ 2.9 V,
1 µA ≤ IOUT ≤ 20 mA
3.0 V ≤ VOUT(S) ≤ 3.9 V,
1 µA ≤ IOUT ≤ 30 mA
4.0 V ≤ VOUT(S) ≤ 4.9 V,
1 µA ≤ IOUT ≤ 40 mA
5.0 V ≤ VOUT(S) ≤ 6.0 V,
1 µA ≤ IOUT ≤ 50 mA
VIN = VOUT(S) + 1 V, IOUT = 10 mA,
−40°C ≤ Ta ≤ 85°C
VIN = VOUT(S) + 2 V, no load
−
(Ta=25°C unless otherwise specified)
MeasurMin. Typ. Max. Units ement
circuits
VOUT(S)
VOUT(S)
V
V
1
× 0.98 OUT(S) × 1.02
20
−
−
mA
3
35
−
−
50
−
−
65
−
−
75
−
−
−
0.92
1.58
−
−
−
−
−
−
−
−
−
0.58
0.40
0.31
0.25
0.22
0.19
0.18
0.16
0.15
0.99
0.67
0.51
0.41
0.35
0.30
0.27
0.25
0.23
−
5
20
−
5
20
−
5
20
−
10
30
−
20
45
−
25
65
−
35
80
V
1
mV
∆VOUT
Output voltage
ppm
−
±100
−
/°C
temperature coefficient *4 ∆Ta • VOUT
Current consumption
ISS
−
1.2
2.5
µA
2
Input voltage
VIN
−
−
10
V
1
*1. VOUT(S): Specified output voltage
VOUT(E): Effective output voltage
i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V.
*2. Output current at which output voltage becomes 95% of VOUT(E) after gradually increasing output current.
*3. Vdrop = VIN1−(VOUT(E) × 0.98), where VIN1 is the Input voltage at which output voltage becomes 98% of VOUT(E)
after gradually decreasing input voltage.
*4. Temperature change ratio for the output voltage [mV/°C] is calculated using the following equation.
∆VOUT
[mV/ °C]*1 = VOUT(S)[V ]*2 × ∆VOUT [ppm/ °C]*3 ÷ 1000
∆Ta
∆Ta • VOUT
*1. Temperature change ratio of the output voltage
*2. Specified output voltage
*3. Output voltage temperature coefficient
10
Seiko Instruments Inc.
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
„ Measurement Circuits
1.
VIN
+
VOUT
V
VSS
A
+
Figure 9
2.
+
A
VIN
VOUT
VSS
Figure 10
3.
+
VOUT
VIN
A
V
VSS
+
Figure 11
„ Standard Circuit
INPUT
OUTPUT
VIN
CIN
VOUT
*1
*2
VSS
Single GND
CL
GND
*1. CIN is a capacitor used to stabilize input.
*2. In addition to tantalum capacitor, ceramic capacitor of 0.1 µF or more can be used for CL.
Figure 12
Caution The above connection diagram and constant will not guarantee successful operation.
Perform through evaluation using the actual application to set the constant.
Seiko Instruments Inc.
11
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
„ Explanation of Terms
1. Low ESR
ESR is the abbreviation for Equivalent Series Resistance.
Low ESR output capacitors (CL) can be used in the S-817 Series.
2. Output voltage (VOUT)
The accuracy of the output voltage is ±2.0% guaranteed under the specified conditions for input voltage,
which differs depending upon the product items, output current, and temperature.
Caution If the above conditions change, the output voltage value may vary and go out of the
accuracy range of the output voltage. See the electrical characteristics and
characteristics data for details.
3. Line regulations 1 and 2 (∆VOUT1, ∆VOUT2)
Indicate the input voltage dependencies of output voltage. That is, the values show how much the output
voltage changes due to a change in the input voltage with the output current remained unchanged.
4. Load regulation (∆VOUT3)
Indicates the output current dependencies of output voltage. That is, the values show how much the
output voltage changes due to a change in the output current with the input voltage remained unchanged.
5. Dropout voltage (Vdrop)
Indicates a difference between input voltage (VIN1) and output voltage when output voltage falls by 98% of
VOUT(E) by gradually decreasing the input voltage (VIN).
Vdrop = VIN1−[VOUT(E) × 0.98]
12
Seiko Instruments Inc.
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
 ∆VOUT 
6. Temperature coefficient of output voltage 

 ∆Ta • VOUT 
The shadowed area in Figure 13 is the range where VOUT varies in the operating temperature range
when the temperature coefficient of the output voltage is ±100 ppm/°C.
Ex. S-817A15 Typ.
VOUT
[V]
+0.15 mV / °C
*1
VOUT(E)
−0.15 mV / °C
−40
*1.
25
85
Ta [°C]
VOUT(E) is the value of the output voltage measured at 25°C.
Figure 13
A change in the temperature of the output voltage [mV/°C] is calculated using the following equation.
∆VOUT
[mV/ °C]*1 = VOUT(S)[V ]*2 × ∆VOUT [ppm/ °C]*3 ÷ 1000
∆Ta
∆Ta • VOUT
*1. Change in temperature of output voltage
*2. Specified output voltage
*3. Output voltage temperature coefficient
Seiko Instruments Inc.
13
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
„ Operation
1. Basic Operation
Figure 14 shows the block diagram of the S-817 Series.
The error amplifier compares the reference voltage (Vref) with Vfb, which is the output voltage resistancedivided by feedback resistors Rs and Rf. It supplies the output transistor with the gate voltage necessary
to ensure a certain output voltage free of any fluctuations of input voltage and temperature.
VIN
*1
Current
supply
Error
amplifier
VOUT
Vref
−
Rf
+
Vfb
Reference voltage
circuit
Rs
VSS
*1. Parasitic diode
Figure 14
2. Output Transistor
The S-817 series uses a P-channel MOS FET as the output transistor.
Be sure that VOUT does not exceed VIN+0.3 V to prevent the voltage regulator from being damaged due to
inverse current flowing from VOUT pin through a parastic diode to VIN pin.
3. Short Circuit Protection
The S-817A series incorporates a short circuit protection to protect the output transistor against short
circuit between VOUT pin and VSS pin. Installation of the short-circuit protection which protects the
output transistor against short-circuit between VOUT and VSS can be selected in the S-817A series. The
short-circuit protection controls output current as shown in the “Typical Characteristics 1.”. Output
Voltage versus Output Current, and suppresses output current at about 40 mA even if VOUT and VSS
pins are short-circuited.
The short-circuit protection can not be a thermal protection at the same time. Attention should be paid to
the Input voltage and the load current under the actual condition so as not to exceed the power
dissipation of the package including the case for short-circuit.
When the output current is large and the difference between input and output voltage is large even if not
shorted, the short-circuit protection may work and the output current is suppressed to the specified value.
For details, refer to “„ Characteristics (Typical Data) 3. Maximum Output Current vs. Input
Voltage”.
In addition, S-817B series is removing a short-circuit protection, and is the product which enabled it to
pass large current.
14
Seiko Instruments Inc.
Rev.4.2_00
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
„ Selection of Output Capacitor (CL)
To stabilize operation against variation in output load, a capacitor (CL) must be mounted between VOUT
and VSS in the S-817 series because the phase is compensated with the help of the internal phase
compensation circuit and the ESR of the output capacitor.
When selecting a ceramic or an OS capacitor, capacitance should be 0.1 µF or more, and when selecting a
tantalum or an aluminum electrolytic capacitor, capacitance should be 0.1 µF or more and ESR 30 Ω or
less.
When an aluminum electrolytic capacitor is used attention should be especially paid to since the ESR of the
aluminum electrolytic capacitor increases at low temperature and possibility of oscillation becomes large.
Sufficient evaluation including temperature characteristics is indispensable. Overshoot and undershoot
characteristics differ depending upon the type of the output capacitor. Refer to CL dependencies in “„
Reference Data 1. Transient Response Characteristics”.
„ Application Circuits
1. Output Current Boosting Circuit
Tr1
VIN
R1
CIN
VIN
S-817
series
VSS
VOUT
VOUT
R2
CL
GND
Figure 15
As shown in Figure 15, the output current can be boosted by externally attaching a PNP transistor. The
base current of the PNP transistor is controlled so that output voltage (VOUT) goes the voltage specified
in the S-817 Series when base-emitter voltage (VBE) necessary to turn on the PNP transistor is obtained
between input voltage (VIN) and S-817 Series power source pin (VIN).
The following are tips and hints for selecting and ensuring optimum use of external parts
• PNP transistor (Tr1):
1. Set hFE to approx. 100 to 400.
2. Confirm that no problem occurs due to power dissipation under normal operation conditions.
• Resistor (R1):
Generally set R1 to 1 kΩ ÷ VOUT (S) (the voltage specified in the S-817 Series) or more.
• Output capacitor (CL):
Output capacitor (CL) is effective in minimizing output fluctuation at powering on or due to power
or load fluctuation, but oscillation might occur. Always connect resistor R2 in series to output
capacitor CL.
• Resistor (R2): Set R2 to 2 Ω × VOUT(S) or more.
• DO NOT attach a capacitor between the S-817 Series power source (VIN) and GND pins or
between base and emitter of the PNP transistor to avoid oscillation.
• To improve transient response characteristics of the output current boosting circuit shown in
Figure 15, check that no problem occurs due to output fluctuation at powering on or due to
power or load fluctuation under normal operating conditions.
• Pay attention to the short current limit circuit incorporated into the S-817 Series because it does
not function as a shortcircuiting protection circuit for this boosting circuit.
Seiko Instruments Inc.
15
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
The following graphs show the examples of input-output voltage characteristics (Ta=25°C, typ.) in the
output current boosting circuit as seen in Figure 15:
1. 1 S-817A11ANB/S-817B11AMC
1. 2 S-817A50ANB/S-817B50AMC
Tr1 : 2SA1213Y, R1 : 1 kΩ, CL : 10 µF,
R2 : 2 Ω
Tr1 : 2SA1213Y, R1 : 200 Ω, CL : 10 µF,
R2 : 10 Ω
1.20
5.20
100 mA
1.10
5.10
50 mA
0.90
5.00
10 mA
1 mA
VOUT (V)
VOUT (V)
1.00
800 mA
600 mA
0.80
4.90
10 mA
4.80
800 mA
5 mA
600 mA
400 mA
0.70
1.5
1.6
1.7
1.8
1.9
2
2.1
400 mA
4.70
200 mA
0.60
1.4
100 mA
50 mA
200 mA
2.2
2.3
4.60
2.4
5.2
5.3
5.4
VIN (V)
5.5
5.6
VIN (V)
2. Constant Current Circuit
2. 1 Constant Current Circuit
VIN
VIN
VOUT
S-817
Series
RL
VSS
V0
IO
CIN
Device
VO
GND
Figure 16
2. 2 Constant Current Boosting Circuit
Tr1
VIN
S-817
R1
VOUT
Series
VSS
V0
IO
CIN
VO
GND
Figure 17
16
RL
Seiko Instruments Inc.
Device
5.7
5.8
5.9
Rev.4.2_00
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
The S-817 Series can be configured as a constant current circuit. Refer to Figure 16 and 17.
Constant amperage (IO) is calculated using the following equation (VOUT(E): Effective output voltage):
IO = (VOUT(E) ÷ RL) +ISS.
Note that by using a circuit in Figure16, it is impossible to set the better driving ability to the constant
amperage (IO) than the S-817 Series basically has.
To gain the driving ability which exceeds the S-817 Series, there’s a way to combine a constant current
circuit and a current boosting circuit, as seen in Figure 17.
The maximum input voltage for a constant current circuit is 10 V + the voltage for device (VO).
It is not recommended to add a capacitor between the VIN (power supply) and VSS pin or the VOUT
(output) and VSS pin because the rush current flows at power-on.
The following is a characteristics example of input voltage between VIN and VO vs. IO current (Typ. Ta
= 25°C) in constant current boosting circuit in Figure 17.
VIN, VO pins, Input voltage - IO current
S-817A11ANB, S-817B11AMC, Tr : 2SK1213Y, R1 : 1 kΩ, VO=2 V
0.60
RL=1.83 Ω
0.50
2.2 Ω
IO(A)
0.40
2.75 Ω
3.67 Ω
0.30
0.20
5.5 Ω
11 Ω
0.10
0.00
1.4
1.6
1.8
2
2.2
2.4
VIN−VO(V)
Seiko Instruments Inc.
17
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
3. Output Voltage Adjustment Circuit (Only for S817B Series (Product without short circuit protection))
V IN
VIN
S-817
V0
VOUT
Series
R1
VSS
CL
C IN
C1
R2
GND
Figure 18
The output voltage can be boosted by using the configuration shown in Figure 18. The output Voltage
(VO) can be calculated using the following equation (VOUT(E):Effective output voltage):
VO = VOUT(E) × (R1 + R2) ÷ R1 + R2 × ISS
Set the values of resistors R1 and R2 so that the S-817 Series is not affected by current consumption
(ISS).
Capacitor C1 is effective in minimizing output fluctuation at powering on or due to power or load
fluctuation. Determine the optimum value on your actual device. But it is not also recommended to
attach a capacitor between the S-817 Series power source VIN and VSS pin or between output VOUT
and VSS pin because output fluctuation or oscillation at powering on might occur. As shown in Figure
18, a capacitor must be mounted between VIN and GND, and between VOUT and GND.
„ Precautions
• Wiring patterns for the VIN, VOUT and GND pins should be designed so that the impedance is low.
When mounting an output capacitor between the VOUT and VSS pins (CL) and a capacitor for stabilizing
the input between VIN and VSS pins (CIN), the distance from the capacitors to these pins should be as
short as possible.
• Note that the output voltage may increase when a series regulator is used at low load current (1.0 µA or
less).
• Generally a series regulator may cause oscillation, depending on the selection of external parts. The
following conditions are recommended for this IC. However, be sure to perform sufficient evaluation
under the actual usage conditions for selection, including evaluation of temperature characteristics.
Output capacitor (CL) :
Equivalent Series Resistance (ESR) :
Input series resistance (RIN) :
0.1 µF or more
30 Ω or less
10 Ω or less
• The voltage regulator may oscillate when the impedance of the power supply is high and the input
capacitor is small or an input capacitor is not connected.
• The application conditions for the input voltage, output voltage, and load current should not exceed the
package power dissipation.
• Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in
electrostatic protection circuit.
• SII claims no responsibility for any disputes arising out of or in connection with any infringement by
products including this IC of patents owned by a third party.
18
Seiko Instruments Inc.
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
„ Characteristics (Typical Data)
1. Output Voltage vs. Output Current (when load current increases)
(a) S-817A Series
S-817A11A (Ta=25°C)
S-817A20A (Ta=25°C)
1.2
2.5
8V
0.9
VIN=
1.5V
0.6
V OUT
(V) 0.3
10V
2.0
3.1V
3V
1.5
4.1V
2.1V
V OUT
(V) 1.0
4V
0.5
VIN=
2.4V
0.0
0.0
0
20
40
60
IOUT (mA)
0
80
S-817A30A (Ta=25 °C)
2.5
4V
1.0
0.0
0
90
120
10V
4.0
6V
6V
8V
V OUT 3.0
(V) 2.0
10V
VIN=
3.4V
0.5
60
IOUT (mA)
5.0
5V
2.0
30
S-817A50A (Ta=25 °C)
3.0
V OUT
1.5
(V)
5V
VIN=5.4V
7V
1.0
30
60
90
IOUT (mA)
120
0.0
150
0
40
80
120
IOUT (mA)
160
200
(b) S-817B series
S-817B11A (Ta=25°C)
S-817B20A (Ta=25°C)
2.5
1.2
8V
0.9
4.1V
VOUT
(V) 0.6
1.5
3.1V
VOUT
(V)
2.1V
0.3
VIN=
1.5V
0.0
5V
1.0
3V
4V
0.5
0.0
0
50
100
150
IOUT (mA)
200
250
S-817B30A (Ta=25°C)
0
50
100
150
200
250
IOUT (mA)
5.0
3.0
10V
2.0
1.5
5V
1.0
VIN=
3.4V
0.5
10V
4.0
4V
2.5
300
S-817B50A (Ta=25°C)
3.5
VOUT
(V)
10V
VIN=2.4V
2.0
7V
3.0
VOUT
(V) 2.0
6V
6V
VIN=5.4V
1.0
0.0
8V
0.0
0
50
100
150
200
IOUT (mA)
250
300
Seiko Instruments Inc.
0
50
100
150
200
IOUT (mA)
250
300
19
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
2. Output Voltage vs. Input Voltage
S-817A11A/S-817B11A (Ta=25°C)
S-817A20A/S-817B20A (Ta=25°C)
1.5
2.5
IOUT =1µA
1.0
50mA
1.5
V OUT
(V) 0.5
V OUT
(V) 1.0
1mA
10mA
20mA
10mA
0.5
20mA
1mA
0.0
0.0
0
2
4
6
VIN (V)
8
4.0
50mA
10mA
2.0
V OUT
(V) 1.5
0
2
8
10
4
8
10
20mA
1mA
1.0
IOUT =1µA
0.0
6
VIN (V)
IOUT =1µA
0.0
6
VIN (V)
8
10
Seiko Instruments Inc.
50mA
10mA
V OUT 3.0
(V) 2.0
1mA
1.0
0.5
4
5.0
20mA
2.5
2
S-817A50A/S-817B50A (Ta=25°C)
3.5
3.0
0
10
S-817A30A/S-817B30A (Ta=25°C)
20
IOUT =1µA
2.0
0
2
4
6
VIN (V)
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
3. Maximum Output Current vs. Input Voltage
(a) S-817A Series
S-817A11A
S-817A20A
100
120
25°C
Ta=-40°C
80
Ta=-40°C
100
80
60
I OUT
max.(mA) 40
I OUT
max.(mA) 60
85°C
25°C
40
20
85°C
20
0
0
0
2
4
6
8
VIN (V)
1
10
3
5
7
VIN (V)
9
S-817A50A
S-817A30A
250
180
25°C
150
120
25°C
200
Ta=-40°C
I OUT
90
max.(mA)
85°C
60
Ta=-40°C
I OUT 150
max.(mA)100
85°C
50
30
0
0
2
4
6
8
VIN (V)
4
10
6
8
VIN (V)
10
(b) S-817B Series
S-817B20A
S-817B11A
300
300
250
IOUT
250
Ta=-40°C
200
200
25°C
150
Ta=-40°C
25°C
IOUT 150
max.(mA)
max.(mA)
100
100
85°C
50
85°C
50
0
0
0
2
4
6
8
VIN (V)
0
10
S-817B30A
2
4
6
8
VIN (V)
10
S-817B50A
300
300
250
250
Ta=-40°C
200
IOUT
25°C
IOUT
150
max.(mA)
Ta=-40°C
25°C
200
150
max.(mA)
100
85°C
50
85°C
100
50
0
0
2
4
6
VIN (V)
8
10
Seiko Instruments Inc.
4
6
VIN (V)
8
10
21
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
4. Dropout Voltage vs. Output Current
S-817A11A/S-817B11A
S-817A20A/S-817B20A
2000
25°C
1500
85°C
Vdrop (mV)
Vdrop (mV)
2000
1000
500
85°C
1000
500
Ta=-40°C
Ta=-40°C
0
0
5
10
IOUT (mA)
25°C
1500
15
0
20
S-817A30A/S-817B30A
0
10
20
IOUT (mA)
30
40
S-817A50A/S-817B50A
1000
85°C
1200
85°C
800
25°C
Vdrop (mV)
Vdrop (mV)
1600
800
400
25°C
600
400
200
Ta=-40°C
0
Ta=-40°C
0
0
10
20
30
IOUT (mA)
40
50
0
10
20
30
IOUT (mA)
40
50
5. Output Voltage vs. Ambient Temperature
S-817A11A/S-817B11A
VIN=3.1V, IOUT=10mA
1.12
S-817A20A/S-817B20A
2.02
VOUT (V)
VOUT (V)
1.11
1.10
1.98
1.08
1.96
0
S-817A30A/S-817B30A
Ta (°C)
50
-50
100
VIN=5V, IOUT=10mA
3.06
0
S-817A50A/S-817B50A
Ta (°C)
50
100
VIN=7V, IOUT=10mA
5.10
3.03
5.05
VOUT (V)
VOUT (V)
2.00
1.09
-50
3.00
5.00
4.95
2.97
4.90
2.94
-50
22
VIN=4V, IOUT=10mA
2.04
0
Ta (°C)
50
100
Seiko Instruments Inc.
-50
0
Ta (°C)
50
100
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
6. Line Regulation 1 vs. Ambient Temperature
S-817A11/20/30/50A
S-817B11/20/30/50A
30
7. Line Regulation 2 vs. Ambient Temperature
VIN=VOUT(S)+1V↔10V, IOUT=1mA
∆VOUT2 (mV)
∆VOUT1 (mV)
25
20
15
10
2V
VOUT=1.1V
3V
S-817A11/20/30/50A
S-817B11/20/30/50A
30
5V
VIN=VOUT(S)+1V↔10V, IOUT=1µA
25
20
15
VOUT=1.1V
10
5
2V
3V
5V
5
0
0
-50
-25
0
25
50
75
100
-50
-25
0
25
50
75
100
Ta (°C)
Ta (°C)
8. Load Regulation vs. Ambient Temperature
∆VOUT3 (mV)
S-817A11/20/30/50A
VIN=VOUT(S)+2V, IOUT=1µA↔IOUT
S-817B11/20/30/50A
80
VOUT=1.1V(IOUT=10mA)
70
2V(IOUT=20mA)
60
3V(IOUT=30mA)
50
5V(IOUT=50mA)
40
30
20
10
0
-50
-25
0
25
50
75
100
Ta (°C)
Seiko Instruments Inc.
23
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
9. Current Consumption vs. Input Voltage
S-817A11A/S-817B11A
S-817A20A/S-817B20A
1.6
1.6
85°C
ISS1 (µA)
ISS1 (µA)
1.2
25°C
0.8
Ta=-40°C
25°C
0.8
0
0
0
2
4
6
VIN (V)
8
0
10
2
4
6
8
10
VIN (V)
S-817A30A/S-817B30A
S-817A50A/S-817B50A
1.6
1.6
85°C
ISS1 (µA)
85°C
1.2
ISS1 (µA)
Ta=-40°C
0.4
0.4
25°C
0.8
Ta=-40°C
0.4
1.2
25°C
0.8
Ta=-40°C
0.4
0
0
0
2
4
6
8
10
0
2
4
6
VIN (V)
VIN (V)
24
85°C
1.2
Seiko Instruments Inc.
8
10
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
„ Reference Data
1. Transient Response Characteristics (Typical data: Ta=25 °C)
In p u t v o lta g e
or
L o a d c u rre n t
O v e rs h o o t
O u tp u t v o lta g e
U n d e rs h o o t
1. 1 At powering on S-817A30A (when using a ceramic capacitor, CL=1 µF)
VIN=0 V→10 V, IOUT=10 mA, CL=1 µF
10 V
0V
3V
VOUT
(0.5 V/div)
TIME(100 µs/div)
Load dependencies of overshoot at powering on
VOUT=0 V→VOUT(S)+2 V, CL=1 µF
0.05
VIN=0 V→VOUT(S)+2 V, IOUT=10 mA
0.05
0.04
0.04
5V
0.03
Over Shoot(V)
Over Shoot(V)
CL dependencies of overshoot at powering on
3V
2V
0.02
0.01
2V
0.03
3V
0.02
5V
0.01
0
0
1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01
0.01
0.1
VDD dependencies of overshoot at powering on
10
“Ta” dependencies of overshoot at powering on
VIN=0 V→VDD, IOUT=10 mA, CL=1 µF
0.05
VIN=0 V→VOUT(S)+2 V, IOUT=10 mA, CL=1 µF
0.05
0.04
5V
0.03
Over Shoot(V)
Over Shoot(V)
1
CL(µF)
IOUT(A)
3V
0.02
2V
0.01
0.04
0.03
5V
3V
0.02
2V
0.01
0
0
0
2
4
6
8
10
-50
0
50
100
Ta(°C)
VDD(V)
Seiko Instruments Inc.
25
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
1. 2 At powering on S-817B30A (when using a ceramic capacitor, CL=1 µF)
VIN=0 V→10 V, IOUT=10 mA, CL=1 µF
10 V
0V
3V
VOUT
(0.5 V/div)
TIME(100 µs/div)
Load dependencies of overshoot at powering on
VIN=0 V→VOUT(S)+2 V, CL=1 µF
0.05
0.04
0.04
5V
0.03
0.02
2V
3V
0.01
VIN=0 V→VOUT(S)+2 V, IOUT=10 mA
0.05
Over Shoot(V)
Over Shoot(V)
CL dependencies of overshoot at powering on
0.03
3V
0.02
5V
0.01
0
0
0.01
1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01
0.1
VDD dependencies of overshoot at powering on
“Ta” dependencies of overshoot at powering on
VIN=0 V→VDD, IOUT=10 mA, CL=1 µF
0.05
Over Shoot(V)
0.04
Over Shoot(V)
VIN=0 V→VOUT(S)+2 V, IOUT=10 mA, CL=1 µF
0.05
0.03
5V
0.02
3V
2V
0.01
10
1
CL(µF)
IOUT(A)
0.04
0.03
2V
0.02
3V
5V
0.01
0
0
0
2
4
6
8
10
-50
0
50
Ta(°C)
VDD(V)
26
2V
Seiko Instruments Inc.
100
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
1. 3 Power fluctuation S-817A30A / S-817B30A (when using a ceramic capacitor, CL=1 µF)
VIN=4 V→10 V,IOUT=1 mA, CL=1 µF
10 V
4V
V OUT
(0.2 V/div)
3V
TIME(200 µs/div)
Load dependencies of overshoot at power fluctuation
VIN=VOUT(S)+1 V→ VOUT(S)+2 V, CL=1 µF
0.4
2V
0.3
5V
3V
0.2
VIN=VOUT(S)+1 V→VOUT(S)+2 V, IOUT=1 mA
1
Over Shoot(V)
0.5
Over Shoot(V)
CL dependencies of overshoot at power fluctuation
0.1
2V
0.8
3V
5V
0.6
0.4
0.2
0
0
1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01
0.01
0.1
IOUT(A)
VDD dependencies of overshoot at power fluctuation
1
0.8
5V
0.6
Over Shoot(V)
Over Shoot(V)
10
“Ta” dependencies of overshoot at power fluctuation
VIN=VOUT(S)+1 V→VDD, IOUT=1 mA, CL=1 µF
1
1
CL(µF)
3V
0.4
2V
0.2
VIN=VOUT(S)+1 V→VOUT(S)+2 V, IOUT=1 mA, CL=1 µF
0.8
0.6
5V
3V
0.4
2V
0.2
0
0
0
2
4
6
8
10
-50
0
50
100
Ta(°C)
VDD(V)
Seiko Instruments Inc.
27
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
VIN=10 V→4 V,IOUT=1 mA, CL=1 µF
10 V
4V
VOUT 3 V
(0.02 V/div)
TIME(50 µs/div)
Load dependencies of undershoot at power fluctuation CL dependencies of undershoot at power fluctuation
VIN=VOUT(S)+2 V→VOUT(S)1 V, CL=1 µF
0.5
5V
0.3
Under Shoot(V)
Under Shoot(V)
0.4
3V
2V
0.2
VIN=VOUT(S)+2 V→VOUT(S)+1 V, IOUT=1 mA
1
0.1
2V
0.8
3V
5V
0.6
0.4
0.2
0
0
1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01
0.01
0.1
IOUT(A)
VDD dependencies of undershoot at power fluctuation
“Ta” dependencies of undershoot at power fluctuation
VIN=VDD→VOUT(S)+1 V, IOUT=1 mA, CL=1 µF
0.1
5V
0.06
Under Shoot(V)
Under Shoot(V)
0.08
3V
0.04
2V
0.02
VIN=VOUT(S)+2 V→VOUT(S)+1 V, IOUT=1 mA, CL=1 µF
0.1
2V
0.08
3V
0.06
0.04
5V
0.02
0
0
0
2
4
6
8
10
-50
0
50
Ta(°C)
VDD(V)
28
10
1
CL(µF)
Seiko Instruments Inc.
100
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
1. 4 Load fluctuation S-817A30A/S-817B30A (when using a ceramic capacitor, CL=1 µF)
IOUT=30 mA→10 µA,V IN=5 V, CL=1 µF
30 mA
10 µA
V OUT
(0.2 V/div)
3V
TIME(20 ms/div)
Load current dependencies of overshoot at load
fluctuation
CL dependencies of overshoot at load fluctuation
VIN=VOUT(S)+2 V, IOUT=IL→ 10 µA, CL=1 µF
2
2V
3V
0.5
0
1.E-05
2V
0.8
Over Shoot(V)
Over Shoot(V)
5V
1.5
1
VIN=VOUT(S)+2 V, IOUT=10 mA→10 µA
1
3V
0.6
5V
0.4
0.2
0
1.E-04
1.E-03
1.E-02
1.E-01
0.01
1.E+00
0.1
IOUT(A)
VDD dependencies of overshoot at load fluctuation
0.2
5V
0.15
Over Shoot(V)
Over Shoot(V)
10
“Ta” dependencies of overshoot at load fluctuation
VIN=VDD, IOUT=10 mA,→10 µA, CL=1 µF
0.2
1
CL(µF)
0.1
3V
2V
0.05
VIN=VOUT(S)+2 V, IOUT=10 mA→10 µA, CL=1 µF
2V
5V
0.15
0.1
3V
0.05
0
0
0
2
4
6
8
10
-50
0
50
100
Ta(°C)
VDD(V)
Seiko Instruments Inc.
29
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.4.2_00
IOUT=10 µA→30mA, VIN=5V, CL=1 µF
30mA
10µA
3V
VOUT
(0.2V/div)
TIME(50 ms/div)
Load current dependencies of undershoot at load
fluctuation
VIN=VOUT(S)+2 V, IOUT=10 µA→IL, CL=1 µA
2
1
3V
0.5
2V
0
1.E-05
3V
1.2
5V
1.5
VIN=VOUT(S)+2 V, IOUT=10 µA→10 mA
1.4
Under Shoot(V)
Under Shoot(V)
CL dependencies of undershoot at load fluctuation
5V
1
0.8
0.6
2V
0.4
0.2
0
1.E-04
1.E-03
1.E-02
1.E-01
0.01
1.E+00
0.1
IOUT(A)
CL(µF)
VDD dependencies of undershoot at load fluctuation
“Ta” dependencies of undershoot at load fluctuation
VIN=VDD, IOUT=10 µA→10 mA, CL=1 µF
0.5
0.5
5V
3V
0.3
Under Shoot(V)
Under Shoot(V)
0.4
0.2
2V
0.1
VIN=VOUT(S)+2 V, IOUT=10 µA →10 mA, CL=1 µF
0.4
3V
5V
0.3
0.2
2V
0.1
0
0
0
2
4
6
8
10
-50
0
50
Ta(°C)
VDD(V)
30
10
1
Seiko Instruments Inc.
100
1.2±0.04
3
4
+0.05
0.08 -0.02
2
1
0.65
0.48±0.02
0.2±0.05
No. PF004-A-P-SD-4.0
TITLE
SNT-4A-A-PKG Dimensions
PF004-A-P-SD-4.0
No.
SCALE
UNIT
mm
Seiko Instruments Inc.
+0.1
ø1.5 -0
4.0±0.1
2.0±0.05
0.25±0.05
+0.1
5°
1.45±0.1
2
1
3
4
ø0.5 -0
4.0±0.1
0.65±0.05
Feed direction
No. PF004-A-C-SD-1.0
TITLE
SNT-4A-A-Carrier Tape
PF004-A-C-SD-1.0
No.
SCALE
UNIT
mm
Seiko Instruments Inc.
12.5max.
9.0±0.3
Enlarged drawing in the central part
ø13±0.2
(60°)
(60°)
No. PF004-A-R-SD-1.0
SNT-4A-A-Reel
TITLE
PF004-A-R-SD-1.0
No.
SCALE
UNIT
QTY.
mm
Seiko Instruments Inc.
5,000
0.52
1.16
0.52
0.3
0.35
0.3
Caution Making the wire pattern under the package is possible. However, note that the package
may be upraised due to the thickness made by the silk screen printing and of a solder
resist on the pattern because this package does not have the standoff.
No. PF004-A-L-SD-3.0
TITLE
SNT-4A-A-Land Recommendation
PF004-A-L-SD-3.0
No.
SCALE
UNIT
mm
Seiko Instruments Inc.
2.0±0.2
1.3±0.2
4
3
0.05
+0.1
0.3 -0.05
+0.1
0.16 -0.06
2
1
+0.1
0.4 -0.05
No. NP004-A-P-SD-1.1
TITLE
SC82AB-A-PKG Dimensions
NP004-A-P-SD-1.1
No.
SCALE
UNIT
mm
Seiko Instruments Inc.
+0.1
ø1.5 -0
4.0±0.1
2.0±0.05
1.1±0.1
4.0±0.1
0.2±0.05
ø1.05±0.1
(0.7)
2.2±0.2
2
1
3
4
Feed direction
No. NP004-A-C-SD-3.0
TITLE
SC82AB-A-Carrier Tape
No.
NP004-A-C-SD-3.0
SCALE
UNIT
mm
Seiko Instruments Inc.
4.0±0.1
2.0±0.1
ø1.5
1.1±0.1
+0.1
-0
4.0±0.1
0.2±0.05
ø1.05±0.1
2.3±0.15
2
1
3
4
Feed direction
No. NP004-A-C-S1-2.0
TITLE
SC82AB-A-Carrier Tape
No.
NP004-A-C-S1-2.0
SCALE
UNIT
mm
Seiko Instruments Inc.
12.5max.
9.0±0.3
Enlarged drawing in the central part
ø13±0.2
(60°)
(60°)
No. NP004-A-R-SD-1.1
TITLE
SC82AB-A-Reel
No.
NP004-A-R-SD-1.1
QTY.
SCALE
UNIT
mm
Seiko Instruments Inc.
3,000
2.9±0.2
1.9±0.2
4
5
1
2
+0.1
0.16 -0.06
3
0.95±0.1
0.4±0.1
No. MP005-A-P-SD-1.2
TITLE
No.
SOT235-A-PKG Dimensions
MP005-A-P-SD-1.2
SCALE
UNIT
mm
Seiko Instruments Inc.
4.0±0.1(10 pitches:40.0±0.2)
+0.1
ø1.5 -0
2.0±0.05
+0.2
ø1.0 -0
0.25±0.1
4.0±0.1
1.4±0.2
3.2±0.2
3 2 1
4
5
Feed direction
No. MP005-A-C-SD-2.1
TITLE
SOT235-A-Carrier Tape
No.
MP005-A-C-SD-2.1
SCALE
UNIT
mm
Seiko Instruments Inc.
12.5max.
9.0±0.3
Enlarged drawing in the central part
ø13±0.2
(60°)
(60°)
No. MP005-A-R-SD-1.1
SOT235-A-Reel
TITLE
No.
MP005-A-R-SD-1.1
SCALE
QTY.
UNIT
mm
Seiko Instruments Inc.
3,000
4.5±0.1
1.5±0.1
1.6±0.2
1
2
3
1.5±0.1 1.5±0.1
0.4±0.05
45°
0.4±0.1
0.4±0.1
0.45±0.1
No. UP003-A-P-SD-1.1
TITLE
SOT893-A-PKG Dimensions
No.
UP003-A-P-SD-1.1
SCALE
UNIT
mm
Seiko Instruments Inc.
+0.1
ø1.5 -0
4.0±0.1(10 pitches : 40.0±0.2)
2.0±0.05
ø1.5 +0.1
-0
5° max.
0.3±0.05
8.0±0.1
2.0±0.1
4.75±0.1
Feed direction
No. UP003-A-C-SD-1.1
TITLE
SOT893-A-Carrier Tape
No.
UP003-A-C-SD-1.1
SCALE
UNIT
mm
Seiko Instruments Inc.
16.5max.
13.0±0.3
Enlarged drawing in the central part
(60°)
(60°)
No. UP003-A-R-SD-1.1
SOT893-A-Reel
TITLE
No.
UP003-A-R-SD-1.1
SCALE
UNIT
QTY.
mm
Seiko Instruments Inc.
1,000
5.2max.
4.2max.
Marked side
0.6max.
0.45±0.1
0.45±0.1
1.27
No. YS003-B-P-SD-1.1
TITLE
No.
TO92-B-PKG Dimensions
YS003-B-P-SD-1.1
SCALE
UNIT
mm
Seiko Instruments Inc.
4.2max.
5.2max.
Marked side
0.6max.
0.45±0.1
0.45±0.1
+0.4
2.5 -0.1
1.27
No. YF003-A-P-SD-1.1
TITLE
TO92-A-PKG Dimensions
YF003-A-P-SD-1.1
No.
SCALE
UNIT
mm
Seiko Instruments Inc.
12.7±1.0
1.0max.
0.5max.
1.0max.
Marked side
1#pin
3#pin
1.45max.
0.7±0.2
6.35±0.4
ø4.0±0.2
12.7±0.3(20 pitches : 254.0±1.0)
Feed direction
Marked side
Feed direction
No. YF003-A-C-SD-4.1
TITLE
No.
TO92-A-Radial Tape
YF003-A-C-SD-4.1
SCALE
UNIT
mm
Seiko Instruments Inc.
2±0.5
5±0.5
43±0.5
ø358±2
53±0.5
No. YF003-A-R-SD-2.1
TO92-A-Reel
TITLE
No.
YF003-A-R-SD-2.1
SCALE
UNIT
QTY.
mm
Seiko Instruments Inc.
2,000
4.2max.
5.2max.
Marked side
0.6max.
0.45±0.1
0.45±0.1
+0.4
2.5 -0.1
1.27
No. YF003-A-P-SD-1.1
TO92-C-PKG Dimensions
TITLE
YF003-A-P-SD-1.1
No.
SCALE
UNIT
mm
Seiko Instruments Inc.
12.7±1.0
1.0max.
0.5max.
1.0max.
Marked side
1#pin
3#pin
1.45max.
0.7±0.2
ø4.0±0.2
6.35±0.4
12.7±0.3(20 pitches : 254.0±1.0)
Z type
Feed direction
No. YZ003-C-C-SD-3.1
TITLE
TO92-C-Radial Tape
No.
YZ003-C-C-SD-3.1
SCALE
UNIT
mm
Seiko Instruments Inc.
Spacer
60
320
40
Side spacer placed in front side
165
320
Space more than 4 strokes
262
330
47
No. YZ003-C-Z-SD-2.1
TO92-C-Ammo Packing
TITLE
YZ003-C-Z-SD-2.1
No.
SCALE
UNIT
QTY.
mm
Seiko Instruments Inc.
2,500
•
•
•
•
•
•
The information described herein is subject to change without notice.
Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein
whose related industrial properties, patents, or other rights belong to third parties. The application circuit
examples explain typical applications of the products, and do not guarantee the success of any specific
mass-production design.
When the products described herein are regulated products subject to the Wassenaar Arrangement or other
agreements, they may not be exported without authorization from the appropriate governmental authority.
Use of the information described herein for other purposes and/or reproduction or copying without the
express permission of Seiko Instruments Inc. is strictly prohibited.
The products described herein cannot be used as part of any device or equipment affecting the human
body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus
installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc.
Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the
failure or malfunction of semiconductor products may occur. The user of these products should therefore
give thorough consideration to safety design, including redundancy, fire-prevention measures, and
malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.