SII S-812C50AMC

S-812C Series
HIGH OPERATING VOLTAGE
CMOS VOLTAGE REGULATOR
www.sii-ic.com
Rev.6.1_00
© Seiko Instruments Inc., 2001-2011
The S-812C Series is a high-withstand voltage regulator IC which is developed by using the CMOS technology.
This IC is suitable for applications which require withstand because its maximum voltage for operation is as high
as 16 V, also for portable device having the low current consumption because this IC not only has the low
current consumption but also a power-off circuit. This IC operates stably due to the internal phase compensation
circuit so that users are able to use ceramic capacitor as the output capacitor.
„ Features
• Low current consumption:
• Output voltage:
• Output voltage accuracy:
• Output current:
Current at operation: Typ. 1.0 μA, Max. 1.8 μA (product with 3.0 V)
2.0 to 6.0 V, selectable in 0.1 V step.
±2.0%
50 mA capable (3.0 V output product, VIN=5 V) *1
75 mA capable (5.0 V output product, VIN=7 V) *1
• Dropout voltage:
Typ. 120 mV (VOUT = 5.0 V, IOUT = 10 mA)
• Built-in Power-off circuit: Selectable if power-off function is available or not.
Active high or low in the regulator is selectable.
• Short-circuit protection:
Selectable with/without short-circuit protection.
Short-circuited current 40 mA Typ.: in the product with protection.
• Operation voltage:
16 V max.
• Lead-free, Sn 100%, halogen-free*2
*1. Attention should be paid to the power dissipation of the package when the load is large.
*2. Refer to “„ Product Name Structure” for details.
„ Applications
• Power source for home electric/electronic appliances
• Power source for battery-powered devices
• Power source for communication devices
„ Packages
• SNT-6A(H)
• SOT-23-5
• SOT-89-3
• SOT-89-5
• TO-92
Seiko Instruments Inc.
1
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
„ Block Diagrams
1. S-812CxxA Series (No short-circuit protection and power-off function)
*1
VIN
VOUT
Reference
voltage
VSS
*1. Parasitic diode
Figure 1
2. S-812CxxB Series (Short-circuit protection and power-off function)
*1
VIN
Short-circuit
protection
ON/OFF
Reference
voltage
VSS
*1. Parasitic diode
Figure 2
2
Seiko Instruments Inc.
VOUT
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
3. S-812CxxE Series (Short-circuit protection and no power-off function)
*1
VIN
VOUT
Short-circuit
protection
Reference
voltage
VSS
*1. Parasitic diode
Figure 3
Seiko Instruments Inc.
3
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
„ Product Name Structure
Users can select the product type, output voltage, and package type for the S-812C Series. Refer to the
“1. Product Name” for the construction of the product name, “2. Package” regarding the package
drawings and “3. Product Name List” for the full product names.
1. Product name
1. 1
S-812CxxA series
1. 1. 1
Package SOT-23-5, SOT-89-3
S-812C
xx
A
xx
-
xxx
T2
x
Environmental code
U : Lead-free (Sn 100%), halogen-free
G : Lead-free (for details, please contact
our sales office)
IC direction in tape specifications*1
Product name (abbreviation)
Package name (abbreviation)*2
MC : SOT-23-5
UA : SOT-89-3
Short-circuit protection and power-off function
A : No
Output voltage
20 to 60
(e.g. When the output voltage is 2.0 V,
it is expressed 20)
*1. Refer to the tape specifications.
*2. Refer to the “3. Product name list”.
1. 1. 2
Package TO-92
S-812C
xx
A
Y
-
x
2
-
U
Environmental code
U : Lead-free (Sn 100%), halogen-free
Product name (abbreviation)
B : Bulk
Z : Tape and ammo
Package name (abbreviation)*1
Y : TO-92
Short-circuit protection and power-off functio
A : No
Output voltage
20 to 60
(e.g. When the output voltage is 2.0 V,
it is expressed 20)
*1. Refer to the “3. Product name list”.
4
Seiko Instruments Inc.
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
1. 2
S-812CxxB series
S-812C
xx
B
xx
-
xxx
xx
x
Environmental code
U : Lead-free (Sn 100%), halogen-free
G : Lead-free (for details, please contact
our sales office)
IC direction in tape specifications*1
TF : SNT-6A(H)
T2 : SOT-23-5, SOT-89-5
Product name (abbreviation)
Package name (abbreviation)*2
PI : SNT-6A(H)
MC : SOT-23-5
UC : SOT-89-5
Short-circuit protection and power-off function
B : Yes
ON/OFF pin Positive logic (operates by “H”)
Output voltage
20 to 60
(e.g. When the output voltage is 2.0V,
it is expressed 20)
*1. Refer to the tape specifications.
*2. Refer to the “3. Product name list”.
1. 3
S-812CxxE series
S-812C
xx
E
UA
-
xxx
T2
x
Environmental code
U : Lead-free (Sn 100%), halogen-free
G : Lead-free (for details, please contact
our sales office)
IC direction in tape specifications*1
Product name (abbreviation)
Package name (abbreviation)*2
UA : SOT-89-3
Short-circuit protection and no power-off function
Output voltage
20 to 60
(e.g. When the output voltage is 2.0 V,
it is expressed 20)
*1. Refer to the tape specifications.
*2. Refer to the “3. Product name list”.
Seiko Instruments Inc.
5
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
2. Package
Package name
Package
SNT-6A(H)
PI006-A-P-SD
SOT-23-5
MP005-A-P-SD
SOT-89-3
UP003-A-P-SD
SOT-89-5
UP005-A-P-SD
TO-92 (Bulk)
YS003-D-P-SD
TO-92 (Tape and ammo) YZ003-E-P-SD
6
Drawing code
Tape
Reel
Zigzag
PI006-A-C-SD PI006-A-R-SD
⎯
MP005-A-C-SD MP005-A-R-SD
⎯
UP003-A-C-SD UP003-A-R-SD
⎯
UP005-A-C-SD UP005-A-R-SD
⎯
⎯
⎯
⎯
YZ003-E-Z-SD
YZ003-E-C-SD
⎯
Seiko Instruments Inc.
Land
PI006-A-L-SD
⎯
⎯
⎯
⎯
⎯
Rev.6.1_00
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
3. Product name list
3. 1 S-812CxxA Series (No short-circuit protection, power-off function)
Table 1
Output voltage
SOT-23-5
SOT-89-3
S-812C20AMC-C2AT2x S-812C20AUA-C2AT2x
2.0 V±2.0 %
S-812C21AMC-C2BT2x S-812C21AUA-C2BT2x
2.1 V±2.0 %
S-812C22AMC-C2CT2x S-812C22AUA-C2CT2x
2.2 V±2.0 %
S-812C23AMC-C2DT2x S-812C23AUA-C2DT2x
2.3 V±2.0 %
S-812C24AMC-C2ET2x S-812C24AUA-C2ET2x
2.4 V±2.0 %
S-812C25AMC-C2FT2x S-812C25AUA-C2FT2x
2.5 V±2.0 %
S-812C26AMC-C2GT2x S-812C26AUA-C2GT2x
2.6 V±2.0 %
S-812C27AMC-C2HT2x S-812C27AUA-C2HT2x
2.7 V±2.0 %
S-812C28AMC-C2IT2x S-812C28AUA-C2IT2x
2.8 V±2.0 %
S-812C29AMC-C2JT2x S-812C29AUA-C2JT2x
2.9 V±2.0 %
S-812C30AMC-C2KT2x S-812C30AUA-C2KT2x
3.0 V±2.0 %
S-812C31AMC-C2LT2x S-812C31AUA-C2LT2x
3.1 V±2.0 %
S-812C32AMC-C2MT2x S-812C32AUA-C2MT2x
3.2 V±2.0 %
S-812C33AMC-C2NT2x S-812C33AUA-C2NT2x
3.3 V±2.0 %
S-812C34AMC-C2OT2x S-812C34AUA-C2OT2x
3.4 V±2.0 %
S-812C35AMC-C2PT2x S-812C35AUA-C2PT2x
3.5 V±2.0 %
S-812C36AMC-C2QT2x S-812C36AUA-C2QT2x
3.6 V±2.0 %
S-812C37AMC-C2RT2x S-812C37AUA-C2RT2x
3.7 V±2.0 %
S-812C38AMC-C2ST2x S-812C38AUA-C2ST2x
3.8 V±2.0 %
S-812C39AMC-C2TT2x S-812C39AUA-C2TT2x
3.9 V±2.0 %
S-812C40AMC-C2UT2x S-812C40AUA-C2UT2x
4.0 V±2.0 %
S-812C41AMC-C2VT2x S-812C41AUA-C2VT2x
4.1 V±2.0 %
4.2 V±2.0 % S-812C42AMC-C2WT2x S-812C42AUA-C2WT2x
S-812C43AMC-C2XT2x S-812C43AUA-C2XT2x
4.3 V±2.0 %
S-812C44AMC-C2YT2x S-812C44AUA-C2YT2x
4.4 V±2.0 %
S-812C45AMC-C2ZT2x S-812C45AUA-C2ZT2x
4.5 V±2.0 %
S-812C46AMC-C3AT2x S-812C46AUA-C3AT2x
4.6 V±2.0 %
S-812C47AMC-C3BT2x S-812C47AUA-C3BT2x
4.7 V±2.0 %
S-812C48AMC-C3CT2x S-812C48AUA-C3CT2x
4.8 V±2.0 %
S-812C49AMC-C3DT2x S-812C49AUA-C3DT2x
4.9 V±2.0 %
S-812C50AMC-C3ET2x S-812C50AUA-C3ET2x
5.0 V±2.0 %
S-812C51AMC-C3FT2x S-812C51AUA-C3FT2x
5.1 V±2.0 %
S-812C52AMC-C3GT2x S-812C52AUA-C3GT2x
5.2 V±2.0 %
S-812C53AMC-C3HT2x S-812C53AUA-C3HT2x
5.3 V±2.0 %
S-812C54AMC-C3IT2x S-812C54AUA-C3IT2x
5.4 V±2.0 %
S-812C55AMC-C3JT2x S-812C55AUA-C3JT2x
5.5 V±2.0 %
S-812C56AMC-C3KT2x S-812C56AUA-C3KT2x
5.6 V±2.0 %
S-812C57AMC-C3LT2x S-812C57AUA-C3LT2x
5.7 V±2.0 %
S-812C58AMC-C3MT2x S-812C58AUA-C3MT2x
5.8 V±2.0 %
S-812C59AMC-C3NT2x S-812C59AUA-C3NT2x
5.9 V±2.0 %
S-812C60AMC-C3OT2x S-812C60AUA-C3OT2x
6.0 V±2.0 %
*1. “n” changes according to the packing form in TO-92.
B: Bulk, Z: Tape and ammo.
SOT-89-5
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
TO-92*1
S-812C20AY-n2-U
S-812C21AY-n2-U
S-812C22AY-n2-U
S-812C23AY-n2-U
S-812C24AY-n2-U
S-812C25AY-n2-U
S-812C26AY-n2-U
S-812C27AY-n2-U
S-812C28AY-n2-U
S-812C29AY-n2-U
S-812C30AY-n2-U
S-812C31AY-n2-U
S-812C32AY-n2-U
S-812C33AY-n2-U
S-812C34AY-n2-U
S-812C35AY-n2-U
S-812C36AY-n2-U
S-812C37AY-n2-U
S-812C38AY-n2-U
S-812C39AY-n2-U
S-812C40AY-n2-U
S-812C41AY-n2-U
S-812C42AY-n2-U
S-812C43AY-n2-U
S-812C44AY-n2-U
S-812C45AY-n2-U
S-812C46AY-n2-U
S-812C47AY-n2-U
S-812C48AY-n2-U
S-812C49AY-n2-U
S-812C50AY-n2-U
S-812C51AY-n2-U
S-812C52AY-n2-U
S-812C53AY-n2-U
S-812C54AY-n2-U
S-812C55AY-n2-U
S-812C56AY-n2-U
S-812C57AY-n2-U
S-812C58AY-n2-U
S-812C59AY-n2-U
S-812C60AY-n2-U
Remark 1. Please contact our sales office for products with an output voltage value other than those
specified above.
2. x: G or U
3. Please select products of environmental code = U for Sn 100%, halogen-free products.
Seiko Instruments Inc.
7
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
3. 2 S-812CxxB Series (Short-circuit protection and power-off function)
Table 2
Output voltage
2.0 V±2.0 %
2.1 V±2.0 %
2.2 V±2.0 %
2.3 V±2.0 %
2.4 V±2.0 %
2.5 V±2.0 %
2.6 V±2.0 %
2.7 V±2.0 %
2.8 V±2.0 %
2.9 V±2.0 %
3.0 V±2.0 %
3.1 V±2.0 %
3.2 V±2.0 %
3.3 V±2.0 %
3.4 V±2.0 %
3.5 V±2.0 %
3.6 V±2.0 %
3.7 V±2.0 %
3.8 V±2.0 %
3.9 V±2.0 %
4.0 V±2.0 %
4.1 V±2.0 %
4.2 V±2.0 %
4.3 V±2.0 %
4.4 V±2.0 %
4.5 V±2.0 %
4.6 V±2.0 %
4.7 V±2.0 %
4.8 V±2.0 %
4.9 V±2.0 %
5.0 V±2.0 %
5.1 V±2.0 %
5.2 V±2.0 %
5.3 V±2.0 %
5.4 V±2.0 %
5.5 V±2.0 %
5.6 V±2.0 %
5.7 V±2.0 %
5.8 V±2.0 %
5.9 V±2.0 %
6.0 V±2.0 %
SNT-6A(H)
S-812C20BPI-C4ATFx
S-812C21BPI-C4BTFx
S-812C22BPI-C4CTFx
S-812C23BPI-C4DTFx
S-812C24BPI-C4ETFx
S-812C25BPI-C4FTFx
S-812C26BPI-C4GTFx
S-812C27BPI-C4HTFx
S-812C28BPI-C4ITFx
S-812C29BPI-C4JTFx
S-812C30BPI-C4KTFx
S-812C31BPI-C4LTFx
S-812C32BPI-C4MTFx
S-812C33BPI-C4NTFx
S-812C34BPI-C4OTFx
S-812C35BPI-C4PTFx
S-812C36BPI-C4QTFx
S-812C37BPI-C4RTFx
S-812C38BPI-C4STFx
S-812C39BPI-C4TTFx
S-812C40BPI-C4UTFx
S-812C41BPI-C4VTFx
S-812C42BPI-C4WTFx
S-812C43BPI-C4XTFx
S-812C44BPI-C4YTFx
S-812C45BPI-C4ZTFx
S-812C46BPI-C5ATFx
S-812C47BPI-C5BTFx
S-812C48BPI-C5CTFx
S-812C49BPI-C5DTFx
S-812C50BPI-C5ETFx
S-812C51BPI-C5FTFx
S-812C52BPI-C5GTFx
S-812C53BPI-C5HTFx
S-812C54BPI-C5ITFx
S-812C55BPI-C5JTFx
S-812C56BPI-C5KTFx
S-812C57BPI-C5LTFx
S-812C58BPI-C5MTFx
S-812C59BPI-C5NTFx
SOT-23-5
S-812C20BMC-C4AT2x
S-812C21BMC-C4BT2x
S-812C22BMC-C4CT2x
S-812C23BMC-C4DT2x
S-812C24BMC-C4ET2x
S-812C25BMC-C4FT2x
S-812C26BMC-C4GT2x
S-812C27BMC-C4HT2x
S-812C28BMC-C4IT2x
S-812C29BMC-C4JT2x
S-812C30BMC-C4KT2x
S-812C31BMC-C4LT2x
S-812C32BMC-C4MT2x
S-812C33BMC-C4NT2x
S-812C34BMC-C4OT2x
S-812C35BMC-C4PT2x
S-812C36BMC-C4QT2x
S-812C37BMC-C4RT2x
S-812C38BMC-C4ST2x
S-812C39BMC-C4TT2x
S-812C40BMC-C4UT2x
S-812C41BMC-C4VT2x
S-812C42BMC-C4WT2x
S-812C43BMC-C4XT2x
S-812C44BMC-C4YT2x
S-812C45BMC-C4ZT2x
S-812C46BMC-C5AT2x
S-812C47BMC-C5BT2x
S-812C48BMC-C5CT2x
S-812C49BMC-C5DT2x
S-812C50BMC-C5ET2x
S-812C51BMC-C5FT2x
S-812C52BMC-C5GT2x
S-812C53BMC-C5HT2x
S-812C54BMC-C5IT2x
S-812C55BMC-C5JT2x
S-812C56BMC-C5KT2x
S-812C57BMC-C5LT2x
S-812C58BMC-C5MT2x
S-812C59BMC-C5NT2x
S-812C60BPI-C5OTFx
S-812C60BMC-C5OT2x
SOT-89-5
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
S-812C33BUC-C4NT2x
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
S-812C50BUC-C5ET2x
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
⎯
Remark 1. Please contact our sales office for products with an output voltage value other than those
specified above.
2. x: G or U
3. Please select products of environmental code = U for Sn 100%, halogen-free products.
8
Seiko Instruments Inc.
Rev.6.1_00
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
3. 3 S-812CxxE Series (Short-circuit protection, no power-off function)
Table 3
Output voltage
SOT-23-5
SOT-89-3
S-812C33EUA-C5PT2x
3.3 V±2.0 %
⎯
S-812C36EUA-C5RT2x
3.6 V±2.0 %
⎯
S-812C40EUA-C5QT2x
4.0 V±2.0 %
⎯
*1. “n” changes according to the packing form in TO-92.
B: Bulk, Z: Tape and ammo.
SOT-89-5
⎯
⎯
⎯
TO-92*1
⎯
⎯
⎯
Remark 1. Please contact our sales office for products with an output voltage value other than those
specified above.
2. x: G or U
3. Please select products of environmental code = U for Sn 100%, halogen-free products.
Seiko Instruments Inc.
9
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
„ Pin Configurations
Table 4
SNT-6A(H)
Top view
1
6
2
5
3
4
Figure 4
SOT-23-5
Top view
5
1
4
2
3
Figure 5
SOT-89-3
Top view
1
2
Pin No.
Symbol
Description
*1
1
NC
No connection
2
VIN
Input voltage pin
3
VOUT
Output voltage pin
4
VSS
GND pin
5
VIN
Input voltage pin
6
ON/OFF Power-off pin
*1. The NC pin is electrically open.
The NC pin can be connected to VIN or VSS.
Table 5
Pin No.
1
2
3
4
Symbol
Description
VSS
GND pin
VIN
Input voltage pin
VOUT
Output voltage pin
NC*1
No connection
ON/OFF
Power-off pin (B type)
5
NC*1
No connection (A type, E type)
*1. The NC pin is electrically open.
The NC pin can be connected to VIN or VSS.
Table 6
Pin No.
1
2
3
Symbol
VSS
VIN
VOUT
Description
GND pin
Input voltage pin
Output voltage pin
3
Figure 6
SOT-89-5
Top view
5
1
4
2
Table 7
Pin No.
1
2
3
Symbol
Description
VOUT
Output voltage pin
VIN
Input voltage pin
VSS
GND pin
ON/OFF
Power-off pin (B type)
4
NC*1
No connection (A type, E type)
5
NC*1
No connection
*1. The NC pin is electrically open.
The NC pin can be connected to VIN or VSS.
3
Figure 7
10
Seiko Instruments Inc.
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
Table 8
TO-92
Bottom view
Pin No.
1
2
3
1 2 3
Symbol
VSS
VIN
VOUT
Description
GND pin
Input voltage pin
Output voltage pin
Figure 8
„ Absolute Maximum Ratings
Table 9
Item
Symbol
VIN
VON/OFF
VOUT
Input voltage
Output voltage
SNT-6A(H)
SOT-23-5
Power dissipation
SOT-89-3
PD
SOT-89-5
TO-92
(Ta=25°C unless otherwise specified)
Absolute Maximum Rating
Units
V
VSS−0.3 to VSS+18
V
VSS−0.3 to VIN+0.3
V
VSS−0.3 to VIN+0.3
500*1
mW
250 (When not mounted on board)
mW
600*1
mW
500 (When not mounted on board)
mW
1000*1
mW
500 (When not mounted on board)
mW
1000*1
mW
400 (When not mounted on board)
mW
mW
800*1
−40 to +85
°C
−40 to +125
°C
Operating temperature range
Topr
Storage temperature
Tstg
*1. When mounted on board
[Mounted board]
(1) Board size : 114.3 mm × 76.2 mm × t1.6 mm
(2) Board name : JEDEC STANDARD51-7
Power dissipation (PD) [mW]
Caution The absolute maximum ratings are rated values exceeding which the product could suffer
physical damage. These values must therefore not be exceeded under any conditions.
1200
SOT-89-5
SOT-89-3
1000
TO-92
800
SOT-23-5
600
400
200
0
SNT-6A(H)
0
150
100
50
Ambient temperature (Ta) [°C]
Figure 9 Power Dissipation of The Package (When mounted on Board)
Seiko Instruments Inc.
11
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
„ Electrical Characteristics
Table 10
Parameter
Output voltage*1
Symbol
VOUT(E)
Conditions
VIN = VOUT(S)+2 V, IOUT = 10mA
2.0V ≤ VOUT(S) ≤ 2.9V
VOUT(S)+2V 3.0V ≤ VOUT(S) ≤ 3.9V
Output current
IOUT
≤ VIN≤16V 4.0V ≤ VOUT(S) ≤ 4.9V
5.0V ≤ VOUT(S) ≤ 6.0V
2.0V ≤ VOUT(S) ≤ 2.4V
2.5V ≤ VOUT(S) ≤ 2.9V
3.0V ≤ VOUT(S) ≤ 3.4V
IOUT =
3.5V ≤ VOUT(S) ≤ 3.9V
*3
Dropout voltage
Vdrop
10mA
4.0V ≤ VOUT(S) ≤ 4.4V
4.5V ≤ VOUT(S) ≤ 4.9V
5.0V ≤ VOUT(S) ≤ 5.4V
5.5V ≤ VOUT(S) ≤ 6.0V
VOUT(S) + 1 V ≤ VIN ≤ 16 V,
Line regulation 1
Δ VOUT11
IOUT = 1mA
VOUT(S) + 1 V ≤ VIN ≤ 16 V,
Line regulation 2
Δ VOUT21
IOUT = 1μA
2.0V ≤ VOUT(S) ≤ 2.9V,
1μA ≤ IOUT ≤ 20mA
3.0V ≤ VOUT(S) ≤ 3.9V,
VIN = VOUT(S) 1μA ≤ IOUT ≤ 30mA
Load regulation
Δ VOUT31
+ 2V
4.0V ≤ VOUT(S) ≤ 4.9V,
1μA ≤ IOUT ≤ 40mA
5.0V ≤ VOUT(S) ≤ 6.0V,
1μA ≤ IOUT ≤ 50mA
ΔVOUT
VIN = VOUT(S) + 1 V, IOUT = 10mA,
Output voltage
temperature coefficient*4
ΔTa • VOUT -40°C ≤ Ta ≤ 85°C
2.0V ≤ VOUT(S) ≤ 2.7V
VIN =
2.8V ≤ VOUT(S) ≤ 3.7V
Current consumption
ISS
VOUT(S)+2,
3.8V ≤ VOUT(S) ≤ 5.1V
no load
5.2V ≤ VOUT(S) ≤ 6.0V
Input voltage
VIN
−
Applied to products with Power-off Function
VIN = VOUT(S) + 2V,
Current consumption
ISS2
at power-off
VON/OFF = 0V, no load
VIN = VOUT(S) + 2V, RL = 1kΩ,
Power-off pin
VSH
Input voltage for high level
determined by VOUT output level
VIN = VOUT(S) + 2V, RL = 1kΩ,
Power-off pin
VSL
Input voltage for low level
determined by VOUT output level
Power-off pin
VIN = 7V, VON/OFF = 7V
ISH
Input current at high level
Power-off pin
VIN = VOUT(S) + 2V, VON/OFF = 0V
ISL
Input current at low level
Applied to products with Short-circuit Protection
Short-circuit current
IOS
VIN = VOUT(S) + 2 V, VOUT = 0 V
*2
12
Seiko Instruments Inc.
(Ta=25°C unless otherwise specified)
Test
Min.
Typ.
Max. Units
circuits
VOUT(S)
V
VOUT(S) OUT(S)
V
1
× 0.98
× 1.02
30
−
−
mA
3
50
−
−
mA
3
65
−
−
mA
3
75
−
−
mA
3
0.46
0.95
V
1
−
0.32
0.68
V
1
−
0.23
0.41
V
1
−
0.19
0.35
V
1
−
0.16
0.30
V
1
−
0.14
0.27
V
1
−
0.12
0.25
V
1
−
0.11
0.23
V
1
−
−
5
20
mV
1
−
5
20
mV
1
−
6
30
mV
1
−
10
45
mV
1
−
13
65
mV
1
−
17
80
mV
1
−
±100
−
ppm/°C
1
−
−
−
−
−
0.9
1.0
1.2
1.5
−
1.6
1.8
2.1
2.5
16
μA
μA
μA
μA
V
2
2
2
2
1
−
0.1
0.5
μA
2
2.0
−
−
V
4
−
−
0.4
V
4
-0.1
−
0.1
μA
4
-0.1
−
0.1
μA
4
−
40
−
mA
3
Rev.6.1_00
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
*1. VOUT(S): Specified output voltage
VOUT(E): Effective output voltage
i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V.
*2. Output current at which output voltage becomes 95% of VOUT(E) after gradually increasing output current.
*3. Vdrop = VIN1−(VOUT(E) × 0.98), where VIN1 is the input voltage at which output voltage reaches 98% of VOUT(E)
after gradually decreasing input voltage.
*4. The ratio of temperature change in output voltage [mV/°C] is calculated using the following equation.
ΔVOUT
[mV/ °C]*1 = VOUT(S) [V ]*2 × ΔVOUT [ppm/ °C]*3 ÷ 1000
ΔTa
ΔTa • VOUT
*1. The ratio of temperature change in output voltage
*2. Specified output voltage
*3. Output voltage temperature coefficient
Seiko Instruments Inc.
13
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
„ Test Circuits
1.
VIN
VOUT
A
(ON/OFF)*1
VSS
Set to power ON
V
Figure 10
2.
VOUT
VIN
A
*1
(ON/OFF)
VSS
Set to VIN or
GND
Figure 11
3.
VOUT
VIN
A
(ON/OFF)*1
VSS
V
Set to power ON
Figure 12
4.
VIN
A
VOUT
*1
(ON/OFF)
VSS
RL
V
Figure 13
*1. In case of product with power-off function.
„ Standard Circuit
OUTPUT
INPUT
VIN
VOUT
→ (ON/OFF)*3
CIN
CL
*1
VSS
*2
GND
Single GND
*1. CIN is a capacitor for stabilizing the input.
*2. In addition to tantalum capacitor, ceramic capacitor can be used for CL.
*3. Control this ON/OFF pin in the product with power-off function.
Figure 14
Caution The above connection diagram and constant will not guarantee successful operation.
Perform through evaluation using the actual application to set the constant.
14
Seiko Instruments Inc.
Rev.6.1_00
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
„ Technical Terms
1. Output capacitors (CL)
Generally in voltage regulator, output capacitor is used to stabilize regulation and to improve the
characteristics of transient response. The S-812C Series operates stably without output capacitor CL.
Thus the output capacitor CL is used only for improvement of the transient response. In the applications
that users will use the S-812C Series, and they are not cautious about the transient response, it is
possible to omit an output capacitor. If using an output capacitor for this IC, users are able to use devices
such as ceramic capacitor which has small ESR (Equivalent Series Resistance).
2. Output voltage (VOUT)
The accuracy of the output voltage ± 2.0% is assured under the specified conditions for input voltage,
which differs depending upon the product items, output current, and temperature.
Caution If the above conditions change, the output voltage value may vary and go out of the
accuracy range of the output voltage. See the electrical characteristics and
characteristics data for details.
3. Line regulations 1 and 2 (ΔVOUT1, ΔVOUT2)
Indicate the dependency of the output voltage against the input voltage. That is, the value shows how
much the output voltage changes due to a change in the input voltage after fixing output current constant.
4. Load regulation (ΔVOUT3)
Indicates the dependency of the output voltage against the output current. That is, the value shows how
much the output voltage changes due to a change in the output current after fixing output current
constant.
5. Dropout voltage (Vdrop)
Indicates the difference between the output voltage and the input voltage VIN1, which is the input voltage
(VIN) when; decreasing input voltage VIN gradually until the output voltage has dropped to the value of
98% of output voltage VOUT(E), which is at VIN = VOUT(S) + 1.0 V.
Vdrop = VIN1 − (VOUT(E) × 0.98)
Seiko Instruments Inc.
15
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
⎛ ΔVOUT ⎞
6. Temperature coefficient of output voltage ⎜
⎟
⎝ ΔTa • VOUT ⎠
The shadowed area in Figure 15 is the range where VOUT varies in the operating temperature range when
the temperature coefficient of the output voltage is ±100 ppm/°C.
The ratio of temperature change in output voltage [mV/°C] is calculated from the following equation.
ΔVOUT
[mV/ °C]*1 = VOUT(S) [V ]* 2 × ΔTaΔV•OUT
[ppm/ °C]* 3 ÷ 1000
ΔTa
VOUT
*1. The ratio of temperature change in output voltage
*2. Specified output voltage
*3. Output voltage temperature coefficient
VOUT[V]
+0.30mV/°C
VOUT(E)*1
-0.30mV/°C
-40
25
85
Ta [°C]
*1. VOUT(E) is a measured value of output voltage at 25°C.
Figure 15 Ex. S-812C30A Typ.
16
Seiko Instruments Inc.
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
„ Operation
1. Basic Operation
Figure 16 shows the block diagram of the S-812C Series.
The error amplifier compares the reference voltage (Vref) with Vfb, which is the output voltage resistancedivided by feedback resistors Rs and Rf. It supplies the gate voltage necessary to maintain the constant
output voltage which is not influenced by the input voltage and temperature change, to the output
transistor.
VIN
*1
Current supply
Error amplifier
−
Vref
VOUT
Rf
+
Reference
voltage
circuit
RS
VSS
*1. Parasitic diode
Figure 16
2. Output Transistor
In the S-812C Series, a low on-resistance P-channel MOS FET is used as the output transistor.
Be sure that VOUT does not exceed VIN + 0.3 V to prevent the voltage regulator from being damaged due
to inverse current which flows, because of a parasitic diode between the VIN and VOUT pin.
Seiko Instruments Inc.
17
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
3. Power-off function (ON/OFF pin)
This function starts and stops the regulator.
When the ON/OFF pin is set to power-off level, the entire internal circuit stops operating, and the built-in
P-channel MOS FET output transistor between the VIN and VOUT pin is turned off, in order to reduce
the current consumption significantly. The VOUT pin is set to the VSS level by the internal dividing
resistor of several MΩ between the VOUT and VSS pin.
The ON/OFF pin is configured as shown in Figure 17 Since the ON/OFF pin is neither pulled down nor
pulled up internally, do not use it in the floating state. Note that if applying the voltage of VIN + 0.3 V or
more, the current flows to VIN via a parasitic diode in the IC.
When not using the power-off pin in the product with the power-off function, connect the ON/OFF pin to
the VIN pin (in positive logic), or to the VSS pin (in negative logic).
The output voltage may increase by stopping regulation when a lower current (less than 100 μA) is
applied.
If the output voltage increased during power-off, pull the VOUT pin down to the VSS pin and set the
ON/OFF pin to the power-down level.
Table 11
Logic Type
ON/OFF Pin
Internal Circuits
VOUT Pin Voltage
Current Consumption
B
“L”: Power off
Stop
VSS level
ISS2
B
“H”: Power on
Operation
Set value
ISS
VIN
ON/OFF
VSS
Figure 17
4. Short-circuit protection circuit
In the S-812C Series, users are able to select whether to set the short circuit protection, which protects
the output capacitor from short-circuiting the VOUT and VSS pin.
The short circuit protection circuit controls the output current against voltage VOUT, as seen in “„
Characteristics (Typical Data) 1”, and limits the output current at approx. 40 mA even if the VOUT and
VSS pins are short-circuited.
However, this short circuit protection circuit does not work as for thermal protection. Pay attention to the
conditions of input voltage and load current so that, under the usage condition including short circuit, the
loss of the IC will not exceed power dissipation of the package.
Even if pins are not short-circuited, this protection circuit works to limit the current to the specified value,
in order to protect the output capacitor, when the output current and the potential difference between
input and output voltages increase.
In the product without the short circuit protection circuit, the S-812C Series allows the relatively larger
current because this protection circuit is detached.
18
Seiko Instruments Inc.
Rev.6.1_00
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
„ Selection of External Components
1. Output Capacitor (CL)
The S-812C Series has an internal phase compensation circuit which stabilizes the operation regardless
of the change of output load. Therefore it is possible for users to have a stable operation without an
output capacitor (CL). However, the values of output overshoot and undershoot, which are the
characteristics of transient response, vary depending on the output capacitor. In selecting the value of
output capacitor, refer to the data on CL dependency in “„ Reference data 1. Transient response
characteristics”.
Set ESR 10 Ω or less when using a tantalum capacitor or an aluminum electrolytic capacitor. Pay
attention at low temperature, that aluminum electrolytic capacitor especially may oscillate because ESR
increases. Evaluate sufficiently including the temperature characteristics in use.
„ Application Circuit
1. Output Current Boost Circuit
As shown in Figure 18, the output current can be boosted by externally attaching a PNP transistor.
Between the input voltage VIN and the VIN pin (for power supply) in the S-812C Series, if setting the
base-emitter voltage VBE which fully switches the PNP transistor on, S-812C Series controls the base
current in a PNP transistor so that the output voltage VOUT reaches the level of voltage which is set by
the S-812C Series.
Since the output current boosting circuit in Figure 18 does not have the good characteristics of transient
response, under the usage condition, confirm if output fluctuation due to power-on, and fluctuations of
power supply and load affect on the operation or not before use.
Note that the short-circuit protection circuit in the S-812C Series does not work as short-circuit protection
for this boost circuit.
Tr1
S-812C
Series
ON/OFF
VSS
VIN
VIN
R1
CIN
VOUT
VOUT
CL
GND
Figure 18
Seiko Instruments Inc.
19
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
2. Constant Current Circuit
This circuit can be used as a constant current circuit if making the composition seen in Figure 19 and
20. Constant current IO is calculated from the following equation:
IO = (VOUT(E) ÷ RL) + ISS
(VOUT(E) = effective output voltage)
Note that by using a circuit in Figure 19, it is impossible to set the better driving ability to the constant
amperage (IO) than the S-812C Series basically has.
To gain the driving ability which exceeds the S-812C Series, there’s a way to combine a constant
current circuit and a current boosting circuit, as seen in Figure 20.
The maximum input voltage for a constant current circuit is 16 V + the voltage for device (VO).
It is not recommended to add a capacitor between the VIN (power supply) and VSS pin or the VOUT
(output) and VSS pin because the rush current flows at power-on.
VIN S-812C VOUT
VIN
Series
V
ON/OFF RL OUT
IO
Device
VO
VSS
CIN
GND
Figure 19 Constant Current Circuit
Tr1
VIN S-812C
VIN
VOUT
Series
R1
ON/OFF VSS
CIN
RL VOUT
VO
IO
Device
GND
Figure 20 Constant Current Boost Circuit
3. Output Voltage Adjustment Circuit
(Only for S-812CxxA Series (No short-circuit protection, power-off function))
By using the composition seen in Figure 21, users are able to increase the output voltage. The value of
output voltage VOUT1 is calculated from the following equation:
VOUT1 = VOUT(E) × (R1 + R2) ÷ R1 + R2 × ISS
(VOUT(E) = effective output voltage)
Set the value of resistors R1 and R2 so that the S-812C Series is not affected by current consumption
ISS.
Capacitor C1 reduces output fluctuation due to power-on, power fluctuation and load fluctuation. Set the
value according to the actual evaluation.
It is not recommended to add a capacitor between the VIN (power supply) and VSS pin or the VOUT
(output) and VSS pin because it causes output fluctuation and output oscillation due to power-on.
VIN
VIN S-812C
VOUT1
VOUT
Series
R1
VSS
CIN
GND
C1
R2
Figure 21
20
Seiko Instruments Inc.
CL
Rev.6.1_00
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
„ Precautions
• Wiring patterns for the VIN, VOUT and GND pins should be designed so that the impedance is low. When
mounting an output capacitor between the VOUT and VSS pins (CL) and a capacitor for stabilizing the
input between VIN and VSS pins (CIN), the distance from the capacitors to these pins should be as short
as possible.
• Note that output voltage may be increased at low load current of less than 1 μA.
• At low load current less than 100 μA output voltage may increase when the regulating operation is halted
by the ON/OFF pin.
• To prevent oscillation, it is recommended to use the external parts under the following conditions.
Equivalent Series Resistance (ESR): 10 Ω or less (in case of using output capacitor)
Input series resistance (RIN):
10 Ω or less
• A voltage regulator may oscillate when power source impedance is high and input capacitor is low or not
connected.
• Pay attention to the operating conditions for input/output voltage and load current so that the power loss in
the IC does not exceed the power dissipation of the package.
• Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in
electrostatic protection circuit.
• SII claims no responsibility for any and all disputes arising out of or in connection with any infringement of
the products including this IC upon patents owned by a third party.
Seiko Instruments Inc.
21
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
„ Characteristics (Typical Data)
1. Output Voltage vs Output Current (When load current increases)
S-812C20B (Ta=25°C) Short- circuit protection
2.5
VIN=2.5V
2.0
5V
7V
1.5
S-812C30B (Ta=25°C) Short-circuit protection
3.5
3.0
VOUT (V)
VOUT (V)
1.0
2.0
6V
VIN=3.5V
1.5
1.0
4V
3V
0.5
8V
2.5
5V
4V
0.5
0.0
0.0
0
50
100
150
0
IOUT (mA)
50
100
IOUT (mA)
150
200
VOUT (V)
S-812C50B (Ta=25°C) Short-circuit protection
6.0
10V
5.0
4.0
3.0
VIN=5.5V
2.0
6V
8V
7V
1.0
0.0
0
100
200
300
IOUT (mA)
S-812C20A (Ta=25 ºC)
2.5
No short-circuit protection
S-812C30A (Ta=25ºC)
3.5
VIN=2.3V
VOUT (V)
VOUT (V)
1.5
7V
2.5V
4V
3V
0.5
VIN=3.3V
3.0
2.0
1.0
5V
2.5
2.0
8V
1.5
3.5V
1.0
4V
6V
0.0
0
100
200
300
0
IOUT (mA)
S-812C50A (Ta=25ºC)
No short-circuit protection
6.0
5.0
VOUT (V)
5V
0.5
0.0
4.0
10V
3.0
2.0
VIN=5.3V
1.0
8V
6V 7V
5.5V
0.0
0
22
No short-circuit protection
100
200
IOUT (mA)
300
400
Seiko Instruments Inc.
100
200
IOUT (mA)
300
400
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
2. Maximum Output Current vs Input Voltage
S-812C20B
Short-circuit protection
S-812C30B
Ta=-40°C
IOUTMAX (mA)
120
IOUTMAX (mA)
Short-circuit protection
200
140
100
80
60
40
25°C
85°C
Ta=-40°C
20
150
100
25°C
50
85°C
0
0
0
4
8
12
0
16
4
VIN (V)
S-812C50B
8
12
16
VIN (V)
Short-circuit protection
300
Ta=-40°C
IOUTMAX (mA)
250
200
150
100
25°C
50
85°C
0
0
4
8
12
16
VIN (V)
S-812C20A
S-812C30A
200
No short-circuit protection
140
Ta=-40ºC
80
25ºC
60
40
Ta=−40ºC
150
100
IOUTMAX (mA)
IOUTMAX (mA)
120
85ºC
No short-circuit protection
100
25ºC
50
85ºC
20
0
0
0
4
S-812C50A
8
VIN (V)
12
16
0
4
8
VIN (V)
12
16
No short-circuit protection
300
IOUTMAX (mA)
250
Ta=-40ºC
200
150
25ºC
100
85ºC
50
0
0
4
8
12
16
VIN(V)
Seiko Instruments Inc.
23
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
3. Maximum Output Current vs. Input Voltage
S-812C20B (Ta=25°C)
S-812C30B (Ta=25°C)
2.10
3.15
VOUT (V)
IOUT=-1 μA
3.10
-50 mA
-10 mA
VOUT (V)
IOUT=-1 μA
2.05
-20 mA
2.00
-1 mA
3.05
-50 mA
-10 mA
3.00
-1 mA
2.95
1.95
-20 mA
2.90
1.90
2.85
1.5
2
2.5
3
VIN (V)
S-812C50B (Ta=25°C)
3.5
4
6.5
7
2.5
3
3.5
4
VIN (V)
4.5
5
5.25
IOUT=-1 μA
VOUT (V)
5.15
5.05
-20 mA
-10 mA
4.95
-1 mA
-50 mA
4.85
4.75
4.5
5
5.5
6
VIN (V)
4. Dropout Voltage vs Output Current
S-812C20B
S-812C30B
2000
1600
1400
1200
1000
800
600
400
200
0
85°C
Vdrop (mV)
Vdrop (mV)
25°C
1500
1000
500
Ta=-40°C
0
0
10
20
30
40
50
IOUT (mA)
S-812C50B
1000
900
800
700
600
500
400
300
200
100
0
Vdrop (mV)
85°C
25°C
Ta=-40°C
0
10
20
30
40
50
IOUT (mA)
24
Seiko Instruments Inc.
85°C
25°C
Ta=-40°C
0
10
20
30
IOUT (mA)
40
50
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
5. Output Voltage vs Ambient Temperature
3.06
2.02
3.03
VOUT (V)
S-812C30B
2.04
VOUT (V)
S-812C20B
2.00
1.98
1.96
3.00
2.97
-50
0
2.94
100
50
-50
0
Ta (°C)
50
100
Ta (°C)
S-812C50B
5.10
VOUT (V)
5.05
5.00
4.95
4.90
-50
0
100
50
Ta (°C)
7. Line Regulation 2 vs Ambient Temperature
20
20
15
15
10
ΔVOUT2 (mV)
ΔVOUT1 (mV)
6. Line Regulation 1 vs Ambient Temperature
S-812C20B
S-812C30B
S-812C50B
5
0
10
S-812C20B
S-812C30B
S-812C50B
5
-50
0
100
50
0
Ta (°C)
-50
0
50
100
Ta (°C)
8. Load Regulation vs Ambient Temperature
ΔVOUT3 (mV)
80
60
S-812C20B
40
S-812C30B
S-812C50B
20
0
-50
0
50
100
Ta (°C)
Seiko Instruments Inc.
25
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
9. Current Consumption vs Input Voltage
S-812C30B
S-812C20B
2.5
2.5
2.0
85°C
25°C
1.5
ISS (μA)
ISS (μA)
2.0
1.0
0.5
1.5
1.0
0.5
Ta= -40°C
0
4
8
12
16
V IN (V)
S-812C50B
2.5
2.0
85°C
ISS (μA)
25°C
1.5
1.0
0.5
Ta= -40°C
0.0
0
4
8
12
16
V IN (V)
10. Power-off Pin Input Threshold vs Input Voltage
2.5
VSH / VSL (V)
Ta= -40°C
0.0
0.0
25°C
85°C
2.0
Ta=−40°C
1.5
1.0
Ta=−40°C
0.5
25°C
85°C
0.0
0
4
8
12
16
VIN (V)
26
85°C
25°C
Seiko Instruments Inc.
0
4
8
V IN (V)
12
16
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
„ Reference Data
1. Transient Response Characteristics (Typical data: Ta=25 °C)
In p u t v o lta g e
or
L o a d c u rre n t
O v e rs h o o t
O u tp u t v o lta g e
U n d e rs h o o t
1-1. Power-on : S-812C30B (CL=10μF; ceramic capacitor)
VIN, VON/OFF=0→5 V, IOUT=10 mA, CL=10 μF
VOUT (0.5 V/div)
5V
0V
3V
0V
TIME (100 μs/div)
Load dependency of overshoot at power-on
VIN, VON/OFF=0→VOUT(S)+2 V, CL=10 μF
VIN, VON/OFF=0→VOUT(S)+2 V, IOUT=10 mA
0.8
0.025
S-812C50B
S-812C30B
Overshoot (V)
Overshoot (V)
0.030
CL dependency of overshoot at power-on
0.020
0.015
S-812C50B
0.010
0.6
S-812C30B
0.4
0.2
0.005
0.0
0.000
0
0.02
0.04 0.06
IOUT (A)
0.08
0.1
VDD dependency of overshoot at power-on
0.030
0.06
S-812C30B
20
30
CL (μF)
40
50
VIN, VON/OFF=0→VOUT(S)+2 V, IOUT=10 mA,
CL=10 μF
0.05
Overshoot (V)
0.025
0.020
10
“Ta” dependency of overshoot at power-on
VIN, VON/OFF=0→VDD, IOUT=10 mA,
CL=10 μF
0.035
Overshoot (V)
0
S-812C50B
0.015
0.010
S-812C50B
S-812C30B
0.04
0.03
0.02
0.01
0.005
0.000
0.00
0
5
10
VDD (V)
15
20
Seiko Instruments Inc.
−50
0
50
100
Ta (°C)
27
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
1-2. Power-on by power-off pin : S-812C30A (CL=10μF; ceramic capacitor)
VOUT (0.5 V/div)
VIN=5 V, VON/OFF=0→5 V, IOUT=10 mA, CL=10μF
5V
0V
3V
0V
TIME (200 μs/div)
Load dependency of overshoot at power-on by poweroff pin
VIN=VOUT(S)+2 V, VON/OFF=0 →VOUT(S)+2 V,
CL=10 μF
0.6
S-812C50B
0.4
0.2
S-812C30B
0.0
0.001
0.01
0.1
1
IOUT (mA)
10
S-812C30B
0.0
28
5
0.2
S-812C30B
0
10
VDD (V)
15
10
20
30
CL (μF)
40
50
“Ta” dependency of overshoot at power-on by poweroff pin
Overshoot (V)
Overshoot (V)
S-812C50B
0.5
0.4
0.3
0.2
0
S-812C50B
0.4
100
VIN=VDD, VON/OFF=0→VDD, IOUT=10 mA,
CL=10 μF
0.1
0.6
0.0
VDD dependency of overshoot at power-on by power-off
pin
0.7
0.6
VIN=VOUT(S)+2 V, VON/OFF=0→VOUT(S)+2 V,
IOUT=10 mA
0.8
Overshoot (V)
Overshoot (V)
0.8
CL dependency of overshoot at power-on by power-off
pin
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
20
Seiko Instruments Inc.
VIN=VOUT(S)+2 V, VON/OFF=0→VOUT(S)+2 V,
IOUT=10 mA, CL=10 μF
S-812C50B
S-812C30B
−50
0
50
Ta (°C)
100
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
1-3. Line Transient Response : S-812C30B (CL=10μF; ceramic capacitor)
VOUT (0.05V / div)
VIN, VON/OFF=4 →8 V, IOUT=10 mA
10 V
5V
0V
3V
2.9 V
TIME (100μs/div)
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00
Overshoot (V)
S-812C30B
10
20
30
IOUT (mA)
40
VIN, VON/OFF=VOUT(S)+1 V→VDD, IOUT=10 mA,
CL=10 μF
0.16
0.14
S-812C50B
0.12
0.10
0.08
0.06
0.04
S-812C30B
0.02
0.00
0
5
10
15
20
VDD (V)
0.20
S-812C30B
0.15
S-812C50B
0.10
0.05
0.00
50
VDD dependency of overshoot at line transient
VIN, VON/OFF=VOUT(S)+1 V→VOUT(S)+5 V,
IOUT=10 mA
0.25
S-812C50B
0
Overshoot (V)
CL dependency of overshoot at line transient
VIN, VON/OFF=VOUT(S)+1 V→VOUT(S)+5 V,
CL=10 μF
0
10
20
30
CL (μF)
40
50
“Ta” dependency of overshoot at line transient
VIN, VON/OFF=VOUT(S)+1 V→VOUT(S)+5 V,
IOUT=10 mA, CL=10 μF
Overshoot (V)
Overshoot (V)
Load dependency of overshoot at line transient
0.16
0.14
S-812C50B
0.12
0.10
0.08
0.06
0.04
0.02
0.00
0
−50
Seiko Instruments Inc.
S-812C30B
50
100
Ta (°C)
29
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
VOUT (0.05 V / div)
VIN, VON/OFF=8→4 V, IOUT=10 mA
Rev.6.1_00
10 V
5V
0V
3V
2.9 V
2.8 V
TIME (500μs/div)
Load dependency of undershoot at line transient
Undershoot (V)
0.8
0.6
S-812C50B
0.4
S-812C30B
0.2
CL dependency of undershoot at line transient
0
10
20
30
IOUT (mA)
40
S-812C50B
0.20
0.15
0.10
S-812C30B
0
50
VDD dependency of undershoot at line transient
0.15
S-812C50B
0.30
Undershoot (V)
0.20
0.10
10
20
30
CL (μF)
40
50
“Ta” dependency of undershoot at line transient
VIN, VON/OFF=VDD→VOUT(S)+1 V,
IOUT=10mA, CL=10 μF
0.25
Undershoot (V)
0.30
0.25
0.05
0.00
0.0
S-812C30B
0.05
VIN, VON/OFF=VOUT(S)+5 V→VOUT(S)+1 V,
IOUT=10mA, CL=10 μF
0.25
S-812C50B
0.20
0.15
0.10
S-812C30B
0.05
0.00
0.00
0
30
VIN, VON/OFF= VOUT(S)+5 V→VOUT(S)+1 V,
IOUT=10 mA
0.35
Undershoot (V)
VIN, VON/OFF=VOUT(S)+5 V→VOUT(S)+1 V,
CL=10 μF
5
10
VDD (V)
15
20
Seiko Instruments Inc.
−50
0
50
Ta (°C)
100
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
1-4. Load Transient Response : S-812C30B (CL=10μF; ceramic capacitor)
VIN=5 V, IOUT=10 mA→1 μA, CL=10 μF
VOUT (0.05 V / div)
10 mA
0 mA
3.1 V
3V
2.9 V
TIME(200 μs / div)
Load dependency of overshoot at load transient
VIN, VON/OFF=VOUT(S)+2 V,
IOUT=ILoad→1 μA, CL=10μF
1.0
VIN, VON/OFF=VOUT(S)+2 V,
IOUT=10 mA→1 μA
S-812C50B
Overshoot (V)
Overshoot (V)
1.2
CL dependency of overshoot at load transient
0.8
0.6
0.4
S-812C30B
0.2
0.0
0
20
40
60
ILoad (mA)
80
100
S-812C50B
S-812C30B
0
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00
S-812C30B
5
10
VDD (V)
15
20
30
CL (μF)
40
50
VIN, VON/OFF=VOUT(S)+2 V,
IOUT=10 mA→1 μA, CL=10 μF
0.16
0.14
S-812C50B
0
10
“Ta” dependency of overshoot at load transient
IOUT=10 mA→1 μA, CL=10 μF
Overshoot (V)
Overshoot (V)
VDD dependency of overshoot at load transient
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00
20
S-812C50B
0.12
0.10
0.08
0.06
0.04
0.02
0.00
S-812C30B
−50
0
50
100
Ta (°C)
Seiko Instruments Inc.
31
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.6.1_00
VOUT (0.05 V / div)
VIN=5 V, IOUT=1 μA,→10 mA, CL=10 μF
10 mA
0 mA
3V
2.9 V
TIME (500 μs / div)
Load dependency of undershoot at load transient
VIN, VON/OFF=VOUT(S)+2 V,
IOUT=1 μA→ILoad, CL=10μF
1.0
S-812C50B
0.8
0.6
0.4
S-812C30B
0.2
VIN, VON/OFF=VOUT(S)+2 V,
IOUT=1 μA→10 mA
0.25
Undershoot (V)
Undershoot (V)
1.2
CL dependency of undershoot at load transient
0.20
S-812C50B
0.15
0.10
0.05
S-812C30B
0.0
0
20
40
60
ILoad (mA)
80
0.00
100
VDD dependency of undershoot at load transient
0
0.25
0.10
S-812C30B
0.05
0.00
32
Undershoot (V)
Undershoot (V)
S-812C50B
0.15
0
5
10
VDD (V)
15
20
20
30
CL (μF)
40
50
“Ta” dependency of undershoot at load transient
IOUT=1 μA→10 mA, CL=10 μF
0.20
10
0.20
VIN, VON/OFF=VOUT(S)+2 V,
IOUT=1 μA→10 mA, CL=10 μF
S-812C50B
0.15
0.10
0.05
0.00
−50
S-812C30B
0
50
Ta (°C)
Seiko Instruments Inc.
100
1.57±0.03
6
5
1
2
4
+0.05
0.08 -0.02
3
0.5
0.48±0.02
0.2±0.05
No. PI006-A-P-SD-2.0
TITLE
SNT-6A(H)-A-PKG Dimensions
PI006-A-P-SD-2.0
No.
SCALE
UNIT
mm
Seiko Instruments Inc.
+0.1
ø1.5 -0
4.0±0.1
2.0±0.05
0.25±0.05
+0.1
1.85±0.05
5°
ø0.5 -0
4.0±0.1
0.65±0.05
3 2 1
4
5 6
Feed direction
No. PI006-A-C-SD-1.0
TITLE
SNT-6A(H)-A-Carrier Tape
PI006-A-C-SD-1.0
No.
SCALE
UNIT
mm
Seiko Instruments Inc.
12.5max.
9.0±0.3
Enlarged drawing in the central part
ø13±0.2
(60°)
(60°)
No. PI006-A-R-SD-1.0
TITLE
SNT-6A(H)-A-Reel
No.
PI006-A-R-SD-1.0
SCALE
UNIT
QTY.
mm
Seiko Instruments Inc.
5,000
0.52
1.36
2
0.52
0.2 0.3
1.
2.
1
(0.25 mm min. / 0.30 mm typ.)
(1.30 mm ~ 1.40 mm)
1.
2.
3.
4.
0.03 mm
SNT
1. Pay attention to the land pattern width (0.25 mm min. / 0.30 mm typ.).
2. Do not widen the land pattern to the center of the package (1.30 mm to 1.40 mm).
Caution 1. Do not do silkscreen printing and solder printing under the mold resin of the package.
2. The thickness of the solder resist on the wire pattern under the package should be 0.03 mm
or less from the land pattern surface.
3. Match the mask aperture size and aperture position with the land pattern.
4. Refer to "SNT Package User's Guide" for details.
※1.
1. 䇋⊼ᛣ⛞Ⲭ῵ᓣⱘᆑᑺ(0.25 mm min. / 0.30 mm typ.)DŽ
2. 䇋࣓৥ᇕ㺙Ё䯈ᠽሩ⛞Ⲭ῵ᓣ (1.30 mm ~ 1.40 mm)DŽ
※2.
⊼ᛣ1. 䇋࣓೼ᷥ㛖ൟᇕ㺙ⱘϟ䴶ॄࠋϱ㔥ǃ⛞䫵DŽ
2. ೼ᇕ㺙ϟǃᏗ㒓Ϟⱘ䰏⛞㝰८ᑺ (Ң⛞Ⲭ῵ᓣ㸼䴶䍋) 䇋᥻ࠊ೼0.03 mmҹϟDŽ
3. ᥽㝰ⱘᓔষሎᇌ੠ᓔষԡ㕂䇋Ϣ⛞Ⲭ῵ᓣᇍ唤DŽ
4. 䆺㒚‫ݙ‬ᆍ䇋খ䯙 "SNTᇕ㺙ⱘᑨ⫼ᣛफ"DŽ
TITLE
No. PI006-A-L-SD-4.0
SNT-6A(H)-A-Land Recommendation
PI006-A-L-SD-4.0
No.
SCALE
UNIT
mm
Seiko Instruments Inc.
2.9±0.2
1.9±0.2
4
5
1
2
+0.1
0.16 -0.06
3
0.95±0.1
0.4±0.1
No. MP005-A-P-SD-1.2
TITLE
No.
SOT235-A-PKG Dimensions
MP005-A-P-SD-1.2
SCALE
UNIT
mm
Seiko Instruments Inc.
4.0±0.1(10 pitches:40.0±0.2)
+0.1
ø1.5 -0
2.0±0.05
+0.2
ø1.0 -0
0.25±0.1
4.0±0.1
1.4±0.2
3.2±0.2
3 2 1
4
5
Feed direction
No. MP005-A-C-SD-2.1
TITLE
SOT235-A-Carrier Tape
No.
MP005-A-C-SD-2.1
SCALE
UNIT
mm
Seiko Instruments Inc.
12.5max.
9.0±0.3
Enlarged drawing in the central part
ø13±0.2
(60°)
(60°)
No. MP005-A-R-SD-1.1
SOT235-A-Reel
TITLE
No.
MP005-A-R-SD-1.1
SCALE
QTY.
UNIT
mm
Seiko Instruments Inc.
3,000
4.5±0.1
1.5±0.1
1.6±0.2
1
2
3
1.5±0.1 1.5±0.1
0.4±0.05
45°
0.4±0.1
0.4±0.1
0.45±0.1
No. UP003-A-P-SD-1.1
TITLE
SOT893-A-PKG Dimensions
No.
UP003-A-P-SD-1.1
SCALE
UNIT
mm
Seiko Instruments Inc.
+0.1
ø1.5 -0
4.0±0.1(10 pitches : 40.0±0.2)
2.0±0.05
ø1.5 +0.1
-0
5° max.
0.3±0.05
8.0±0.1
2.0±0.1
4.75±0.1
Feed direction
No. UP003-A-C-SD-1.1
TITLE
SOT893-A-Carrier Tape
No.
UP003-A-C-SD-1.1
SCALE
UNIT
mm
Seiko Instruments Inc.
16.5max.
13.0±0.3
Enlarged drawing in the central part
(60°)
(60°)
No. UP003-A-R-SD-1.1
SOT893-A-Reel
TITLE
No.
UP003-A-R-SD-1.1
SCALE
UNIT
QTY.
mm
Seiko Instruments Inc.
1,000
4.5±0.1
1.5±0.1
1.6±0.2
5
1
4
2
3
1.5±0.1 1.5±0.1
0.4±0.05
0.3
0.4±0.1
0.4±0.1
45°
0.45±0.1
No. UP005-A-P-SD-1.1
TITLE
SOT895-A-PKG Dimensions
UP005-A-P-SD-1.1
No.
SCALE
UNIT
mm
Seiko Instruments Inc.
4.0±0.1(10 pitches : 40.0±0.2)
ø1.5 +0.1
-0
2.0±0.05
5° max.
ø1.5 +0.1
-0
0.3±0.05
8.0±0.1
2.0±0.1
4.75±0.1
3 2 1
4
5
Feed direction
No. UP005-A-C-SD-1.1
TITLE
SOT895-A-Carrier Tape
UP005-A-C-SD-1.1
No.
SCALE
UNIT
mm
Seiko Instruments Inc.
16.5max.
13.0±0.3
Enlarged drawing in the central part
(60°)
(60°)
No. UP005-A-R-SD-1.1
TITLE
SOT895-A-Reel
No.
UP005-A-R-SD-1.1
SCALE
QTY.
UNIT
mm
Seiko Instruments Inc.
1,000
4.2max.
5.2max.
Marked side
0.6max.
0.45±0.1
0.45±0.1
1.27
No. YS003-D-P-SD-2.0
TITLE
No.
TO92-D-PKG Dimensions
YS003-D-P-SD-2.0
SCALE
UNIT
mm
Seiko Instruments Inc.
5.2max.
4.2max.
Marked side
0.6max.
0.45±0.1
0.45±0.1
+0.4
2.5 -0.1
1.27
No. YZ003-E-P-SD-2.0
TITLE
TO92-E-PKG Dimensions
No.
YZ003-E-P-SD-2.0
SCALE
UNIT
mm
Seiko Instruments Inc.
12.7±1.0
1.0max.
1.0max.
1.0max.
Marked side
1#pin
3#pin
1.45max.
0.7±0.2
ø4.0±0.2
6.35±0.4
12.7±0.3(20 pitches : 254.0±1.0)
Z type
Feed direction
No. YZ003-E-C-SD-1.1
TO92-E-Radial Tape
TITLE
YZ003-E-C-SD-1.1
No.
SCALE
UNIT
mm
Seiko Instruments Inc.
Spacer(Sponge)
312
18
35
Side spacer placed in front side
154
314
Space more than 4 strokes
162
333
43
No. YZ003-E-Z-SD-2.0
TITLE
TO92-E-Ammo Packing
No.
YZ003-E-Z-SD-2.0
SCALE
UNIT
QTY.
mm
Seiko Instruments Inc.
2,000
www.sii-ic.com
•
•
The information described herein is subject to change without notice.
•
When the products described herein are regulated products subject to the Wassenaar Arrangement or other
agreements, they may not be exported without authorization from the appropriate governmental authority.
•
Use of the information described herein for other purposes and/or reproduction or copying without the
express permission of Seiko Instruments Inc. is strictly prohibited.
•
The products described herein cannot be used as part of any device or equipment affecting the human
body, such as exercise equipment, medical equipment, security systems, gas equipment, vehicle equipment,
in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment, without prior
written permission of Seiko Instruments Inc.
•
•
The products described herein are not designed to be radiation-proof.
Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein
whose related industrial properties, patents, or other rights belong to third parties. The application circuit
examples explain typical applications of the products, and do not guarantee the success of any specific
mass-production design.
Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the
failure or malfunction of semiconductor products may occur. The user of these products should therefore
give thorough consideration to safety design, including redundancy, fire-prevention measures, and
malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.