SUNTAC BT134

BT134 series
!
GENERAL DESCRIPTION
Passivated triacs in a plastic envelope,
intended for use in applications requiring
high bidirectional transient and blocking
voltage capability and high thermal cycling
performance. Typical applications include
motor control, industrial and domestic
lighting, heating and static switching.
QUICK REFERENCE DATA
SYMBOL
PARAMETER
PIN
DESCRIPTION
1
main terminal 1
2
main terminal 2
3
gate
MAX.
BT134-
VDRM
PIN CONFIGURATION
UNIT
600
Repetitive peak off-state
voltages
RMS on-state current
Non-repetitive peak on-state
current
IT(RMS)
ITSM
PINNING - TO126
Triacs logic level
600
V
4
25
A
A
SYMBOL
tab
T2
T1
G
1 23
2
LIMITING VALUES
L
SYMBOL
PARAMETER
VDRM
Repetitive peak off-state
voltages
IT(RMS)
ITSM
RMS on-state current
Non-repetitive peak
on-state current
I2t
dIT/dt
IGM
VGM
PGM
PG(AV)
Tstg
Tj
I2t for fusing
Repetitive rate of rise of
on-state current after
triggering
Peak gate current
Peak gate voltage
Peak gate power
Average gate power
Storage temperature
Operating junction
temperature
CONDITIONS
full sine wave; Tmb ≤ 107 ˚C
full sine wave; Tj = 25 ˚C prior to
surge
t = 20 ms
t = 16.7 ms
t = 10 ms
ITM = 6 A; IG = 0.2 A;
dIG/dt = 0.2 A/µs
T2+ G+
T2+ GT2- GT2- G+
over any 20 ms period
MIN.
MAX.
UNIT
-
6001
V
-
4
A
-
25
27
3.1
A
A
A2s
-40
-
50
50
50
10
2
5
5
0.5
150
125
A/µs
A/µs
A/µs
A/µs
A
V
W
W
˚C
˚C
1 Although not recommended, off-state voltages up to 800V may be applied without damage, but the triac may
switch to the on-state. The rate of rise of current should not exceed 3 A/µs.
June 2001
1
Rev 1.400
BT134 series
!
Triacs logic level
THERMAL RESISTANCES
SYMBOL
PARAMETER
Rth j-mb
Thermal resistance
full cycle
junction to mounting base half cycle
Thermal resistance
in free air
junction to ambient
Rth j-a
CONDITIONS
MIN.
TYP.
MAX.
UNIT
-
60
3.0
3.7
-
K/W
K/W
K/W
STATIC CHARACTERISTICS
Tj = 25 ˚C unless otherwise stated
SYMBOL
PARAMETER
IGT
Gate trigger current
IL
Latching current
IH
Holding current
VT
VGT
On-state voltage
Gate trigger voltage
ID
Off-state leakage current
CONDITIONS
MIN.
BT134VD = 12 V; IT = 0.1 A
T2+ G+
T2+ GT2- GT2- G+
VD = 12 V; IGT = 0.1 A
T2+ G+
T2+ GT2- GT2- G+
VD = 12 V; IGT = 0.1 A
IT = 5 A
VD = 12 V; IT = 0.1 A
VD = 400 V; IT = 0.1 A;
Tj = 125 ˚C
VD = VDRM(max);
Tj = 125 ˚C
TYP.
MAX.
UNIT
...
...F
-
5
8
11
30
35
35
35
70
25
25
25
70
mA
mA
mA
mA
-
7
16
5
7
5
20
30
20
30
15
20
30
20
30
15
mA
mA
mA
mA
mA
0.25
1.4
0.7
0.4
1.70
1.5
-
V
V
V
-
0.1
0.5
mA
MIN.
TYP.
MAX.
UNIT
DYNAMIC CHARACTERISTICS
Tj = 25 ˚C unless otherwise stated
SYMBOL
PARAMETER
dVD/dt
Critical rate of rise of
off-state voltage
dVcom/dt
Critical rate of change of
commutating voltage
tgt
Gate controlled turn-on
time
June 2001
CONDITIONS
BT134VDM = 67% VDRM(max);
Tj = 125 ˚C; exponential
waveform; gate open
circuit
VDM = 400 V; Tj = 95 ˚C;
IT(RMS) = 4 A;
dIcom/dt = 1.8 A/ms; gate
open circuit
ITM = 6 A; VD = VDRM(max);
IG = 0.1 A; dIG/dt = 5 A/µs
2
...
100
...F
50
250
-
V/µs
-
-
50
-
V/µs
-
-
2
-
µs
Rev 1.400
BT134 series
!
8
Ptot / W
Tmb(max) / C
Triacs logic level
5
101
IT(RMS) / A
104
7
6
= 180
1
107 C
4
107
120
5
110
90
60
4
3
113
30
3
116
2
119
1
122
2
1
0
0
1
2
3
IT(RMS) / A
125
5
4
0
-50
50
Tmb / C
100
150
Fig.4. Maximum permissible rms current IT(RMS) ,
versus mounting base temperature Tmb.
Fig.1. Maximum on-state dissipation, Ptot, versus rms
on-state current, IT(RMS), where α = conduction angle.
1000
0
ITSM / A
12
IT(RMS) / A
ITSM
IT
10
T
time
8
Tj initial = 25 C max
100
6
dIT /dt limit
4
T2- G+ quadrant
2
10
10us
100us
1ms
T/s
10ms
0
0.01
100ms
Fig.2. Maximum permissible non-repetitive peak
on-state current ITSM, versus pulse width tp, for
sinusoidal currents, tp ≤ 20ms.
30
ITSM / A
BT136
T
1.4
time
Tj initial = 25 C max
1.2
15
1
10
0.8
5
0.6
0
1
10
100
Number of cycles at 50Hz
0.4
-50
1000
Fig.3. Maximum permissible non-repetitive peak
on-state current ITSM, versus number of cycles, for
sinusoidal currents, f = 50 Hz.
June 2001
VGT(Tj)
VGT(25 C)
I TSM
IT
20
10
Fig.5. Maximum permissible repetitive rms on-state
current IT(RMS), versus surge duration, for sinusoidal
currents, f = 50 Hz; Tmb ≤ 107˚C.
1.6
25
0.1
1
surge duration / s
0
50
Tj / C
100
150
Fig.6. Normalised gate trigger voltage
VGT(Tj)/ VGT(25˚C), versus junction temperature Tj.
3
Rev 1.400
BT134 series
!
3
IGT(Tj)
IGT(25 C)
Triacs logic level
12
Tj = 125 C
Tj = 25 C
T2+ G+
T2+ GT2- GT2- G+
2.5
2
typ
10
max
Vo = 1.27 V
Rs = 0.091 ohms
8
6
1.5
1
4
0.5
2
0
-50
0
50
Tj / C
100
0
150
0
0.5
1
1.5
VT / V
2
2.5
3
Fig.10. Typical and maximum on-state characteristic.
Fig.7. Normalised gate trigger current
IGT(Tj)/ IGT(25˚C), versus junction temperature Tj.
3
IT / A
IL(Tj)
IL(25 C)
10
Zth j-mb (K/W)
unidirectional
2.5
bidirectional
1
2
1.5
0.1
1
P
D
tp
t
0.5
0
-50
0
50
Tj / C
100
0.01
10us
150
1ms
10ms
0.1s
1s
10s
tp / s
Fig.8. Normalised latching current IL(Tj)/ IL(25˚C),
versus junction temperature Tj.
3
0.1ms
Fig.11. Transient thermal impedance Zth j-mb, versus
pulse width tp.
dVcom/dt (V/us)
IH(Tj)
IH(25C)
1000
off-state dV/dt limit
2.5
BT136 SERIES
100
2
BT136...F SERIES
1.5
10
1
0.5
0
-50
dIcom/dt = 5.1 3.9
A/ms
0
50
Tj / C
100
1
150
0
Fig.9. Normalised holding current IH(Tj)/ IH(25˚C),
versus junction temperature Tj.
June 2001
3
50
2.3
1.8
100
1.4
150
Tj / C
Fig.12. Typical commutation dV/dt versus junction
temperature, parameter commutation dIT/dt. The triac
should commutate when the dV/dt is below the value
on the appropriate curve for pre-commutation dIT/dt.
4
Rev 1.400