RENESAS M38033FE

3803 Group (Spec.L)
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
DESCRIPTION
The 3803 group (Spec.L) is the 8-bit microcomputer based on the
740 family core technology.
The 3803 group (Spec.L) is designed for household products,
office automation equipment, and controlling systems that
require analog signal processing, including the A/D converter
and D/A converters.
FEATURES
• Basic machine-language instructions ................................. 71
• Minimum instruction execution time .......................... 0.24 µs
(at 16.8 MHz oscillation frequency)
• Memory size
Mask ROM/Flash memory .................................... 60 K bytes
RAM ...................................................................... 2048 bytes
• Programmable input/output ports ....................................... 56
• Software pull-up resistors ............................................ Built-in
• Interrupts
21 sources, 16 vectors...............................................................
(external 8, internal 12, software 1)
• Timers ...................................................................... 16-bit × 1
8-bit × 4
(with 8-bit prescaler)
• Serial interface ......... 8-bit × 2 (UART or Clock-synchronized)
8-bit × 1 (Clock-synchronized)
• PWM ....................................... 8-bit × 1 (with 8-bit prescaler)
• A/D converter ........................................ 10-bit × 16 channels
(8-bit reading enabled)
• D/A converter ............................................ 8-bit × 2 channels
• Watchdog timer ....................................................... 16-bit × 1
• LED direct drive port..............................................................8
• Clock generating circuit ............................. Built-in 2 circuits
(connect to external ceramic resonator or quartz-crystal oscillator)
• Power source voltage (Mask ROM version)
[In high-speed mode]
At 16.8 MHz oscillation frequency ....................4.5 to 5.5 V
At 12.5 MHz oscillation frequency ....................4.0 to 5.5 V
At 8.4 MHz oscillation frequency ......................2.7 to 5.5 V
At 4.2 MHz oscillation frequency ......................2.2 to 5.5 V
At 2.1 MHz oscillation frequency ......................2.0 to 5.5 V
[In middle-speed mode]
At 16.8 MHz oscillation frequency ....................4.5 to 5.5 V
At 12.5 MHz oscillation frequency ....................2.7 to 5.5 V
At 8.4 MHz oscillation frequency ......................2.2 to 5.5 V
At 6.3 MHz oscillation frequency ......................1.8 to 5.5 V
[In low-speed mode]
At 32 kHz oscillation frequency.........................1.8 to 5.5 V
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 1 of 117
REJ03B0212-0101
Rev.1.01
Jan 25, 2008
• Power source voltage (Flash memory version)
[In high-speed mode]
At 16.8 MHz oscillation frequency .................... 4.5 to 5.5 V
At 12.5 MHz oscillation frequency .................... 4.0 to 5.5 V
At 8.4 MHz oscillation frequency ...................... 2.7 to 5.5 V
[In middle-speed mode]
At 16.8 MHz oscillation frequency .................... 4.5 to 5.5 V
At 12.5 MHz oscillation frequency .................... 2.7 to 5.5 V
[In low-speed mode]
At 32 kHz oscillation frequency......................... 2.7 to 5.5 V
• Power dissipation (Mask ROM version)
In high-speed mode ........................................... 40 mW (typ.)
(at 16.8 MHz oscillation frequency, at 5 V power source voltage)
In low-speed mode ............................................ 45 µW (typ.)
(at 32 kHz oscillation frequency, at 3 V power source voltage)
• Power dissipation (Flash memory version)
In high-speed mode ........................................ 27.5 mW (typ.)
(at 16.8 MHz oscillation frequency, at 5 V power source voltage)
In low-speed mode ........................................ 1200 µW (typ.)
(at 32 kHz oscillation frequency, at 3 V power source voltage)
• Operating temperature range ............................. −20 to 85 °C
• Packages
SP...............PRDP0064BA-A (64P4B) (64-pin 750 mil SDIP)
HP ......PLQP0064KB-A (64P6Q-A) (64-pin 10 × 10 mm LQFP)
KP ......PLQP0064GA-A (64P6U-A) (64-pin 14 × 14 mm LQFP)
WG ........PTLG0064JA-A (64F0G) (64-pin 6 × 6 mm FLGA)
<Flash memory mode>
• Power source voltage ................................ VCC = 2.7 to 5.5 V
• Program/Erase voltage ............................. VCC = 2.7 to 5.5 V
• Programming method ............... Programming in unit of byte
• Erasing method ................................................. Block erasing
• Program/Erase control by software command
• Number of times for programming/erasing ...................... 100
<Notes>
The flash memory version cannot be used for application
embedded in the MCU card.
P0 0/AN 8
P0 1/AN 9
P0 2/AN 10
P0 3/AN 11
P0 4/AN 12
P0 5/AN 13
P0 6/AN 14
P0 7/AN 15
P1 0/INT 41
P1 1/INT 01
P1 2
P1 3
P1 4
P1 5
P1 6
P1 7
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
3803 Group (Spec.L)
P37/SRDY3
49
32
P20(LED0)
P36/SCLK3
50
31
P21(LED1)
P35/TXD3
51
30
P22(LED2)
P34/RXD3
52
29
P23(LED3)
P33
53
28
P24(LED4)
P32
54
27
P25(LED5)
P31/DA2
55
26
P26(LED6)
P30/DA1
56
25
P27(LED7)
VCC
57
24
VSS
VREF
58
23
XOUT
AVSS
59
22
XIN
P67/AN7
60
21
P40/INT40/XCOUT
P66/AN6
61
20
P41/INT00/XCIN
P65/AN5
62
19
RESET
P64/AN4
63
18
CNVSS
P63/AN3
64
17
P42/INT1
8
9
10
11
12
13
14
15
P5 3/S RDY2
P5 2 /S CLK2
P5 1/S OUT2
P5 0/S IN2
P4 7 /S RDY1 /CNTR 2
P4 6 /S CLK1
P4 5 /T XD 1
P4 4/R XD 1
16
7
P5 4 /CNTR 0
P4 3/INT 2
6
4
P5 7/INT 3
P5 5 /CNTR 1
3
P6 0 /AN 0
5
2
P6 1 /AN 1
P56 /PWM
1
P6 2 /AN 2
M38039MFL-XXXHP/KP
M38039FFLHP/KP
Package code : PLQP0064KB-A (64P6Q-A)/PLQP0064GA-A (64P6U-A)
Fig 1.
Pin configuration (Top view) PLQP0064KB-A (64P6Q-A)/PLQP0064GA-A (64P6U-A)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
M38039MFL-XXXSP
M38039FFLSP
VCC
VREF
AVSS
P67/AN7
P66/AN6
P65/AN5
P64/AN4
P63/AN3
P62/AN2
P61/AN1
P60/AN0
P57/INT3
P56/PWM
P55/CNTR1
P54/CNTR0
P53/SRDY2
P52/SCLK2
P51/SOUT2
P50/SIN2
P47/SRDY1/CNTR2
P46/SCLK1
P45/TXD1
P44/RXD1
P43/INT2
P42/INT1
CNVSS
RESET
P41/INT00/XCIN
P40/INT40/XCOUT
XIN
XOUT
VSS
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
P30/DA1
P31/DA2
P32
P33
P34/RXD3
P35/TXD3
P36/SCLK3
P37/SRDY3
P00/AN8
P01/AN9
P02/AN10
P03/AN11
P04/AN12
P05/AN13
P06/AN14
P07/AN15
P10/INT41
P11/INT01
P12
P13
P14
P15
P16
P17
P20(LED0)
P21(LED1)
P22(LED2)
P23(LED3)
P24(LED4)
P25(LED5)
P26(LED6)
P27(LED7)
Package code : PRDP0064BA-A (64P4B)
Fig 2.
Pin configuration (Top view) (PRDP0064BA-A (64P4B))
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 2 of 117
3803 Group (Spec.L)
PIN CONFIGURATION (TOP VIEW)
A
8
7
6
5
4
3
2
1
B
C
D
E
F
G
H
50
46
44
41
40
32
31
30
P36/SCLK3
P02/AN10
P04/AN12
P07/AN15
P10/INT41
P20(LED0)
P21(LED1)
P22(LED2)
51
47
45
42
39
27
29
28
P35/TXD3
P01/AN9
P03/AN11
P06/AN14
P11/INT01
P25(LED5)
P23(LED3)
P24(LED4)
53
52
48
43
38
37
26
25
P33
P34/RXD3
P00/AN8
P05/AN13
P12
P13
P26(LED6)
P27(LED7)
56
55
54
49
33
36
35
34
P30/DA1
P31/DA2
P32
P37/SRDY3
P17
P14
P15
P16
1
64
58
59
57
24
22
23
P62/AN2
P63/AN3
VREF
AVSS
VCC
VSS
XIN
XOUT
60
61
4
7
12
14
21
20
P67/AN7
P66/AN6
P57/INT3
P54/CNTR0
62
63
5
8
10
13
17
19
P65/AN5
P64/AN4
P56/PWM
P53/SRDY2
P51/SOUT2
P46/SCLK1
P42/INT1
RESET
2
3
6
9
11
15
16
18
P61/AN1
P60/AN0
P55/CNTR1
P52/SCLK2
P50/SIN2
P44/RXD1
P43/INT2
CNVSS
A
B
C
D
E
F
G
H
P47/SRDY1/CNTR2
P45/TXD1
P40/INT40/XCOUT
M38039MFL
-XXXWG
M38039
FFLWG
Package (TOP VIEW)
Fig 3.
Pin configuration (Top view) (PTLG0064JA-A (64F0G))
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 3 of 117
7
6
5
4
3
P41/INT00/XCIN
Package code : PTLG0064JA-A (64F0G)
Note : The numbers in circles corresponds with the number on the packages HP/KP.
8
2
1
3803 Group (Spec.L)
Table 1
Performance overview
Parameter
Function
Number of basic instructions
71
Minimum instruction execution time
0.24 µs (Oscillation frequency 16.8 MHz)
Oscillation frequency
Memory
sizes
Oscillation frequency 16.8 MHz(Maximum)
Mask ROM version
Flash memory version
I/O port
ROM
60 Kbytes
RAM
2048 bytes
ROM
60 Kbytes
RAM
2048 bytes
P0-P6
56 pins
Software pull-up resistors
Built-in
Interrupt
21 sources, 16 vectors (8 external, 12 internal, 1 software)
Timer
8-bit × 4 (with 8-bit prescaler), 16-bit × 1
Serial interface
8-bit × 2 (UART or Clock-synchronized)
8-bit × 1 (Clock-synchronized)
PWM
8-bit × 1 (with 8-bit prescaler)
A/D converter
10-bit × 16 channels (8-bit reading enabled)
D/A converter
8-bit × 2 channels
Watchdog timer
16-bit × 1
LED direct drive port
8 (average current: 15 mA, peak current: 30 mA, total current: 90 mA)
Clock generating circuits
Built-in 2 circuits
(connect to external ceramic rasonator or quartz-crystal oscillator)
Power
source
voltage
In high-speed
mode
At 16.8 MHz
At 12.5 MHz
At 8.4 MHz
In middlespeed mode
Power
dissipation
Flash memory version
Mask ROM version
Flash memory version
Mask ROM version
Flash memory version
4.5 to 5.5 V
4.0 to 5.5 V
2.7 to 5.5 V
At 4.2 MHz
Mask ROM version
2.2 to 5.5 V
At 2.1 MHz
Mask ROM version
2.0 to 5.5 V
At 16.8 MHz
At 12.5 MHz
In low-speed
mode
Mask ROM version
Mask ROM version
Flash memory version
Mask ROM version
Flash memory version
4.5 to 5.5 V
2.7 to 5.5 V
At 8.4 MHz
Mask ROM version
2.2 to 5.5 V
At 6.3 MHz
Mask ROM version
1.8 to 5.5 V
Mask ROM version
1.8 to 5.5 V
At 32 MHz
In high-speed mode
Flash memory version 2.7 to 5.5 V
Mask ROM version
40 mW
Flash memory version 27.5 mW
In low-speed mode
Mask ROM version
45 µW
Flash memory version 1200 µW
Input/Output Input/Output withstand voltage
characteris- Output current
tics
VCC
Operating temperature range
-20 to 85 °C
10 mA
Device structure
CMOS sillicon gate
Package
64-pin plastic molded SDIP/LQFP/FLGA
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 4 of 117
Fig 4.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Functional block diagram
Page 5 of 117
V REF AV SS
3
A/D
converter
(10)
2
31
Main
clock
output
X OUT
28
29
I/O port P5
12 13 14 15 16 17 18 19
4 5 6 7 8 9 10 11
I/O port P6
P5 (8)
INT 3
RAM
P6 (8)
PWM (8)
Sub-clock Sub-clock
input
output
X CIN
X COUT
Clock generating circuit
30
Main
clock
input
X IN
SI/O2 (8)
ROM
P4 (8)
I/O port P4
PS
PC L
S
Y
X
A
INT 00
INT 1
INT 2
INT 40
D/A
converter
2 (8)
C P U
20 21 22 23 24 25 28 29
SI/O1 (8)
0
PC H
1
32
Data bus
V CC
V SS
D/A
converter
1 (8)
FUNCTIONAL BLOCK DIAGRAM (Package: PRDP0064BA-A (64P4B))
I/O port P3
57 58 59 60 61 62 63 64
P3 (8)
SI/O3 (8)
27
RESET
Reset input
I/O port P2
(LED drive)
Timer Y (8)
Timer X (8)
Timer 2 (8)
Timer 1 (8)
I/O port P0
49 50 51 52 53 54 55 56
41 42 43 44 45 46 47 48
I/O port P1
P0 (8)
P1 (8)
INT 01
INT 41
Timer Z (16)
Prescaler Y (8)
Prescaler X (8)
Prescaler 12 (8)
33 34 35 36 37 38 39 40
P2 (8)
CNTR 2
CNTR 1
CNTR 0
26
CNV SS
3803 Group (Spec.L)
3803 Group (Spec.L)
PIN DESCRIPTION
Table 2
Pin description
Pin
Name
Functions
Function except a port function
VCC, VSS
Power source
• Apply voltage of 1.8 V − 5.5 V to VCC, and 0 V to VSS. In the flash memory version, apply
voltage of 2.7 V − 5.5 V to VCC.
CNVSS
CNVSS input
• This pin controls the operation mode of the chip.
• Normally connected to VSS.
VREF
Reference
voltage
• Reference voltage input pin for A/D and D/A converters.
AVSS
Analog power
source
• Analog power source input pin for A/D and D/A converters.
• Connect to VSS.
RESET
Reset input
• Reset input pin for active “L”.
XIN
Main clock input • Input and output pins for the clock generating circuit.
• Connect a ceramic resonator or quartz-crystal oscillator between the XIN and XOUT pins to set
the oscillation frequency.
Main clock
• When an external clock is used, connect the clock source to the XIN pin and leave the XOUT pin
output
open.
XOUT
P00/AN8−
P07/AN15
I/O port P0
P10/INT41
P11/INT01
I/O port P1
P12−P17
• 8-bit CMOS I/O port.
• I/O direction register allows each pin to be individually
programmed as either input or output.
• CMOS compatible input level.
• CMOS 3-state output structure.
• Pull-up control is enabled in a bit unit.
• P20 − P27 (8 bits) are enabled to output large current for
LED drive.
• A/D converter input pin
• Interrupt input pin
P20(LED0)P27(LED7)
I/O port P2
P30/DA1
P31/DA2
I/O port P3
• D/A converter input pin
• 8-bit CMOS I/O port.
• I/O direction register allows each pin to be individually
programmed as either input or output.
• CMOS compatible input level.
• Serial I/O3 function pin
• P30, P31, P34 − P37 are CMOS 3-state output structure.
• P32, P33 are N-channel open-drain output structure.
• Pull-up control of P30, P31, P34 − P37 is enabled in a bit unit.
I/O port P4
• 8-bit CMOS I/O port.
• I/O direction register allows each pin to be individually
programmed as either input or output.
• CMOS compatible input level.
• CMOS 3-state output structure.
• Pull-up control is enabled in a bit unit.
P32, P33
P34/RXD3
P35/TXD3
P36/SCLK3
P37/SRDY3
P40/INT40/XCOUT
P41/INT00/XCIN
P42/INT1
P43/INT2
P44/RXD1
P45/TXD1
P46/SCLK1
• Interrupt input pin
• Serial I/O1 function pin
• Serial I/O1, timer Z function pin
P47/SRDY1/CNTR2
P50/SIN2
P51/SOUT2
P52/SCLK2
P53/SRDY2
• Interrupt input pin
• Sub-clock generating I/O pin
(resonator connected)
I/O port P5
• Serial I/O2 function pin
P54/CNTR0
• Timer X function pin
P55/CNTR1
• Timer Y function pin
P56/PWM
• PWM output pin
P57/INT3
• Interrupt input pin
P60/AN0−
P67/AN7
I/O port P6
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
• A/D converter input pin
Page 6 of 117
3803 Group (Spec.L)
PART NUMBERING
Product name
M3803 9
M
F
L−
XXX
SP
Package code
SP : PRDP0064BA-A (64P4B)
HP : PLQP0064KB-A (64P6Q-A)
KP : PLQP0064GA-A (64P6U-A)
WG : PTLG0064JA-A (64F0G)
ROM number
Omitted in the flash memory version.
−:
standard
Omitted in the flash memory version.
L−: Minner spec. change product
ROM/Flash memory size
9: 36864 bytes
1: 4096 bytes
A: 40960 bytes
2: 8192 bytes
B: 45056 bytes
3: 12288 bytes
C: 49152 bytes
4: 16384 bytes
D: 53248 bytes
5: 20480 bytes
E: 57344 bytes
6: 24576 bytes
F: 61440 bytes
7: 28672 bytes
8: 32768 bytes
The first 128 bytes and the last 2 bytes of ROM are reserved areas ; they
cannot be used as a user’s ROM area.
However, they can be programmed or erased in the flash memory version, so
that the users can use them.
Memory type
M: Mask ROM version
F: Flash memory version
RAM size
0:
1:
2:
3:
4:
Fig 5.
Part numbering
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 7 of 117
192
256
384
512
640
bytes
bytes
bytes
bytes
bytes
5:
6:
7:
8:
9:
768 bytes
896 bytes
1024 bytes
1536 bytes
2048 bytes
3803 Group (Spec.L)
GROUP EXPANSION
Renesas plans to expand the 3803 group (Spec.L) as follows.
Memory Size
• Flash memory size .....................................................60 Kbytes
• Mask ROM size .........................................................60 Kbytes
• RAM size ................................................................. 2048 bytes
Packages
• PRDP0064BA-A (64P4B)
..............................................64-pin shrink plastic-molded DIP
• PLQP0064KB-A (64P6Q-A)
...........................................0.5 mm-pitch plastic molded LQFP
• PLQP0064GA-A (64P6U-A)
...........................................0.8 mm-pitch plastic molded LQFP
• PTLG0064JA-A (64F0G)
........................................0.65 mm-pitch plastic molded FLGA
Memory Expansion Plan
ROM size (bytes)
M38039FFL
M38039MFL
60 K
48 K
32 K
28 K
24 K
20 K
16 K
12 K
8K
384
512
640
768
896 1024 1152 1280 1408 1536 2048 3072 4032
RAM size (bytes)
Fig 6.
Table 3
Memory expansion plan
Support products
Part No.
ROM size (bytes)
ROM size for User in ( )
RAM size
(bytes)
M38039MFL-XXXSP
M38039MFL-XXXHP
M38039MFL-XXXKP
Package
PRDP0064BA-A (64P4B)
61440
(61310)
2048
PLQP0064KB-A (64P6Q-A)
PLQP0064GA-A (64P6U-A)
M38039MFL-XXXWG
PTLG0064JA-A (64F0G)
M38039FFLSP
PRDP0064BA-A (64P4B)
M38039FFLHP
M38039FFLKP
57344+4096 (NOTE)
M38039FFLWG
2048
1. ROM size includes the ID code area.
Page 8 of 117
Mask ROM version
PLQP0064KB-A (64P6Q-A) Flash memory version
PLQP0064GA-A (64P6U-A) VCC = 2.7 to 5.5 V
PTLG0064JA-A (64F0G)
NOTE:
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Remarks
3803 Group (Spec.L)
FUNCTIONAL DESCRIPTION
CENTRAL PROCESSING UNIT (CPU)
The 3803 group (Spec.L) uses the standard 740 Family
instruction set. Refer to the table of 740 Family addressing
modes and machine instructions or the 740 Family Software
Manual for details on the instruction set.
Machine-resident 740 Family instructions are as follows:
The FST and SLW instructions cannot be used.
The STP, WIT, MUL, and DIV instructions can be used.
[Accumulator (A)]
The accumulator is an 8-bit register. Data operations such as data
transfer, etc. are executed mainly through the accumulator.
[Index Register X (X)]
The index register X is an 8-bit register. In the index addressing
modes, the value of the OPERAND is added to the contents of
register X and specifies the real address.
[Index Register Y (Y)]
The index register Y is an 8-bit register. In partial instruction, the
value of the OPERAND is added to the contents of register Y
and specifies the real address.
b7
[Stack Pointer (S)]
The stack pointer is an 8-bit register used during subroutine calls
and interrupts. This register indicates start address of stored area
(stack) for storing registers during subroutine calls and
interrupts.
The low-order 8 bits of the stack address are determined by the
contents of the stack pointer. The high-order 8 bits of the stack
address are determined by the stack page selection bit. If the
stack page selection bit is “0”, the high-order 8 bits becomes
“0016”. If the stack page selection bit is “1”, the high-order 8 bits
becomes “0116”.
The operations of pushing register contents onto the stack and
popping them from the stack are shown in Figure 8.
Store registers other than those described in Figure 7 with
program when the user needs them during interrupts or
subroutine calls (see Table 4).
[Program Counter (PC)]
The program counter is a 16-bit counter consisting of two 8-bit
registers PCH and PCL. It is used to indicate the address of the
next instruction to be executed.
b0
A
b7
Accumulator
b0
X
b7
Index Register X
b0
Y
b7
Index Register Y
b0
S
b15
b7
b0
PCL
PCH
Stack Pointer
Program Counter
b7
b0
N V T B D I Z C Processor Status Register (PS)
Carry Flag
Zero Flag
Interrupt Disable Flag
Decimal Mode Flag
Break Flag
Index X Mode Flag
Overflow Flag
Negative Flag
Fig 7.
740 Family CPU register structure
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 9 of 117
3803 Group (Spec.L)
On-going Routine
Interrupt request(1)
M(S)←(PCH)
Push Return Address
on Stack
(S)←(S) − 1
Execute JSR
M(S)←(PCL)
Push Return
Address
on Stack
M(S)←(PCH)
(S)←(S) − 1
(S)←(S) − 1
M(S)←(PS)
M(S)←(PCL)
Push Contents of
Processor
Status Register on Stack
(S)←(S) − 1
(S)←(S) − 1
Interrupt
Service Routine
.....
Subroutine
.....
Execute RTI
I Flag is Set from
“0” to “1”
Fetch the Jump
Vector
Execute RTS
(S)←(S) + 1
POP Return
Address from
Stack
(S)←(S) + 1
(PS)←M(S)
POP Contents of
Processor Status Register
from Stack
(PCL)←M(S)
(S)←(S) + 1
(S)←(S) + 1
(PCL)←M(S)
(PCH)←M(S)
POP Return
Address from Stack
(S)←(S) + 1
(PCH)←M(S)
Note 1 : Condition for acceptance of an interrupt → Interrupt enable flag is “1”
Interrupt disable flag is “0”
Fig 8.
Table 4
Register push and pop at interrupt generation and subroutine call
Push and pop instructions of accumulator or processor status register
Push instruction to stack
PHA
PHP
Accumulator
Processor status register
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 10 of 117
Pop instruction from stack
PLA
PLP
3803 Group (Spec.L)
[Processor status register (PS)]
The processor status register is an 8-bit register consisting of 5
flags which indicate the status of the processor after an
arithmetic operation and 3 flags which decide MCU operation.
Branch operations can be performed by testing the Carry (C)
flag, Zero (Z) flag, Overflow (V) flag, or the Negative (N) flag.
In decimal mode, the Z, V, N flags are not valid.
Bit 4: Break flag (B)
The B flag is used to indicate that the current interrupt was
generated by the BRK instruction. The BRK flag in the
processor status register is always “0”. When the BRK
instruction is used to generate an interrupt, the processor
status register is pushed onto the stack with the break flag set
to “1”.
Bit 0: Carry flag (C)
The C flag contains a carry or borrow generated by the
arithmetic logic unit (ALU) immediately after an arithmetic
operation. It can also be changed by a shift or rotate
instruction.
Bit 5: Index X mode flag (T)
When the T flag is “0”, arithmetic operations are performed
between accumulator and memory. When the T flag is “1”,
direct arithmetic operations and direct data transfers are
enabled between memory locations.
Bit 1: Zero flag (Z)
The Z flag is set if the result of an immediate arithmetic
operation or a data transfer is “0”, and cleared if the result is
anything other than “0”.
Bit 6: Overflow flag (V)
The V flag is used during the addition or subtraction of one
byte of signed data. It is set if the result exceeds +127 to −
128. When the BIT instruction is executed, bit 6 of the
memory location operated on by the BIT instruction is stored
in the overflow flag.
Bit 2: Interrupt disable flag (I)
The I flag disables all interrupts except for the interrupt
generated by the BRK instruction.
Interrupts are disabled when the I flag is “1”.
Bit 3: Decimal mode flag (D)
The D flag determines whether additions and subtractions are
executed in binary or decimal. Binary arithmetic is executed
when this flag is “0”; decimal arithmetic is executed when it
is “1”.
Decimal correction is automatic in decimal mode. Only the
ADC and SBC instructions can execute decimal arithmetic.
Table 5
Bit 7: Negative flag (N)
The N flag is set if the result of an arithmetic operation or
data transfer is negative. When the BIT instruction is
executed, bit 7 of the memory location operated on by the
BIT instruction is stored in the negative flag.
Set and clear instructions of each bit of processor status register
Set instruction
Clear instruction
C flag
SEC
CLC
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Z flag
−
−
Page 11 of 117
I flag
SEI
CLI
D flag
SED
CLD
B flag
−
−
T flag
SET
CLT
V flag
−
CLV
N flag
−
−
3803 Group (Spec.L)
[CPU Mode Register (CPUM)] 003B16
The CPU mode register contains the stack page selection bit, the
internal system clock control bits, etc.
The CPU mode register is allocated at address 003B16.
b7
b0
1
CPU mode register
(CPUM: address 003B16)
Processor mode bits
b1 b0
0 0 : Single-chip mode
0 1 :
1 0 :
Not available
1 1 :
Stack page selection bit
0 : 0 page
1 : 1 page
Fix this bit to “1”.
Port XC switch bit
0 : I/O port function (stop oscillating)
1 : XCIN-XCOUT oscillating function
Main clock (XIN-XOUT) stop bit
0 : Oscillating
1 : Stopped
Main clock division ratio selection bits
b7 b6
0 0 : φ = f(XIN)/2 (high-speed mode)
0 1 : φ = f(XIN)/8 (middle-speed mode)
1 0 : φ = f(XCIN)/2 (low-speed mode)
1 1 : Not available
Fig 9.
Structure of CPU mode register
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 12 of 117
3803 Group (Spec.L)
MISRG
(1) Bit 0 of address 001016: Oscillation stabilizing time
set after STP instruction released bit
When the MCU stops the clock oscillation by the STP instruction
and the STP instruction has been released by an external
interrupt source, usually, the fixed values of Timer 1 and
Prescaler 12 (Timer 1 = 01 1 6 , Prescaler 12 = FF 1 6 ) are
automatically reloaded in order for the oscillation to stabilize.
The user can inhibit the automatic setting by setting “1” to bit 0
of MISRG (address 001016).
However, by setting this bit to “1”, the previous values, set just
before the STP instruction was executed, will remain in Timer 1
and Prescaler 12. Therefore, you will need to set an appropriate
value to each register, in accordance with the oscillation
stabilizing time, before executing the STP instruction.
Figure 10 shows the structure of MISRG.
• Middle-speed mode automatic switch by program
The middle-speed mode can also be automatically switched by
program while operating in low-speed mode. By setting the
middle-speed automatic switch start bit (bit 3) of MISRG
(address 001016) to “1” in the condition that the middle-speed
mode automatic switch set bit is “1” while operating in lowspeed mode, the MCU will automatically switch to middle-speed
mode. In this case, the oscillation stabilizing time of the main
clock can be selected by the middle-speed automatic switch wait
time set bit (bit 2) of MISRG (address 001016).
(2) Bits 1, 2, 3 of address 001016: Middle-speed Mode
Automatic Switch Function
In order to switch the clock mode of an MCU which has a subclock, the following procedure is necessary:
set CPU mode register (003B16) --> start main clock oscillation
--> wait for oscillation stabilization --> switch to middle-speed
mode (or high-speed mode).
However, the 3803 group (Spec.L) has the built-in function
which automatically switches from low to middle-speed mode by
program.
b7
b0
MISRG
(MISRG: address 001016)
Oscillation stabilizing time set after STP instruction
released bit
0 : Automatically set “0116” to Timer 1, “FF16” to
Prescaler 12
1 : Automatically set disabled
Middle-speed mode automatic switch set bit
0 : Not set automatically
1 : Automatic switching enabled (1)
Middle-speed mode automatic switch wait time set bit
0 : 4.5 to 5.5 machine cycles
1 : 6.5 to 7.5 machine cycles
Middle-speed mode automatic switch start bit
(Depending on program)
0 : Invalid
1 : Automatic switch start(1)
Not used (return “0” when read)
(Do not write “1” to this bit)
Note 1 : When automatic switch to middle-speed mode from low-speed mode occurs,
the values of CPU mode register (3B 16) change.
Fig 10. Structure of MISRG
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 13 of 117
3803 Group (Spec.L)
MEMORY
• Special Function Register (SFR) Area
The Special Function Register area in the zero page contains
control registers such as I/O ports and timers.
• RAM
The RAM is used for data storage and for stack area of
subroutine calls and interrupts.
• ROM
The first 128 bytes and the last 2 bytes of ROM are reserved for
device testing and the rest is a user area for storing programs.
The reserved ROM area can program/erase in the flash memory
version.
RAM area
RAM size
(bytes)
Address
XXXX16
192
256
384
512
640
768
896
1024
1536
2048
00FF16
013F16
01BF16
023F16
02BF16
033F16
03BF16
043F16
063F16
083F16
ROM area
ROM size
(bytes)
4096
8192
12288
16384
20480
24576
28672
32768
36864
40960
45056
49152
53248
57344
61440
• Zero Page
Access to this area with only 2 bytes is possible in the zero page
addressing mode.
• Special Page
Access to this area with only 2 bytes is possible in the special
page addressing mode.
<Note>
Since the contents of RAM are undefined at reset, be sure to set
an initial value before use.
0000 16
SFR area
Zero page
0040 16
RAM
0100 16
XXXX16
0FE0 16
0FEF16
0FF0 16
0FFF 16
Not used
SFR area (Note 1)
SFR area
Not used
Address
YYYY16
F00016
E00016
D00016
C00016
B00016
A00016
900016
800016
700016
600016
500016
400016
300016
200016
100016
Address
ZZZZ16
F08016
E08016
D08016
C08016
B08016
A08016
908016
808016
708016
608016
508016
408016
308016
208016
108016
Fig 11. Memory map diagram
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
• Interrupt Vector Area
The interrupt vector area contains reset and interrupt vectors.
Page 14 of 117
YYYY16
Reserved ROM area
(128 bytes)
ZZZZ16
ROM
FF00 16
Special page
FFDC16
Interrupt vector area
FFFE16
FFFF 16
Reserved ROM area
Notes 1: Only flash memory version has this SFR area.
2: The reserved ROM area can program/erase in
the flash memory version. Note the difference of
the mask version.
3803 Group (Spec.L)
000016 Port P0 (P0)
000116 Port P0 direction register (P0D)
002016
Prescaler 12 (PRE12)
002116
Timer 1 (T1)
000216 Port P1 (P1)
000316 Port P1 direction register (P1D)
002216
Timer 2 (T2)
002316
Timer XY mode register (TM)
000416 Port P2 (P2)
000516 Port P2 direction register (P2D)
002416
Prescaler X (PREX)
002516
Timer X (TX)
000616 Port P3 (P3)
000716 Port P3 direction register (P3D)
002616
Prescaler Y (PREY)
002716
Timer Y (TY)
000816 Port P4 (P4)
000916 Port P4 direction register (P4D)
002816
Timer Z low-order (TZL)
002916
Timer Z high-order (TZH)
002A16
Timer Z mode register (TZM)
002B16
PWM control register (PWMCON)
000A16
Port P5 (P5)
000B16 Port P5 direction register (P5D)
000C16 Port P6 (P6)
000D16 Port P6 direction register (P6D)
000E16 Timer 12, X count source selection register (T12XCSS)
002C16 PWM prescaler (PREPWM)
002D16 PWM register (PWM)
002E16
000F16 Timer Y, Z count source selection register (TYZCSS)
001016 MISRG
002F16
Baud rate generator 3 (BRG3)
003016
Transmit/Receive buffer register 3 (TB3/RB3)
001116 Reserved (Note 1)
001216 Reserved (Note 1)
003116
Serial I/O3 status register (SIO3STS)
003216
Serial I/O3 control register (SIO3CON)
001316 Reserved (Note 1)
001416 Reserved (Note 1)
003316
UART3 control register (UART3CON)
003416
AD/DA control register (ADCON)
001516 Reserved (Note 1)
001616 Reserved (Note 1)
003516
AD conversion register 1 (AD1)
003616
DA1 conversion register (DA1)
001716 Reserved (Note 1)
001816 Transmit/Receive buffer register 1 (TB1/RB1)
003716
DA2 conversion register (DA2)
003816
AD conversion register 2 (AD2)
001916 Serial I/O1 status register (SIO1STS)
001A16 Serial I/O1 control register (SIO1CON)
003916
Interrupt source selection register (INTSEL)
003A16
Interrupt edge selection register (INTEDGE)
001B16 UART1 control register (UART1CON)
001C16 Baud rate generator (BRG1)
003B16
CPU mode register (CPUM)
001D16 Serial I/O2 control register (SIO2CON)
001E16 Watchdog timer control register (WDTCON)
003C16 Interrupt request register 1 (IREQ1)
003D16 Interrupt request register 2 (IREQ2)
003E16
Interrupt control register 1 (ICON1)
001F16 Serial I/O2 register (SIO2)
003F16
Interrupt control register 2 (ICON2)
0FE016 Flash memory control register 0 (FMCR0)
0FE116 Flash memory control register 1 (FMCR1)
0FF016
Port P0 pull-up control register (PULL0)
0FF116
Port P1 pull-up control register (PULL1)
0FE216 Flash memory control register 2 (FMCR2)
0FE316 Reserved (Note 1)
0FF216
Port P2 pull-up control register (PULL2)
0FF316
Port P3 pull-up control register (PULL3)
0FE416 Reserved (Note 1)
0FE516 Reserved (Note 1)
0FF416
Port P4 pull-up control register (PULL4)
0FF516
Port P5 pull-up control register (PULL5)
0FE616 Reserved (Note 1)
0FE716 Reserved (Note 1)
0FF616
Port P6 pull-up control register (PULL6)
0FE816 Reserved (Note 1)
0FE916 Reserved (Note 1)
Notes1: Do not write any data to these addresses, because these are
reserved area.
2: Do not access to the SFR area including nothing.
0FEA16 Reserved (Note 1)
0FEB16 Reserved (Note 1)
0FEC16 Reserved (Note 1)
0FED16 Reserved (Note 1)
0FEE16 Reserved (Note 1)
0FEF16 Reserved (Note 1)
Fig 12. Memory map of special function register (SFR)
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 15 of 117
3803 Group (Spec.L)
I/O PORTS
The I/O ports have direction registers which determine the
input/output direction of each individual pin. Each bit in a
direction register corresponds to one pin, and each pin can be set
to be input port or output port.
When “0” is written to the bit corresponding to a pin, that pin
becomes an input pin. When “1” is written to that bit, that pin
becomes an output pin.
If data is read from a pin which is set to output, the value of the
port output latch is read, not the value of the pin itself. Pins set to
Table 6
input are floating. If a pin set to input is written to, only the port
output latch is written to and the pin remains floating.
By setting the port P0 pull-up control register (address 0FF016)
to the port P6 pull-up control register (address 0FF616) ports can
control pull-up with a program. However, the contents of these
registers do not affect ports programmed as the output ports.
I/O port function
Pin
P00/AN8−P07/AN15
P10/INT41
P11/INT01
P12−P17
Name
Non-Port Function
Related SFRs
Port P0 Input/output, CMOS compatible A/D converter input
input level
Port P1 individual
External interrupt input
CMOS 3-state
bits
output
AD/DA control register
(1)
Interrupt edge selection register
(2)
P20(LED0)−
P27(LED7)
Port P2
P30/DA1
P31/DA2
Port P3
Input/
Output
I/O Structure
D/A converter output
CMOS compatible
input level
N-channel
open-drain output
P34/RXD3
P35/TXD3
P36/SCLK3
P37/SRDY3
CMOS compatible Serial I/O3 function I/O
input level
CMOS 3-state
output
Port P4
(3)
AD/DA control register
(4)
(5)
P32, P33
P40/INT40/XCOUT
P41/INT00/XCIN
Ref.
No.
Serial I/O3 control register
UART3 control register
(6)
(7)
(8)
(9)
External interrupt input
Interrupt edge selection register (10)
Sub-clock generating circuit CPU mode register
(11)
P42/INT1
P43/INT2
External interrupt input
Interrupt edge selection register
(2)
P44/RXD1
P45/TXD1
P46/SCLK1
Serial I/O1 function I/O
Serial I/O1 control register
UART1 control register
(6)
(7)
(8)
P47/SRDY1/CNTR2
Serial I/O1 function I/O
Timer Z function I/O
Serial I/O1 control register
Timer Z mode register
(12)
Serial I/O2 function I/O
Serial I/O2 control register
(13)
(14)
(15)
(16)
P54/CNTR0
P55/CNTR1
Timer X, Y function I/O
Timer XY mode register
(17)
P56/PWM
PWM output
PWM control register
(18)
P57/INT3
External interrupt input
Interrupt edge selection register
(2)
A/D converter input
AD/DA control register
(1)
P50/SIN2
P51/SOUT2
P52/SCLK2
P53/SRDY2
P60/AN0−P67/AN7
Port P5
Port P6
NOTES:
1. Refer to the applicable sections how to use double-function ports as function I/O ports.
2. Make sure that the input level at each pin is either 0 V or VCC during execution of the STP instruction.
When an input level is at an intermediate potential, a current will flow from VCC to VSS through the input-stage gate.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 16 of 117
3803 Group (Spec.L)
(1) Ports P0, P6
(2) Ports P10, P11, P42, P43, P57
Pull-up control bit
Pull-up control bit
Direction
register
Direction
register
Port latch
Data bus
Port latch
Data bus
A/D converter input
Interrupt input
Analog input pin
selection bit
(3) Ports P12 to P17, P2
(4) Ports P30, P31
Pull-up control bit
Pull-up control bit
Direction
register
Direction
register
Data bus
Port latch
Data bus
Port latch
D/A converter output
DA1 output enable bit (P30)
DA2 output enable bit (P31)
(5) Ports P32, P33
(6) Ports P34, P44
Pull-up control bit
Serial I/O enable bit
Receive enable bit
Direction
register
Data bus
Direction
register
Port latch
Data bus
Port latch
Serial I/O input
(7) Ports P35, P45
(8) Ports P36, P46
Pull-up control bit
Serial I/O enable bit
Transmit enable bit
P-channel
output
disable bit
Serial I/O synchronous clock
selection bit
Serial I/O enable bit
Serial I/O mode selection bit
Pull-up control bit
Serial I/O enable bit
Direction
register
Data bus
Direction
register
Data bus
Port latch
Serial I/O output
Port latch
Serial I/O clock output
Serial I/O external clock input
Fig 13. Port block diagram (1)
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 17 of 117
3803 Group (Spec.L)
(9) Port P37
(10) Port P40
Pull-up control bit
Pull-up control bit
Serial I/O3 mode selection bit
Serial I/O3 enable bit
SRDY3 output enable bit
Port XC switch bit
Direction
register
Direction
register
Data bus
Data bus
Port latch
Port latch
INT40 Interrupt input
Serial I/O3 ready output
Port XC
switch bit
(11) Port P41
(12) Port P47
Pull-up control bit
Timer Z operating
mode bits
Bit 2
Bit 1
Bit 0
Port XC switch bit
Direction
register
Data bus
Pull-up control bit
Serial I/O1 mode selection bit
Serial I/O1 enable bit
SRDY1 output enable bit
Port latch
Direction
register
INT00 Interrupt input
Data bus
Port latch
Port XC
switch bit
Sub-clock generating circuit input
Timer output
Serial I/O1 ready output
CNTR2 interrupt input
(13) Port P50
(14) Port P51
Pull-up control bit
Pull-up control bit
Serial I/O2 transmit completion signal
Serial I/O2 port selection bit
Direction
register
Direction
register
Data bus
Port latch
Data bus
Port latch
Serial I/O2 input
Serial I/O2 output
Fig 14. Port block diagram (2)
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 18 of 117
P-channel
output
disable bit
3803 Group (Spec.L)
(15) Port P52
(16) Port P53
Pull-up control bit
Pull-up control bit
Serial I/O2 synchronous clock
selection bit
Serial I/O2 port selection bit
SRDY2 output enable bit
Direction
register
Direction
register
Data bus
Data bus
Port latch
Port latch
Serial I/O2 ready output
Serial I/O2 clock output
Serial I/O2 external clock input
(17) Ports P54, P55
(18) Port P56
Pull-up control bit
Pull-up control bit
PWM function enable bit
Direction
register
Data bus
Direction
register
Port latch
Data bus
Port latch
Pulse output mode
Timer output
PWM output
CNTR Interrupt input
Fig 15. Port block diagram (3)
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 19 of 117
3803 Group (Spec.L)
b7
b0
Port P0 pull-up control register
(PULL0: address 0FF016)
P00 pull-up control bit
0: No pull-up
1: Pull-up
P01 pull-up control bit
0: No pull-up
1: Pull-up
P02 pull-up control bit
0: No pull-up
1: Pull-up
P03 pull-up control bit
0: No pull-up
1: Pull-up
P04 pull-up control bit
0: No pull-up
1: Pull-up
P05 pull-up control bit
0: No pull-up
1: Pull-up
P06 pull-up control bit
0: No pull-up
1: Pull-up
P07 pull-up control bit
0: No pull-up
1: Pull-up
b7
Note:
Pull-up control is valid when the corresponding
bit of the port direction register is “0” (input).
When that bit is “1” (output), pull-up cannot be
set to the port of which pull-up is selected.
Note:
Pull-up control is valid when the corresponding
bit of the port direction register is “0” (input).
When that bit is “1” (output), pull-up cannot be
set to the port of which pull-up is selected.
b0
Port P1 pull-up control register
(PULL1: address 0FF116)
P10 pull-up control bit
0: No pull-up
1: Pull-up
P11 pull-up control bit
0: No pull-up
1: Pull-up
P12 pull-up control bit
0: No pull-up
1: Pull-up
P13 pull-up control bit
0: No pull-up
1: Pull-up
P14 pull-up control bit
0: No pull-up
1: Pull-up
P15 pull-up control bit
0: No pull-up
1: Pull-up
P16 pull-up control bit
0: No pull-up
1: Pull-up
P17 pull-up control bit
0: No pull-up
1: Pull-up
Fig 16. Structure of port pull-up control register (1)
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 20 of 117
3803 Group (Spec.L)
b7
b0
Port P2 pull-up control register
(PULL2: address 0FF216)
P20 pull-up control bit
0: No pull-up
1: Pull-up
P21 pull-up control bit
0: No pull-up
1: Pull-up
P22 pull-up control bit
0: No pull-up
1: Pull-up
P23 pull-up control bit
0: No pull-up
1: Pull-up
P24 pull-up control bit
0: No pull-up
1: Pull-up
P25 pull-up control bit
0: No pull-up
1: Pull-up
P26 pull-up control bit
0: No pull-up
1: Pull-up
P27 pull-up control bit
0: No pull-up
1: Pull-up
b7
Note:
Pull-up control is valid when the corresponding
bit of the port direction register is “0” (input).
When that bit is “1” (output), pull-up cannot be
set to the port of which pull-up is selected.
Note:
Pull-up control is valid when the corresponding
bit of the port direction register is “0” (input).
When that bit is “1” (output), pull-up cannot be
set to the port of which pull-up is selected.
b0
Port P3 pull-up control register
(PULL3: address 0FF316)
P30 pull-up control bit
0: No pull-up
1: Pull-up
P31 pull-up control bit
0: No pull-up
1: Pull-up
Not used
(return “0” when read)
P34 pull-up control bit
0: No pull-up
1: Pull-up
P35 pull-up control bit
0: No pull-up
1: Pull-up
P36 pull-up control bit
0: No pull-up
1: Pull-up
P37 pull-up control bit
0: No pull-up
1: Pull-up
Fig 17. Structure of port pull-up control register (2)
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 21 of 117
3803 Group (Spec.L)
b7
b0
Port P4 pull-up control register
(PULL4: address 0FF416)
P40 pull-up control bit
0: No pull-up
1: Pull-up
P41 pull-up control bit
0: No pull-up
1: Pull-up
P42 pull-up control bit
0: No pull-up
1: Pull-up
P43 pull-up control bit
0: No pull-up
1: Pull-up
P44 pull-up control bit
0: No pull-up
1: Pull-up
P45 pull-up control bit
0: No pull-up
1: Pull-up
P46 pull-up control bit
0: No pull-up
1: Pull-up
P47 pull-up control bit
0: No pull-up
1: Pull-up
b7
Note:
Pull-up control is valid when the corresponding
bit of the port direction register is “0” (input).
When that bit is “1” (output), pull-up cannot be
set to the port of which pull-up is selected.
Note:
Pull-up control is valid when the corresponding
bit of the port direction register is “0” (input).
When that bit is “1” (output), pull-up cannot be
set to the port of which pull-up is selected.
b0
Port P5 pull-up control register
(PULL5: address 0FF516)
P50 pull-up control bit
0: No pull-up
1: Pull-up
P51 pull-up control bit
0: No pull-up
1: Pull-up
P52 pull-up control bit
0: No pull-up
1: Pull-up
P53 pull-up control bit
0: No pull-up
1: Pull-up
P54 pull-up control bit
0: No pull-up
1: Pull-up
P55 pull-up control bit
0: No pull-up
1: Pull-up
P56 pull-up control bit
0: No pull-up
1: Pull-up
P57 pull-up control bit
0: No pull-up
1: Pull-up
Fig 18. Structure of port pull-up control register (3)
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 22 of 117
3803 Group (Spec.L)
b7
b0
Port P6 pull-up control register
(PULL6: address 0FF616)
P60 pull-up control bit
0: No pull-up
1: Pull-up
P61 pull-up control bit
0: No pull-up
1: Pull-up
P62 pull-up control bit
0: No pull-up
1: Pull-up
P63 pull-up control bit
0: No pull-up
1: Pull-up
P64 pull-up control bit
0: No pull-up
1: Pull-up
P65 pull-up control bit
0: No pull-up
1: Pull-up
P66 pull-up control bit
0: No pull-up
1: Pull-up
P67 pull-up control bit
0: No pull-up
1: Pull-up
Fig 19. Structure of port pull-up control register (4)
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 23 of 117
Note:
Pull-up control is valid when the corresponding
bit of the port direction register is “0” (input).
When that bit is “1” (output), pull-up cannot be
set to the port of which pull-up is selected.
3803 Group (Spec.L)
Termination of unused pins
• Termination of common pins
I/O ports:
Select an input port or an output port and follow
each processing method.
In addition, it is recommended that related
registers be overwritten periodically to prevent
malfunctions, etc.
Output ports: Open.
Input ports: If the input level become unstable, through current
flow to an input circuit, and the power supply
current may increase.
Table 7
Especially, when expecting low consumption
current (at STP or WIT instruction execution etc.),
pull-up or pull-down input ports to prevent
through current (builtin resistor can be used).
We recommend processing unused pins through a
resistor which can secure IOH(avg) or IOL(avg).
Because, when an I/O port or a pin which have an
output function is selected as an input port, it may
operate as an output port by incorrect operation
etc.
Termination of unused pins
Pins
Termination
P0, P1, P2, P3, P4, P5, P6
• Set to the input mode and connect each to VCC or VSS through a resistor of 1 kΩ to 10 kΩ.
• Set to the output mode and open at “L” or “H” output state.
VREF
Connect to VCC or VSS (GND).
AVSS
Connect to VCC or VSS (GND).
XOUT
Open (only when using external clock)
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 24 of 117
3803 Group (Spec.L)
INTERRUPTS
The 3803 group (Spec.L) interrupts are vector interrupts with a
fixed priority scheme, and generated by 16 sources among 21
sources: 8 external, 12 internal, and 1 software.
The interrupt sources, vector addresses(1), and interrupt priority
are shown in Table 8.
Each interrupt except the BRK instruction interrupt has the
interrupt request bit and the interrupt enable bit. These bits and
the interrupt disable flag (I flag) control the acceptance of
interrupt requests. Figure 20 shows an interrupt control diagram.
Table 8
An interrupt requests is accepted when all of the following
conditions are satisfied:
• Interrupt disable flag.................................“0”
• Interrupt request bit...................................“1”
• Interrupt enable bit....................................“1”
Though the interrupt priority is determined by hardware, priority
processing can be performed by software using the above bits
and flag.
Interrupt vector addresses and priority
Interrupt Source
Priority
Vector
Addresses(1)
High
Low
Interrupt Request Generating
Conditions
Remarks
Reset(2)
1
FFFD16
FFFC16 At reset
Non-maskable
INT0
2
FFFB16
FFFA16
At detection of either rising or falling
edge of INT0 input
External interrupt
(active edge selectable)
INT1
3
FFF916
FFF816
At detection of either rising or falling
edge of INT1 input
External interrupt
(active edge selectable)
Serial I/O1 reception
4
FFF716
FFF616
At completion of serial I/O1 data
reception
Valid when serial I/O1 is selected
Serial I/O1
transmission
5
FFF516
FFF416
At completion of serial I/O1
transmission shift or when
transmission buffer is empty
Valid when serial I/O1 is selected
Timer Z
At timer Z underflow
Timer X
6
FFF316
FFF216
At timer X underflow
Timer Y
7
FFF116
FFF016
At timer Y underflow
Timer 1
8
FFEF16
FFEE16 At timer 1 underflow
Timer 2
9
FFED16
FFEC16 At timer 2 underflow
CNTR0
10
FFEB16
FFEA16 At detection of either rising or falling
edge of CNTR0 input
External interrupt
(active edge selectable)
CNTR1
11
FFE916
FFE816
At detection of either rising or falling
edge of CNTR1 input
External interrupt
(active edge selectable)
At completion of serial I/O3 data
reception
Valid when serial I/O3 is selected
Valid when serial I/O2 is selected
Serial I/O3 reception
STP release timer underflow
12
FFE716
FFE616
At completion of serial I/O2 data
transmission or reception
INT2
13
FFE516
FFE416
At detection of either rising or falling
edge of INT2 input
External interrupt
(active edge selectable)
INT3
14
FFE316
FFE216
At detection of either rising or falling
edge of INT3 input
External interrupt
(active edge selectable)
INT4
15
FFE116
FFE016
At detection of either rising or falling
edge of INT4 input
External interrupt
(active edge selectable)
At detection of either rising or falling
edge of CNTR2 input
External interrupt
(active edge selectable)
Serial I/O2
Timer Z
At timer Z underflow
CNTR2
A/D conversion
16
FFDF16
FFDE16 At completion of A/D conversion
At completion of serial I/O3
transmission shift or when
transmission buffer is empty
Valid when serial I/O3 is selected
FFDC16 At BRK instruction execution
Non-maskable software interrupt
Serial I/O3
transmission
BRK instruction
17
FFDD16
NOTES:
1. Vector addresses contain interrupt jump destination addresses.
2. Reset function in the same way as an interrupt with the highest priority.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 25 of 117
3803 Group (Spec.L)
Interrupt request bit
Interrupt enable bit
Interrupt disable flag (I)
BRK instruction
Reset
Interrupt request
Fig 20. Interrupt control diagram
• Interrupt Disable Flag
The interrupt disable flag is assigned to bit 2 of the processor
status register. This flag controls the acceptance of all interrupt
requests except for the BRK instruction. When this flag is set to
“1”, the acceptance of interrupt requests is disabled. When it is
set to “0”, acceptance of interrupt requests is enabled. This flag is
set to “1” with the SET instruction and set to “0” with the CLI
instruction.
When an interrupt request is accepted, the contents of the
processor status register are pushed onto the stack while the
interrupt disable flag remaines set to “0”. Subsequently, this flag
is automatically set to “1” and multiple interrupts are disabled.
To use multiple interrupts, set this flag to “0” with the CLI
instruction within the interrupt processing routine.
The contents of the processor status register are popped off the
stack with the RTI instruction.
• Interrupt Request Bits
Once an interrupt request is generated, the corresponding
interrupt request bit is set to “1” and remaines “1” until the
request is accepted. When the request is accepted, this bit is
automatically set to “0”.
Each interrupt request bit can be set to “0”, but cannot be set to
“1”, by software.
• Interrupt Enable Bits
The interrupt enable bits control the acceptance of the
corresponding interrupt requests. When an interrupt enable bit is
set to “0”, the acceptance of the corresponding interrupt request
is disabled. If an interrupt request occurs in this condition, the
corresponding interrupt request bit is set to “1”, but the interrupt
request is not accepted. When an interrupt enable bit is set to “1”,
acceptance of the corresponding interrupt request is enabled.
Each interrupt enable bit can be set to “0” or “1” by software.
The interrupt enable bit for an unused interrupt should be set to
“0”.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 26 of 117
• Interrupt Source Selection
Any of the following combinations can be selected by the
interrupt source selection register (003916).
1. INT0 or timer Z
2. CNTR1 or Serial I/O3 reception
3. Serial I/O2 or timer Z
4. INT4 or CNTR2
5. A/D conversion or serial I/O3 transmission
• External Interrupt Pin Selection
For external interrupts INT0 and INT4, the INT0, INT4 interrupt
switch bit in the interrupt edge selection register (bit 6 of address
003A 16 ) can be used to select INT00 and INT40 pin input or
INT01 and INT41 pin input.
3803 Group (Spec.L)
b7
b0
Interrupt edge selection register
(INTEDGE : address 003A16)
INT0 interrupt edge selection bit
INT1 interrupt edge selection bit
Not used (returns “0” when read)
INT2 interrupt edge selection bit
INT3 interrupt edge selection bit
INT4 interrupt edge selection bit
INT0, INT4 interrupt switch bit
0 : INT00, INT40 interrupt
1 : INT01, INT41 interrupt
Not used (returns “0” when read)
b7
b0
0 : Falling edge active
1 : Rising edge active
0 : Falling edge active
1 : Rising edge active
Interrupt request register 1
(IREQ1 : address 003C16)
b7
b0
INT0/Timer Z interrupt request bit
INT1 interrupt request bit
Serial I/O1 receive interrupt request bit
Serial I/O1 transmit interrupt request bit
Timer X interrupt request bit
Timer Y interrupt request bit
Timer 1 interrupt request bit
Timer 2 interrupt request bit
CNTR0 interrupt request bit
CNTR1/Serial I/O3 receive interrupt
request bit
Serial I/O2/Timer Z interrupt request bit
INT2 interrupt request bit
INT3 interrupt request bit
INT4/CNTR2 interrupt request bit
AD converter/Serial I/O3 transmit
interrupt request bit
Not used (returns “0” when read)
0 : No interrupt request issued
1 : Interrupt request issued
0 : No interrupt request issued
1 : Interrupt request issued
b7
b0
Interrupt control register 1
(ICON1 : address 003E16)
INT0/Timer Z interrupt enable bit
INT1 interrupt enable bit
Serial I/O1 receive interrupt enable bit
Serial I/O1 transmit interrupt enable bit
Timer X interrupt enable bit
Timer Y interrupt enable bit
Timer 1 interrupt enable bit
Timer 2 interrupt enable bit
0 : Interrupts disabled
1 : Interrupts enabled
b7
b0
Interrupt request register 2
(IREQ2 : address 003D16)
b7
b0
Interrupt control register 2
(ICON2 : address 003F16)
CNTR0 interrupt enable bit
CNTR1/Serial I/O3 receive interrupt
enable bit
Serial I/O2/Timer Z interrupt enable bit
INT2 interrupt enable bit
INT3 interrupt enable bit
INT4/CNTR2 interrupt enable bit
AD converter/Serial I/O3 transmit
interrupt enable bit
Not used (returns “0” when read)
(Do not write “1”.)
0 : Interrupts disabled
1 : Interrupts enabled
Interrupt source selection register
(INTSEL : address 003916)
INT0/Timer Z interrupt source selection bit
0 : INT0 interrupt
1 : Timer Z interrupt
(Do not write “1” to these bits simultaneously.)
Serial I/O2/Timer Z interrupt source selection bit
0 : Serial I/O2 interrupt
1 : Timer Z interrupt
Not used (Do not write “1”.)
INT4/CNTR2 interrupt source selection bit
0 : INT4 interrupt
1 : CNTR2 interrupt
Not used (Do not write “1”.)
CNTR1/Serial I/O3 receive interrupt source selection bit
0 : CNTR1 interrupt
1 : Serial I/O3 receive interrupt
AD converter/Serial I/O3 transmit interrupt source selection bit
0 : A/D converter interrupt
1 : Serial I/O3 transmit interrupt
Fig 21. Structure of interrupt-related registers
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 27 of 117
3803 Group (Spec.L)
• Interrupt Request Generation, Acceptance, and Handling
Interrupts have the following three phases.
(i) Interrupt Request Generation
An interrupt request is generated by an interrupt source
(external interrupt signal input, timer underflow, etc.) and
the corresponding request bit is set to “1”.
(ii) Interrupt Request Acceptance
Based on the interrupt acceptance timing in each instruction
cycle, the interrupt control circuit determines acceptance
conditions (interrupt request bit, interrupt enable bit, and
interrupt disable flag) and interrupt priority levels for
accepting interrupt requests. When two or more interrupt
requests are generated simultaneously, the highest priority
interrupt is accepted. The value of interrupt request bit for
an unaccepted interrupt remains the same and acceptance is
determined at the next interrupt acceptance timing point.
(iii) Handling of Accepted Interrupt Request
The accepted interrupt request is processed.
Figure 22 shows the time up to execution in the interrupt
processing routine, and Figure 23 shows the interrupt sequence.
Figure 24 shows the timing of interrupt request generation,
interrupt request bit, and interrupt request acceptance.
<Notes>
The interrupt request bit may be set to “1” in the following cases.
• When setting the external interrupt active edge
Related registers: Interrupt edge selection register
(address 003A16)
Timer XY mode register (address 002316)
Timer Z mode register (address 002A16)
• When switching the interrupt sources of an interrupt vector
address where two or more interrupt sources are assigned
Related registers: Interrupt source selection register
(address 003916)
If it is not necessary to generate an interrupt synchronized with
these settings, take the following sequence.
(1) Set the corresponding enable bit to “0” (disabled).
(2) Set the interrupt edge selection bit (the active edge switch
bit) or the interrupt source bit.
(3) Set the corresponding interrupt request bit to “0” after one
or more instructions have been executed.
(4) Set the corresponding interrupt enable bit to “1” (enabled).
Interrupt request
generated
Interrupt request
acceptance
Interrupt routine
starts
Interrupt sequence
• Interrupt Handling Execution
When interrupt handling is executed, the following operations
are performed automatically.
(1) Once the currently executing instruction is completed, an
interrupt request is accepted.
(2) The contents of the program counters and the processor
status register at this point are pushed onto the stack area in
order from 1 to 3.
1. High-order bits of program counter (PCH)
2. Low-order bits of program counter (PCL)
3. Processor status register (PS)
(3) Concurrently with the push operation, the jump address of
the corresponding interrupt (the start address of the interrupt
processing routine) is transferred from the interrupt vector to
the program counter.
(4) The interrupt request bit for the corresponding interrupt is
set to “0”. Also, the interrupt disable flag is set to “1” and
multiple interrupts are disabled.
(5) The interrupt routine is executed.
(6) When the RTI instruction is executed, the contents of the
registers pushed onto the stack area are popped off in the
order from 3 to 1. Then, the routine that was before running
interrupt processing resumes.
As described above, it is necessary to set the stack pointer and
the jump address in the vector area corresponding to each
interrupt to execute the interrupt processing routine.
Stack push and
Vector fetch
Main routine
*
0 to 16 cycles
7 cycles
7 to 23 cycles
* When executing DIV instruction
Fig 22. Time up to execution in interrupt routine
Push onto stack
Vector fetch
Page 28 of 117
Execute interrupt
routine
φ
SYNC
RD
WR
Address bus
Data bus
PC
Not used
S,SPS
S-1,SPS S-2,SPS
PCH
PCL
PS
BL
BH
AL
AL,AH
AH
SYNC : CPU operation code fetch cycle
(This is an internal signal that cannot be observed from the external unit.)
BL, BH: Vector address of each interrupt
AL, AH: Jump destination address of each interrupt
SPS : “0016” or “0116”
([SPS] is a page selected by the stack page selection bit of CPU mode register.)
Fig 23. Interrupt sequence
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Interrupt handling
routine
3803 Group (Spec.L)
Push onto stack
Vector fetch
Instruction cycle
Instruction cycle
Internal clock φ
SYNC
1
T1
2
IR1 T2
IR2 T3
T1 T2 T3 : Interrupt acceptance timing points
IR1 IR2 : Timings points at which the interrupt request bit is set to “1”.
Note : Period 2 indicates the last φ cycle during one instruction cycle.
(1) The interrupt request bit for an interrupt request generated during period 1 is set to “1” at timing point IR1.
(2) The interrupt request bit for an interrupt request generated during period 2 is set to “1” at timing point IR1 or IR2.
The timing point at which the bit is set to “1” varies depending on conditions. When two or more interrupt
requests are generated during the period 2, each request bit may be set to “1” at timing point IR1 or IR2
separately.
Fig 24. Timing of interrupt request generation, interrupt request bit, and interrupt acceptance
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 29 of 117
3803 Group (Spec.L)
TIMERS
• 8-bit Timers
The 3803 group (Spec.L) has four 8-bit timers: timer 1, timer 2,
timer X, and timer Y.
The timer 1 and timer 2 use one prescaler in common, and the
timer X and timer Y use each prescaler. Those are 8-bit
prescalers. Each of the timers and prescalers has a timer latch or
a prescaler latch.
The division ratio of each timer or prescaler is given by 1/(n + 1),
where n is the value in the corresponding timer or prescaler latch.
All timers are down-counters. When the timer reaches “0016”, an
underflow occurs at the next count pulse and the contents of the
corresponding timer latch are reloaded into the timer and the
count is continued. When the timer underflows, the interrupt
request bit corresponding to that timer is set to “1”.
• Timer divider
The divider count source is switched by the main clock division
ratio selection bits of CPU mode register (bits 7 and 6 at address
003B16). When these bits are “00” (high-speed mode) or “01”
(middle-speed mode), XIN is selected. When these bits are “10”
(low-speed mode), XCIN is selected.
• Prescaler 12
The prescaler 12 counts the output of the timer divider. The
count source is selected by the timer 12, X count source selection
register among 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256,
1/512, 1/1024 of f(XIN) or f(XCIN).
• Timer 1 and Timer 2
The timer 1 and timer 2 counts the output of prescaler 12 and
periodically set the interrupt request bit.
• Prescaler X and prescaler Y
The prescaler X and prescaler Y count the output of the timer
divider or f(XCIN). The count source is selected by the timer 12,
X count source selection register (address 000E16) and the timer
Y, Z count source selection register (address 000F16) among 1/2,
1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, and 1/1024 of
f(XIN) or f(XCIN); and f(XCIN).
• Timer X and Timer Y
The timer X and timer Y can each select one of four operating
modes by setting the timer XY mode register (address 002316).
(1) Timer mode
• Mode selection
This mode can be selected by setting “00” to the timer X
operating mode bits (bits 1 and 0) and the timer Y operating
mode bits (bits 5 and 4) of the timer XY mode register (address
002316).
• Explanation of operation
The timer count operation is started by setting “0” to the timer X
count stop bit (bit 3) and the timer Y count stop bit (bit 7) of the
timer XY mode register (address 002316).
When the timer reaches “0016”, an underflow occurs at the next
count pulse and the contents of timer latch are reloaded into the
timer and the count is continued.
(2) Pulse Output Mode
• Mode selection
This mode can be selected by setting “01” to the timer X
operating mode bits (bits 1 and 0) and the timer Y operating
mode bits (bits 5 and 4) of the timer XY mode register (address
002316).
• Explanation of operation
The operation is the same as the timer mode’s. Moreover the
pulse which is inverted each time the timer underflows is output
from CNTR0/CNTR1 pin. Regardless of the timer counting or
not the output of CNTR0/CNTR1 pin is initialized to the level of
specified by their active edge switch bits when writing to the
timer. When the CNTR0 active edge switch bit (bit 2) and the
CNTR 1 active edge switch bit (bit 6) of the timer XY mode
register (address 002316) is “0”, the output starts with “H” level.
When it is “1”, the output starts with “L” level.
Switching the CNTR 0 or CNTR 1 active edge switch bit will
reverse the output level of the corresponding CNTR0 or CNTR1
pin.
• Precautions
Set the double-function port of CNTR0 /CNTR 1 pin and port
P54/P55 to output in this mode.
(3) Event Counter Mode
• Mode selection
This mode can be selected by setting “10” to the timer X
operating mode bits (bits 1 and 0) and the timer Y operating
mode bits (bits 5 and 4) of the timer XY mode register (address
002316).
• Explanation of operation
The operation is the same as the timer mode’s except that the
timer counts signals input from the CNTR0 or CNTR1 pin. The
valid edge for the count operation depends on the CNTR0 active
edge switch bit (bit 2) or the CNTR1 active edge switch bit (bit 6)
of the timer XY mode register (address 002316). When it is “0”,
the rising edge is valid. When it is “1”, the falling edge is valid.
• Precautions
Set the double-function port of CNTR0 /CNTR 1 pin and port
P54/P55 to input in this mode.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 30 of 117
3803 Group (Spec.L)
(4) Pulse Width Measurement Mode
• Mode selection
This mode can be selected by setting “11” to the timer X
operating mode bits (bits 1 and 0) and the timer Y operating
mode bits (bits 5 and 4) of the timer XY mode register (address
002316).
• Explanation of operation
When the CNTR0 active edge switch bit (bit 2) or the CNTR1
active edge switch bit (bit 6) of the timer XY mode register
(address 002316) is “1”, the timer counts during the term of one
falling edge of CNTR0/CNTR1 pin input until the next rising
edge of input (“L” term). When it is “0”, the timer counts during
the term of one rising edge input until the next falling edge input
(“H” term).
• Precautions
Set the double-function port of CNTR0 /CNTR 1 pin and port
P54/P55 to input in this mode.
The count operation can be stopped by setting “1” to the timer X
count stop bit (bit 3) and the timer Y count stop bit (bit 7) of the
timer XY mode register (address 002316). The interrupt request
bit is set to “1” each time the timer underflows.
• Precautions when switching count source
When switching the count source by the timer 12, X and Y count
source selection bits, the value of timer count is altered in
inconsiderable amount owing to generating of thin pulses on the
count input signals.
Therefore, select the timer count source before setting the value
to the prescaler and the timer.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 31 of 117
3803 Group (Spec.L)
XIN
“00”
“11”
(1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024)
Divider
Count source
selection bit
Clock for timer X
Clock for timer Y
Main clock
division ratio
selection bits
Clock for timer 12
XCIN
“10”
Data bus
Prescaler X latch (8)
f(XCIN)
Prescaler X (8)
CNTR0 active
edge switch bit
“0”
P54/CNTR0
Timer X latch (8)
Pulse width
Timer mode
measurement Pulse output mode
mode
Event
counter
mode
Timer X (8)
To timer X interrupt
request bit
Timer X count stop bit
To CNTR0 interrupt
request bit
“1”
CNTR0 active
edge switch bit
Q
“0”
Port P54
latch
Port P54
direction register
“1”
Toggle flip-flop T
Q
R
Timer X latch write pulse
Pulse output mode
Pulse output mode
Data bus
Count source selection bit
Clock for timer Y
Prescaler Y latch (8)
f(XCIN)
Prescaler Y (8)
CNTR1 active
edge switch bit
“0”
P55/CNTR1
Timer Y latch (8)
Pulse width
Timer mode
measurement Pulse output mode
mode
Event
counter
mode
Timer Y (8)
To timer Y interrupt
request bit
Timer Y count stop bit
To CNTR1 interrupt
request bit
“1”
CNTR1 active
edge switch bit
“1”
Q
Toggle flip-flop T
Q
“0”
Port P55
latch
Port P55
direction register
R
Timer Y latch write pulse
Pulse output mode
Pulse output mode
Data bus
Prescaler 12 latch (8)
Clock for timer 12
Prescaler 12 (8)
Timer 1 latch (8)
Timer 2 latch (8)
Timer 1 (8)
Timer 2 (8)
To timer 2 interrupt
request bit
To timer 1 interrupt
request bit
Fig 25. Block diagram of timer X, timer Y, timer 1, and timer 2
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 32 of 117
3803 Group (Spec.L)
b7
b0
Timer XY mode register
(TM : address 002316)
Timer X operating mode bits
b1 b0
0 0: Timer mode
0 1: Pulse output mode
1 0: Event counter mode
1 1: Pulse width measurement mode
CNTR0 active edge switch bit
0: Interrupt at falling edge
Count at rising edge in event counter mode
1: Interrupt at rising edge
Count at falling edge in event counter mode
Timer X count stop bit
0: Count start
1: Count stop
Timer Y operating mode bits
b5 b4
0 0: Timer mode
0 1: Pulse output mode
1 0: Event counter mode
1 1: Pulse width measurement mode
CNTR1 active edge switch bit
0: Interrupt at falling edge
Count at rising edge in event counter mode
1: Interrupt at rising edge
Count at falling edge in event counter mode
Timer Y count stop bit
0: Count start
1: Count stop
Fig 26. Structure of timer XY mode register
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 33 of 117
3803 Group (Spec.L)
b7
b0
Timer 12, X count source selection register
(T12XCSS : address 000E16)
Timer 12 count source selection bits
b3 b2 b1 b0
0 0 0 0 : f(XIN)/2 or f(XCIN)/2
0 0 0 1 : f(XIN)/4 or f(XCIN)/4
0 0 1 0 : f(XIN)/8 or f(XCIN)/8
0 0 1 1 : f(XIN)/16 or f(XCIN)/16
0 1 0 0 : f(XIN)/32 or f(XCIN)/32
0 1 0 1 : f(XIN)/64 or f(XCIN)/64
0 1 1 0 : f(XIN)/128 or f(XCIN)/128
0 1 1 1 : f(XIN)/256 or f(XCIN)/256
1 0 0 0 : f(XIN)/512 or f(XCIN)/512
1 0 0 1 : f(XIN)/1024 or f(XCIN)/1024
Timer X count source selection bits
b7 b6 b5 b4
0 0 0 0 : f(XIN)/2 or f(XCIN)/2
0 0 0 1 : f(XIN)/4 or f(XCIN)/4
0 0 1 0 : f(XIN)/8 or f(XCIN)/8
0 0 1 1 : f(XIN)/16 or f(XCIN)/16
0 1 0 0 : f(XIN)/32 or f(XCIN)/32
0 1 0 1 : f(XIN)/64 or f(XCIN)/64
0 1 1 0 : f(XIN)/128 or f(XCIN)/128
0 1 1 1 : f(XIN)/256 or f(XCIN)/256
1 0 0 0 : f(XIN)/512 or f(XCIN)/512
1 0 0 1 : f(XIN)/1024 or f(XCIN)/1024
1 0 1 0 : f(XCIN)
b7
1010:
1011:
1100:
1101:
1110:
1111:
Not used
1011:
1100:
1101:
1110:
1111:
Not used
1011:
1100:
1101:
1110:
1111:
Not used
1011:
1100:
1101:
1110:
1111:
Not used
b0
Timer Y, Z count source selection register
(TYZCSS : address 000F16)
Timer Y count source selection bits
b3 b2 b1 b0
0 0 0 0 : f(XIN)/2 or f(XCIN)/2
0 0 0 1 : f(XIN)/4 or f(XCIN)/4
0 0 1 0 : f(XIN)/8 or f(XCIN)/8
0 0 1 1 : f(XIN)/16 or f(XCIN)/16
0 1 0 0 : f(XIN)/32 or f(XCIN)/32
0 1 0 1 : f(XIN)/64 or f(XCIN)/64
0 1 1 0 : f(XIN)/128 or f(XCIN)/128
0 1 1 1 : f(XIN)/256 or f(XCIN)/256
1 0 0 0 : f(XIN)/512 or f(XCIN)/512
1 0 0 1 : f(XIN)/1024 or f(XCIN)/1024
1 0 1 0 : f(XCIN)
Timer Z count source selection bits
b7 b6 b5 b4
0 0 0 0 : f(XIN)/2 or f(XCIN)/2
0 0 0 1 : f(XIN)/4 or f(XCIN)/4
0 0 1 0 : f(XIN)/8 or f(XCIN)/8
0 0 1 1 : f(XIN)/16 or f(XCIN)/16
0 1 0 0 : f(XIN)/32 or f(XCIN)/32
0 1 0 1 : f(XIN)/64 or f(XCIN)/64
0 1 1 0 : f(XIN)/128 or f(XCIN)/128
0 1 1 1 : f(XIN)/256 or f(XCIN)/256
1 0 0 0 : f(XIN)/512 or f(XCIN)/512
1 0 0 1 : f(XIN)/1024 or f(XCIN)/1024
1 0 1 0 : f(XCIN)
Fig 27. Structure of timer 12, X and timer Y, Z count source selection registers
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 34 of 117
3803 Group (Spec.L)
• 16-bit Timer
The timer Z is a 16-bit timer. When the timer reaches “000016”,
an underflow occurs at the next count pulse and the
corresponding timer latch is reloaded into the timer and the count
is continued. When the timer underflows, the interrupt request bit
corresponding to the timer Z is set to “1”.
When reading/writing to the timer Z, perform reading/writing to
both the high-order byte and the low-order byte. When reading
the timer Z, read from the high-order byte first, followed by the
low-order byte. Do not perform the writing to the timer Z
between read operation of the high-order byte and read operation
of the low-order byte. When writing to the timer Z, write to the
low-order byte first, followed by the high-order byte. Do not
perform the reading to the timer Z between write operation of the
low-order byte and write operation of the high-order byte.
The timer Z can select the count source by the timer Z count
source selection bits of timer Y, Z count source selection register
(bits 7 to 4 at address 000F16).
Timer Z can select one of seven operating modes by setting the
timer Z mode register (address 002A16).
(1) Timer mode
• Mode selection
This mode can be selected by setting “000” to the timer Z
operating mode bits (bits 2 to 0) and setting “0” to the
timer/event counter mode switch bit (b7) of the timer Z mode
register (address 002A16).
• Count source selection
In high- or middle-speed mode, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64,
1/128, 1/256, 1/512 or 1/1024 of f(X IN ); or f(X CIN ) can be
selected as the count source.
In low-speed mode, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256,
1/512 or 1/1024 of f(XCIN); or f(XCIN) can be selected as the
count source.
• Interrupt
When an underflow occurs, the INT0/timer Z interrupt request bit
(bit 0) of the interrupt request register 1 (address 003C16) is set to
“1”.
• Explanation of operation
During timer stop, usually write data to a latch and a timer at the
same time to set the timer value.
The timer count operation is started by setting “0” to the timer Z
count stop bit (bit 6) of the timer Z mode register (address
002A16).
When the timer reaches “000016”, an underflow occurs at the
next count pulse and the contents of timer latch are reloaded into
the timer and the count is continued.
When writing data to the timer during operation, the data is
written only into the latch. Then the new latch value is reloaded
into the timer at the next underflow.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 35 of 117
(2) Event counter mode
• Mode selection
This mode can be selected by setting “000” to the timer Z
operating mode bits (bits 2 to 0) and setting “1” to the
timer/event counter mode switch bit (bit 7) of the timer Z mode
register (address 002A16).
The valid edge for the count operation depends on the CNTR2
active edge switch bit (bit 5) of the timer Z mode register
(address 002A16). When it is “0”, the rising edge is valid. When
it is “1”, the falling edge is valid.
• Interrupt
The interrupt at an underflow is the same as the timer mode’s.
• Explanation of operation
The operation is the same as the timer mode’s.
Set the double-function port of CNTR2 pin and port P47 to input
in this mode.
Figure 30 shows the timing chart of the timer/event counter
mode.
(3) Pulse output mode
• Mode selection
This mode can be selected by setting “001” to the timer Z
operating mode bits (bits 2 to 0) and setting “0” to the
timer/event counter mode switch bit (b7) of the timer Z mode
register (address 002A16).
• Count source selection
In high- or middle-speed mode, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64,
1/128, 1/256, 1/512 or 1/1024 of f(X IN ); or f(X CIN ) can be
selected as the count source.
In low-speed mode, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256,
1/512 or 1/1024 of f(XCIN); or f(XCIN) can be selected as the
count source.
• Interrupt
The interrupt at an underflow is the same as the timer mode’s.
• Explanation of operation
The operation is the same as the timer mode’s. Moreover the
pulse which is inverted each time the timer underflows is output
from CNTR2 pin. When the CNTR2 active edge switch bit (bit 5)
of the timer Z mode register (address 002A16) is “0”, the output
starts with “H” level. When it is “1”, the output starts with “L”
level.
• Precautions
The double-function port of CNTR 2 pin and port P4 7 is
automatically set to the timer pulse output port in this mode.
The output from CNTR2 pin is initialized to the level depending
on CNTR2 active edge switch bit by writing to the timer.
When the value of the CNTR2 active edge switch bit is changed,
the output level of CNTR2 pin is inverted.
Figure 31 shows the timing chart of the pulse output mode.
3803 Group (Spec.L)
(4) Pulse period measurement mode
• Mode selection
This mode can be selected by setting “010” to the timer Z
operating mode bits (bits 2 to 0) and setting “0” to the
timer/event counter mode switch bit (b7) of the timer Z mode
register (address 002A16).
(5) Pulse width measurement mode
• Mode selection
This mode can be selected by setting “011” to the timer Z
operating mode bits (bits 2 to 0) and setting “0” to the
timer/event counter mode switch bit (b7) of the timer Z mode
register (address 002A16).
• Count source selection
In high- or middle-speed mode, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64,
1/128, 1/256, 1/512 or 1/1024 of f(X IN ); or f(X CIN ) can be
selected as the count source.
In low-speed mode, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256,
1/512 or 1/1024 of f(XCIN); or f(XCIN) can be selected as the
count source.
• Count source selection
In high- or middle-speed mode, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64,
1/128, 1/256, 1/512 or 1/1024 of f(X IN ); or f(X CIN ) can be
selected as the count source.
In low-speed mode, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256,
1/512 or 1/1024 of f(XCIN); or f(XCIN) can be selected as the
count source.
• Interrupt
The interrupt at an underflow is the same as the timer mode’s.
When the pulse period measurement is completed, the
INT4/CNTR2 interrupt request bit (bit 5) of the interrupt request
register 2 (address 003D16) is set to “1”.
• Interrupt
The interrupt at an underflow is the same as the timer mode’s.
When the pulse widths measurement is completed, the
INT4/CNTR2 interrupt request bit (bit 5) of the interrupt request
register 2 (address 003D16) is set to “1”.
• Explanation of operation
The cycle of the pulse which is input from the CNTR 2 pin is
measured. When the CNTR2 active edge switch bit (bit 5) of the
timer Z mode register (address 002A16) is “0”, the timer counts
during the term from one falling edge of CNTR2 pin input to the
next falling edge. When it is “1”, the timer counts during the
term from one rising edge input to the next rising edge input.
When the valid edge of measurement completion/start is
detected, the 1’s complement of the timer value is written to the
timer latch and “FFFF16” is set to the timer.
Furthermore when the timer underflows, the timer Z interrupt
request occurs and “FFFF16” is set to the timer. When reading
the timer Z, the value of the timer latch (measured value) is read.
The measured value is retained until the next measurement
completion.
• Explanation of operation
The pulse width which is input from the CNTR2 pin is measured.
When the CNTR2 active edge switch bit (bit 5) of the timer Z
mode register (address 002A16) is “0”, the timer counts during
the term from one rising edge input to the next falling edge input
(“H” term). When it is “1”, the timer counts during the term from
one falling edge of CNTR2 pin input to the next rising edge of
input (“L” term).
When the valid edge of measurement completion is detected, the
1’s complement of the timer value is written to the timer latch.
When the valid edge of measurement completion/start is
detected, “FFFF16” is set to the timer.
When the timer Z underflows, the timer Z interrupt occurs and
“FFFF16” is set to the timer Z. When reading the timer Z, the
value of the timer latch (measured value) is read. The measured
value is retained until the next measurement completion.
• Precautions
Set the double-function port of CNTR2 pin and port P47 to input
in this mode.
A read-out of timer value is impossible in this mode. The timer
can be written to only during timer stop (no measurement of
pulse period).
Since the timer latch in this mode is specialized for the read-out
of measured values, do not perform any write operation during
measurement.
“FFFF16” is set to the timer when the timer underflows or when
the valid edge of measurement start/completion is detected.
Consequently, the timer value at start of pulse period
m e a s u r em e n t d e p e n d s o n t h e t i m e r v a l u e j u s t b ef o r e
measurement start.
Figure 32 shows the timing chart of the pulse period
measurement mode.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 36 of 117
• Precautions
Set the double-function port of CNTR2 pin and port P47 to input
in this mode.
A read-out of timer value is impossible in this mode. The timer
can be written to only during timer stop (no measurement of
pulse widths).
Since the timer latch in this mode is specialized for the read-out
of measured values, do not perform any write operation during
measurement.
“FFFF16” is set to the timer when the timer underflows or when
the valid edge of measurement start/completion is detected.
Consequently, the timer value at start of pulse width
m e a s u r em e n t d ep e n d s o n t h e t i m e r v a l u e j u s t b ef o r e
measurement start.
Figure 33 shows the timing chart of the pulse width measurement
mode.
3803 Group (Spec.L)
(6) Programmable waveform generating mode
• Mode selection
This mode can be selected by setting “100” to the timer Z
operating mode bits (bits 2 to 0) and setting “0” to the
timer/event counter mode switch bit (b7) of the timer Z mode
register (address 002A16).
• Count source selection
In high- or middle-speed mode, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64,
1/128, 1/256, 1/512 or 1/1024 of f(X IN ); or f(X CIN ) can be
selected as the count source.
In low-speed mode, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256,
1/512 or 1/1024 of f(XCIN); or f(XCIN) can be selected as the
count source.
• Interrupt
The interrupt at an underflow is the same as the timer mode’s.
• Explanation of operation
The operation is the same as the timer mode’s. Moreover the
timer outputs the data set in the output level latch (bit 4) of the
timer Z mode register (address 002A16) from the CNTR2 pin
each time the timer underflows.
Changing the value of the output level latch and the timer latch
after an underflow makes it possible to output an optional
waveform from the CNTR2 pin.
• Precautions
The double-function port of CNTR 2 pin and port P4 7 is
automatically set to the programmable waveform generating port
in this mode.
Figure 34 shows the timing chart of the programmable waveform
generating mode.
(7) Programmable one-shot generating mode
• Mode selection
This mode can be selected by setting “101” to the timer Z
operating mode bits (bits 2 to 0) and setting “0” to the
timer/event counter mode switch bit (b7) of the timer Z mode
register (address 002A16).
• Count source selection
In high- or middle-speed mode, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64,
1/128, 1/256, 1/512 or 1/1024 of f(X IN ); or f(X CIN ) can be
selected as the count source.
• Interrupt
The interrupt at an underflow is the same as the timer mode’s.
The trigger to generate one-shot pulse can be selected by the INT1
active edge selection bit (bit 1) of the interrupt edge selection
register (address 003A16). When it is “0”, the falling edge active is
selected; when it is “1”, the rising edge active is selected.
When the valid edge of the INT 1 pin is detected, the INT 1
interrupt request bit (bit 1) of the interrupt request register 1
(address 003C16) is set to “1”.
• Explanation of operation
1. “H” one-shot pulse; Bit 5 of timer Z mode register = “0”
The output level of the CNTR2 pin is initialized to “L” at
mode selection. When trigger generation (input signal to
INT1 pin) is detected, “H” is output from the CNTR2 pin.
When an underflow occurs, “L” is output. The “H” one-shot
pulse width is set by the setting value to the timer Z register
low-order and high-order. When trigger generating is
detected during timer count stop, although “H” is output
from the CNTR2 pin, “H” output state continues because an
underflow does not occur.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 37 of 117
2. “L” one-shot pulse; Bit 5 of timer Z mode register = “1”
The output level of the CNTR2 pin is initialized to “H” at
mode selection. When trigger generation (input signal to
INT1 pin) is detected, “L” is output from the CNTR2 pin.
When an underflow occurs, “H” is output. The “L” one-shot
pulse width is set by the setting value to the timer Z loworder and high-order. When trigger generating is detected
during timer count stop, although “L” is output from the
CNTR2 pin, “L” output state continues because an underflow does not occur.
• Precautions
Set the double-function port of INT1 pin and port P42 to input in
this mode.
The double-function port of CNTR 2 pin and port P4 7 is
automatically set to the programmable one-shot generating port
in this mode.
This mode cannot be used in low-speed mode.
If the value of the CNTR2 active edge switch bit is changed
during one-shot generating enabled or generating one-shot pulse,
then the output level from CNTR2 pin changes.
Figure 35 shows the timing chart of the programmable one-shot
generating mode.
<Notes regarding all modes>
• Timer Z write control
Which write control can be selected by the timer Z write control
bit (bit 3) of the timer Z mode register (address 002A16), writing
data to both the latch and the timer at the same time or writing
data only to the latch.
When the operation “writing data only to the latch” is selected,
the value is set to the timer latch by writing data to the address of
timer Z and the timer is updated at next underflow. After reset
release, the operation “writing data to both the latch and the timer
at the same time” is selected, and the value is set to both the latch
and the timer at the same time by writing data to the address of
timer Z.
In the case of writing data only to the latch, if writing data to the
latch and an underflow are performed almost at the same time,
the timer value may become undefined.
• Timer Z read control
A read-out of timer value is impossible in pulse period
measurement mode and pulse width measurement mode. In the
other modes, a read-out of timer value is possible regardless of
count operating or stopped.
However, a read-out of timer latch value is impossible.
• Switch of interrupt active edge of CNTR2 and INT1
Each interrupt active edge depends on setting of the CNTR 2
active edge switch bit and the INT1 active edge selection bit.
• Switch of count source
When switching the count source by the timer Z count source
selection bits, the value of timer count is altered in
inconsiderable amount owing to generating of thin pulses on the
count input signals.
Therefore, select the timer count source before setting the value
to the prescaler and the timer.
• Usage of CNTR2 pin as normal I/O port P47
To use the CNTR 2 pin as normal I/O port P4 7 , set timer Z
operating mode bits (b2, b1, b0) of timer Z mode register
(address 002A16) to “000”.
3803 Group (Spec.L)
CNTR2 active edge
Data bus
switch bit
Programmable one-shot
“1” generating mode
P42/INT1
Programmable one-shot
generating circuit
Programmable one-shot
generating mode
“0”
D
Output level latch
To INT1 interrupt
request bit
Programmable
waveform
generating mode
Q
T
Pulse output mode
S
Q
T
Q
“001
”
“100
CNTR2 active edge switch bit
“0”
“1” Pulse output mode
”
“101
Timer
” Z
operating
mode bits
Port P47
latch
Timer Z low-order latch
Timer Z high-order latch
Timer Z low-order
Timer Z high-order
Port P47
direction register
To timer Z
interrupt
request bit
Pulse period measurement mode
Pulse width measurement
mode
Edge detection circuit
“1
”
“0
”
CNTR2 active edge
switch bit
XIN
XCIN
Clock for timer z
P47/SRDY2/
CNTR2
“1
”
“0
Timer Z count stop bit
”
Timer/Event
counter mode
switch bit
Count source
Divider
selection bit
(1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024)
Fig 28. Block diagram of timer Z
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
f(XCIN)
Page 38 of 117
To CNTR2 interrupt
request bit
3803 Group (Spec.L)
b7
b0
Timer Z mode register
(TZM : address 002A16)
Timer Z operating mode bits
b2 b1 b0
0 0 0 : Timer/Event counter mode
0 0 1 : Pulse output mode
0 1 0 : Pulse period measurement mode
0 1 1 : Pulse width measurement mode
1 0 0 : Programmable waveform generating mode
1 0 1 : Programmable one-shot generating mode
1 1 0 : Not available
1 1 1 : Not available
Timer Z write control bit
0 : Writing data to both latch and timer simultaneously
1 : Writing data only to latch
Output level latch
0 : “L” output
1 : “H” output
CNTR2 active edge switch bit
0 : •Event counter mode: Count at rising edge
•Pulse output mode: Start outputting “H”
•Pulse period measurement mode: Measurement between two falling edges
•Pulse width measurement mode: Measurement of “H” term
•Programmable one-shot generating mode: After start outputting “L”,
“H” one-shot pulse generated
•Interrupt at falling edge
1 : •Event counter mode: Count at falling edge
•Pulse output mode: Start outputting “L”
•Pulse period measurement mode: Measurement between two rising edges
•Pulse width measurement mode: Measurement of “L” term
•Programmable one-shot generating mode: After start outputting “H”,
“L” one-shot pulse generated
•Interrupt at rising edge
Timer Z count stop bit
0 : Count start
1 : Count stop
Timer/Event counter mode switch bit (1)
0 : Timer mode
1 : Event counter mode
Note 1: When selecting the modes except the timer/event counter mode, set “0” to this bit.
Fig 29. Structure of timer Z mode register
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 39 of 117
3803 Group (Spec.L)
FFFF16
TL
000016
TR
TR
TR
TL : Value set to timer latch
TR : Timer interrupt request
Fig 30. Timing chart of timer/event counter mode
FFFF16
TL
000016
TR
Waveform output
from CNTR2 pin
CNTR2
TR
TR
TR
CNTR2
TL : Value set to timer latch
TR : Timer interrupt request
CNTR2 : CNTR2 interrupt request
(CNTR2 active edge switch bit = “0”; Falling edge active)
Fig 31. Timing chart of pulse output mode
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 40 of 117
3803 Group (Spec.L)
000016
T3
T2
T1
FFFF16
TR
FFFF16 + T1
TR
T2
T3
FFFF16
Signal input from
CNTR2 pin
CNTR2 CNTR2
CNTR2
CNTR2
CNTR2 of rising edge active
TR : Timer interrupt request
CNTR2 : CNTR2 interrupt request
Fig 32. Timing chart of pulse period measurement mode (Measuring term between two rising edges)
000016
T3
T2
T1
FFFF16
TR
Signal input from
CNTR2 pin
FFFF16 + T2
T3
CNTR2
T1
CNTR2
CNTR2
CNTR2 interrupt of rising edge active; Measurement of “L” width
TR : Timer interrupt request
CNTR2 : CNTR2 interrupt request
Fig 33. Timing chart of pulse width measurement mode (Measuring “L” term)
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 41 of 117
3803 Group (Spec.L)
FFFF16
T3
L
T2
T1
000016
Signal output from
CNTR2 pin
L
T3
T1
TR
TR
CNTR2
T2
TR
TR
CNTR2
L : Timer initial value
TR : Timer interrupt request
CNTR2 : CNTR2 interrupt request
(CNTR2 active edge switch bit = “0”; Falling edge active)
Fig 34. Timing chart of programmable waveform generating mode
FFFF16
L
TR
Signal input from
INT1 pin
Signal output from
CNTR2 pin
TR
L
L
L
CNTR2
TR
CNTR2
L : One-shot pulse width
TR : Timer interrupt request
CNTR2 : CNTR2 interrupt request
(CNTR2 active edge switch bit = “0”; Falling edge active)
Fig 35. Timing chart of programmable one-shot generating mode (“H” one-shot pulse generating)
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 42 of 117
3803 Group (Spec.L)
SERIAL INTERFACE
(1) Clock Synchronous Serial I/O Mode
Clock synchronous serial I/O1 mode can be selected by setting
the serial I/O1 mode selection bit of the serial I/O1 control
register (bit 6 of address 001A16) to “1”.
For clock synchronous serial I/O, the transmitter and the receiver
must use the same clock. If an internal clock is used, transfer is
started by a write signal to the transmit/receive buffer register.
• Serial I/O1
Serial I/O1 can be used as either clock synchronous or
asynchronous (UART) serial I/O. A dedicated timer is also
provided for baud rate generation.
Data bus
Serial I/O1 control register
Address 001816
Receive buffer register 1
Receive buffer full flag (RBF)
Receive shift register 1
P44/RXD1
Address 001A16
Receive interrupt request (RI)
Shift clock
Clock control circuit
P46/SCLK1
BRG count source selection bit
f(XIN)
Serial I/O1 synchronous clock selection bit
Frequency division ratio 1/(n+1)
Baud rate generator 1
1/4
(f(XCIN) in low-speed mode)
Address 001C16
1/4
P47/SRDY1/CNTR2
F/F
Falling-edge detector
Clock control circuit
Shift clock
P45/TXD1
Transmit shift completion flag (TSC)
Transmit interrupt source selection bit
Transmit interrupt request (TI)
Transmit shift register 1
Transmit buffer register 1
Transmit buffer empty flag (TBE)
Serial I/O1 status register
Address 001816
Address 001916
Data bus
Fig 36. Block diagram of clock synchronous serial I/O1
Transfer shift clock
(1/2 to 1/2048 of the internal
clock, or an external clock)
Serial output TXD1
D0
D1
D2
D3
D4
D5
D6
D7
Serial input RXD1
D0
D1
D2
D3
D4
D5
D6
D7
Receive enable signal SRDY1
Write pulse to receive/transmit
buffer register 1 (address 001816)
TBE = 0
TBE = 1
TSC = 0
RBF = 1
TSC = 1
Overrun error (OE)
detection
Notes 1: As the transmit interrupt (TI), which can be selected, either when the transmit buffer has emptied (TBE=1) or after the transmit
shift operation has ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the serial I/O1 control register.
2: If data is written to the transmit buffer register when TSC=0, the transmit clock is generated continuously and serial data is output
continuously from the TXD pin.
3: The receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes “1”.
Fig 37. Operation of clock synchronous serial I/O1
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 43 of 117
3803 Group (Spec.L)
(2) Asynchronous Serial I/O (UART) Mode
Clock asynchronous serial I/O mode (UART) can be selected by
clearing the serial I/O1 mode selection bit (b6) of the serial I/O1
control register to “0”.
Eight serial data transfer formats can be selected, and the transfer
formats used by a transmitter and receiver must be identical.
The transmit and receive shift registers each have a buffer, but
the two buffers have the same address in a memory. Since the
shift register cannot be written to or read from directly, transmit
data is written to the transmit buffer register, and receive data is
read from the receive buffer register.
The transmit buffer register can also hold the next data to be
transmitted, and the receive buffer register can hold a character
while the next character is being received.
Data bus
Address 001816
Receive buffer register 1
OE
Serial I/O1 control register Address 001A16
Receive buffer full flag (RBF)
Receive interrupt request (RI)
Character length selection bit
P44/RXD1
ST detector
7 bits
Receive shift register 1
1/16
8 bits
PE FE
UART1 control register
SP detector
Address 001B16
Clock control circuit
Serial I/O1 synchronous clock selection bit
P46/SCLK1
BRG count source selection bit
f(XIN)
(f(XCIN) in low-speed mode)
1/4
Frequency division ratio 1/(n+1)
Baud rate generator
Address 001C16
ST/SP/PA generator
Transmit shift
completion flag (TSC)
1/16
P45/TXD1
Transmit shift register 1
Transmit interrupt source selection bit
Transmit interrupt request (TI)
Character length selection bit
Transmit buffer empty flag (TBE)
Transmit buffer register 1
Serial I/O1 status register
Address 001816
Address 001916
Data bus
Fig 38. Block diagram of UART serial I/O1
Transmit or
receive clock
Transmit buffer
write signal
TBE=0
TSC=0
TBE=1
Serial output
T XD 1
TBE=0
TBE=1
ST
D0
D1
SP
TSC=1*
ST
D0
D1
SP
Generated at 2nd bit in 2-stop-bit mode
1 start bit
7 or 8 data bit
1 or 0 parity bit
1 or 2 stop bit (s)
Receive buffer
read signal
RBF=0
RBF=1
Serial input
RXD1
ST
D0
D1
SP
RBF=1
ST
D0
D1
SP
Notes 1: Error flag detection occurs at the same time that the RBF flag becomes “1” (at 1st stop bit, during reception).
2: As the transmit interrupt (TI), when either the TBE or TSC flag becomes “1”, can be selected to occur depending on the setting of the transmit interrupt source
selection bit (TIC) of the serial I/O1 control register.
3: The receive interrupt (RI) is set when the RBF flag becomes “1”.
4: After data is written to the transmit buffer when TSC=1, 0.5 to 1.5 cycles of the data shift cycle are necessary until changing to TSC=0.
Fig 39. Operation of UART serial I/O1
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 44 of 117
3803 Group (Spec.L)
[Transmit Buffer Register 1/Receive Buffer Register 1
(TB1/RB1)] 001816
The transmit buffer register 1 and the receive buffer register 1 are
located at the same address. The transmit buffer is write-only and
the receive buffer is read-only. If a character bit length is 7 bits,
the MSB of data stored in the receive buffer is “0”.
[Serial I/O1 Status Register (SIO1STS)] 001916
The read-only serial I/O1 status register consists of seven flags
(bits 0 to 6) which indicate the operating status of the serial I/O1
function and various errors.
Three of the flags (bits 4 to 6) are valid only in UART mode.
The receive buffer full flag (bit 1) is cleared to “0” when the
receive buffer register is read.
If there is an error, it is detected at the same time that data is
transferred from the receive shift register to the receive buffer
register, and the receive buffer full flag is set. A write to the
serial I/O1 status register clears all the error flags OE, PE, FE,
and SE (bit 3 to bit 6, respectively). Writing “0” to the serial I/O1
enable bit SIOE (bit 7 of the serial I/O1 control register) also
clears all the status flags, including the error flags.
Bits 0 to 6 of the serial I/O1 status register are initialized to “0” at
reset, but if the transmit enable bit (bit 4) of the serial I/O1
control register has been set to “1”, the transmit shift completion
flag (bit 2) and the transmit buffer empty flag (bit 0) become “1”.
[Serial I/O1 Control Register (SIO1CON)] 001A16
The serial I/O1 control register consists of eight control bits for
the serial I/O1 function.
[UART1 Control Register (UART1CON)] 001B16
The UART control register consists of four control bits (bits 0 to
3) which are valid when asynchronous serial I/O is selected and
set the data format of an data transfer, and one bit (bit 4) which is
always valid and sets the output structure of the P45/TXD1 pin.
[Baud Rate Generator 1 (BRG1)] 001C16
The baud rate generator determines the baud rate for serial
transfer.
The baud rate generator divides the frequency of the count source
by 1/(n + 1), where n is the value written to the baud rate
generator.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 45 of 117
3803 Group (Spec.L)
b7
b0
Serial I/O1 status register
(SIO1STS : address 001916)
b7
Transmit buffer empty flag (TBE)
0: Buffer full
1: Buffer empty
Receive buffer full flag (RBF)
0: Buffer empty
1: Buffer full
Transmit shift completion flag (TSC)
0: Transmit shift in progress
1: Transmit shift completed
Overrun error flag (OE)
0: No error
1: Overrun error
Parity error flag (PE)
0: No error
1: Parity error
Framing error flag (FE)
0: No error
1: Framing error
Summing error flag (SE)
0: (OE) U (PE) U (FE)=0
1: (OE) U (PE) U (FE)=1
Not used (returns “1” when read)
b7
b0
UART1 control register
(UART1CON : address 001B16)
Character length selection bit (CHAS)
0: 8 bits
1: 7 bits
Parity enable bit (PARE)
0: Parity checking disabled
1: Parity checking enabled
Parity selection bit (PARS)
0: Even parity
1: Odd parity
Stop bit length selection bit (STPS)
0: 1 stop bit
1: 2 stop bits
P45/TXD1 P-channel output disable bit (POFF)
0: CMOS output (in output mode)
1: N-channel open drain output (in output mode)
Not used (return “1” when read)
Fig 40. Structure of serial I/O1 control registers
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 46 of 117
b0
Serial I/O1 control register
(SIO1CON : address 001A16)
BRG count source selection bit (CSS)
0: f(XIN) (f(XCIN) in low-speed mode)
1: f(XIN)/4 (f(XCIN)/4 in low-speed mode)
Serial I/O1 synchronous clock selection bit (SCS)
0: BRG output divided by 4 when clock synchronous
serial I/O1 is selected, BRG output divided by 16
when UART is selected.
1: External clock input when clock synchronous serial
I/O1 is selected, external clock input divided by 16
when UART is selected.
SRDY1 output enable bit (SRDY)
0: P47 pin operates as normal I/O pin
1: P47 pin operates as SRDY1 output pin
Transmit interrupt source selection bit (TIC)
0: Interrupt when transmit buffer has emptied
1: Interrupt when transmit shift operation is completed
Transmit enable bit (TE)
0: Transmit disabled
1: Transmit enabled
Receive enable bit (RE)
0: Receive disabled
1: Receive enabled
Serial I/O1 mode selection bit (SIOM)
0: Clock asynchronous (UART) serial I/O
1: Clock synchronous serial I/O
Serial I/O1 enable bit (SIOE)
0: Serial I/O1 disabled
(pins P44 to P47 operate as normal I/O pins)
1: Serial I/O1 enabled
(pins P44 to P47 operate as serial I/O1 pins)
3803 Group (Spec.L)
<Notes concerning serial I/O1>
1. Notes when selecting clock synchronous serial I/O
1.1 Stop of transmission operation
• Note
Clear the serial I/O1 enable bit and the transmit enable bit to
“0” (serial I/O and transmit disabled).
2. Notes when selecting clock asynchronous serial I/O
2.1 Stop of transmission operation
• Note
Clear the transmit enable bit to “0” (transmit disabled). The
transmission operation does not stop by clearing the serial
I/O1 enable bit to “0”.
• Reason
Since transmission is not stopped and the transmission circuit
is not initialized even if only the serial I/O1 enable bit is
cleared to “0” (serial I/O disabled), the internal transmission is
running (in this case, since pins T X D 1 , R X D 1 , S CLK1 , and
S RDY1 function as I/O ports, the transmission data is not
output). When data is written to the transmit buffer register in
this state, data starts to be shifted to the transmit shift register.
When the serial I/O1 enable bit is set to “1” at this time, the
data during internally shifting is output to the TXD1 pin and an
operation failure occurs.
• Reason
Since transmission is not stopped and the transmission circuit
is not initialized even if only the serial I/O1 enable bit is
cleared to “0” (serial I/O disabled), the internal transmission is
running (in this case, since pins T X D 1 , R X D 1 , S CLK1 , and
S RDY1 function as I/O ports, the transmission data is not
output). When data is written to the transmit buffer register in
this state, data starts to be shifted to the transmit shift register.
When the serial I/O1 enable bit is set to “1” at this time, the
data during internally shifting is output to the TXD1 pin and an
operation failure occurs.
1.2 Stop of receive operation
• Note
Clear the receive enable bit to “0” (receive disabled), or clear
the serial I/O1 enable bit to “0” (serial I/O disabled).
2.2 Stop of receive operation
• Note
Clear the receive enable bit to “0” (receive disabled).
1.3 Stop of transmit/receive operation
• Note
Clear both the transmit enable bit and receive enable bit to “0”
(transmit and receive disabled).
(when data is transmitted and received in the clock
synchronous serial I/O mode, any one of data transmission and
reception cannot be stopped.)
• Reason
In the clock synchronous serial I/O mode, the same clock is
used for transmission and reception. If any one of transmission
and reception is disabled, a bit error occurs because
transmission and reception cannot be synchronized.
In this mode, the clock circuit of the transmission circuit also
operates for data reception. Accordingly, the transmission
circuit does not stop by clearing only the transmit enable bit to
“0” (transmit disabled). Also, the transmission circuit is not
initialized by clearing the serial I/O1 enable bit to “0” (serial
I/O disabled) (refer to 1.1).
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 47 of 117
2.3 Stop of transmit/receive operation
• Note 1 (only transmission operation is stopped)
Clear the transmit enable bit to “0” (transmit disabled). The
transmission operation does not stop by clearing the serial
I/O1 enable bit to “0”.
• Reason
Since transmission is not stopped and the transmission circuit
is not initialized even if only the serial I/O1 enable bit is
cleared to “0” (serial I/O disabled), the internal transmission is
running (in this case, since pins T X D 1 , R X D 1 , S CLK1 , and
S RDY1 function as I/O ports, the transmission data is not
output). When data is written to the transmit buffer register in
this state, data starts to be shifted to the transmit shift register.
When the serial I/O1 enable bit is set to “1” at this time, the
data during internally shifting is output to the TXD1 pin and an
operation failure occurs.
• Note 2 (only receive operation is stopped)
Clear the receive enable bit to “0” (receive disabled).
3803 Group (Spec.L)
3. SRDY1 output of reception side
• Note
When signals are output from the SRDY1 pin on the reception
side by using an external clock in the clock synchronous serial
I/O mode, set all of the receive enable bit, the SRDY1 output
enable bit, and the transmit enable bit to “1” (transmit
enabled).
4. Setting serial I/O1 control register again
• Note
Set the serial I/O1 control register again after the transmission
and the reception circuits are reset by clearing both the
transmit enable bit and the receive enable bit to “0”.
Clear both the transmit enable
bit (TE) and the receive enable
bit (RE) to “0”
Set the bits 0 to 3 and bit 6 of
the serial I/O1 control register
Set both the transmit enable bit
(TE) and the receive enable bit
(RE), or one of them to “1”
Can be set with the
LDM instruction at
the same time
5.Data transmission control with referring to transmit shift
register completion flag
• Note
After the transmit data is written to the transmit buffer register,
the transmit shift register completion flag changes from “1” to
“0” with a delay of 0.5 to 1.5 shift clocks. When data
transmission is controlled with referring to the flag after
writing the data to the transmit buffer register, note the delay.
6. Transmission control when external clock is selected
• Note
When an external clock is used as the synchronous clock for
data transmission, set the transmit enable bit to “1” at “H” of
the SCLK1 input level. Also, write data to the transmit buffer
register at “H” of the SCLK1 input level.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 48 of 117
7. Transmit interrupt request when transmit enable bit is set
• Note
When using the transmit interrupt, take the following
sequence.
1. Set the serial I/O1 transmit interrupt enable bit to “0” (disabled).
2. Set the transmit enable bit to “1”.
3. Set the serial I/O1 transmit interrupt request bit to “0” after
1 or more instruction has executed.
4. Set the serial I/O1 transmit interrupt enable bit to “1”
(enabled).
• Reason
When the transmit enable bit is set to “1”, the transmit buffer
empty flag and the transmit shift register shift completion flag
are also set to “1”. Therefore, regardless of selecting which
timing for the generating of transmit interrupts, the interrupt
request is generated and the transmit interrupt request bit is set
at this point.
3803 Group (Spec.L)
• Serial I/O2
The serial I/O2 function can be used only for clock synchronous
serial I/O.
For clock synchronous serial I/O2, the transmitter and the
receiver must use the same clock. If the internal clock is used,
transfer is started by a write signal to the serial I/O2 register
(address 001F16).
b7
b0
Serial I/O2 control register
(SIO2CON : address 001D16)
Internal synchronous clock selection bits
b2 b1 b0
0 0 0: f(XIN)/8 (f(XCIN)/8 in low-speed mode)
0 0 1: f(XIN)/16 (f(XCIN)/16 in low-speed mode)
0 1 0: f(XIN)/32 (f(XCIN)/32 in low-speed mode)
0 1 1: f(XIN)/64 (f(XCIN)/64 in low-speed mode)
1 1 0: f(XIN)/128 f(XCIN)/128 in low-speed mode)
1 1 1: f(XIN)/256 (f(XCIN)/256 in low-speed mode)
Serial I/O2 port selection bit
0: I/O port
1: SOUT2, SCLK2 signal output
SRDY2 output enable bit
0: I/O port
1: SRDY2 signal output
Transfer direction selection bit
0: LSB first
1: MSB first
Serial I/O2 synchronous clock selection bit
0: External clock
1: Internal clock
P51/SOUT2 P-channel output disable bit
0: CMOS output (in output mode)
1: N-channel open drain output (in output mode)
[Serial I/O2 Control Register (SIO2CON)] 001D16
The serial I/O2 control register contains eight bits which control
various serial I/O2 functions.
Fig 41. Structure of Serial I/O2 control register
Internal synchronous
clock selection bits
1/8
Divider
1/16
f(XIN)
(f(XCIN) in low-speed mode)
P53 latch
1/64
1/128
1/256
Serial I/O2 synchronous
clock selection bit
“1”
“0”
SRDY2 Synchronization
circuit
“1”
SRDY2 output enable bit
S CLK2
P53/SRDY2
Data bus
1/32
“0”
External clock
P52 latch
“0”
P52/SCLK2
“1”
Serial I/O2 port selection bit
P51 latch
Serial I/O counter 2 (3)
“0”
P51/SOUT2
“1”
Serial I/O2 port selection bit
Serial I/O2 register (8)
P50/SIN2
Address 001F16
Fig 42. Block diagram of serial I/O2
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 49 of 117
Serial I/O2
interrupt request
3803 Group (Spec.L)
Transfer clock (1)
Serial I/O2 register
write signal
(2)
Serial I/O2 output SOUT2
D0
D1
D2
D3
D4
D5
D6
D7
Serial I/O2 input SIN2
Receive enable signal SRDY2
Serial I/O2 interrupt request bit set
Notes1: When the internal clock is selected as the transfer clock, the divide ratio of f(XIN), or (f(XCIN) in low-speed mode, can be selected by
setting bits 0 to 2 of the serial I/O2 control register.
2: When the internal clock is selected as the transfer clock, the SOUT2 pin goes to high impedance after transfer completion.
Fig 43. Timing of serial I/O2
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 50 of 117
3803 Group (Spec.L)
• Serial I/O3
Serial I/O3 can be used as either clock synchronous or
asynchronous (UART) serial I/O3. A dedicated timer is also
provided for baud rate generation.
(1) Clock Synchronous Serial I/O Mode
Clock synchronous serial I/O3 mode can be selected by setting
the serial I/O3 mode selection bit of the serial I/O3 control
register (bit 6 of address 003216) to “1”.
For clock synchronous serial I/O, the transmitter and the receiver
must use the same clock. If an internal clock is used, transfer is
started by a write signal to the transmit/receive buffer register.
Data bus
Serial I/O3 control register
Address 003016
Receive buffer register 3
Receive buffer full flag (RBF)
Receive shift register 3
P34/RXD3
Address 003216
Receive interrupt request (RI)
Shift clock
Clock control circuit
P36/SCLK3
BRG count source selection bit
f(XIN)
Serial I/O3 synchronous clock selection bit
Frequency division ratio 1/(n+1)
Baud rate generator 3
1/4
(f(XCIN) in low-speed mode)
Address 002F16
1/4
P37/SRDY3
F/F
Falling-edge detector
Clock control circuit
Shift clock
P35/TXD3
Transmit shift completion flag (TSC)
Transmit interrupt source selection bit
Transmit interrupt request (TI)
Transmit shift register 3
Transmit buffer register 3
Transmit buffer empty flag (TBE)
Serial I/O3 status register
Address 003016
Address 003116
Data bus
Fig 44. Block diagram of clock synchronous serial I/O3
Transfer shift clock
(1/2 to 1/2048 of the internal
clock, or an external clock)
Serial output TXD3
D0
D1
D2
D3
D4
D5
D6
D7
Serial input RXD3
D0
D1
D2
D3
D4
D5
D6
D7
Receive enable signal SRDY3
Write pulse to receive/transmit
buffer register (address 003016)
TBE = 0
TBE = 1
TSC = 0
RBF = 1
TSC = 1
Overrun error (OE)
detection
Notes 1: As the transmit interrupt (TI), which can be selected, either when the transmit buffer has emptied (TBE=1) or after the transmit
shift operation has ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the serial I/O3 control register.
2: If data is written to the transmit buffer register when TSC=0, the transmit clock is generated continuously and serial data is output
continuously from the TXD pin.
3: The receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes “1”.
Fig 45. Operation of clock synchronous serial I/O3
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 51 of 117
3803 Group (Spec.L)
(2) Asynchronous Serial I/O (UART) Mode
Clock asynchronous serial I/O mode (UART) can be selected by
clearing the serial I/O3 mode selection bit (b6) of the serial I/O3
control register to “0”.
Eight serial data transfer formats can be selected, and the transfer
formats used by a transmitter and receiver must be identical.
The transmit and receive shift registers each have a buffer, but
the two buffers have the same address in a memory. Since the
shift register cannot be written to or read from directly, transmit
data is written to the transmit buffer register, and receive data is
read from the receive buffer register.
The transmit buffer register can also hold the next data to be
transmitted, and the receive buffer register can hold a character
while the next character is being received.
Data bus
Address 003016
Receive buffer register 3
OE
Serial I/O3 control register Address 003216
Receive buffer full flag (RBF)
Receive interrupt request (RI)
Character length selection bit
P34/RXD3
ST detector
7 bits
Receive shift register 3
1/16
8 bits
PE FE
UART3 control register
SP detector
Address 003316
Clock control circuit
Serial I/O3 synchronous clock selection bit
P36/SCLK3
BRG count source selection bit
f(XIN)
(f(XCIN) in low-speed mode)
1/4
Frequency division ratio 1/(n+1)
Baud rate generator 3
Address 002F16
ST/SP/PA generator
Transmit shift
completion flag (TSC)
1/16
P35/TXD3
Transmit shift register 3
Transmit interrupt source selection bit
Transmit interrupt request (TI)
Character length selection bit
Transmit buffer empty flag (TBE)
Transmit buffer register 3
Serial I/O3 status register
Address 003016
Address 003116
Data bus
Fig 46. Block diagram of UART serial I/O3
Transmit or
receive clock
Transmit buffer
write signal
TBE=0
TSC=0
TBE=1
Serial output
T XD 3
TBE=0
TBE=1
ST
D0
D1
SP
TSC=1*
ST
D0
D1
1 start bit
7 or 8 data bit
1 or 0 parity bit
1 or 2 stop bit (s)
SP
* Generated at 2nd bit in 2-stop-bit mode
Receive buffer
read signal
RBF=0
RBF=1
Serial input
RXD3
ST
D0
D1
SP
RBF=1
ST
D0
D1
SP
Notes 1: Error flag detection occurs at the same time that the RBF flag becomes “1” (at 1st stop bit, during reception).
2: As the transmit interrupt (TI), when either the TBE or TSC flag becomes “1”, can be selected to occur depending on the setting of the transmit interrupt source
selection bit (TIC) of the serial I/O3 control register.
3: The receive interrupt (RI) is set when the RBF flag becomes “1”.
4: After data is written to the transmit buffer when TSC=1, 0.5 to 1.5 cycles of the data shift cycle are necessary until changing to TSC=0.
Fig 47. Operation of UART serial I/O3
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 52 of 117
3803 Group (Spec.L)
[Transmit Buffer Register 3/Receive Buffer Register 3
(TB3/RB3)] 003016
The transmit buffer register 3 and the receive buffer register 3 are
located at the same address. The transmit buffer is write-only and
the receive buffer is read-only. If a character bit length is 7 bits,
the MSB of data stored in the receive buffer is “0”.
[Serial I/O3 Status Register (SIO3STS)] 003116
The read-only serial I/O3 status register consists of seven flags
(bits 0 to 6) which indicate the operating status of the serial I/O3
function and various errors.
Three of the flags (bits 4 to 6) are valid only in UART mode.
The receive buffer full flag (bit 1) is cleared to “0” when the
receive buffer register is read.
If there is an error, it is detected at the same time that data is
transferred from the receive shift register to the receive buffer
register, and the receive buffer full flag is set. A write to the
serial I/O3 status register clears all the error flags OE, PE, FE,
and SE (bit 3 to bit 6, respectively). Writing “0” to the serial I/O3
enable bit SIOE (bit 7 of the serial I/O3 control register) also
clears all the status flags, including the error flags.
Bits 0 to 6 of the serial I/O3 status register are initialized to “0” at
reset, but if the transmit enable bit (bit 4) of the serial I/O3
control register has been set to “1”, the transmit shift completion
flag (bit 2) and the transmit buffer empty flag (bit 0) become “1”.
[Serial I/O3 Control Register (SIO3CON)] 003216
The serial I/O3 control register consists of eight control bits for
the serial I/O3 function.
[UART3 Control Register (UART3CON)] 003316
The UART control register consists of four control bits (bits 0 to
3) which are valid when asynchronous serial I/O is selected and
set the data format of an data transfer, and one bit (bit 4) which is
always valid and sets the output structure of the P35/TXD3 pin.
[Baud Rate Generator 3 (BRG3)] 002F16
The baud rate generator determines the baud rate for serial
transfer.
The baud rate generator divides the frequency of the count source
by 1/(n + 1), where n is the value written to the baud rate
generator.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 53 of 117
3803 Group (Spec.L)
b7
b0
Serial I/O3 status register
(SIO3STS : address 003116)
b7
Transmit buffer empty flag (TBE)
0: Buffer full
1: Buffer empty
Receive buffer full flag (RBF)
0: Buffer empty
1: Buffer full
Transmit shift completion flag (TSC)
0: Transmit shift in progress
1: Transmit shift completed
Overrun error flag (OE)
0: No error
1: Overrun error
Parity error flag (PE)
0: No error
1: Parity error
Framing error flag (FE)
0: No error
1: Framing error
Summing error flag (SE)
0: (OE) U (PE) U (FE)=0
1: (OE) U (PE) U (FE)=1
Not used (returns “1” when read)
b7
b0
UART3 control register
(UART3CON : address 003316)
Character length selection bit (CHAS)
0: 8 bits
1: 7 bits
Parity enable bit (PARE)
0: Parity checking disabled
1: Parity checking enabled
Parity selection bit (PARS)
0: Even parity
1: Odd parity
Stop bit length selection bit (STPS)
0: 1 stop bit
1: 2 stop bits
P35/TXD3 P-channel output disable bit (POFF)
0: CMOS output (in output mode)
1: N-channel open drain output (in output mode)
Not used (return “1” when read)
Fig 48. Structure of serial I/O3 control registers
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 54 of 117
b0
Serial I/O3 control register
(SIO3CON : address 003216)
BRG count source selection bit (CSS)
0: f(XIN) (f(XCIN) in low-speed mode)
1: f(XIN)/4 (f(XCIN)/4 in low-speed mode)
Serial I/O3 synchronous clock selection bit (SCS)
0: BRG output divided by 4 when clock synchronous
serial I/O3 is selected, BRG output divided by 16
when UART is selected.
1: External clock input when clock synchronous serial
I/O3 is selected, external clock input divided by 16
when UART is selected.
SRDY3 output enable bit (SRDY)
0: P37 pin operates as normal I/O pin
1: P37 pin operates as SRDY3 output pin
Transmit interrupt source selection bit (TIC)
0: Interrupt when transmit buffer has emptied
1: Interrupt when transmit shift operation is completed
Transmit enable bit (TE)
0: Transmit disabled
1: Transmit enabled
Receive enable bit (RE)
0: Receive disabled
1: Receive enabled
Serial I/O3 mode selection bit (SIOM)
0: Clock asynchronous (UART) serial I/O
1: Clock synchronous serial I/O
Serial I/O3 enable bit (SIOE)
0: Serial I/O3 disabled
(pins P34 to P37 operate as normal I/O pins)
1: Serial I/O3 enabled
(pins P34 to P37 operate as serial I/O3 pins)
3803 Group (Spec.L)
<Notes concerning serial I/O3>
1. Notes when selecting clock synchronous serial I/O
1.1 Stop of transmission operation
• Note
Clear the serial I/O3 enable bit and the transmit enable bit to
“0” (serial I/O and transmit disabled).
2. Notes when selecting clock asynchronous serial I/O
2.1 Stop of transmission operation
• Note
Clear the transmit enable bit to “0” (transmit disabled). The
transmission operation does not stop by clearing the serial
I/O3 enable bit to “0”.
• Reason
Since transmission is not stopped and the transmission circuit
is not initialized even if only the serial I/O3 enable bit is
cleared to “0” (serial I/O disabled), the internal transmission is
running (in this case, since pins T X D 3 , R X D 3 , S CLK3 , and
S RDY3 function as I/O ports, the transmission data is not
output). When data is written to the transmit buffer register in
this state, data starts to be shifted to the transmit shift register.
When the serial I/O3 enable bit is set to “1” at this time, the
data during internally shifting is output to the TXD3 pin and an
operation failure occurs.
• Reason
Since transmission is not stopped and the transmission circuit
is not initialized even if only the serial I/O3 enable bit is
cleared to “0” (serial I/O disabled), the internal transmission is
running (in this case, since pins T X D 3 , R X D 3 , S CLK3 , and
S RDY3 function as I/O ports, the transmission data is not
output). When data is written to the transmit buffer register in
this state, data starts to be shifted to the transmit shift register.
When the serial I/O3 enable bit is set to “1” at this time, the
data during internally shifting is output to the TXD3 pin and an
operation failure occurs.
1.2 Stop of receive operation
• Note
Clear the receive enable bit to “0” (receive disabled), or clear
the serial I/O3 enable bit to “0” (serial I/O disabled).
2.2 Stop of receive operation
• Note
Clear the receive enable bit to “0” (receive disabled).
1.3 Stop of transmit/receive operation
• Note
Clear both the transmit enable bit and receive enable bit to “0”
(transmit and receive disabled).
(when data is transmitted and received in the clock
synchronous serial I/O mode, any one of data transmission and
reception cannot be stopped.)
• Reason
In the clock synchronous serial I/O mode, the same clock is
used for transmission and reception. If any one of transmission
and reception is disabled, a bit error occurs because
transmission and reception cannot be synchronized.
In this mode, the clock circuit of the transmission circuit also
operates for data reception. Accordingly, the transmission
circuit does not stop by clearing only the transmit enable bit to
“0” (transmit disabled). Also, the transmission circuit is not
initialized by clearing the serial I/O3 enable bit to “0” (serial
I/O disabled) (refer to 1.1).
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 55 of 117
2.3 Stop of transmit/receive operation
• Note 1 (only transmission operation is stopped)
Clear the transmit enable bit to “0” (transmit disabled). The
transmission operation does not stop by clearing the serial
I/O3 enable bit to “0”.
• Reason
Since transmission is not stopped and the transmission circuit
is not initialized even if only the serial I/O3 enable bit is
cleared to “0” (serial I/O disabled), the internal transmission is
running (in this case, since pins T X D 3 , R X D 3 , S CLK3 , and
S RDY3 function as I/O ports, the transmission data is not
output). When data is written to the transmit buffer register in
this state, data starts to be shifted to the transmit shift register.
When the serial I/O3 enable bit is set to “1” at this time, the
data during internally shifting is output to the TXD3 pin and an
operation failure occurs.
• Note 2 (only receive operation is stopped)
Clear the receive enable bit to “0” (receive disabled).
3803 Group (Spec.L)
3. SRDY3 output of reception side
• Note
When signals are output from the SRDY3 pin on the reception
side by using an external clock in the clock synchronous serial
I/O mode, set all of the receive enable bit, the SRDY3 output
enable bit, and the transmit enable bit to “1” (transmit
enabled).
4. Setting serial I/O3 control register again
• Note
Set the serial I/O3 control register again after the transmission
and the reception circuits are reset by clearing both the
transmit enable bit and the receive enable bit to “0”.
Clear both the transmit enable
bit (TE) and the receive enable
bit (RE) to “0”
Set the bits 0 to 3 and bit 6 of
the serial I/O3 control register
Set both the transmit enable bit
(TE) and the receive enable bit
(RE), or one of them to “1”
Can be set with the
LDM instruction at
the same time
5.Data transmission control with referring to transmit shift
register completion flag
• Note
After the transmit data is written to the transmit buffer register,
the transmit shift register completion flag changes from “1” to
“0” with a delay of 0.5 to 1.5 shift clocks. When data
transmission is controlled with referring to the flag after
writing the data to the transmit buffer register, note the delay.
6. Transmission control when external clock is selected
• Note
When an external clock is used as the synchronous clock for
data transmission, set the transmit enable bit to “1” at “H” of
the SCLK3 input level. Also, write data to the transmit buffer
register at “H” of the SCLK input level.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 56 of 117
7. Transmit interrupt request when transmit enable bit is set
• Note
When using the transmit interrupt, take the following
sequence.
1. Set the serial I/O3 transmit interrupt enable bit to “0” (disabled).
2. Set the transmit enable bit to “1”.
3. Set the serial I/O3 transmit interrupt request bit to “0” after
1 or more instruction has executed.
4. Set the serial I/O3 transmit interrupt enable bit to “1”
(enabled).
• Reason
When the transmit enable bit is set to “1”, the transmit buffer
empty flag and the transmit shift register shift completion flag
are also set to “1”. Therefore, regardless of selecting which
timing for the generating of transmit interrupts, the interrupt
request is generated and the transmit interrupt request bit is set
at this point.
3803 Group (Spec.L)
PULSE WIDTH MODULATION (PWM)
The 3803 group (Spec.H QzROM version) has PWM functions
with an 8-bit resolution, based on a signal that is the clock input
XIN or that clock input divided by 2 or the clock input XCIN or
that clock input divided by 2 in low-speed mode.
• Data Setting
The PWM output pin also functions as port P56. Set the PWM
period by the PWM prescaler, and set the “H” term of output
pulse by the PWM register.
If the value in the PWM prescaler is n and the value in the PWM
register is m (where n = 0 to 255 and m = 0 to 255):
PWM period = 255 × (n+1) / f(XIN)
= 31.875 × (n+1) µs
(when f(XIN) = 8 MHz, count source selection bit = “0”)
Output pulse “H” term = PWM period × m / 255
= 0.125 × (n+1) × m µs
(when f(XIN) = 8 MHz, count source selection bit = “0”)
• PWM Operation
When bit 0 (PWM enable bit) of the PWM control register is set
to “1”, operation starts by initializing the PWM output circuit,
and pulses are output starting at an “H”.
If the PWM register or PWM prescaler is updated during PWM
output, the pulses will change in the cycle after the one in which
the change was made.
31.875 × m × (n+1)
255
µs
PWM output
T = [31.875 × (n+1)] µs
m : Contents of PWM register
n : Contents of PWM prescaler
T : PWM period
(when f(XIN) = 8 MHz, count source selection bit = “0”)
Fig 49. Timing of PWM period
Data bus
PWM
prescaler pre-latch
PWM
register pre-latch
Transfer control circuit
PWM
prescaler latch
PWM
register latch
PWM prescaler
PWM register
Count source
selection bit
XIN
(XCIN at lowspeed mode)
“0”
1/2
Port P56
“1”
Port P56 latch
PWM function enable bit
Fig 50. Block diagram of PWM function
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 57 of 117
3803 Group (Spec.L)
b7
b0
PWM control register
(PWMCON: address 002B16)
PWM function enable bit
0 : PWM disabled
1 : PWM enabled
Count source selection bit
0 : f(XIN) (f(XCIN) at low-speed mode)
1 : f(XIN)/2 (f(XCIN)/2 at low-speed mode)
Not used
(return “0” when read)
Fig 51. Structure of PWM control register
A
B
C
B
C
T = T2
PWM output
T
PWM register
write signal
T
T2
(Changes “H” term from “A” to “ B”.)
PWM prescaler
write signal
(Changes PWM period from “T” to “T2”.)
When the contents of the PWM register or PWM prescaler have changed,
the PWM output will change from the next period after the change.
Fig 52. PWM output timing when PWM register or PWM prescaler is changed
<Notes>
The PWM starts after the PWM function enable bit is set to enable and “L” level is output from the PWM pin.
The length of this “L” level output is as follows:
n+1 ---------------------sec
2 × f ( X IN )
(Count source selection bit = 0, where n is the value set in the prescaler)
n + 1--------------sec
f ( X IN )
(Count source selection bit = 1, where n is the value set in the prescaler)
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 58 of 117
3803 Group (Spec.L)
A/D CONVERTER (successive approximation type)
[AD Conversion Register 1, 2 (AD1, AD2)] 0035 16 ,
003816
The AD conversion register is a read-only register that stores the
result of an A/D conversion. When reading this register during an
A/D conversion, the previous conversion result is read.
Bit 7 of the AD conversion register 2 is the conversion mode
selection bit. When this bit is set to “0”, the A/D converter
becomes the 10-bit A/D mode. When this bit is set to “1”, that
becomes the 8-bit A/D mode. The conversion result of the 8-bit
A/D mode is stored in the AD conversion register 1. As for 10-bit
A/D mode, not only 10-bit reading but also only high-order 8-bit
reading of conversion result can be performed by selecting the
reading procedure of the AD conversion registers 1, 2 after A/D
conversion is completed (in Figure 54).
As for 10-bit A/D mode, the 8-bit reading inclined to MSB is
performed when reading the AD converter register 1 after A/D
conversion is started; and when the AD converter register 1 is
read after reading the AD converter register 2, the 8-bit reading
inclined to LSB is performed.
• Channel Selector
The channel selector selects one of ports P67/AN7 to P60/AN0 or
P07/AN15 to P00/AN8, and inputs the voltage to the comparator.
• Comparator and Control Circuit
The comparator and control circuit compares an analog input
voltage with the comparison voltage, and then stores the result in
the AD conversion registers 1, 2. When an A/D conversion is
completed, the control circuit sets the AD conversion completion
bit and the AD interrupt request bit to “1”.
Note that because the comparator consists of a capacitor
coupling, set f(X IN ) to 500 kHz or more during an A/D
conversion.
b7
b0
AD/DA control register
(ADCON : address 003416)
Analog input pin selection bits 1
b2 b1 b0
0
0
0
0
1
1
1
1
[AD/DA Control Register (ADCON)] 003416
The AD/DA control register controls the A/D conversion
process. Bits 0 to 2 and bit 4 select a specific analog input pin.
Bit 3 signals the completion of an A/D conversion. The value of
this bit remains at “0” during an A/D conversion, and changes to
“1” when an A/D conversion ends. Writing “0” to this bit starts
the A/D conversion.
=0
(n = 0)
P60/AN0
P61/AN1
P62/AN2
P63/AN3
P64/AN4
P65/AN5
P66/AN6
P67/AN7
or
or
or
or
or
or
or
or
P00/AN8
P01/AN9
P02/AN10
P03/AN11
P04/AN12
P05/AN13
P06/AN14
P07/AN15
Analog input pin selection bit 2
0: AN0 to AN7 side
1: AN8 to AN15 side
Not used (returns “0” when read)
DA1 output enable bit
0: DA1 output disabled
1: DA1 output enabled
• 10-bit A/D mode (10-bit reading)
V REF
Vref = ------------- × n (n = 0 − 1023)
1024
• 8-bit A/D mode
V REF
Vref = ------------- × (n − 0.5) (n = 1 − 255)
256
0:
1:
0:
1:
0:
1:
0:
1:
AD conversion completion bit
0: Conversion in progress
1: Conversion completed
• Comparison Voltage Generator
The comparison voltage generator divides the voltage between
AV SS and V REF into 1024, and that outputs the comparison
voltage in the 10-bit A/D mode (256 division in 8-bit A/D mode).
The A/D converter successively compares the comparison
voltage Vref in each mode, dividing the V REF voltage (see
below), with the input voltage.
• 10-bit A/D mode (8-bit reading)
V REF
Vref = ------------- × n (n = 0 − 255)
256
0
0
1
1
0
0
1
1
DA2 output enable bit
0: DA2 output disabled
1: DA2 output enabled
Fig 53. Structure of AD/DA control register
10-bit reading
(Read address 003816 before 003516)
AD conversion register 2
(AD2: address 003816)
b7
0
b0
b9 b8
AD conversion register 1
(AD1: address 003516)
b7
b0
b7 b6 b5 b4 b3 b2 b1 b0
Note : Bits 2 to 6 of address 003816 become “0” at reading.
8-bit reading
(Read only address 003516)
AD conversion register 1
(AD1: address 003516)
b7
b0
b9 b8 b7 b6 b5 b4 b3 b2
Fig 54. Structure of 10-bit A/D mode reading
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 59 of 117
3803 Group (Spec.L)
Data bus
AD/DA control register b7
(Address 003416)
b0
4
A/D converter interrupt request
A/D control circuit
Comparator
Channel selector
P60/AN0
P61/AN1
P62/AN2
P63/AN3
P64/AN4
P65/AN5
P66/AN6
P67/AN7
P00/AN8
P01/AN9
P02/AN10
P03/AN11
P04/AN12
P05/AN13
P06/AN14
P07/AN15
10
Resistor ladder
VREF AVSS
Fig 55. Block diagram of A/D converter
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
AD conversion register 2
AD conversion register 1
Page 60 of 117
(Address 003816)
(Address 003516)
3803 Group (Spec.L)
D/A CONVERTER
The 3803 group (Spec.L) has two internal D/A converters (DA1
and DA2) with 8-bit resolution.
The D/A conversion is performed by setting the value in each
DA conversion register. The result of D/A conversion is output
from the DA1 or DA2 pin by setting the DA output enable bit to
“1”.
When using the D/A converter, the corresponding port direction
register bit (P30 /DA 1 or P3 1 /DA 2 ) must be set to “0” (input
status).
The output analog voltage V is determined by the value n
(decimal notation) in the DA conversion register as follows:
DA1 conversion register (8)
DA1 output enable bit
Data bus
R-2R resistor ladder
V = VREF × n/256 (n = 0 to 255)
Where VREF is the reference voltage.
At reset, the DA conversion registers are cleared to “0016”, and
the DA output enable bits are cleared to “0”, and the P30/DA1
and P31/DA2 pins become high impedance.
The DA output does not have buffers. Accordingly, connect an
external buffer when driving a low-impedance load.
P30/DA1
DA2 conversion register (8)
DA2 output enable bit
R-2R resistor ladder
P31/DA2
Fig 56. Block diagram of D/A converter
“0” DA1 output enable bit
R
R
R
R
R
R
R
2R
P30/DA1
“1”
2R
2R
2R
MSB
DA1 conversion register
“0”
2R
2R
2R
2R
LSB
“1”
AVSS
VREF
Fig 57. Equivalent connection circuit of D/A converter (DA1)
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
2R
Page 61 of 117
3803 Group (Spec.L)
WATCHDOG TIMER
The watchdog timer gives a mean of returning to the reset status
when a program cannot run on a normal loop (for example,
because of a software run-away). The watchdog timer consists of
an 8-bit watchdog timer L and an 8-bit watchdog timer H.
• Watchdog Timer Initial Value
Watchdog timer L is set to “FF16” and watchdog timer H is set to
“FF16” by writing to the watchdog timer control register (address
001E16) or at a reset. Any write instruction that causes a write
signal can be used, such as the STA, LDM, CLB, etc. Data can
only be written to bits 6 and 7 of the watchdog timer control
register. Regardless of the value written to bits 0 to 5, the abovementioned value will be set to each timer.
Bit 6 can be written only once after releasing reset. After
rewriting it is disable to write any data to this bit.
• Watchdog Timer Operations
The watchdog timer stops at reset and starts to count down by
writing to the watchdog timer control register (address 001E16).
An internal reset occurs at an underflow of the watchdog timer
H. The reset is released after waiting for a reset release time and
the program is processed from the reset vector address.
Accordingly, programming is usually performed so that writing
to the watchdog timer control register may be started before an
underflow. If writing to the watchdog timer control register is not
performed once, the watchdog timer does not function.
• Bit 6 of Watchdog Timer Control Register
• When bit 6 of the watchdog timer control register is “0”, the
MCU enters the stop mode by execution of STP instruction.
Just after releasing the stop mode, the watchdog timer restarts
counting (Note.) . When executing the WIT instruction, the
watchdog timer does not stop.
• When bit 6 is “1”, execution of STP instruction causes an
internal reset. When this bit is set to “1” once, it cannot be
rewritten to “0” by program. Bit 6 is “0” at reset.
The following shows the period between the write execution to
the watchdog timer control register and the underflow of
watchdog timer H.
Bit 7 of the watchdog timer control register is “0”:
when XCIN = 32.768 kHz; 32 s
when XIN = 16 MHz; 65.536 ms
Bit 7 of the watchdog timer control register is “1”:
when XCIN = 32.768 kHz; 125 ms
when XIN = 16 MHz; 256 µs
Note. The watchdog timer continues to count even while waiting for a
“FF16” is set when
watchdog timer
control register is
written to.
XCIN
“10”
Main clock division
ratio selection bits(1)
Data bus
Watchdog timer L (8)
1/16
“0”
“1”
“00”
“01”
XIN
“FF16” is set when
watchdog timer
control register is
written to.
Watchdog timer H (8)
Watchdog timer H count
source selection bit
STP instruction function selection bit
STP instruction
Reset
circuit
RESET
Internal reset
Note 1: Any one of high-speed, middle-speed or low-speed mode is selected by bits 7 and 6 of the CPU mode register.
Fig 58. Block diagram of Watchdog timer
b7
b0
Watchdog timer control register
(WDTCON : address 001E16)
Watchdog timer H (for read-out of high-order 6 bit)
STP instruction function selection bit
0: Entering stop mode by execution of STP instruction
1: Internal reset by execution of STP instruction
Watchdog timer H count source selection bit
0: Watchdog timer L underflow
1: f(XIN)/16 or f(XCIN)/16
Fig 59. Structure of Watchdog timer control register
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 62 of 117
3803 Group (Spec.L)
RESET CIRCUIT
To reset the microcomputer, RESET pin should be held at an “L”
level for 16 cycles or more of X IN . Then the RESET pin is
returned to an “H” level (the power source voltage should be
between 1.8 V and 5.5 V (between 2.7 V to 5.5 V for flash
memory version), and the oscillation should be stable), reset is
released. After the reset is completed, the program starts from the
address contained in address FFFD 16 (high-order byte) and
address FFFC16 (low-order byte). Make sure that the reset input
voltage for the mask ROM version is less than 0.29 V for VCC of
1.8 V.
In the flash memory version, input to the RESET pin in the
following procedure.
• When power source is stabilized
(1) Input “L” level to RESET pin.
(2) Input “L” level for 16 cycles or more to XIN pin.
(3) Input “H” level to RESET pin.
• At power-on
(1) Input “L” level to RESET pin.
(2) Increase the power source voltage to 2.7 V.
(3) Wait for td(P-R) until internal power source has stabilized.
(4) Input “L” level for 16 cycles or more to XIN pin.
(5) Input “H” level to RESET pin.
VCC
RESET
VCC
(1)
0V
RESET
0.2VCC or less
0V
(2)
5V
VCC
RESET
VCC
Power source
voltage detection
circuit
2.7 V
0V
5V
RESET
0V
td(P-R)+XIN16 cycles or more
Example at VCC = 5 V
Notes 1: Reset release voltage
mask ROM version: VCC = 1.8 V
Flash memory version: VCC = 2.7 V
2: In the flash memory version, this time is required td(P-R)+XIN 16 cycles
or more.
•
•
Fig 60. Reset circuit example
XIN
φ
RESET
Internal
reset
?
Address
?
?
?
FFFC
FFFD
ADH,L
Reset address from the
vector table.
?
Data
?
?
?
ADL
ADH
SYNC
XIN : 10.5 to 18.5 clock cycles
Notes 1: The frequency relation of f(XIN) and f(φ) is f(XIN) = 8 • f(φ).
2: The question marks (?) indicate an undefined state that depends on the previous state.
Fig 61. Reset sequence
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 63 of 117
3803 Group (Spec.L)
Address
Register contents
Address
Register contents
(1)
Port P0 (P0)
000016
0016
(34) Timer Z (low-order) (TZL)
002816
FF16
(2)
Port P0 direction register (P0D)
000116
0016
(35) Timer Z (high-order) (TZH)
002916
FF16
(3)
Port P1 (P1)
000216
0016
(36) Timer Z mode register (TZM)
002A16
0016
(4)
Port P1 direction register (P1D)
000316
0016
(37) PWM control register (PWMCON)
002B16
0016
(5)
Port P2 (P2)
000416
0016
(38) PWM prescaler (PREPWM)
002C16 X X X X X X X X
(6)
Port P2 direction register (P2D)
000516
0016
(39) PWM register (PWM)
002D16 X X X X X X X X
(7)
Port P3 (P3)
000616
0016
(40) Baud rate generator 3 (BRG3)
002F16 X X X X X X X X
(8)
Port P3 direction register (P3D)
000716
0016
(41) Transmit/Receive buffer register 3 (TB3/RB3) 003016 X X X X X X X X
(9)
Port P4 (P4)
000816
0016
(42) Serial I/O3 status register (SIO3STS)
003116 1 0 0 0 0 0 0 0
(10) Port P4 direction register (P4D)
000916
0016
(43) Serial I/O3 control register (SIO3CON)
003216
(11) Port P5 (P5)
000A16
0016
(44) UART3 control register (UART3CON)
003316 1 1 1 0 0 0 0 0
(12) Port P5 direction register (P5D)
000B16
0016
(45) AD/DA control register (ADCON)
003416 0 0 0 0 1 0 0 0
(13) Port P6 (P6)
000C16
0016
(46) AD conversion register 1 (AD1)
003516 X X X X X X X X
(14) Port P6 direction register (P6D)
000D16
0016
(47) DA1 conversion register (DA1)
003616
0016
(15) Timer 12, X count source selection register (T12XCSS) 000E16 0 0 1 1 0 0 1 1
(48) DA2 conversion register (DA2)
003716
0016
(16) Timer Y, Z count source selection register (TYZCSS)
000F16 0 0 1 1 0 0 1 1
(49) AD conversion register 2 (AD2)
003816 0 0 0 0 0 0 X X
(17) MISRG
001016
(50) Interrupt source selection register (INTSEL)
003916
0016
(51) Interrupt edge selection register (INTEDGE)
003A16
0016
0016
(18) Transmit/Receive buffer register 1 (TB1/RB1) 001816 X X X X X X X X
0016
(19) Serial I/O1 status register (SIO1STS)
001916 1 0 0 0 0 0 0 0
(52) CPU mode register (CPUM)
003B16 0 1 0 0 1 0 0 0
(20) Serial I/O1 control register (SIO1CON)
001A16
(53) Interrupt request register 1 (IREQ1)
003C16
(21) UART1 control register (UART1CON)
001B16 1 1 1 0 0 0 0 0
(54) Interrupt request register 2 (IREQ2)
003D16
0016
(22) Baud rate generator 1 (BRG1)
001C16 X X X X X X X X
(55) Interrupt control register 1 (ICON1)
003E16
0016
(23) Serial I/O2 control register (SIO2CON)
001D16
(56) Interrupt control register 2 (ICON2)
003F16
0016
(24) Watchdog timer control register (WDTCON)
001E16 0 0 1 1 1 1 1 1
(57) Flash memory control register 0 (FMCR0)
0FE016 0 0 0 0 0 0 0 1
(25) Serial I/O2 register (SIO2)
001F16 X X X X X X X X
(58) Flash memory control register 1 (FMCR1)
0FE016 0 1 0 0 0 0 0 0
(26) Prescaler 12 (PRE12)
002016
FF16
(59) Flash memory control register 2 (FMCR2)
0FE216 0 1 0 0 0 1 0 1
(27) Timer 1 (T1)
002116
0116
(60) Port P0 pull-up control register (PULL0)
0FF016
(28) Timer 2 (T2)
002216
FF16
(61) Port P1 pull-up control register (PULL1)
0FF116
0016
(29) Timer XY mode register (TM)
002316
0016
(62) Port P2 pull-up control register (PULL2)
0FF216
0016
(30) Prescaler X (PREX)
002416
FF16
(63) Port P3 pull-up control register (PULL3)
0FF316
0016
(31) Timer X (TX)
002516
FF16
(64) Port P4 pull-up control register (PULL4)
0FF416
0016
(32) Prescaler Y (PREY)
002616
FF16
(65) Port P5 pull-up control register (PULL5)
0FF516
0016
(33) Timer Y (TY)
002716
FF16
(66) Port P6 pull-up control register (PULL6)
0FF616
0016
(67) Processor status register
(PS)
X X X X X 1 X X
(68) Program counter
(PCH)
FFFD16 contents
(PCL)
FFFC16 contents
0016
0016
Note : X: Not fixed.
Since the initial values for other than above mentioned registers and
RAM contents are indefinite at reset, they must be set.
Fig 62. Internal status at reset
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 64 of 117
0016
0016
3803 Group (Spec.L)
CLOCK GENERATING CIRCUIT
The 3803 group (Spec.L) has two built-in oscillation circuits:
main clock XIN-XOUT oscillation circuit and sub clock XCINXCOUT oscillation circuit. An oscillation circuit can be formed by
connecting a resonator between X IN and X OUT (X CIN and
X COUT ). Use the circuit constants in accordance with the
resonator manufacturer’s recommended values. No external
resistor is needed between XIN and X OUT since a feed-back
resistor exists on-chip.(An external feed-back resistor may be
needed depending on conditions.) However, an external feedback resistor is needed between XCIN and XCOUT.
Immediately after power on, only the XIN oscillation circuit
starts oscillating, and XCIN and XCOUT pins function as I/O ports.
• Frequency Control
(1) Middle-speed mode
The internal clock φ is the frequency of XIN divided by 8. After
reset is released, this mode is selected.
(2) High-speed mode
The internal clock φ is half the frequency of XIN.
(3) Low-speed mode
The internal clock φ is half the frequency of XCIN.
(4) Low power dissipation mode
The low power consumption operation can be realized by
stopping the main clock XIN in low-speed mode. To stop the
main clock, set bit 5 of the CPU mode register to “1”. When the
main clock XIN is restarted (by setting the main clock stop bit to
“0”), set sufficient time for oscillation to stabilize.
The sub-clock XCIN-XCOUT oscillating circuit can not directly
input clocks that are generated externally. Accordingly, make
sure to cause an external resonator to oscillate.
Oscillation Control
(1) Stop mode
If the STP instruction is executed, the internal clock φ stops at an
“H” level, and X IN and X CIN oscillators stop. When the
oscillation stabilizing time set after STP instruction released bit
(bit 0 of address 001016) is “0”, the prescaler 12 is set to “FF16”
and timer 1 is set to “0116”. When the oscillation stabilizing time
set after STP instruction released bit is “1”, set the sufficient time
for oscillation of used oscillator to stabilize since nothing is set to
the prescaler 12 and timer 1.
After STP instruction is released, the input of the prescaler 12 is
connected to count source which had set at executing the STP
instruction, and the output of the prescaler 12 is connected to
timer 1. Oscillator restarts when an external interrupt is received,
but the internal clock φ is not supplied to the CPU (remains at
“H”) until timer 1 underflows. The internal clock φ is supplied
for the first time, when timer 1 underflows. This ensures time for
the clock oscillation using the ceramic resonators to be
stabilized. When the oscillator is restarted by reset, apply “L”
level to the RESET pin until the oscillation is stable since a wait
time will not be generated.
(2) Wait mode
If the WIT instruction is executed, the internal clock φ stops at an
“H” level, but the oscillator does not stop. The internal clock φ
restarts at reset or when an interrupt is received. Since the
oscillator does not stop, normal operation can be started
immediately after the clock is restarted.
To ensure that the interrupts will be received to release the STP
or WIT state, their interrupt enable bits must be set to “1” before
executing of the STP or WIT instruction.
When releasing the STP state, the prescaler 12 and timer 1 will
start counting the clock XIN divided by 16. Accordingly, set the
timer 1 interrupt enable bit to “0” before executing the STP
instruction.
<Notes>
• If you switch the mode between middle/high-speed and lowspeed, stabilize both XIN and XCIN oscillations. The sufficient
time is required for the sub clock to stabilize, especially
immediately after power on and at returning from stop mode.
When switching the mode between middle/high-speed and
low-speed, set the frequency on condition that f(X IN ) >
3×f(XCIN).
• When using the quartz-crystal oscillator of high frequency,
such as 16 MHz etc., it may be necessary to select a specific
oscillator with the specification demanded.
• When using the oscillation stabilizing time set after STP
instruction released bit set to “1”, evaluate time to stabilize
oscillation of the used oscillator and set the value to the timer 1
and prescaler 12.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 65 of 117
3803 Group (Spec.L)
XCIN XCOUT
XIN
XOUT
Rd
Rf
Rd
CCOUT
CCIN
CIN
COUT
Note 1 : Insert a damping resistor if required.
The resistance will vary depending on the
oscillator and the oscillation drive capacity
setting.
Use the value recommended by the maker of the
oscillator.
Also, if the oscillator manufacturer’s data sheet
specifies that a feedback resistor be added
external to the chip though a feedback resistor
exists on-chip, insert a feedback resistor between
XIN and XOUT following the instruction.
Fig 63. Ceramic resonator circuit
X CIN
X IN
X COUT
Rf
Open
Rd
C CIN
X OUT
External oscillation
circuit
V CC
V CC
V SS
V SS
Fig 64. External clock input circuit
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 66 of 117
3803 Group (Spec.L)
XCOUT
XCIN
“0”
“1”
Port XC
switch bit
XIN
XOUT
(4)
Main clock division ratio
selection bits(1)
Divider
Low-speed
mode
1/2
Timer 1
Prescaler 12
1/4
High-speed or
middle-speed mode
(3)
Reset or
STP instruction(2)
Main clock division ratio
selection bits(1)
Middle-speed mode
Timing φ (internal clock)
High-speed or
low-speed mode
Main clock stop bit
Q
S
S
R
STP
instruction
WIT
instruction
R
Q
Reset
Q S
R
STP
instruction
Reset
Interrupt disable flag l
Interrupt request
Notes1: Either high-speed, middle-speed or low-speed mode is selected by bits 7 and 6 of the CPU mode register.
When low-speed mode is selected, set port XC switch bit (b4) to “1”.
2: f(XIN)/16 is supplied as the count source to the prescaler 12 at reset, the count source before executing the STP instruction is
supplied as the count source at executing STP instruction.
3: When bit 0 of MISRG is “0”, timer 1 is set “0116” and prescaler 12 is set “FF16” automatically. When bit 0 of MISRG is “1” , set the
appropriate value to them in accordance with oscillation stabilizing time required by the using oscillator because nothing is
automatically set into timer 1 and prescaler 12.
4: Although a feed-back resistor exists on-chip, an external feed-back resistor may be needed depending on conditions.
Fig 65. System clock generating circuit block diagram (Single-chip mode)
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 67 of 117
3803 Group (Spec.L)
Reset
C
“0 M 4
”
C ←
“1 M 6 → ”
1”
”←
→
”0
”
”
High-speed mode
(f(φ) = 4 MHz)
CM7=0
CM6=0
CM5=0 (8 MHz oscillating)
CM4=1 (32 kHz oscillating)
CM6
“1”←→”0”
“1
C
“0 M 7
C M ”← →
”←
6
→
”0
CM 4
“1”←→”0”
”0
4
→
C M ”←
0”
“1 M 6 → ”
C ”←
“1
Middle-speed mode
(f(φ) = 1 MHz)
CM7=0
CM6=1
CM5=0 (8 MHz oscillating)
CM4=1 (32 kHz oscillating)
High-speed mode
(f(φ) = 4 MHz)
CM7=0
CM6=0
CM5=0 (8 MHz oscillating)
CM4=0 (32 kHz stopped)
CM6
“1”←→”0”
”1
”
”
CM 7
“1”←→”0”
CM 4
“1”←→”0”
Middle-speed mode
(f(φ) = 1 MHz)
CM7=0
CM6=1
CM5=0 (8 MHz oscillating)
CM4=0 (32 kHz stopped)
CM 5
“1”←→”0”
Low-speed mode
(f(φ) = 16 kHz)
CM7=1
CM6=0
CM5=0 (8 MHz oscillating)
CM4=1 (32 kHz oscillating)
Low-speed mode
(f(φ) = 16 kHz)
CM7=1
CM6=0
CM5=1 (8 MHz stopped)
CM4=1 (32 kHz oscillating)
b7
b4
CPU mode register
(CPUM : address 003B16)
CM4 : Port XC switch bit
0 : I/O port function (stop oscillating)
1 : XCIN-XCOUT oscillating function
CM5 : Main clock (XIN-XOUT) stop bit
0 : Operating
1 : Stopped
CM7, CM6: Main clock division ratio selection bit
b7 b6
0 0 : φ = f(XIN)/2 (High-speed mode)
0 1 : φ = f(XIN)/8 (Middle-speed mode)
1 0 : φ = f(XCIN)/2 (Low-speed mode)
1 1 : Not available
Notes1: Switch the mode by the allows shown between the mode blocks. (Do not switch between the modes directly without an allow.)
2: The all modes can be switched to the stop mode or the wait mode and return to the source mode when the stop mode or the
wait mode is ended.
3: Timer operates in the wait mode.
4: When the stop mode is ended, a delay of approximately 1 ms occurs by connecting prescaler 12 and Timer 1 in middle/highspeed mode.
5: When the stop mode is ended, a delay of approximately 0.25 s occurs by Timer 1 and Timer 2 in low-speed mode.
6: Wait until oscillation stabilizes after oscillating the main clock X IN before the switching from the low-speed mode to middle/
high-speed mode.
7: The example assumes that 8 MHz is being applied to the X IN pin and 32 kHz to the X CIN pin. φ indicates the internal clock.
Fig 66. State transitions of system clock
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 68 of 117
3803 Group (Spec.L)
FLASH MEMORY MODE
The 3803 group (Spec.L)’s flash memory version has the flash
memory that can be rewritten with a single power source.
For this flash memory, three flash memory modes are available
in which to read, program, and erase: the parallel I/O and
standard serial I/O modes in which the flash memory can be
manipulated using a programmer and the CPU rewrite mode in
which the flash memory can be manipulated by the Central
Processing Unit (CPU).
This flash memory version has some blocks on the flash memory
as shown in Figure 67 and each block can be erased.
In addition to the ordinary User ROM area to store the MCU
operation control program, the flash memory has a Boot ROM
area that is used to store a program to control rewriting in CPU
rewrite and standard serial I/O modes. This Boot ROM area has
had a standard serial I/O mode control program stored in it when
shipped from the factory. However, the user can write a rewrite
control program in this area that suits the user’s application
system. This Boot ROM area can be rewritten in only parallel I/O
mode.
Summary
Table 9 lists the summary of the 3803 group (Spec.L) flash
memory version.
Table 9
Summary of 3803 group (Spec.L)’s flash memory version
Item
Power source voltage (VCC)
Program/Erase VPP voltage (VPP)
Flash memory mode
Erase block division
Specifications
User ROM area/Data ROM area
Boot ROM area (1)
Program method
Erase method
Program/Erase control method
Number of commands
Number of program/Erase times
ROM code protection
NOTE:
VCC = 2.7 to 5.5 V
VCC = 2.7 to 5.5 V
3 modes; Parallel I/O mode, Standard serial I/O mode, CPU
rewrite mode
Refer to Figure 67.
Not divided (4 Kbytes)
In units of bytes
Block erase
Program/Erase control by software command
5 commands
100(Max.)
Available in parallel I/O mode and standard serial I/O mode
1. The Boot ROM area has had a standard serial I/O mode control program stored in it when shipped from the factory.
This Boot ROM area can be erased and written in only parallel I/O mode.
Table 10 Electrical characteristics of flash memory (program ROM)
Symbol
−
−
Parameter
Byte programming time
(Block 1)
(Block 2)
Block erase time
(Block 3)
(Block A, B)
NOTES:
Test conditions
VCC = 5.0 V, Topr = 25 °C
VCC = 5.0 V, Topr = 25 °C
Min.
−
−
−
−
−
Limits
Typ.
60
0.5
0.9
1.3
0.3
Max.
400
9
9
9
9
Unit
µs
s
s
s
s
1. VCC = AVCC = 2.7 V to 5.5 V, Topr = 0 °C to 60 °C, unless otherwise noted.
2. Definition of programming/erase count
The programming/erase count refers to the number of erase operations per block. For example, if block A is a 2 Kbyte block and
2,048 1-byte writes are performed, all to different addresses, after which block A is erased, the programming/erase count is 1. Note
that for each erase operation it is not possible to perform more than one programming (write) operation to the same address
(overwrites prohibited).
3. This is the number of times for which all electrical characteristics are guaranteed after a programming or erase operation. (The
guarantee covers the range from 1 to maximum value.)
4. On systems where reprogramming is performed a large number of times, it is possible to reduce the effective number of overwrites
by sequentially shifting the write address, so that as much of the available area of the block is used up through successive
programming (write) operations before an erase operation is performed. For example, if each programming operation uses 16 bytes
of space, a maximum of 128 programming operations may be performed before it becomes necessary to erase the block in order to
continue. In this way the effective number of overwrites can be kept low. The effective overwrite count can be further reduced by
evenly dividing operations between block A and block B. It is recommended that data be retained on the number of times each
block has been erased and a limit count set.
5. If a block erase error occurs, execute the clear status register command followed by the block erase command a minimum of three
times and until the erase error is no longer generated.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 69 of 117
3803 Group (Spec.L)
Boot Mode
The control program for CPU rewrite mode must be written into
the User ROM or Boot ROM area in parallel I/O mode
beforehand. (If the control program is written into the Boot ROM
area, the standard serial I/O mode becomes unusable.)
See Figure 67 for details about the Boot ROM area.
Normal microcomputer mode is entered when the
microcomputer is reset with pulling CNVSS pin low. In this case,
the CPU starts operating using the control program in the User
ROM area.
When the microcomputer is reset and the CNVSS pin high after
pulling the P45/TxD1 pin and CNVSS pin high, the CPU starts
operating (start address of program is stored into addresses
FFFC 16 and FFFD 16 ) using the control program in the Boot
ROM area. This mode is called the “Boot mode”. Also, User
ROM area can be rewritten using the control program in the Boot
ROM area.
CPU Rewrite Mode
In CPU rewrite mode, the internal flash memory can be operated
on (read, program, or erase) under control of the Central
Processing Unit (CPU).
In CPU rewrite mode, only the User ROM area shown in Figure
67 can be rewritten; the Boot ROM area cannot be rewritten.
Make sure the program and block erase commands are issued for
only the User ROM area and each block area.
The control program for CPU rewrite mode can be stored in
either User ROM or Boot ROM area. In the CPU rewrite mode,
because the flash memory cannot be read from the CPU, the
rewrite control program must be transferred to internal RAM
area before it can be executed.
Block Address
Block addresses refer to the maximum address of each block.
These addresses are used in the block erase command.
000016
User ROM area
SFR area
100016
004016
Internal RAM area
(2 Kbytes)
RAM
180016
Data block B:
2 Kbytes
Data block A:
2 Kbytes
200016
083F16
Block 3: 24 Kbytes
0FE016
SFR area
800016
0FFF16
100016
Block 2: 16 Kbytes
C00016
Internal flash memory area
(60 Kbytes)
Notes 1: The boot ROM area can be rewritten
in a parallel I/O mode.
(Access to except boot ROM area is
disabled.)
2: To specify a block, use the maximum
address in the block.
3: The mask ROM version has the
reserved ROM area. Note the
difference of the area.
Block 1: 8 Kbytes
F00016
E00016
Boot ROM area
4 Kbytes
Block 0: 8 Kbytes
FFFF16
FFFF16
Fig 67. Block diagram of built-in flash memory
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 70 of 117
FFFF16
3803 Group (Spec.L)
Outline Performance
CPU rewrite mode is usable in the single-chip or Boot mode. The
only User ROM area can be rewritten.
In CPU rewrite mode, the CPU erases, programs and reads the
internal flash memory as instructed by software commands. This
rewrite control program must be transferred to internal RAM
area before it can be executed.
The MCU enters CPU rewrite mode by setting “1” to the CPU
rewrite mode select bit (bit 1 of address 0FE016). Then, software
commands can be accepted.
Use software commands to control program and erase
operations. Whether a program or erase operation has terminated
normally or in error can be verified by reading the status register.
Figure 68 shows the flash memory control register 0.
Bit 0 of the flash memory control register 0 is the RY/BY status
flag used exclusively to read the operating status of the flash
memory. During programming and erase operations, it is “0”
(busy). Otherwise, it is “1” (ready).
Bit 1 of the flash memory control register 0 is the CPU rewrite
mode select bit. When this bit is set to “1”, the MCU enters CPU
rewrite mode. And then, software commands can be accepted. In
CPU rewrite mode, the CPU becomes unable to access the
internal flash memory directly. Therefore, use the control
program in the internal RAM for write to bit 1. To set this bit 1 to
“1”, it is necessary to write “0” and then write “1” in succession
to bit 1. The bit can be set to “0” by only writing “0”.
Bit 2 of the flash memory control register 0 is the 8 KB user
block E/W enable bit. By setting combination of bit 4 of the flash
memory control register 2 and this bit as shown in Table 11, E/W
is disabled to user block in the CPU rewriting mode.
Bit 3 of the flash memory control register 0 is the flash memory
reset bit used to reset the control circuit of internal flash memory.
This bit is used when flash memory access has failed. When the
CPU rewrite mode select bit is “1”, setting “1” for this bit resets
the control circuit. To release the reset, it is necessary to set this
bit to “0”.
Bit 5 of the flash memory control register 0 is the User ROM
area select bit and is valid only in the boot mode. Setting this bit
to “1” in the boot mode switches an accessible area from the boot
ROM area to the user ROM area. To use the CPU rewrite mode
in the boot mode, set this bit to “1”. To rewrite bit 5, execute the
useroriginal reprogramming control software transferred to the
internal RAM in advance.
Bit 6 of the flash memory control register 0 is the program status
flag. This bit is set to “1” when writing to flash memory is failed.
When program error occurs, the block cannot be used.
Bit 7 of the flash memory control register 0 is the erase status
flag.
This bit is set to “1” when erasing flash memory is failed. When
erase error occurs, the block cannot be used.
Figure 69 shows the flash memory control register 1.
Bit 0 of the flash memory control register 1 is the Erase suspend
enable bit. By setting this bit to “1”, the erase suspend mode to
suspend erase processing temporaly when block erase command
is executed can be used. In order to set this bit to “1”, writing “0”
and “1” in succession to bit 0. In order to set this bit to “0”, write
“0” only to bit 0.
Bit 1 of the flash memory control register 1 is the erase suspend
request bit. By setting this bit to “1” when erase suspend enable
bit is “1”, the erase processing is suspended.
Bit 6 of the flash memory control register 1 is the erase suspend
flag. This bit is cleared to “0” at the flash erasing.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 71 of 117
b7
b0
Flash memory control register 0
(FMCR0: address : 0FE016: initial value: 0116)
RY/BY status flag
0 : Busy (being written or erased)
1 : Ready
CPU rewrite mode select bit(1)
0 : CPU rewrite mode invalid
1 : CPU rewrite mode valid
8 KB user block E/W enable bit(1, 2)
0 : E/W disabled
1 : E/W enabled
Flash memory reset bit(3, 4)
0 : Normal operation
1 : reset
Not used (do not write “1” to this bit.)
User ROM area select bit(5)
0 : Boot ROM area is accessed
1 : User ROM area is accessed
Program status flag
0: Pass
1: Error
Erase status flag
0: Pass
1: Error
Notes 1: For this bit to be set to “1”, the user needs to write a “0” and then a
“1” to it in succession. For this bit to be set to “0”, write “0” only to
this
bit.
2: This bit can be written only when CPU rewrite mode select bit is “1”.
3: Effective only when the CPU rewrite mode select bit = “1”. Fix this
bit to “0” when the CPU rewrite mode select bit is “0”.
4: When setting this bit to “1” (when the control circuit of flash memory
is reset), the flash memory cannot be accessed for 10 µs.
5: Write to this bit in program on RAM
Fig 68. Structure of flash memory control register 0
b7
b0
Flash memory control register 1
(FMCR1: address : 0FE116: initial value: 4016)
Erase Suspend enble bit(1)
0 : Suspend invalid
1 : Suspend valid
Erase Suspend request bit(2)
0 : Erase restart
1 : Suspend request
Not used (do not write “1” to this bit.)
Erase Suspend flag
0 : Erase active
1 : Erase inactive (Erase Suspend mode)
Not used (do not write “1” to this bit.)
Notes 1: For this bit to be set to “1”, the user needs to write a “0” and then a
“1” to it in succession. For this bit to be set to “0”, write “0” only to this
bit.
2: Effective only when the suspend enable bit = “1”.
Fig 69. Structure of flash memory control register 1
3803 Group (Spec.L)
b7
b0
Flash memory control register 2
(FMCR2: address : 0FE216: initial value: 4516)
Not used
Not used (do not write “1” to this bit.)
Not used
All user block E/W enable bit(1, 2)
0 : E/W disabled
1 : E/W enabled
Not used
Notes 1: For this bit to be set to “1”, the user needs to write a “0” and then a
“1” to it in succession. For this bit to be set to “0”, write “0” only to this
bit.
2: Effective only when the CPU rewrite mode select bit = “1”.
Fig 70. Structure of flash memory control register 2
Table 11 State of E/W inhibition function
All user block E/W
enable bit
8 KB user block
E/W enable bit
8 KB × 2 block
Addresses C00016 to FFFF16
16 KB + 24 KB block
Addresses 200016 to BFFF16
Data block
Addresses 100016 to 1FFF16
0
0
E/W disabled
E/W disabled
E/W enabled
0
1
E/W disabled
E/W disabled
E/W enabled
1
0
E/W disabled
E/W enabled
E/W enabled
1
1
E/W enabled
E/W enabled
E/W enabled
Figure 71 shows a flowchart for setting/releasing CPU rewrite mode.
Start
Single-chip mode or Boot mode
Set CPU mode register(1)
Transfer CPU rewrite mode control program to internal RAM
Jump to control program transferred to internal RAM
(Subsequent operations are executed by control program in
this RAM)
Set CPU rewrite mode select bit to “1” (by writing “0” and
then “1” in succession)
Set all user block E/W enable bit to “1” (by writing “0” and
then “1” in succession)
Set 8 KB user block E/W enable bit (At E/W disabled; writing
“0” , at E/W enabled;
writing “0” and then “1” in succession
Using software command executes erase, program, or other
operation
Execute read array command(2)
Set all user block E/W enable bit to “0”
Set 8 KB user block E/W enable bit to “0”
Write “0” to CPU rewrite mode select bit
End
Notes 1: Set the main clock as follows depending on the clock division ratio selection bits of CPU mode register (bits 6, 7 of address 003B16).
2: Before exiting the CPU rewrite mode after completing erase or program operation, always be sure to execute the read array
command.
Fig 71. CPU rewrite mode set/release flowchart be sure to execute
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 72 of 117
3803 Group (Spec.L)
<Notes on CPU Rewrite Mode>
Take the notes described below when rewriting the flash memory
in CPU rewrite mode.
(1) Operation speed
During CPU rewrite mode, set the system clock φ to 4.0 MHz or
less using the clock division ratio selection bits (bits 6 and 7 of
address 003B16).
(2) Instructions inhibited against use
The instructions which refer to the internal data of the flash
memory cannot be used during CPU rewrite mode.
(3) Interrupts
The interrupts cannot be used during CPU rewrite mode because
they refer to the internal data of the flash memory.
(4) Watchdog timer
If the watchdog timer has been already activated, internal reset
due to an underflow will not occur because the watchdog timer is
surely cleared during program or erase.
(5) Reset
Reset is always valid. The MCU is activated using the boot mode
at release of reset in the condition of CNVSS = “H”, so that the
program will begin at the address which is stored in addresses
FFFC16 and FFFD16 of the boot ROM area.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 73 of 117
3803 Group (Spec.L)
Software Commands
Table 12 lists the software commands.
After setting the CPU rewrite mode select bit to “1”, execute a
software command to specify an erase or program operation.
Each software command is explained below.
The RY/BY status flag of the flash memory control register is
“0” during write operation and “1” when the write operation is
completed as is the status register bit 7.
At program end, program results can be checked by reading the
status register.
• Read Array Command (FF16)
The read array mode is entered by writing the command code
“FF16” in the first bus cycle. When an address to be read is input
in one of the bus cycles that follow, the contents of the specified
address are read out at the data bus (D0 to D7).
The read array mode is retained until another command is
written.
• Read Status Register Command (7016)
When the command code “7016” is written in the first bus cycle,
the contents of the status register are read out at the data bus (D0
to D7) by a read in the second bus cycle.
The status register is explained in the next section.
Start
Write “4016”
Write
Read status register
• Clear Status Register Command (5016)
This command is used to clear the bits SR4 and SR5 of the status
register after they have been set. These bits indicate that
operation has ended in an error. To use this command, write the
command code “5016” in the first bus cycle.
• Program Command (4016)
Program operation starts when the command code “40 16 ” is
written in the first bus cycle. Then, if the address and data to
program are written in the 2nd bus cycle, program operation
(data programming and verification) will start.
Whether the write operation is completed can be confirmed by
read status register or the RY/BY status flag. When the program
starts, the read status register mode is entered automatically and
the contents of the status register is read at the data bus (D0 to
D7). The status register bit 7 (SR7) is set to “0” at the same time
the write operation starts and is returned to “1” upon completion
of the write operation. In this case, the read status register mode
remains active until the read array command (FF16) is written.
Write address
Write data
SR7 = “1”?
or
RY/BY = “1”?
NO
YES
NO
Program error
SR4 = “0”?
YES
Program completed
Fig 72. Program flowchart
Table 12 List of software commands (CPU rewrite mode)
First bus cycle
Second bus cycle
cycle
number
Mode
Address
Data
(D0 to D7)
Read array
1
Write
X(4)
FF16
Read status register
2
Write
X
7016
Clear status register
1
Write
X
5016
Program
2
Write
X
4016
Command
Block erase
2
Write
X
2016
NOTES:
1.
2.
3.
4.
SRD = Status Register Data
WA = Write Address, WD = Write Data
BA = Block Address to be erased (Input the maximum address of each block.)
X denotes a given address in the User ROM area.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 74 of 117
Mode
Address
Data
(D0 to D7)
Read
X
SRD(1)
Write
WA(2)
WD(2)
Write
BA(3)
D016
3803 Group (Spec.L)
• Block Erase Command (2016/D016)
By writing the command code “2016” in the first bus cycle and
the confirmation command code “D016” and the block address in
the second bus cycle that follows, the block erase (erase and
erase verify) operation starts for the block address of the flash
memory to be specified.
Whether the block erase operation is completed can be confirmed
by read status register or the RY/BY status flag of flash memory
control register. At the same time the block erase operation
starts, the read status register mode is automatically entered, so
that the contents of the status register can be read out. The status
register
bit 7 (SR7) is set to “0” at the same time the block erase
operation starts and is returned to “1” upon completion of the
block erase operation. In this case, the read status register mode
remains active until the read array command (FF16) is written.
The RY/BY status flag is “0” during block erase operation and
“1” when the block erase operation is completed as is the status
register bit 7.
After the block erase ends, erase results can be checked by
reading the status register. For details, refer to the section where
the status register is detailed.
Start
Write “2016”
Write “D016”
Blockaddress
Read status register
SR7 = “1”?
or
RY/BY = “1”?
NO
YES
SR5 = “0”?
YES
Erase completed
(write read command
“FF16”)
Fig 73. Erase flowchart
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 75 of 117
NO
Erase error
3803 Group (Spec.L)
• Status Register
The status register shows the operating status of the flash
memory and whether erase operations and programs ended
successfully or in error. It can be read in the following ways:
(1) By reading an arbitrary address from the User ROM area
after writing the read status register command (7016)
(2) By reading an arbitrary address from the User ROM area in
the period from when the program starts or erase operation
starts to when the read array command (FF16) is input.
Also, the status register can be cleared by writing the clear status
register command (5016).
After reset, the status register is set to “8016”.
Table 13 shows the status register. Each bit in this register is
explained below.
• Sequencer status (SR7)
The sequencer status indicates the operating status of the flash
memory. This bit is set to “0” (busy) during write or erase
operation and is set to “1” when these operations ends.
After power-on, the sequencer status is set to “1” (ready).
• Erase status (SR5)
The erase status indicates the operating status of erase operation.
If an erase error occurs, it is set to “1”. When the erase status is
cleared, it is reset to “0”.
• Program status (SR4)
The program status indicates the operating status of write
operation.
When a write error occurs, it is set to “1”.
The program status is reset to “0” when it is cleared.
If “1” is written for any of the SR5 and SR4 bits, the read array,
program, and block erase commands are not accepted. Before
executing these commands, execute the clear status register
command (5016) and clear the status register.
Also, if any commands are not correct, both SR5 and SR4 are set
to “1”.
Table 13 Definition of each bit in status register
Each bit of
SRD bits
Status name
SR7 (bit7)
Sequencer status
Definition
“1”
“0”
Ready
Busy
SR6 (bit6)
Reserved
−
−
SR5 (bit5)
Erase status
Terminated in error
Terminated normally
SR4 (bit4)
Program status
Terminated in error
Terminated normally
SR3 (bit3)
Reserved
−
−
SR2 (bit2)
Reserved
−
−
SR1 (bit1)
Reserved
−
−
SR0 (bit0)
Reserved
−
−
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 76 of 117
3803 Group (Spec.L)
Full Status Check
By performing full status check, it is possible to know the
execution results of erase and program operations. Figure 74
shows a full status check flowchart and the action to be taken
when each error occurs.
Read status register
SR4 = “1”
YES
and
SR5 = “1”?
Command
sequence error
Execute the clear status register command (50 16)
to clear the status register. Try performing the
operation one more time after confirming that the
command is entered correctly.
NO
SR5 = “0”?
NO
Erase error
Should an erase error occur, the block in error
cannot be used.
YES
SR4 = “0”?
NO
Program error
Should a program error occur, the block in error
cannot be used.
YES
End (block erase, program)
Note: When one of SR5 and SR4 is set to “1”, none of the read array, program,
and block erase commands is accepted. Execute the clear status register
command (5016) before executing these commands.
Fig 74. Full status check flowchart and remedial procedure for errors
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 77 of 117
3803 Group (Spec.L)
Functions To Inhibit Rewriting Flash Memory Version
To prevent the contents of internal flash memory from being read
out or rewritten easily, this MCU incorporates a ROM code
protect function for use in parallel I/O mode and an ID code
check function for use in standard serial I/O mode.
• ROM Code Protect Function
The ROM code protect function is the function to inhibit reading
out or modifying the contents of internal flash memory by using
the ROM code protect control address (address FFDB 16 ) in
parallel I/O mode. Figure 75 shows the ROM code protect
control address (address FFDB16). (This address exists in the
User ROM area.)
If one or both of the pair of ROM code protect bits is set to “0”,
the ROM code protect is turned on, so that the contents of
internal flash memory are protected against readout and
modification. The ROM code protect is implemented in two
levels. If level 2 is selected, the flash memory is protected even
against readout by a shipment inspection LSI tester, etc. When an
attempt is made to select both level 1 and level 2, level 2 is
selected by default.
If both of the two ROM code protect reset bits are set to “00”, the
ROM code protect is turned off, so that the contents of internal
flash memory can be readout or modified. Once the ROM code
protect is turned on, the contents of the ROM code protect reset
bits cannot be modified in parallel I/O mode. Use the serial I/O
or CPU rewrite mode to rewrite the contents of the ROM code
protect reset bits.
Rewriting of only the ROM code protect control address (address
FFDB16) cannot be performed. When rewriting the ROM code
protect reset bit, rewrite the whole user ROM area (block 0)
containing the ROM code protect control address.
b0
b7
1
1
ROM code protect control address (address FFDB16)
ROMCP (FF16 when shipped)
Reserved bits (“1” at read/write)
ROM code protect level 2 set bits (ROMCP2)(1, 2)
b3b2
0 0: Protect enabled
0 1: Protect enabled
1 0: Protect enabled
1 1: Protect disabled
ROM code protect reset bits (ROMCR)(3)
b5b4
0 0: Protect removed
0 1: Protect set bits effective
1 0: Protect set bits effective
1 1: Protect set bits effective
ROM code protect level 1 set bits (ROMCP1)(1)
b7b6
0 0: Protect enabled
0 1: Protect enabled
1 0: Protect enabled
1 1: Protect disabled
Notes 1: When ROM code protect is turned on, the internal flash memory is protected
against readout or modification in parallel I/O mode.
2: When ROM code protect level 2 is turned on, ROM code readout by a
shipment inspection LSI tester, etc. also is inhibited.
3: The ROM code protect reset bits can be used to turn off ROM code protect
level 1 and ROM code protect level 2. However, since these bits cannot be
modified in parallel I/O mode, they need to be rewritten in serial I/O mode or
CPU rewrite mode.
Fig 75. Structure of ROM code protect control address
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 78 of 117
3803 Group (Spec.L)
• ID Code Check Function
Use this function in standard serial I/O mode. When the contents
of the flash memory are not blank, the ID code sent from the
programmer is compared with the ID code written in the flash
memory to see if they match. If the ID codes do not match, the
commands sent from the programmer are not accepted. The ID
code consists of 8-bit data, and its areas are FFD416 to FFDA16.
Write a program which has had the ID code preset at these
addresses to the flash memory.
Address
FFD416
ID1
FFD516
ID2
FFD616
ID3
FFD716
ID4
FFD816
ID5
FFD916
ID6
FFDA16
ID7
FFDB16
ROM code protect control
Interrupt vector area
Fig 76. ID code store addresses
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 79 of 117
3803 Group (Spec.L)
Parallel I/O Mode
The parallel I/O mode is used to input/output software
commands, address and data in parallel for operation (read,
program and erase) to internal flash memory.
Use the external device (writer) only for 3803 group (Spec.L)
flash memory version. For details, refer to the userÅfs manual of
each writer manufacturer.
• User ROM and Boot ROM Areas
In parallel I/O mode, the User ROM and Boot ROM areas shown
in Figure 67 can be rewritten. Both areas of flash memory can be
operated on in the same way.
The Boot ROM area is 4 Kbytes in size and located at addresses
F00016 through FFFF 16 . Make sure program and block erase
operations are always performed within this address range.
(Access to any location outside this address range is prohibited.)
In the Boot ROM area, an erase block operation is applied to
only one 4 Kbyte block. The boot ROM area has had a standard
serial I/O mode control program stored in it when shipped from
the fac-tory. Therefore, using the MCU in standard serial I/O
mode, do not rewrite to the Boot ROM area.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 80 of 117
3803 Group (Spec.L)
Standard serial I/O Mode
The standard serial I/O mode inputs and outputs the software
commands, addresses and data needed to operate (read, program,
erase, etc.) the internal flash memory. This I/O is clock
synchronized serial. This mode requires a purpose-specific
peripheral unit.
The standard serial I/O mode is different from the parallel I/O
mode in that the CPU controls flash memory rewrite (uses the
CPU rewrite mode), rewrite data input and so forth. The standard
serial I/O mode is started by connecting “H” to the CNVSS pin
and “H” to the P4 5 (BOOTENT) pin, and releasing the reset
operation. (In the ordinary microcomputer mode, set CNVSS pin
to “L” level.) This control program is written in the Boot ROM
area when the product is shipped from Renesas. Accordingly,
make note of the fact that the standard serial I/O mode cannot be
used if the Boot ROM area is rewritten in parallel I/O mode. The
standard serial I/ O mode has standard serial I/O mode 1 of the
clock synchronous serial and standard serial I/O mode 2 of the
clock asynchronous serial. Table 14 and 15 show description of
pin function (standard serial I/O mode). Figure 77 to 80 show the
pin connections for the standard serial I/O mode.
In standard serial I/O mode, only the User ROM area shown in
Figure 67 can be rewritten. The Boot ROM area cannot be
written.
In standard serial I/O mode, a 7-byte ID code is used. When there
is data in the flash memory, this function determines whether the
ID code sent from the peripheral unit (programmer) and those
written in the flash memory match. The commands sent from the
peripheral unit (programmer) are not accepted unless the ID code
matches.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 81 of 117
3803 Group (Spec.L)
Table 14 Description of pin function (Flash Memory Serial I/O Mode 1)
Pin name
Signal name
VCC,VSS
Power supply
I/O
I
Function
Apply 2.7 to 5.5 V to the VCC pin and 0 V to the VSS pin.
CNVSS
CNVSS
I
After input of port is set, input “H” level.
RESET
Reset input
I
Reset input pin. To reset the microcomputer, RESET pin should be
held at an “L” level for 16 cycles or more of XIN.
XIN
Clock input
I
XOUT
Clock output
O
Connect an oscillation circuit between the XIN and XOUT pins.
As for the connection method, refer to the “clock generating circuit”.
AVSS
Analog power supply input
VREF
Reference voltage input
Connect AVSS to VSS.
P00−P07, P10−P17,
P20−P27, P30−P37,
P40−P43, P50−P57,
P60−P67
I/O port
P44
RxD input
I
P45
TxD output
O
Serial data output pin.
P46
SCLK input
I
Serial clock input pin.
P47
BUSY output
O
BUSY signal output pin.
I
I/O
Apply reference voltage of A/D to this pin.
Input “L” or “H” level, or keep open.
Serial data input pin.
Table 15 Description of pin function (Flash Memory Serial I/O Mode 2)
Pin name
Signal name
VCC,VSS
Power supply
CNVSS
I/O
Function
I
Apply 2.7 to 5.5 V to the VCC pin and 0 V to the VSS pin.
CNVSS
I
After input of port is set, input “H” level.
RESET
Reset input
I
Reset input pin. To reset the microcomputer, RESET pin should be
held at an “L” level for 16 cycles or more of XIN.
XIN
Clock input
I
XOUT
Clock output
O
Connect an oscillation circuit between the XIN and XOUT pins.
As for the connection method, refer to the “clock generating circuit”.
AVSS
Analog power supply input
VREF
Reference voltage input
P00−P07, P10−P17,
P20−P27, P30−P37,
P40−P43, P50−P57,
P60−P67
I/O port
P44
RxD input
I
P45
TxD output
O
Serial data output pin.
P46
SCLK input
I
Input “L” level.
P47
BUSY output
O
BUSY signal output pin.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Connect AVSS to VSS.
I
I/O
Page 82 of 117
Apply reference voltage of A/D to this pin.
Input “L” or “H” level, or keep open.
Serial data input pin.
P0 7/AN 15
P1 0/INT 41
P1 1/INT 01
P1 2
P1 3
P1 4
P1 5
P1 6
P1 7
39
38
37
36
35
34
33
P0 6/AN 14
42
40
P0 5/AN 13
43
41
P0 3/AN 11
P0 4/AN 12
P0 2/AN 10
44
P0 1/AN 9
46
45
P0 0/AN 8
47
P37/SRDY3
49
32
P20(LED0)
P36/SCLK3
50
31
P21(LED1)
P35/TXD3
51
30
P22(LED2)
P34/RXD3
52
29
P23(LED3)
P33
53
28
P24(LED4)
P32
54
27
P25(LED5)
P31/DA2
55
26
P26(LED6)
P30/DA1
56
25
P27(LED7)
VCC
57
24
VSS
VREF
58
23
XOUT
M38039FFLHP/KP
VSS
*
10
11
12
13
14
15
16
P5 1/S OUT2
P5 0/S IN2
P4 7/S RDY1/CNTR 2
P4 6/S CLK1
P4 5/T XD 1
P4 4/R XD 1
P4 3/INT 2
*Connect oscillation circuit.
9
P42/INT1
P5 2/S CLK2
17
8
64
P5 3/S RDY2
CNVSS
P63/AN3
7
CNVSS
6
18
P5 5/CNTR 1
RESET
63
P5 4/CNTR 0
RESET
P64/AN4
5
P41/INT00/XCIN
19
P5 6/PWM
20
62
4
61
P65/AN5
P5 7 /INT 3
P66/AN6
3
P40/INT40/XCOUT
P6 0/AN 0
XIN
21
2
22
60
1
59
P6 1/AN 1
AVSS
P67/AN7
P6 2/AN 2
VCC
48
3803 Group (Spec.L)
RxD
indicates flash memory pin.
TxD
SCLK
BUSY
Package code: PLQP0064KB-A (64P6Q-A) / PLQP0064GA-A (64P6U-A)
Fig 77. Connection for standard serial I/O mode 1 (M38039FFLHP/KP)
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 83 of 117
P0 7/AN 15
P1 0/INT 41
P1 1/INT 01
P1 2
P1 3
P1 4
P1 5
P1 6
P1 7
39
38
37
36
35
34
33
P0 6/AN 14
42
40
P0 5/AN 13
43
41
P0 3/AN 11
P0 4/AN 12
P0 2/AN 10
44
P0 1/AN 9
46
45
P0 0/AN 8
47
P37/SRDY3
49
32
P20(LED0)
P36/SCLK3
50
31
P21(LED1)
P35/TXD3
51
30
P22(LED2)
P34/RXD3
52
29
P23(LED3)
P33
53
28
P24(LED4)
P32
54
27
P25(LED5)
P31/DA2
55
26
P26(LED6)
P30/DA1
56
25
P27(LED7)
VCC
57
24
VSS
VREF
58
23
XOUT
M38039FFLHP/KP
VSS
*
10
11
12
13
14
15
16
P5 1/S OUT2
P5 0/S IN2
P4 7/S RDY1/CNTR 2
P4 6/S CLK1
P4 5/T XD 1
P4 4/R XD 1
P4 3/INT 2
*Connect oscillation circuit.
9
P42/INT1
P5 2/S CLK2
17
8
64
P5 3/S RDY2
CNVSS
P63/AN3
7
CNVSS
6
18
P5 5/CNTR 1
RESET
63
P5 4/CNTR 0
RESET
P64/AN4
5
P41/INT00/XCIN
19
P5 6/PWM
20
62
4
61
P65/AN5
P5 7 /INT 3
P66/AN6
3
P40/INT40/XCOUT
P6 0/AN 0
XIN
21
2
22
60
1
59
P6 1/AN 1
AVSS
P67/AN7
P6 2/AN 2
VCC
48
3803 Group (Spec.L)
RxD
indicates flash memory pin.
TxD
“L” input
BUSY
Package code: PLQP0064KB-A (64P6Q-A) / PLQP0064GA-A (64P6U-A)
Fig 78. Connection for standard serial I/O mode 2 (M38039FFLHP/KP)
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 84 of 117
3803 Group (Spec.L)
VCC
BUSY
SCLK
TXD
RXD
CNVSS
RESET
VSS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
M38039FFLSP
VCC
VREF
AVSS
P67/AN7
P66/AN6
P65/AN5
P64/AN4
P63/AN3
P62/AN2
P61/AN1
P60/AN0
P57/INT3
P56/PWM
P55/CNTR1
P54/CNTR0
P53/SRDY2
P52/SCLK2
P51/SOUT2
P50/SIN2
P47/SRDY1/CNTR2
P46/SCLK1
P45/TXD1
P44/RXD1
P43/INT2
P42/INT1
CNVSS
RESET
P41/INT00/XCIN
P40/INT40/XCOUT
XIN
*
XOUT
VSS
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
Package code: PRDP0064BA-A (64P4B)
*Connect oscillation circuit.
indicates flash memory pin.
Fig 79. Connection for standard serial I/O mode 1 (M38039FFLSP)
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 85 of 117
P30/DA1
P31/DA2
P32
P33
P34/RXD3
P35/TXD3
P36/SCLK3
P37/SRDY3
P00/AN8
P01/AN9
P02/AN10
P03/AN11
P04/AN12
P05/AN13
P06/AN14
P07/AN15
P10/INT41
P11/INT01
P12
P13
P14
P15
P16
P17
P20(LED0)
P21(LED1)
P22(LED2)
P23(LED3)
P24(LED4)
P25(LED5)
P26(LED6)
P27(LED7)
3803 Group (Spec.L)
VCC
BUSY
“L” input
TXD
RXD
CNVSS
RESET
VSS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
M38039FFLSP
VCC
VREF
AVSS
P67/AN7
P66/AN6
P65/AN5
P64/AN4
P63/AN3
P62/AN2
P61/AN1
P60/AN0
P57/INT3
P56/PWM
P55/CNTR1
P54/CNTR0
P53/SRDY2
P52/SCLK2
P51/SOUT2
P50/SIN2
P47/SRDY1/CNTR2
P46/SCLK1
P45/TXD1
P44/RXD1
P43/INT2
P42/INT1
CNVSS
RESET
P41/INT00/XCIN
P40/INT40/XCOUT
XIN
*
XOUT
VSS
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
Package code: PRDP0064BA-A (64P4B)
*Connect oscillation circuit.
indicates flash memory pin.
Fig 80. Connection for standard serial I/O mode 2 (M38039FFLSP)
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 86 of 117
P30/DA1
P31/DA2
P32
P33
P34/RXD3
P35/TXD3
P36/SCLK3
P37/SRDY3
P00/AN8
P01/AN9
P02/AN10
P03/AN11
P04/AN12
P05/AN13
P06/AN14
P07/AN15
P10/INT41
P11/INT01
P12
P13
P14
P15
P16
P17
P20(LED0)
P21(LED1)
P22(LED2)
P23(LED3)
P24(LED4)
P25(LED5)
P26(LED6)
P27(LED7)
3803 Group (Spec.L)
PIN CONFIGURATION (TOP VIEW)
8
7
6
A
B
C
D
E
F
G
H
50
46
44
41
40
32
31
30
P36/SCLK3
P02/AN10
P04/AN12
P07/AN15
P10/INT41
P20(LED0)
P21(LED1)
P22(LED2)
51
47
45
42
39
27
29
28
P35/TXD3
P01/AN9
P03/AN11
P06/AN14
P11/INT01
P25(LED5)
P23(LED3)
P24(LED4)
53
52
48
43
38
37
26
25
P33
P34/RXD3
P00/AN8
P05/AN13
P12
P13
P26(LED6)
P27(LED7)
8
7
6
VSS
5
56
55
54
49
33
36
35
34
P30/DA1
P31/DA2
P32
P37/SRDY3
P17
P14
P15
P16
5
*
4
1
64
58
59
57
24
22
23
P62/AN2
P63/AN3
VREF
AVSS
VCC
VSS
XIN
XOUT
4
BUSY
VCC
3
60
61
4
7
12
P67/AN7
P66/AN6
P57/INT3
P54/CNTR0
62
63
5
8
10
13
17
19
P65/AN5
P64/AN4
P56/PWM
P53/SRDY2
P51/SOUT2
P46/SCLK1
P42/INT1
RESET
2
3
6
9
11
15
16
18
P61/AN1
P60/AN0
P55/CNTR1
P52/SCLK2
P50/SIN2
P44/RXD1
P43/INT2
CNVSS
A
B
C
D
E
F
G
H
P47/SRDY1/CNTR2
14
P45/TXD1
21
P40/INT40/XCOUT
20
3
P41/INT00/XCIN
TXD
2
RESET
2
SCLK
1
RXD
* Connect oscillation circuit.
Package code: PTLG0064JA-A (64F0G)
indicates flash memory pin.
Fig 81. Connection for standard serial I/O mode 1 (M38039FFLWG)
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 87 of 117
CNVSS
1
3803 Group (Spec.L)
PIN CONFIGURATION (TOP VIEW)
8
7
6
A
B
C
D
E
F
G
H
50
46
44
41
40
32
31
30
P36/SCLK3
P02/AN10
P04/AN12
P07/AN15
P10/INT41
P20(LED0)
P21(LED1)
P22(LED2)
51
47
45
42
39
27
29
28
P35/TXD3
P01/AN9
P03/AN11
P06/AN14
P11/INT01
P25(LED5)
P23(LED3)
P24(LED4)
53
52
48
43
38
37
26
25
P33
P34/RXD3
P00/AN8
P05/AN13
P12
P13
P26(LED6)
P27(LED7)
8
7
6
VSS
5
56
55
54
49
33
36
35
34
P30/DA1
P31/DA2
P32
P37/SRDY3
P17
P14
P15
P16
5
*
4
1
64
58
59
57
24
22
23
P62/AN2
P63/AN3
VREF
AVSS
VCC
VSS
XIN
XOUT
4
BUSY
VCC
3
60
61
4
7
P67/AN7
P66/AN6
P57/INT3
P54/CNTR0
12
62
63
5
8
10
13
17
19
P65/AN5
P64/AN4
P56/PWM
P53/SRDY2
P51/SOUT2
P46/SCLK1
P42/INT1
RESET
2
3
6
9
11
15
16
18
P61/AN1
P60/AN0
P55/CNTR1
P52/SCLK2
P50/SIN2
P44/RXD1
P43/INT2
CNVSS
A
B
C
D
E
F
G
H
P47/SRDY1/CNTR2
14
P45/TXD1
21
P40/INT40/XCOUT
20
3
P41/INT00/XCIN
TXD
2
RESET
2
“L”input
1
RXD
Package code: PTLG0064JA-A (64F0G)
* Connect oscillation circuit.
indicates flash memory pin.
Fig 82. Connection for standard serial I/O mode 2 (M38039FFLWG)
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 88 of 117
CNVSS
1
3803 Group (Spec.L)
td(CNVSS-RESET)
td(P45-RESET)
Power source
RESET
CNVSS
P45(TXD)
P46(SCLK)
P47(BUSY)
P44(RXD)
Symbol
Limits
Min.
Typ.
Max.
td(CNVSS-RESET)
0
−
−
td(P45-RESET)
0
Unit
ms
Notes: In the standard serial I/O mode 1, input “H” to the P46 pin.
Be sure to set the CNVSS pin to “H” before rising RESET.
Be sure to set the P45 pin to “H” before rising RESET.
ms
Fig 83. Operating waveform for standard serial I/O mode 1
td(CNVSS-RESET)
td(P45-RESET)
Power source
RESET
CNVSS
P45(TXD)
P46(SCLK)
P47(BUSY)
P44(RXD)
Symbol
Limits
Min.
Typ.
Max.
td(CNVSS-RESET)
0
−
−
td(P45-RESET)
0
Unit
Notes:
ms
ms
Fig 84. Operating waveform for standard serial I/O mode 2
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 89 of 117
In the standard serial I/O mode 2, input “H” to the P46 pin.
Be sure to set the CNVSS pin to “H” before rising RESET.
Be sure to set the P45 pin to “H” before rising RESET.
3803 Group (Spec.L)
3803 Group (Spec. L)
T_VDD
VCC
T_VPP
N.C.
4.7kΩ
T_RXD
P45 (TXD)
T_TXD
P44 (RXD)
T_SCLK
P46 (SCLK)
T_PGM/OE/MD
CNVSS
4.7kΩ
T_BUSY
P47 (BUSY)
RESET circuit
RESET
T_RESET
GND
VSS
AVSS
XIN
XOUT
Set the same termination as the
single-chip mode.
Note: For the programming circuit, the wiring capacity of each signal pin must not exceed 47 pF.
Fig 85. When using programmer (in standard serial I/O mode 1) of Suisei Electronics System Co., LTD,
connection example
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 90 of 117
3803 Group (Spec.L)
3803 Group (Spec. L)
VCC
VCC
CNVSS
4.7 kΩ
4.7 kΩ
4.7 kΩ
P45 (TXD)
P44 (RXD)
P46 (SCLK)
P47 (BUSY)
14
13
12
11
10
9
8
7
6
5
4
3
2
1
RESET
circuit
*1
RESET
VSS
AVSS
XIN
XOUT
Set the same termination as the
single-chip mode.
*1 : Open-collector buffer
Note : For the programming circuit, the wiring capacity of each signal pin must not exceed 47 pF.
Fig 86. When using E8 programmer (in standard serial I/O mode 1), connection example
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 91 of 117
3803 Group (Spec.L)
NOTES
NOTES ON PROGRAMMING
1. Processor Status Register
(1) Initializing of processor status register
Flags which affect program execution must be initialized after a reset.
In particular, it is essential to initialize the T and D flags because
they have an important effect on calculations.
<Reason>
After a reset, the contents of the processor status register (PS) are
undefined except for the I flag which is “1”.
Set D flag to “1”
ADC or SBC instruction
NOP instruction
SEC, CLC, or CLD instruction
Reset
Fig 89. Execution of decimal calculations
Initializing of flags
Main program
Fig 87. Initialization of processor status register
(2) How to reference the processor status register
To reference the contents of the processor status register (PS),
execute the PHP instruction once then read the contents of (S+1).
If necessary, execute the PLP instruction to return the PS to its
original status.
(S)
(S) + 1
Stored PS
Fig 88. Stack memory contents after PHP instruction
execution
2. Decimal calculations
(1) Execution of decimal calculations
The ADC and SBC are the only instructions which will yield
proper decimal notation, set the decimal mode flag (D) to “1”
with the SED instruction. After executing the ADC or SBC
instruction, execute another instruction before executing the
SEC, CLC, or CLD instruction.
(2) Notes on status flag in decimal mode
When decimal mode is selected, the values of three of the flags in
the status register (the N, V, and Z flags) are invalid after a ADC
or SBC instruction is executed.
The carry flag (C) is set to “1” if a carry is generated as a result of the
calculation, or is cleared to “0” if a borrow is generated. To
determine whether a calculation has generated a carry, the C flag
must be initialized to “0” before each calculation. To check for a
borrow, the C flag must be initialized to “1” before each calculation.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 92 of 117
3. JMP instruction
When using the JMP instruction in indirect addressing mode, do
not specify the last address on a page as an indirect address.
4. Multiplication and Division Instructions
• The index X mode (T) and the decimal mode (D) flags do not
affect the MUL and DIV instruction.
• The execution of these instructions does not change the
contents of the processor status register.
5. Ports
The contents of the port direction registers cannot be read. The
following cannot be used:
• The data transfer instruction (LDA, etc.)
• The operation instruction when the index X mode flag (T) is “1”
• The instruction with the addressing mode which uses the value
of a direction register as an index
• The bit-test instruction (BBC or BBS, etc.) to a direction
register
• The read-modify-write instructions (ROR, CLB, or SEB, etc.)
to a direction register.
Use instructions such as LDM and STA, etc., to set the port
direction registers.
6. Instruction Execution Timing
The instruction execution time can be obtained by multiplying
the frequency of the internal clock φ by the number of cycles
mentioned in the 740 Family Software Manual.
The frequency of the internal clock φ is the twice the XIN cycle in
high-speed mode, 8 times the XIN cycle in middle-speed mode,
and the twice the XCIN in low-speed mode.
3803 Group (Spec.L)
Countermeasures against noise
(1) Shortest wiring length
1. Wiring for RESET pin
Make the length of wiring which is connected to the RESET
pin as short as possible. Especially, connect a capacitor across
the RESET pin and the V SS pin with the shortest possible
wiring (within 20mm).
<Reason>
The width of a pulse input into the RESET pin is determined by
the timing necessary conditions. If noise having a shorter pulse
width than the standard is input to the RESET pin, the reset is
released before the internal state of the microcomputer is completely initialized. This may cause a program runaway.
Noise
Reset
circuit
VSS
N.G.
Reset
circuit
VSS
XIN
XOUT
VSS
N.G.
XIN
XOUT
VSS
O.K.
Fig 91. Wiring for clock I/O pins
RESET
VSS
Noise
RESET
(2) Connection of bypass capacitor across VSS line and VCC line
In order to stabilize the system operation and avoid the latch-up,
connect an approximately 0.1 µF bypass capacitor across the VSS
line and the VCC line as follows:
• Connect a bypass capacitor across the VSS pin and the VCC pin
at equal length.
• Connect a bypass capacitor across the VSS pin and the VCC pin
with the shortest possible wiring.
• Use lines with a larger diameter than other signal lines for VSS
line and VCC line.
• Connect the power source wiring via a bypass capacitor to the
VSS pin and the VCC pin.
VSS
O.K.
VCC
VCC
VSS
VSS
Fig 90. Wiring for the RESET pin
2. Wiring for clock input/output pins
• Make the length of wiring which is connected to clock I/O
pins as short as possible.
• Make the length of wiring (within 20 mm) across the
grounding lead of a capacitor which is connected to an
oscillator and the VSS pin of a microcomputer as short as
possible.
• Separate the VSS pattern only for oscillation from other VSS
pat-terns.
<Reason>
If noise enters clock I/O pins, clock waveforms may be
deformed. This may cause a program failure or program
runaway. Also, if a potential difference is caused by the noise
between the VSS level of a microcomputer and the VSS level of
an oscillator, the correct clock will not be input in the
microcomputer.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 93 of 117
N.G.
O.K.
Fig 92. Bypass capacitor across the VSS line and the
VCC line
3803 Group (Spec.L)
(3) Oscillator concerns
In order to obtain the stabilized operation clock on the user
system and its condition, contact the oscillator manufacturer and
select the oscillator and oscillation circuit constants. Be careful
espe-cially when range of votage and temperature is wide.
Also, take care to prevent an oscillator that generates clocks for a
microcomputer operation from being affected by other signals.
1. Keeping oscillator away from large current signal lines
Install a microcomputer (and especially an oscillator) as far as
possible from signal lines where a current larger than the tolerance of current value flows.
<Reason>
In the system using a microcomputer, there are signal lines for
controlling motors, LEDs, and thermal heads or others. When a
large current flows through those signal lines, strong noise
occurs because of mutual inductance.
2. Installing oscillator away from signal lines where potential
levels change frequently
Install an oscillator and a connecting pattern of an oscillator
away from signal lines where potential levels change frequently. Also, do not cross such signal lines over the clock
lines or the signal lines which are sensitive to noise.
<Reason>
Signal lines where potential levels change frequently (such as the
CNTR pin signal line) may affect other lines at signal rising edge
or falling edge. If such lines cross over a clock line, clock waveforms may be deformed, which causes a microcomputer failure
or a program runaway.
(4) Analog input
The analog input pin is connected to the capacitor of a voltage
com-parator. Accordingly, sufficient accuracy may not be
obtained by the charge/discharge current at the time of A/D
conversion when the analog signal source of high-impedance is
connected to an analog input pin. In order to obtain the A/D
conversion result stabilized more, please lower the impedance of
an analog signal source, or add the smoothing capacitor to an
analog input pin.
(5) Difference of memory size
When memory size differ in one group, actual values such as an
electrical characteristics, A/D conversion accuracy, and the
amount of -proof of noise incorrect operation may differ from the
ideal values. When these products are used switching, perform
system evalua-tion for each product of every after confirming
product specification.
(6) Wiring to CNVSS pin
The CNVSS pin determines the flash memory mode.
Connect the CNVSS pin the shortest possible to the GND pattern
which is supplied to the VSS pin of the microcomputer.
In addition connecting an approximately 5 kΩ. resistor in series
to the GND could improve noise immunity. In this case as well
as the above mention, connect the pin the shortest possible to the
GND pattern which is supplied to the V S S pin of the
microcomputer.
Note. When the boot mode or the standard serial I/O mode is used, a
switch of the input level to the CNVSS pin is required.
(Note)
1. Keeping oscillator away from large current signal lines
The shortest
CNVSS
Approx. 5kΩ
Microcomputer
Mutual inductance
M
VSS
(Note)
XIN
XOUT
VSS
Large
current
Note: Shows the microcomputer’s pin.
GND
2. Installing oscillator away from signal lines where potential
levels change frequently
Do not cross
CNTR
XIN
XOUT
VSS
N.G.
Fig 93. Wiring for a large current signal line/Wiring of
signal lines where potential levels change
frequently
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
The shortest
Page 94 of 117
Fig 94. Wiring for the CNVSS
3803 Group (Spec.L)
NOTES ON PERIPHERAL FUNCTIONS
Notes on Input and Output Ports
1. Notes in standby state
In standby state*1 for low-power dissipation, do not make input
levels of an I/O port “undefined”. Even when an I/O port of
Nchannel open-drain is set as output mode, if output data is “1”,
the aforementioned notes are necessary.
Pull-up (connect the port to VCC) or pull-down (connect the port
to VSS) these ports through a resistor.
When determining a resistance value, note the following points:
• External circuit
• Variation of output levels during the ordinary operation
When using built-in pull-up resistor, note on varied current
values:
• When setting as an input port : Fix its input level
• When setting as an output port : Prevent current from flowing
out to external
<Reason>
Exclusive input ports are always in a high-impedance state. An
output transistor becomes an OFF state when an I/O port is set as
input mode by the direction register, so that the port enter a
highimpedance state. At this time, the potential which is input to
the input buffer in a microcomputer is unstable in the state that
input levels are “undefined”. This may cause power source
current.
Even when an I/O port of N-channel open-drain is set as output
mode by the direction register, if the contents of the port latch is
“1”, the same phenomenon as that of an input port will occur.
*1
Standby state :
stop mode by executing STP instruction
wait mode by executing WIT instruction
2. Modifying output data with bit managing instruction
When the port latch of an I/O port is modified with the bit
managing instruction*1, the value of the unspecified bit may be
changed.
<Reason>
I/O ports are set to input or output mode in bit units. Reading
from a port register or writing to it involves the following
operations.
• Port in input mode
Read: Read the pin level.
Write: Write to the port latch.
• Port in output mode
Read: Read the port latch or read the output from the peripheral
function (specifications differ depending on the port).
Write: Write to the port latch. (The port latch value is output
from the pin.)
Since bit managing instructions *1 are read-modify-write
instructions,*2 using such an instruction on a port register causes
a read and write to be performed simultaneously on the bits other
than the one specified by the instruction.
When an unspecified bit is in input mode, its pin level is read and
that value is written to the port latch. If the previous value of the
port latch differs from the pin level, the port latch value is changed.
If an unspecified bit is in output mode, the port latch is generally
read. However, for some ports the peripheral function output is
read, and the value is written to the port latch. In this case, if the
previous value of the port latch differs from the peripheral
function output, the port latch value is changed.
*1 Bit
managing instructions: SEB and CLB instructions
*2 Read-modify-write instructions: Instructions that read memory
in byte units, modify the value, and then write the result to the
same location in memory in byte units
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 95 of 117
Termination of Unused Pins
1. Terminate unused pins
(1) Output ports : Open
(2) I/O ports :
• Set the I/O ports for the input mode and connect them to VCC
or VSS through each resistor of 1 kΩ to 10 kΩ.
Ports that permit the selecting of a built-in pull-up resistor can
also use this resistor. Set the I/O ports for the output mode and
open them at “L” or “H”.
• When opening them in the output mode, the input mode of the
initial status remains until the mode of the ports is switched
over to the output mode by the program after reset. Thus, the
potential at these pins is undefined and the power source
current may increase in the input mode. With regard to an
effects on the system, thoroughly perform system evaluation
on the user side.
• Since the direction register setup may be changed because of a
program runaway or noise, set direction registers by program
periodically to increase the reliability of program.
(3) The AVSS pin when not using the A/D converter :
• When not using the A/D converter, handle a power source pin
for the A/D converter, AVSS pin as follows:
AVSS: Connect to the VSS pin.
2. Termination remarks
(1) I/O ports :
Do not open in the input mode.
<Reason>
• The power source current may increase depending on the
firststage circuit.
• An effect due to noise may be easily produced as compared
with proper termination (2) in 1 and shown on the above.
(2) I/O ports :
When setting for the input mode, do not connect to VCC or VSS
directly.
<Reason>
If the direction register setup changes for the output mode
because of a program runaway or noise, a short circuit may occur
between a port and VCC (or VSS).
(3) I/O ports :
When setting for the input mode, do not connect multiple ports in
a lump to VCC or VSS through a resistor.
<Reason>
If the direction register setup changes for the output mode
because of a program runaway or noise, a short circuit may occur
between ports.
• At the termination of unused pins, perform wiring at the
shortest possible distance (20 mm or less) from microcomputer pins.
3803 Group (Spec.L)
Notes on Interrupts
1. Change of relevant register settings
When the setting of the following registers or bits is changed, the
interrupt request bit may be set to “1”. When not requiring the
interrupt occurrence synchronized with these setting, take the
following sequence.
• Interrupt edge selection register (address 003A16)
• Timer XY mode register (address 002316)
• Timer Z mode register (address 002A16)
Set the above listed registers or bits as the following sequence.
2. Check of interrupt request bit
When executing the BBC or BBS instruction to an interrupt
request bit of an interrupt request register immediately after this
bit is set to “0”, execute one or more instructions before
executing the BBC or BBS instruction.
Clear the interrupt request bit to “0” (no interrupt issued)
NOP (one or more instructions)
Set the corresponding interrupt enable bit to “0” (disabled).
Set the interrupt edge select bit (active edge switch bit)
or the interrupt (source) select bit to “1”.
NOP (one or more instructions)
Set the corresponding interrupt request bit to “0”
(no interrupt request issued).
Set the corresponding interrupt enable bit to “1” (enabled).
Fig 95. Sequence of changing relevant register
<Reason>
When setting the followings, the interrupt request bit may be set
to “1”.
• When setting external interrupt active edge
Concerned register: Interrupt edge selection register
(address 003A16)
Timer XY mode register (address 002316)
Timer Z mode register (address 002A16)
• When switching interrupt sources of an interrupt vector
address where two or more interrupt sources are allocated.
Concerned register: Interrupt source selection register
(address 003916)
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 96 of 117
Execute the BBC or BBS instruction
Fig 96. Sequence of check of interrupt request bit
<Reason>
If the BBC or BBS instruction is executed immediately after an
interrupt request bit of an interrupt request register is cleared to
“0”, the value of the interrupt request bit before being cleared to
“0” is read.
3803 Group (Spec.L)
Notes on 8-bit Timer (timer 1, 2, X, Y)
• If a value n (between 0 and 255) is written to a timer latch, the
frequency division ratio is 1/(n+1).
• When switching the count source by the timer 12, X and Y
count source selection bits, the value of timer count is altered
in unconsiderable amount owing to generating of thin pulses in
the count input signals.
Therefore, select the timer count source before set the value to
the prescaler and the timer.
• Set the double-function port of the CNTR0/CNTR1 pin and
port P54/P55 to output in the pulse output mode.
• Set the double-function port of CNTR0/CNTR1 pin and port
P54/P55 to input in the event counter mode and the pulse width
measurement mode.
Notes on 16-bit Timer (timer Z)
1. Pulse output mode
• Set the double-function port of the CNTR2 pin and port P47 to
output.
2. Pulse period measurement mode
• Set the double-function port of the CNTR2 pin and port P47 to
input.
• A read-out of timer value is impossible in this mode. The timer
can be written to only during timer stop (no measurement of
pulse period).
• Since the timer latch in this mode is specialized for the readout of measured values, do not perform any write operation
during measurement.
• “FFFF16” is set to the timer when the timer underflows or
when the valid edge of measurement start/completion is
detected.
Consequently, the timer value at start of pulse period
measurement depends on the timer value just before
measurement start.
3. Pulse width measurement mode
• Set the double-function port of the CNTR2 pin and port P47 to
input.
• A read-out of timer value is impossible in this mode. The timer
can be written to only during timer stop (no measurement of
pulse period).
• Since the timer latch in this mode is specialized for the readout of measured values, do not perform any write operation
during measurement.
• “FFFF16” is set to the timer when the timer underflows or
when the valid edge of measurement start/completion is
detected.
Consequently, the timer value at start of pulse width
measurement depends on the timer value just before
measurement start.
4. Programmable waveform generating mode
• Set the double-function port of the CNTR2 pin and port P47 to
output.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 97 of 117
5. Programmable one-shot generating mode
• Set the double-function port of CNTR2 pin and port P47 to
output, and of INT1 pin and port P42 to input in this mode.
• This mode cannot be used in low-speed mode.
• If the value of the CNTR2 active edge switch bit is changed
during one-shot generating enabled or generating one-shot
pulse, then the output level from CNTR2 pin changes.
6. All modes
• Timer Z write control
Which write control can be selected by the timer Z write control
bit (bit 3) of the timer Z mode register (address 002A16), writing
data to both the latch and the timer at the same time or writing
data only to the latch.
When the operation “writing data only to the latch” is selected,
the value is set to the timer latch by writing data to the address of
timer Z and the timer is updated at next underflow. After reset
release, the operation “writing data to both the latch and the timer
at the same time” is selected, and the value is set to both the latch
and the timer at the same time by writing data to the address of
timer Z.
In the case of writing data only to the latch, if writing data to the
latch and an underflow are performed almost at the same time,
the timer value may become undefined.
• Timer Z read control
A read-out of timer value is impossible in pulse period
measurement mode and pulse width measurement mode. In the
other modes, a read-out of timer value is possible regardless of
count operating or stopped.
However, a read-out of timer latch value is impossible.
• Switch of interrupt active edge of CNTR2 and INT1
Each interrupt active edge depends on setting of the CNTR 2
active edge switch bit and the INT1 active edge selection bit.
• Switch of count source
When switching the count source by the timer Z count source
selection bits, the value of timer count is altered in
inconsiderable amount owing to generating of thin pulses on the
count input signals.
Therefore, select the timer count source before setting the value
to the prescaler and the timer.
3803 Group (Spec.L)
Notes on Serial Interface
1. Notes when selecting clock synchronous serial I/O
(1) Stop of transmission operation
As for serial I/Oi (i = 1, 3) that can be used as either a clock
synchronous or an asynchronous (UART) serial I/O, clear the
serial I/Oi enable bit and the transmit enable bit to “0” (serial
I/Oi and transmit disabled).
<Reason>
Since transmission is not stopped and the transmission circuit is
not initialized even if only the serial I/Oi enable bit is cleared to
“0” (serial I/Oi disabled), the internal transmission is running (in
this case, since pins TxDi, RxDi, SCLKi, and SRDYi function as
I/O ports, the transmission data is not output). When data is
written to the transmit buffer register in this state, data starts to
be shifted to the transmit shift register. When the serial I/Oi
enable bit is set to “1” at this time, the data during internally
shifting is output to the TxDi pin and an operation failure occurs.
(2) Stop of receive operation
As for serial I/Oi (i = 1, 3) that can be used as either a clock
synchronous or an asynchronous (UART) serial I/O, clear the
receive enable bit to “0” (receive disabled), or clear the serial
I/Oi enable bit to “0” (serial I/Oi disabled).
(3) Stop of transmit/receive operation
As for serial I/Oi (i = 1, 3) that can be used as either a clock
synchronous or an asynchronous (UART) serial I/O, clear both
the transmit enable bit and receive enable bit to “0” (transmit and
receive disabled).
(when data is transmitted and received in the clock synchronous
serial I/O mode, any one of data transmission and reception
cannot be stopped.)
<Reason>
In the clock synchronous serial I/O mode, the same clock is used
for transmission and reception. If any one of transmission and
reception is disabled, a bit error occurs because transmission and
reception cannot be synchronized.
In this mode, the clock circuit of the transmission circuit also
operates for data reception. Accordingly, the transmission circuit
does not stop by clearing only the transmit enable bit to “0”
(transmit disabled). Also, the transmission circuit is not
initialized by clearing the serial I/Oi enable bit to “0” (serial I/Oi
disabled) (refer to (1) in 1.).
2. Notes when selecting clock asynchronous serial I/O
(1) Stop of transmission operation
Clear the transmit enable bit to “0” (transmit disabled). The
transmission operation does not stop by clearing the serial I/Oi
enable bit (i = 1, 3) to “0”.
<Reason>
This is the same as (1) in 1.
(2) Stop of receive operation
Clear the receive enable bit to “0” (receive disabled).
(3) Stop of transmit/receive operation
Only transmission operation is stopped.
Clear the transmit enable bit to “0” (transmit disabled). The
transmission operation does not stop by clearing the serial I/Oi
enable bit (i = 1, 3) to “0”.
<Reason>
This is the same as (1) in 1.
Only receive operation is stopped.
Clear the receive enable bit to “0” (receive disabled).
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 98 of 117
3. SRDYi (i = 1, 3) output of reception side
When signals are output from the SRDYi pin on the reception side
by using an external clock in the clock synchronous serial I/O
mode, set all of the receive enable bit, the SRDYi output enable
bit, and the transmit enable bit to “1” (transmit enabled).
4. Setting serial I/Oi (i = 1, 3) control register again
Set the serial I/Oi control register again after the transmission
and the reception circuits are reset by clearing both the transmit
enable bit and the receive enable bit to “0.”
Clear both the transmit enable bit (TE) and
the receive enable bit (RE) to “0”
Set the bits 0 to 3 and bit 6 of the serial I/Oi
control register
Set both the transmit enable bit (TE) and the
receive enable bit (RE), or one of them to “1”
Can be set with the
LDM instruction at
the same time
Fig 97. Sequence of setting serial I/Oi (i = 1, 3) control
register again
5. Data transmission control with referring to transmit
shift register completion flag
After the transmit data is written to the transmit buffer register,
the transmit shift register completion flag changes from “1” to
“0” with a delay of 0.5 to 1.5 shift clocks. When data
transmission is controlled with referring to the flag after writing
the data to the transmit buffer register, note the delay.
6. Transmission control when external clock is selected
When an external clock is used as the synchronous clock for data
transmission, set the transmit enable bit to “1” at “H” of the
SCLKi (i = 1, 3) input level. Also, write the transmit data to the
transmit buffer register at “H” of the SCLKi input level.
7. Transmit interrupt request when transmit enable bit
is set
When using the transmit interrupt, take the following sequence.
(1) Set the serial I/Oi transmit interrupt enable bit (i = 1, 3) to
“0” (disabled).
(2) Set the tranasmit enable bit to “1”.
(3) Set the serial I/Oi transmit interrupt request bit (i = 1, 3) to
“0” after 1 or more instruction has executed.
(4) Set the serial I/Oi transmit interrupt enable bit (i = 1, 3) to
“1” (enabled).
<Reason>
When the transmission enable bit is set to “1”, the transmit buffer
empty flag and transmit shift register shift completion flag are
also set to “1”.
Therefore, regardless of selecting which timing for the
generating of transmit interrupts, the interrupt request is
generated and the transmit interrupt request bit is set at this point.
8. Writing to baud rate generator i (BRGi) (i = 1, 3)
Write data to the baud rate generator i (BRGi) (i = 1, 3) while the
transmission/reception operation is stopped.
3803 Group (Spec.L)
Notes on PWM
The PWM starts from “H” level after the PWM enable bit is set
to enable and “L” level is temporarily output from the PWM pin.
The length of this “L” level output is as follows:
n+1
2 × f(XIN)
(s)
(Count source selection bit = “0”,
where n is the value set in the prescaler)
n+1
f(XIN)
(s)
(Count source selection bit = “1”,
where n is the value set in the prescaler)
Notes on A/D Converter
1. Analog input pin
Make the signal source impedance for analog input low, or equip
an analog input pin with an external capacitor of 0.01 µF to 1 µF.
Further, be sure to verify the operation of application products on
the user side.
<Reason>
An analog input pin includes the capacitor for analog voltage
comparison. Accordingly, when signals from signal source with
high impedance are input to an analog input pin, charge and
discharge noise generates. This may cause the A/D conversion
precision to be worse.
Notes on Watchdog Timer
• Make sure that the watchdog timer H does not underflow
while waiting Stop release, because the watchdog timer keeps
counting during that term.
• When the STP instruction disable bit has been set to “1”, it is
impossible to switch it to “0” by a program.
Notes on RESET Pin
Connecting capacitor
In case where the RESET signal rise time is long, connect a
ceramic capacitor or others across the RESET pin and the VSS
pin.
Use a 1000 pF or more capacitor for high frequency use. When
connecting the capacitor, note the following :
• Make the length of the wiring which is connected to a
capacitor as short as possible.
• Be sure to verify the operation of application products on the
user side.
<Reason>
If the several nanosecond or several ten nanosecond impulse
noise enters the RESET pin, it may cause a microcomputer
failure.
Notes on Low-speed Operation Mode
2. A/D converter power source pin
The AVSS pin is A/D converter power source pins. Regardless of
using the A/D conversion function or not, connect it as following :
• AVSS : Connect to the VSS line
<Reason>
If the AVSS pin is opened, the microcomputer may have a failure
because of noise or others.
3. Clock frequency during A/D conversion
The comparator consists of a capacity coupling, and a charge of
the capacity will be lost if the clock frequency is too low. Thus,
make sure the following during an A/D conversion.
• f(XIN) is 500 kHz or more
• Do not execute the STP instruction
4. Difference between at 8-bit reading in 10-bit A/D
mode and at 8-bit A/D mode
At 8-bit reading in the 10-bit A/D mode, “–1/2 LSB” correction
is not performed to the A/D conversion result.
In the 8-bit A/D mode, the A/D conversion characteristics is the
same as 3802 group’s characteristics because “–1/2 LSB”
correction is performed.
Notes on D/A Converter
1. VCC when using D/A converter
The D/A converter accuracy when VCC is 4.0 V or less differs
from that of when VCC is 4.0 V or more. When using the D/A
converter, we recommend using a VCC of 4.0 V or more.
2. DAi conversion register when not using D/A converter
When a D/A converter is not used, set all values of the DAi
conversion registers (i = 1, 2) to “0016”. The initial value after
reset is “0016”.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 99 of 117
1. Using sub-clock
To use a sub-clock, fix bit 3 of the CPU mode register to “1” or
control the Rd (refer to Figure 98) resistance value to a certain
level to stabilize an oscillation. For resistance value of Rd,
consult the oscillator manufacturer.
XCIN
XCOUT
Rf
Rd
CCIN
CCOUT
Fig 98. Ceramic resonator circuit
<Reason>
When bit 3 of the CPU mode register is set to “0”, the sub-clock
oscillation may stop.
2. Switch between middle/high-speed mode and lowspeed mode
If you switch the mode between middle/high-speed and lowspeed, stabilize both XIN and XCIN oscillations. The sufficient
time is required for the sub clock to stabilize, especially
immediately after power on and at returning from stop mode.
When switching the mode between middle/high-speed and lowspeed, set the frequency on condition that f(XIN) > 3 × f(XCIN).
Quartz-Crystal Oscillator
When using the quartz-crystal oscillator of high frequency, such
as 16 MHz etc., it may be necessary to select a specific oscillator
with the specification demanded.
3803 Group (Spec.L)
Notes on Restarting Oscillation
• Restarting oscillation
Usually, when the MCU stops the clock oscillation by STP
instruction and the STP instruction has been released by an
external interrupt source, the fixed values of Timer 1 and
Prescaler 12 (Timer 1 = “0116 ”, Prescaler 12 = “FF 16 ”) are
automatically reloaded in order for the oscillation to stabilize.
The user can inhibit the automatic setting by writing “1” to bit 0
of MISRG (address 001016).
However, by setting this bit to “1”, the previous values, set just
before the STP instruction was executed, will remain in Timer 1
and Prescaler 12. Therefore, you will need to set an appropriate
value to each register, in accordance with the oscillation
stabilizing time, before executing the STP instruction.
<Reason>
Oscillation will restart when an external interrupt is received.
However, internal clock φ is supplied to the CPU only when
Timer 1 starts to underflow. This ensures time for the clock
oscillation using the ceramic resonators to be stabilized.
Notes on Using Stop Mode
• Register setting
Since values of the prescaler 12 and Timer 1 are automatically
reloaded when returning from the stop mode, set them again,
respectively. (When the oscillation stabilizing time set after STP
instruction released bit is “0”)
• Clock restoration
After restoration from the stop mode to the normal mode by an
interrupt request, the contents of the CPU mode register previous
to the STP instruction execution are retained. Accordingly, if
both main clock and sub clock were oscillating before execution
of the STP instruction, the oscillation of both clocks is resumed
at restoration.
In the above case, when the main clock side is set as a system
clock, the oscillation stabilizing time for approximately 8,000
cycles of the XIN input is reserved at restoration from the stop
mode. At this time, note that the oscillation on the sub clock side
may not be stabilized even after the lapse of the oscillation
stabilizing time of the main clock side.
Notes on Wait Mode
• Clock restoration
If the wait mode is released by a reset when XCIN is set as the
system clock and XIN oscillation is stopped during execution of
the WIT instruction, XCIN oscillation stops, XIN oscillations
starts, and XIN is set as the system clock.
In the above case, the RESET pin should be held at “L” until the
oscillation is stabilized.
Notes on CPU rewrite mode of flash memory version
1. Operation speed
During CPU rewrite mode, set the system clock φ 4.0 MHz or
less using the main clock division ratio selection bits (bits 6 and
7 of address 003B16).
2. Instructions inhibited against use
The instructions which refer to the internal data of the flash
memory cannot be used during the CPU rewrite mode.
3. Interrupts inhibited against use
The interrupts cannot be used during the CPU rewrite mode
because they refer to the internal data of the flash memory.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 100 of 117
4. Watchdog timer
In case of the watchdog timer has been running already, the
internal reset generated by watchdog timer underflow does not
happen, because of watchdog timer is always clearing during
program or erase operation.
5. Reset
Reset is always valid. In case of CNVSS = “H” when reset is
released, boot mode is active. So the program starts from the
address contained in address FFFC16 and FFFD16 in boot ROM
area.
Notes on flash memory version
The CNVSS pin determines the flash memory mode.
Connect the CNVSS pin the shortest possible to the GND pattern
which is supplied to the VSS pin of the microcomputer.
In addition connecting an approximately 5 kΩ. resistor in series
to the GND could improve noise immunity. In this case as well
as the above mention, connect the pin the shortest possible to the
GND pattern which is supplied to the V S S pin of the
microcomputer.
Note. When the boot mode or the standard serial I/O mode is used, a
switch of the input level to the CNVSS pin is required.
(Note)
The shortest
CNVSS
Approx. 5kΩ
VSS
(Note)
The shortest
Note: Shows the microcomputer’s pin.
Fig 99. Wiring for the CNVSS
Notes on electric characteristic differences between
mask ROM and flash nemory version MCUs
There are differences in electric characteristics, operation
margin, noise immunity, and noise radiation between Mask
ROM and Flash Memory version MCUs due to the difference in
the manufacturing processes, built-in ROM, and layout pattern
etc. When manufacturing an application system with the Flash
Memory version and then switching to use of the Mask ROM
version, please conduct evaluations equivalent to the system
evaluations conducted for the flash memory version.
DATA REQUIRED FOR MASK ORDERS
The following are necessary when ordering a mask ROM
production:
1. Mask ROM Confirmation Form*
2. Mark Specification Form*
3. Data to be written to ROM, in EPROM form (three identical
copies)
* For the mask ROM confirmation and the mark specifications,
refer to the “Renesas Technology Corp.” Homepage
(http://www.renesas.com/en/rom).
3803 Group (Spec.L)
Notes on Handling of Power Source Pins
In order to avoid a latch-up occurrence, connect a capacitor
suitable for high frequencies as bypass capacitor between power
source pin (VCC pin) and GND pin (VSS pin), and between power
source pin (VCC pin) and analog power source input pin (AVSS
pin). Besides, connect the capacitor to as close as possible. For
bypass capacitor which should not be located too far from the
pins to be connected, a ceramic capacitor of 0.01 µF–0.1 µF is
recommended.
Power Source Voltage
When the power source voltage value of a microcomputer is less
than the value which is indicated as the recommended operating
conditions, the microcomputer does not operate normally and
may perform unstable operation.
In a system where the power source voltage drops slowly when
the power source voltage drops or the power supply is turned off,
reset a microcomputer when the power source voltage is less
than the recommended operating conditions and design a system
not to cause errors to the system by this unstable operation.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 101 of 117
3803 Group (Spec.L)
ELECTRICAL CHARACTERISTICS
Absolute maximum ratings
Table 16 Absolute maximum ratings
Symbol
VCC
VI
VI
VI
Parameter
Power source voltages
Input voltage
P00-P07, P10-P17, P20-P27,
P30, P31, P34-P37, P40-P47,
P50-P57, P60-P67, VREF
Input voltage
P32, P33
Input voltage
RESET, XIN
VI
VO
Input voltage
Output voltage
VO
Pd
Output voltage
Power dissipation
Topr
Tstg
Operating temperature
Storage temperature
Page 102 of 117
−0.3 to VCC + 0.3
−0.3 to 5.8
−0.3 to VCC + 0.3
−0.3 to VCC + 0.3
−0.3 to 5.8
Ta=25 °C
1. This value is 300 mW except SP package.
Ratings
−0.3 to 6.5
−0.3 to VCC + 0.3
CNVSS
P00-P07, P10-P17, P20-P27,
P30, P31, P34-P37, P40-P47,
P50-P57, P60-P67, XOUT
P32, P33
NOTE:
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Conditions
All voltages are based on VSS.
When an input voltage is
measured, output transistors
are cut off.
1000(1)
−20 to 85
−65 to 125
Unit
V
V
V
V
V
V
V
mW
°C
°C
3803 Group (Spec.L) Mask ROM Version
Recommended operating conditions
Table 17
Symbol
VCC
VSS
VIH
VIH
VIH
VIL
VIL
VIL
f(XIN)
Recommended operating conditions (1) (Mask ROM version)
(VCC = 1.8 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Parameter
Conditions
Power source
voltage(1)
When start oscillating(2)
f(XIN) ≤ 2.1 MHz
High-speed mode
f(φ) = f(XIN)/2
f(XIN) ≤ 4.2 MHz
f(XIN) ≤ 8.4 MHz
f(XIN) ≤ 12.5 MHz
f(XIN) ≤ 16.8 MHz
Middle-speed mode f(XIN) ≤ 6.3 MHz
f(φ) = f(XIN)/8
f(XIN) ≤ 8.4 MHz
f(XIN) ≤ 12.5 MHz
f(XIN) ≤ 16.8 MHz
Power source voltage
“H” input voltage
P00-P07, P10-P17,
P20-P27, P30, P31,
P34-P37, P40-P47,
P50-P57, P60-P67
“H” input voltage
P32, P33
“H” input voltage
RESET, XIN, XCIN,
CNVSS
“L” input voltage
P00-P07, P10-P17,
P20-P27, P30-P37,
P40-P47, P50-P57,
P60-P67
“L” input voltage
RESET, CNVSS
“L” input voltage
XIN, XCIN
Main clock input
oscillation
frequency(3)
Limits
Min.
2.2
Typ.
5.0
Max.
5.5
2.0
2.2
2.7
4.0
4.5
1.8
2.2
2.7
4.5
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
0
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
V
V
V
V
V
1.8 ≤ VCC < 2.7 V
0.85 VCC
VCC
2.7 ≤ VCC ≤ 5.5 V
0.8 VCC
VCC
1.8 ≤ VCC < 2.7 V
2.7 ≤ VCC ≤ 5.5 V
1.8 ≤ VCC < 2.7 V
2.7 ≤ VCC ≤ 5.5 V
0.85 VCC
0.8 VCC
0.85 VCC
0.8 VCC
5.5
5.5
VCC
VCC
V
1.8 ≤ VCC < 2.7 V
0
0.16 VCC
V
2.7 ≤ VCC ≤ 5.5 V
0
0.2 VCC
1.8 ≤ VCC < 2.7 V
2.7 ≤ VCC ≤ 5.5 V
1.8 ≤ VCC ≤ 5.5 V
0
0
0
0.16 VCC
0.2 VCC
0.16 VCC
V
2.0 ≤ VCC < 2.2 V
( 20 × V CC – 36 ) × 1.05
----------------------------------------------------------2
MHz
2.2 ≤ VCC < 2.7 V
( 24 × V CC – 40.8 ) × 1.05
---------------------------------------------------------------3
MHz
2.7 ≤ VCC < 4.0 V
( 9 × V CC – 0.3 ) × 1.05
---------------------------------------------------------3
MHz
4.0 ≤ VCC < 4.5 V
( 24 × V CC – 60 ) × 1.05
----------------------------------------------------------3
MHz
16.8
MHz
MHz
High-speed mode
f(φ) = f(XIN)/2
Middle-speed mode
f(φ) = f(XIN)/8
4.5 ≤ VCC ≤ 5.5 V
1.8 ≤ VCC < 2.2 V
( 15 × V CC – 9 ) × 1.05
-------------------------------------------------------3
Sub-clock input oscillation frequency(3, 4)
V
V
2.2 ≤ VCC < 2.7 V
( 24 × V CC – 28.8 ) × 1.05
---------------------------------------------------------------3
MHz
2.7 ≤ VCC < 4.5 V
( 15 × V C C + 39 ) × 1.1
-------------------------------------------------------7
16.8
MHz
4.5 ≤ VCC ≤ 5.5 V
f(XCIN)
Unit
32.768
50
MHz
kHz
NOTES:
1. When using A/D converter, see A/D converter recommended operating conditions.
2. The start voltage and the start time for oscillation depend on the using oscillator, oscillation circuit constant value and operating
temperature range, etc.. Particularly a high-frequency oscillator might require some notes in the low voltage operation.
3. When the oscillation frequency has a duty cycle of 50%.
4. When using the microcomputer in low-speed mode, set the sub-clock input oscillation frequency on condition that f(XCIN) < f(XIN)/3.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 103 of 117
3803 Group (Spec.L) Flash Memory Version
Table 18
Symbol
VCC
VSS
VIH
VIH
VIH
VIH
VIL
VIL
VIL
VIL
f(XIN)
Recommended operating conditions (2) (Flash memory version)
(VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Parameter
Conditions
Power source
voltage(1)
When start oscillating(2)
f(XIN) ≤ 8.4 MHz
High-speed mode
f(φ) = f(XIN)/2
f(XIN) ≤ 12.5 MHz
f(XIN) ≤ 16.8 MHz
Middle-speed mode f(XIN) ≤ 12.5 MHz
f(φ) = f(XIN)/8
f(XIN) ≤ 16.8 MHz
Power source voltage
“H” input voltage
P00-P07, P10-P17,
P20-P27, P30, P31,
P34-P37, P40-P47,
P50-P57, P60-P67
“H” input voltage
P32, P33
“H” input voltage
RESET, XIN,
CNVSS
“H” input voltage
XCIN
“L” input voltage
P00-P07, P10-P17,
P20-P27, P30-P37,
P40-P47, P50-P57,
P60-P67
“L” input voltage
RESET, CNVSS
“L” input voltage
XIN
“L” input voltage
XCIN
Main clock input
oscillation
frequency(3)
High-speed mode
f(φ) = f(XIN)/2
Middle-speed mode
f(φ) = f(XIN)/8
Limits
Min.
2.2
Typ.
5.0
Max.
5.5
2.7
4.0
4.5
2.7
4.5
5.0
5.0
5.0
5.0
5.0
0
5.5
5.5
5.5
5.5
5.5
Sub-clock input
oscillation
frequency(3, 4)
V
V
V
0.8 VCC
VCC
V
V
0.8 VCC
5.5
V
0.8 VCC
VCC
V
2
VCC
V
0
0.2 VCC
V
0
0.2 VCC
V
0.16 VCC
V
0.4
V
2.7 ≤ VCC < 4.0 V
( 9 × V CC – 0.3 ) × 1.05
---------------------------------------------------------3
MHz
4.0 ≤ VCC < 4.5 V
( 24 × V CC – 60 ) × 1.05
----------------------------------------------------------3
MHz
4.5 ≤ VCC ≤ 5.5 V
2.7 ≤ VCC < 4.5 V
16.8
MHz
MHz
( 15 × V C C + 39 ) × 1.1
-------------------------------------------------------7
16.8
4.5 ≤ VCC ≤ 5.5 V
f(XCIN)
Unit
32.768
50
MHz
kHz
NOTES:
1. When using A/D converter, see A/D converter recommended operating conditions.
2. The start voltage and the start time for oscillation depend on the using oscillator, oscillation circuit constant value and operating
temperature range, etc.. Particularly a high-frequency oscillator might require some notes in the low voltage operation.
3. When the oscillation frequency has a duty cycle of 50%.
4. When using the microcomputer in low-speed mode, set the sub-clock input oscillation frequency on condition that f(XCIN) < f(XIN)/3.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 104 of 117
3803 Group (Spec.L)
Table 19 Recommended operating conditions (3)
(Mask ROM version: VCC = 1.8 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
(Flash memory version: VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
Parameter
Min.
Limits
Typ.
Unit
ΣIOH(peak)
“H” total peak output current(1)
P00-P07, P10-P17, P20-P27, P30, P31, P34-P37
Max.
−80
ΣIOH(peak)
“H” total peak output current(1)
P40-P47, P50-P57, P60-P67
−80
mA
ΣIOL(peak)
“L” total peak output current(1)
P00-P07, P10-P17, P30-P37
80
mA
ΣIOL(peak)
“L” total peak output current(1)
P20-P27
80
mA
ΣIOL(peak)
“L” total peak output
current(1)
P40-P47, P50-P57, P60-P67
80
mA
ΣIOH(avg)
“H” total average output current(1)
P00-P07, P10-P17, P20-P27, P30, P31, P34-P37
−40
mA
ΣIOH(avg)
“H” total average output current(1)
P40-P47, P50-P57, P60-P67
−40
mA
ΣIOL(avg)
“L” total average output current(1)
P00-P07, P10-P17, P30-P37
40
mA
ΣIOL(avg)
“L” total average output current(1)
P20-P27
40
mA
ΣIOL(avg)
“L” total average output
current(1)
P40-P47, P50-P57, P60-P67
40
mA
IOH(peak)
“H” peak output current(2)
−10
mA
IOL(peak)
“L” peak output current(2)
10
mA
IOL(peak)
“L” peak output current(2)
P00-P07, P10-P17, P20-P27, P30, P31, P34-P37,
P40-P47, P50-P57, P60-P67
P00-P07, P10-P17, P30-P37, P40-P47, P50-P57,
P60-P67
P20-P27
20
mA
IOH(avg)
“H” average output current(3)
−5
mA
IOL(avg)
“L” average output current(3)
5
mA
IOL(avg)
“L” average output current(3)
P00-P07, P10-P17, P20-P27, P30, P31, P34-P37,
P40-P47, P50-P57, P60-P67
P00-P07, P10-P17, P30-P37, P40-P47, P50-P57,
P60-P67
P20-P27
10
mA
mA
NOTES:
1. The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average
value measured over 100 ms. The total peak current is the peak value of all the currents.
2. The peak output current is the peak current flowing in each port.
3. The average output current IOL(avg), IOH(avg) are average value measured over 100 ms.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 105 of 117
3803 Group (Spec.L)
Electrical characteristics
Table 20 Electrical characteristics (1)
(Mask ROM version: VCC = 1.8 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
(Flash memory version: VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
VOH
VOL
VOL
VT+ − VT−
VT+ − VT−
VT+ − VT−
IIH
IIH
IIH
IIL
IIL
IIL
IIL
VRAM
Parameter
“H” output voltage(1)
P00-P07, P10-P17, P20-P27, P30, P31,
P34-P37, P40-P47, P50-P57, P60-P67
“L” output voltage
P00-P07, P10-P17, P20-P27, P30-P37,
P40-P47, P50-P57, P60-P67
“L” output voltage
P20-P27
Hysteresis
CNTR0, CNTR1, CNTR2, INT0-INT4
Hysteresis
RxD1, SCLK1, SIN2, SCLK2, RxD3, SCLK3
Hysteresis
RESET
“H” input current
P00-P07, P10-P17, P20-P27, P30-P37,
P40-P47, P50-P57, P60-P67
“H” input current
RESET, CNVSS
“H” input current
XIN
“L” input current
P00-P07, P10-P17, P20-P27, P30-P37,
P40-P47, P50-P57, P60-P67
“L” input current
RESET, CNVSS
“L” input current
XIN
“L” input current (at Pull-up)
P00-P07, P10-P17, P20-P27, P30, P31,
P34-P37, P40-P47, P50-P57, P60-P67
RAM hold voltage
Test conditions
IOH = −10 mA
VCC = 4.0 to 5.5 V
IOH = –1.0 mA
VCC = 1.8 to 5.5 V
IOL = 10 mA
VCC = 4.0 to 5.5 V
IOL = 1.6 mA
VCC = 1.8 to 5.5 V
IOL = 20 mA
VCC = 4.0 to 5.5 V
IOL = 1.6 mA
VCC = 1.8 to 5.5 V
Min.
VCC − 2.0
Limits
Typ.
Unit
V
VCC − 1.0
2.0
V
1.0
2.0
V
0.4
0.4
V
0.5
V
0.5
V
VI = VCC
(Pin floating,
Pull-up transistor “off”)
VI = VCC
VI = VCC
5.0
µA
5.0
µA
µA
4.0
VI = VSS
(Pin floating,
Pull-up transistor “off”)
VI = VSS
−5.0
µA
−5.0
µA
−4.0
VI = VSS
VI = VSS
VCC = 5.0 V
VI = VSS
VCC = 3.0 V
When clock stopped
Max.
µA
−80
−210
−420
−30
−70
−140
1.8
VCC
µA
V
NOTE:
1. P35 is measured when the P35/TXD3 P-channel output disable bit of the UART3 control register (bit 4 of address 003316) is “0”.
P45 is measured when the P45/TXD1 P-channel output disable bit of the UART1 control register (bit 4 of address 001B16) is “0”.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 106 of 117
3803 Group (Spec.L) Mask ROM Version
Table 21 Electrical characteristics (2) (Mask ROM version)
(VCC = 1.8 to 5.5 V, Ta = –20 to 85 °C, f(XCIN)=32.768 kHz (Stopped in middle-speed mode),
Output transistors “off”, AD converter not operated)
Symbol
ICC
Parameter
Test conditions
Power source High-speed
current
mode
VCC = 5.0 V
VCC = 3.0 V
Middle-speed
mode
VCC = 5.0 V
VCC = 3.0 V
Low-speed
mode
VCC = 5.0 V
VCC = 3.0 V
VCC = 2.0 V
In STP state
(All oscillation stopped)
Increment when A/D
conversion is executed
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 107 of 117
f(XIN) = 16.8 MHz
f(XIN) = 12.5 MHz
f(XIN) = 8.4 MHz
f(XIN) = 4.2 MHz
f(XIN) = 16.8 MHz (in WIT state)
f(XIN) = 8.4 MHz
f(XIN) = 4.2 MHz
f(XIN) = 2.1 MHz
f(XIN) = 16.8 MHz
f(XIN) = 12.5 MHz
f(XIN) = 8.4 MHz
f(XIN) = 16.8 MHz (in WIT state)
f(XIN) = 12.5 MHz
f(XIN) = 8.4 MHz
f(XIN) = 6.3 MHz
f(XIN) = stopped
In WIT state
f(XIN) = stopped
In WIT state
f(XIN) = stopped
In WIT state
Ta = 25 °C
Ta = 85 °C
f(XIN) = 16.8 MHz, VCC = 5.0 V
In Middle-, high-speed mode
Min.
Limits
Typ.
8.0
6.5
5.0
2.5
2.0
1.9
1.0
0.6
4.0
3.0
2.5
1.8
1.5
1.2
1.0
55
40
15
8
6
3
0.1
500
Max.
15.0
12.0
9.0
5.0
3.6
3.8
2.0
1.2
7.0
6.0
5.0
3.3
3.0
2.4
2.0
200
70
40
15
15
6
1.0
10
Unit
mA
mA
mA
mA
µA
µA
µA
µA
µA
3803 Group (Spec.L) Flash Memory Version
Table 22 Electrical characteristics (3) (Flash memory version)
(VCC = 2.7 to 5.5 V, Ta = –20 to 85 °C, f(XCIN)=32.768 kHz (Stopped in middle-speed mode),
Output transistors “off”, AD converter not operated)
Symbol
ICC
Parameter
Test conditions
Power source High-speed
current
mode
VCC = 5.0 V
VCC = 3.0 V
Middle-speed
mode
VCC = 5.0 V
VCC = 3.0 V
Low-speed
mode
VCC = 5.0 V
VCC = 3.0 V
In STP state
(All oscillation stopped)
Increment when A/D
conversion is executed
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 108 of 117
f(XIN) = 16.8 MHz
f(XIN) = 12.5 MHz
f(XIN) = 8.4 MHz
f(XIN) = 4.2 MHz
f(XIN) = 16.8 MHz (in WIT state)
f(XIN) = 8.4 MHz
f(XIN) = 4.2 MHz
f(XIN) = 2.1 MHz
f(XIN) = 16.8 MHz
f(XIN) = 12.5 MHz
f(XIN) = 8.4 MHz
f(XIN) = 16.8 MHz (in WIT state)
f(XIN) = 12.5 MHz
f(XIN) = 8.4 MHz
f(XIN) = 6.3 MHz
f(XIN) = stopped
In WIT state
f(XIN) = stopped
In WIT state
Ta = 25 °C
Ta = 85 °C
f(XIN) = 16.8 MHz, VCC = 5.0 V
In Middle-, high-speed mode
Min.
Limits
Typ.
5.5
4.5
3.5
2.2
2.2
2.7
1.8
1.1
3.0
2.4
2.0
2.1
1.7
1.5
1.3
410
4.5
400
3.7
0.55
0.75
1000
Max.
8.3
6.8
5.3
3.3
3.3
4.1
2.7
1.7
4.5
3.6
3.0
3.2
2.6
2.3
2.0
630
6.8
600
5.6
3.0
Unit
mA
mA
mA
mA
µA
µA
µA
µA
3803 Group (Spec.L) Mask ROM Version
A/D converter characteristics
Table 23 A/D converter recommended operating conditions (Mask ROM version)
(VCC = 2.0 to 5.5 V, VSS = AVSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
VCC
Parameter
Power source voltage
(When A/D converter is used)
VREF
AVSS
VIA
f(XIN)
Limits
Conditions
8-bit A/D mode(1)
10-bit A/D
Analog convert reference voltage
Analog power source voltage
Analog input voltage AN0-AN15
Main clock input oscillation
frequency
(When A/D converter is used)
Min.
2.0
Typ.
5.0
Max.
5.5
2.2
5.0
5.5
mode(2)
2.0
Unit
V
VCC
V
V
V
MHz
0
2.0 ≤ VCC = VREF < 2.2 V
0
0.5
VCC
2.2 ≤ VCC = VREF < 2.7 V
0.5
( 24 × V CC – 40.8 ) × 1.05
---------------------------------------------------------------3
2.7 ≤ VCC = VREF < 4.0 V
0.5
( 9 × V CC – 0.3 ) × 1.05
---------------------------------------------------------3
4.0 ≤ VCC = VREF < 4.5 V
0.5
( 24.6 × V C C – 62.7 ) × 1.05
--------------------------------------------------------------------3
4.5 ≤ VCC = VREF ≤ 5.5 V
0.5
16.8
( 20 × V CC – 36 ) × 1.05
----------------------------------------------------------2
NOTES:
1. 8-bit A/D mode: When the conversion mode selection bit (bit 7 of address 003816) is “1”.
2. 10-bit A/D mode: When the conversion mode selection bit (bit 7 of address 003816) is “0”.
Table 24 A/D converter characteristics (Mask ROM version)
(VCC = 2.0 to 5.5 V, VSS = AVSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
−
Parameter
Test conditions
Resolution
−
Absolute accuracy
(excluding quantization error)
8-bit A/D mode(1)
10-bit A/D mode(2)
10
10-bit A/D mode(2)
tCONV
Conversion time
Limits
Typ.
Max.
8
8-bit A/D mode(1)
Min.
2.0 ≤ VREF < 2.2 V
2.2 ≤ VREF ≤ 5.5 V
2.2 ≤ VREF < 2.7 V
2.7 ≤ VREF ≤ 5.5 V
±3
±2
±5
±4
50
8-bit A/D mode(1)
II(AD)
bit
LSB
LSB
2tc(XIN)
61
mode(2)
RLADDER
IVREF
Unit
10-bit A/D
Ladder resistor
Reference power
at A/D converter operated VREF = 5.0 V
source input current at A/D converter stopped VREF = 5.0 V
A/D port input current
12
50
35
150
kΩ
µA
µA
µA
100
200
5.0
5.0
NOTES:
1. 8-bit A/D mode: When the conversion mode selection bit (bit 7 of address 003816) is “1”.
2. 10-bit A/D mode: When the conversion mode selection bit (bit 7 of address 003816) is “0”.
D/A converter characteristics
Table 25 D/A converter characteristics (Mask ROM version)
(VCC = 2.7 to 5.5 V, VREF = 2.7 V to VCC, VSS = AVSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
−
−
tsu
RO
IVREF
Parameter
Resolution
Absolute accuracy
Min.
Limits
Typ.
4.0 ≤ VREF ≤ 5.5 V
2.7 ≤ VREF < 4.0 V
Setting time
Output resistor
2
Reference power source input current(1)
3.5
Max.
8
1.0
2.5
3
5
3.2
NOTE:
1. Using one D/A converter, with the value in the DA conversion register of the other D/A converter being “0016”.
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 109 of 117
Unit
bit
%
µs
kΩ
mA
3803 Group (Spec.L)
A/D converter characteristics
Table 26 A/D converter recommended operating conditions (Flash memory version)
(VCC = 2.7 to 5.5 V, VSS = AVSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
VCC
Parameter
Power source voltage
(When A/D converter is used)
VREF
AVSS
VIA
f(XIN)
Limits
Conditions
8-bit A/D mode(1)
10-bit A/D
Analog convert reference voltage
Analog power source voltage
Analog input voltage AN0-AN15
Main clock input oscillation
frequency
(When A/D converter is used)
Min.
2.7
Typ.
5.0
Max.
5.5
2.7
5.0
5.5
mode(2)
2.0
Unit
V
VCC
V
V
V
MHz
0
2.7 ≤ VCC = VREF < 4.0 V
0
0.5
VCC
4.0 ≤ VCC = VREF < 4.5 V
0.5
( 24.6 × V CC – 62.7 ) × 1.05
--------------------------------------------------------------------3
4.5 ≤ VCC = VREF ≤ 5.5 V
0.5
16.8
( 9 × V CC – 0.3 ) × 1.05
---------------------------------------------------------3
NOTES:
1. 8-bit A/D mode: When the conversion mode selection bit (bit 7 of address 003816) is “1”.
2. 10-bit A/D mode: When the conversion mode selection bit (bit 7 of address 003816) is “0”.
Table 27 A/D converter characteristics (Flash memory version)
(VCC = 2.7 to 5.5 V, VSS = AVSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
−
Parameter
Test conditions
Resolution
−
Absolute accuracy
(excluding quantization error)
8-bit A/D mode(1)
10-bit A/D mode(2)
10
10-bit A/D
Conversion time
tCONV
Limits
Typ.
Max.
8
8-bit A/D mode(1)
8-bit A/D
mode(2)
Min.
II(AD)
bit
2.7 ≤ VREF ≤ 5.5 V
±2
LSB
2.7 ≤ VREF ≤ 5.5 V
±4
LSB
50
2tc(XIN)
mode(1)
61
10-bit A/D mode(2)
RLADDER
IVREF
Unit
Ladder resistor
Reference power
at A/D converter operated VREF = 5.0 V
source input current at A/D converter stopped VREF = 5.0 V
A/D port input current
12
50
35
150
kΩ
µA
µA
µA
100
200
5.0
5.0
NOTES:
1. 8-bit A/D mode: When the conversion mode selection bit (bit 7 of address 003816) is “1”.
2. 10-bit A/D mode: When the conversion mode selection bit (bit 7 of address 003816) is “0”.
D/A converter characteristics
Table 28 D/A converter characteristics (Flash memory version)
(VCC = 2.7 to 5.5 V, VREF = 2.7 V to VCC, VSS = AVSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
−
−
tsu
RO
IVREF
Parameter
Resolution
Absolute accuracy
Min.
Limits
Typ.
4.0 ≤ VREF ≤ 5.5 V
2.7 ≤ VREF < 4.0 V
Setting time
Output resistor
2
3.5
Reference power source input current(1)
Unit
Max.
8
1.0
2.5
3
5
3.2
bit
%
µs
kΩ
mA
NOTE:
1. Using one D/A converter, with the value in the DA conversion register of the other D/A converter being “0016”.
Power source circuit timing characteristics (Flash memory version)
Table 29 Power source circuit timing characteristics (Flash memory version)
(VCC = 2.7 to 5.5 V, VREF = 2.7 V to VCC, VSS = AVSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
td(P−R)
Parameter
Internal power source stable time at power-on
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 110 of 117
Test conditions
2.7 ≤ VCC < 5.5 V
Min.
Limits
Typ.
Max.
2
Unit
ms
3803 Group (Spec.L)
Timing requirements and switching characteristics
Table 30 Timing requirements (1)
(Mask ROM version: VCC = 2.0 to 5.5 V, VSS = 0V, Ta = –20 to 85 °C, unless otherwise noted)
(Flash memory version: VCC = 2.7 to 5.5 V, VSS = 0V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
tW(RESET)
tC(XIN)
Limits
Parameter
Min.
16
Reset input “L” pulse width
Main clock XIN
input cycle time
tWH(XIN)
Main clock XIN
input “H” pulse width
tWL(XIN)
Main clock XIN
input “L” pulse width
tC(XCIN)
tWH(XCIN)
tWL(XCIN)
tC(CNTR)
Sub-clock XCIN input cycle time
Sub-clock XCIN input “H” pulse width
Sub-clock XCIN input “L” pulse width
CNTR0−CNTR2
input cycle time
tWH(CNTR)
CNTR0−CNTR2
input “H” pulse width
tWL(CNTR)
CNTR0−CNTR2
input “L” pulse width
tWH(INT)
INT00, INT01, INT1, INT2,
INT3, INT40, INT41
input “H” pulse width
tWL(INT)
INT00, INT01, INT1, INT2,
INT3, INT40, INT41
input “L” pulse width
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 111 of 117
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
59.5
10000/(86 VCC − 219)
2.7 ≤ VCC < 4.0 V
26 × 103/(82 VCC − 3)
10000/(84 VCC − 143)
10000/(105 VCC − 189)
25
4000/(86 VCC − 219)
10000/(82 VCC − 3)
4000/(84 VCC − 143)
4000/(105 VCC − 189)
25
4000/(86 VCC − 219)
10000/(82 VCC − 3)
4000/(84 VCC − 143)
4000/(105 VCC − 189)
20
5
5
120
160
250
500
1000
48
64
115
230
460
48
64
115
230
460
48
64
115
230
460
48
64
115
230
460
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
Typ.
Max.
Unit
XIN cycle
ns
ns
ns
µs
µs
µs
ns
ns
ns
ns
ns
3803 Group (Spec.L)
Table 31 Timing requirements (2)
(Mask ROM version: VCC = 2.0 to 5.5 V, VSS = 0 V, Ta = −20 to 85 °C, unless otherwise noted)
(Flash memory version: VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = −20 to 85 °C, unless otherwise noted)
Symbol
Parameter
tC(SCLK1)
tC(SCLK3)
Serial I/O1, serial I/O3
clock input cycle time(1)
tWH(SCLK1)
tWH(SCLK3)
Serial I/O1, serial I/O3
clock input “H” pulse width(1)
tWL(SCLK1)
tWL(SCLK3)
Serial I/O1, serial I/O3
clock input “L” pulse width(1)
tsu(RxD1-SCLK1)
tsu(RxD3-SCLK3)
Serial I/O1, serial I/O3
clock input setup time
th(SCLK1-RxD1)
th(SCLK3-RxD3)
Serial I/O1, serial I/O3
clock input hold time
tC(SCLK2)
Serial I/O2
clock input cycle time
tWH(SCLK2)
Serial I/O2
clock input “H” pulse width
tWL(SCLK2)
Serial I/O2
clock input “L” pulse width
tsu(SIN2-SCLK2)
Serial I/O2
clock input setup time
th(SCLK2-SIN2)
Serial I/O2
clock input hold time
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
Min.
250
320
500
1000
2000
120
150
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
240
480
950
120
150
240
480
950
70
90
100
200
400
32
40
50
100
200
500
650
1000
2000
4000
200
260
400
950
2000
200
260
400
950
2000
100
130
200
400
800
100
130
150
300
600
NOTE:
1. When bit 6 of address 001A16 and bit 6 of address 003216 are “1” (clock synchronous).
Divide this value by four when bit 6 of address 001A16 and bit 6 of address 003216 are “0” (UART).
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 112 of 117
Limits
Typ.
Max.
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
3803 Group (Spec.L)
Table 32 Switching characteristics (1)
(Mask ROM version: VCC = 2.0 to 5.5 V, VSS = 0 V, Ta = −20 to 85 °C, unless otherwise noted)
(Flash memory version: VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = −20 to 85 °C, unless otherwise noted)
Symbol
Parameter
tWH(SCLK1)
tWH(SCLK3)
Serial I/O1, serial I/O3
clock output “H” pulse
width
tWL(SCLK1)
tWL(SCLK3)
Serial I/O1, serial I/O3
clock output “L” pulse
width
td(SCLK1-TxD1)
td(SCLK3-TxD3)
Serial I/O1, serial I/O3
output delay time(1)
tV(SCLK1-TxD1)
tV(SCLK3-TxD3)
Serial I/O1, serial I/O3
output valid time(1)
tr(SCLK1)
tr(SCLK3)
Serial I/O1, serial I/O3
rise time of clock
output
tf(SCLK1)
tf(SCLK3)
Serial I/O1, serial I/O3
fall time of clock output
tWH(SCLK2)
Serial I/O2
clock output “H” pulse
width
tWL(SCLK2)
Serial I/O2
clock output “L” pulse
width
td(SCLK2-SOUT2) Serial I/O2
output delay time
tV(SCLK2-SOUT2) Serial I/O2
output valid time
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
Test
conditions
Limits
Min.
tC(SCLK1)/2-30, tC(SCLK3)/2-30
tC(SCLK1)/2-35, tC(SCLK3)/2-35
tC(SCLK1)/2-40, tC(SCLK3)/2-40
tC(SCLK1)/2-45, tC(SCLK3)/2-45
tC(SCLK1)/2-50, tC(SCLK3)/2-50
tC(SCLK1)/2-30, tC(SCLK3)/2-30
tC(SCLK1)/2-35, tC(SCLK3)/2-35
tC(SCLK1)/2-40, tC(SCLK3)/2-40
tC(SCLK1)/2-45, tC(SCLK3)/2-45
tC(SCLK1)/2-50, tC(SCLK3)/2-50
Typ.
ns
140
200
350
400
420
−30
ns
ns
−30
−30
−30
−30
30
35
40
45
50
30
35
40
45
50
Fig.100
tC(SCLK2)/2-160
tC(SCLK2)/2-200
tC(SCLK2)/2-240
tC(SCLK2)/2-260
tC(SCLK2)/2-280
tC(SCLK2)/2-160
tC(SCLK2)/2-200
tC(SCLK2)/2-240
tC(SCLK2)/2-260
tC(SCLK2)/2-280
ns
ns
ns
ns
200
250
300
350
400
0
0
0
0
0
1. When the P45/TXD1 P-channel output disable bit of the UART1 control register (bit 4 of address 001B16) is “0”.
Page 113 of 117
Unit
ns
NOTE:
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Max.
ns
ns
3803 Group (Spec.L)
Table 33 Switching characteristics (2)
(Mask ROM version: VCC = 2.0 to 5.5 V, VSS = 0 V, Ta = −20 to 85 °C, unless otherwise noted)
(Flash memory version: VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = −20 to 85 °C, unless otherwise noted)
Symbol
tf(SCLK2)
Serial I/O2
fall time of clock output
tr(CMOS)
CMOS
rise time of output(1)
tf(CMOS)
Test
conditions
Parameter
CMOS
fall time of output(1)
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
4.5 ≤ VCC ≤ 5.5 V
4.0 ≤ VCC < 4.5 V
2.7 ≤ VCC < 4.0 V
2.2 ≤ VCC < 2.7 V
2.0 ≤ VCC < 2.2 V
Limits
Min.
Typ.
10
12
15
17
20
10
12
15
17
20
Fig.100
Max.
30
35
40
45
50
30
35
40
45
50
30
35
40
45
50
NOTE:
1. When the P35/TXD3 P4-channel output disable bit of the UART3 control register (bit 4 of address 003316) is “0”.
1kΩ
Measurement output pin
Measurement output pin
100 pF
CMOS output
Fig 100. Circuit for measuring output switching characteristics
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 114 of 117
100 pF
N-channel open-drain output
Unit
ns
ns
ns
3803 Group (Spec.L)
Single-chip mode timing diagram
tC(CNTR)
tWL(CNTR)
tWH(CNTR)
CNTR0, CNTR1
CNTR2
0.8VCC
INT1, INT2, INT3
INT00, INT40
INT01, INT41
0.2VCC
tWH(INT)
tWL(INT)
0.8VCC
0.2VCC
tW(RESET)
RESET
0.8VCC
0.2VCC
tC(XIN)
tWL(XIN)
tWH(XIN)
0.8VCC
XIN
0.2VCC
tC(XCIN)
tWL(XCIN)
tWH(XCIN)
0.8VCC
XCIN
0.2VCC
tC(SCLK1), tC(SCLK2), tC(SCLK3)
SCLK1
SCLK2
SCLK3
tf tWL(SCLK1), tWL(SCLK2), tWL(SCLK3) tr tWH(SCLK1), tWH(SCLK2), tWH(SCLK3)
0.8VCC
0.2VCC
tsu(RXD1-SCLK1),
tsu(SIN2-SCLK2),
tsu(RXD3-SCLK3)
RXD1
RXD3
SIN2
th(SCLK1-RXD1),
th(SCLK2-SIN2),
th(SCLK3-RXD3)
0.8VCC
0.2VCC
td(SCLK1-TXD1), td(SCLK2-SOUT2), td(SCLK3-TXD3)
TXD1
TXD3
SOUT2
Fig 101. Timing diagram (in single-chip mode)
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 115 of 117
tv(SCLK1-TXD1),
tv(SCLK2-SOUT2),
tv(SCLK3-TXD3)
3803 Group (Spec.L)
PACKAGE OUTLINE
Diagrams showing the latest package dimensions and mounting information are available in the “Packages” section of
the Renesas Technology website.
RENESAS Code
PRDP0064BA-A
Previous Code
64P4B
MASS[Typ.]
7.9g
33
1
32
*1
E
64
e1
JEITA Package Code
P-SDIP64-17x56.4-1.78
c
D
A
A2
*2
NOTE)
1. DIMENSIONS "*1" AND "*2"
DO NOT INCLUDE MOLD FLASH.
2. DIMENSION "*3" DOES NOT
INCLUDE TRIM OFFSET.
A1
L
Reference
Symbol
SEATING PLANE
*3
e
bp
b3
*3
e1
D
E
A
A1
A2
bp
b2
b3
c
b2
e
L
JEITA Package Code
P-LQFP64-10x10-0.50
RENESAS Code
PLQP0064KB-A
Previous Code
64P6Q-A / FP-64K / FP-64KV
Dimension in Millimeters
Min
18.75
56.2
16.85
Nom
19.05
56.4
17.0
Max
19.35
56.6
17.15
5.08
0.38
0.4
0.65
0.9
0.2
0°
1.528
2.8
3.8
0.5 0.6
0.75 1.05
1.0 1.3
0.25 0.32
15°
1.778 2.028
MASS[Typ.]
0.3g
HD
*1
D
48
33
49
NOTE)
1. DIMENSIONS "*1" AND "*2"
DO NOT INCLUDE MOLD FLASH.
2. DIMENSION "*3" DOES NOT
INCLUDE TRIM OFFSET.
32
bp
64
1
c1
Terminal cross section
ZE
17
Reference
Symbol
c
E
*2
HE
b1
16
Index mark
ZD
c
A
*3
A1
y
e
A2
F
bp
L
x
L1
Detail F
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 116 of 117
D
E
A2
HD
HE
A
A1
bp
b1
c
c1
e
x
y
ZD
ZE
L
L1
Dimension in Millimeters
Min Nom Max
9.9 10.0 10.1
9.9 10.0 10.1
1.4
11.8 12.0 12.2
11.8 12.0 12.2
1.7
0.05 0.1 0.15
0.15 0.20 0.25
0.18
0.09 0.145 0.20
0.125
0°
8°
0.5
0.08
0.08
1.25
1.25
0.35 0.5 0.65
1.0
3803 Group (Spec.L)
JEITA Package Code
P-LQFP64-14x14-0.80
RENESAS Code
PLQP0064GA-A
Previous Code
64P6U-A
MASS[Typ.]
0.7g
HD
*1
D
33
48
49
NOTE)
1. DIMENSIONS "*1" AND "*2"
DO NOT INCLUDE MOLD FLASH.
2. DIMENSION "*3" DOES NOT
INCLUDE TRIM OFFSET.
32
bp
c
HE
Reference
Symbol
*2
E
c1
b1
Terminal cross section
ZE
D
E
A2
HD
HE
A
A1
bp
b1
c
c1
64
17
A2
16
Index mark
c
ZD
A
1
A1
F
L
L1
y
*3
e
JEITA Package Code
P-TFLGA64-6x6-0.65
RENESAS Code
PTLG0064JA-A
e
x
y
ZD
ZE
L
L1
Detail F
bp
x
Previous Code
64F0G
w S B
Min Nom Max
13.9 14.0 14.1
13.9 14.0 14.1
1.4
15.8 16.0 16.2
15.8 16.0 16.2
1.7
0.1 0.2
0
0.32 0.37 0.42
0.35
0.09 0.145 0.20
0.125
0°
8°
0.8
0.20
0.10
1.0
1.0
0.3 0.5 0.7
1.0
MASS[Typ.]
0.07g
b1
S
AB
b
D
Dimension in Millimeters
S
w S A
AB
e
A
e
H
G
F
E
E
D
C
B
A
y S
x4
v
Index mark
(Laser mark)
Rev.1.01 Jan 25, 2008
REJ03B0212-0101
Page 117 of 117
1
2
3
Index mark
4
5
6
7
8
Reference Dimension in Millimeters
Symbol
Min
D
E
v
w
A
e
b
b1
x
y
Nom Max
6.0
6.0
0.15
0.20
1.05
0.65
0.31 0.35 0.39
0.39 0.43 0.47
0.08
0.10
REVISION HISTORY
Rev.
Date
1.00
Apr.2, 2007
-
1.01
Jan.25, 2008
110
3803 Group (Spec.L) Data Sheet
Description
Page
Summary
First edition issued
The title “Power source circuit timing characteristics (Flash memory version)” is
added and the value “2 ms” is revised from minimum value to maximum value.
(1/1)
Sales Strategic Planning Div.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Notes:
1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes
warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property
rights or any other rights of Renesas or any third party with respect to the information in this document.
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including,
but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass
destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws
and regulations, and procedures required by such laws and regulations.
4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this
document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document,
please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be
disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com )
5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a
result of errors or omissions in the information included in this document.
6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability
of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular
application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications
or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality
and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or
undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall
have no liability for damages arising out of the uses set forth above.
8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
(1) artificial life support devices or systems
(2) surgical implantations
(3) healthcare intervention (e.g., excision, administration of medication, etc.)
(4) any other purposes that pose a direct threat to human life
Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing
applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range,
movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages
arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain
rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage
caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software
alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as
swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have
any other inquiries.
http://www.renesas.com
RENESAS SALES OFFICES
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2377-3473
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001
Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: <603> 7955-9390, Fax: <603> 7955-9510
© 2008. Renesas Technology Corp., All rights reserved. Printed in Japan.
Colophon .7.2