ZL40510/14 Dual Output DVD and CD 4 Channel Laser Diode Drivers Data Sheet Features February 2005 • Single 5 V supply (±10%) • 150 mA low-noise read channel with 100 x current gain • Three 500 mA write channels with 240 x gain • Combined channel output 700 mA • Dual output for DVD/CD laser • Rise and fall times 1 ns typical • Oscillator, 500 MHz, 100 mA with external resistor control of frequency and amplitude Applications • Power Up/Down control • DVD±RW/RAM • LVDS control signals • DVD±R • > 2 kV ESD • CD-RW • Low Rth QFN package • CD-R • Contact Zarlink for available Custom Gain and Input Impedance options • Write optical drives • Laser Diode current switch • Supports double density DVD 19 Ordering Information INR 21 IN2 23 24 (tubes) 24 lead QFN (tape and reel) 24 lead QFN (tubes) 24 lead QFN (tape and reel) 24 lead QFN -40°C to +85°C PWR_UP 20 22 ZL40510LCE ZL40510LCF ZL40514LCE ZL40514LCF GND VCC_A GND IN3 OUTA OUTB GND GND_IN 1 2 EN2 /EN2 3 4 EN3 /EN3 5 6 EN4 /EN4 17 GND 16 GND IN4 18 VCC_B 15 14 VCC_IN 7 OSCEN 8 RFA RFB 9 10 RSA SELA RSB 13 11 12 Figure 1 - Functional Block Diagram 1 Zarlink Semiconductor Inc. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright 2004-2005, Zarlink Semiconductor Inc. All Rights Reserved. ZL40510/14 GND_IN IN4 IN3 IN2 INR PWR_UP Data Sheet 24 23 22 21 20 19 EN2 1 18 VCC_A /EN2 2 17 OUTA EN3 3 /EN3 4 EN4 /EN4 16 ZL40510 GND 13 SELA 7 8 9 10 11 12 RSB 6 RSA VCC_B RFB 14 RFA 5 OSCEN OUTB VCC_IN 15 Figure 2 - Pinout of 4x4 mm 24 Pin QFN (top view) Description The ZL40510/14 are high performance laser drivers capable of driving two separate cathode grounded laser diodes (e.g., 650 nm and 780 nm laser diodes). The ZL40510/14 contain a 150 mA low-noise read channel (ChR), and three 500 mA write channels (Ch2, Ch3 and Ch4). The read channel amplifies the positive current supplied at its reference input, INR, by a fixed factor of 100. Write channels amplify the positive currents supplied at its reference inputs IN2, IN3, and IN4 by a fixed factor of 240. An on-chip RF oscillator is provided for the reduction of laser mode hopping noise. The ZL40510 offers higher tolerance performance. 2 Zarlink Semiconductor Inc. ZL40510/14 Data Sheet Table of Contents 1.0 Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1 Read and Write Channel Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 On-chip RF Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Electrical and Optical Pulse Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 Specified Electrical Performance with 15 mm Interconnect and Zarlink ZLE40510/14 Evaluation Board. . 7 1.6 Application Layout Guide Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.7 ZLE40510/14 Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.0 Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.0 Evaluation Boards From Zarlink Semiconductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.0 Optical Pulse Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.0 Pin List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 6.0 Characteristic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7.0 I/O Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 8.0 Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 9.0 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 10.0 Example Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 10.1 Write Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 10.2 Oscillator Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 Zarlink Semiconductor Inc. ZL40510/14 Data Sheet List of Figures Figure 1 - Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2 - Pinout of 4x4 mm 24 Pin QFN (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Figure 3 - Pulse Response Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 4 - ZLE40510/14 Application Board Electrical Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 5 - Application Schematic Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 6 - Typical Optical Eye Diagram Response* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 7 - Write Channel 2, 3 and 4 IP/OP Transfer Characteristic/Temp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 8 - Read Channel IP/OP Transfer Characteristic/Temp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 9 - Write Channel 2, 3 or 4 IP/OP Transfer Characteristic/Vcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 10 - Write Channel 2, 3 or 4 IP/OP Best Fit Line% Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 11 - Write Channel 2, 3 or 4 ∆ lout% Variation with Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 12 - Write Channel 2, 3 or 4 ∆ lout% Variation with Vcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 13 - Oscillator Frequency/RF Vcc = 5 V, Temp = 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 14 - losc Out/Frequency/ RS = 1 K, 7.5 K, 11 K, Vcc = 5 V, Temp = 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 15 - losc Amplitude mA pk-pk/RSA or RSB Vcc = 5 V, Temp = 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 16 - losc/Frequency RS = 7.5 K, Vcc = 5 V, Temp = 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 17 - ∆ Freq% Variation with Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 18 - Oscillator Noise Spectral Density Vcc = 5 V, Temp = 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 19 - CMOS/LVTTL Input (PWR_UP, OSCEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 20 - Oscillator Resistors (RF, RS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 21 - Read Current Input (INR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 22 - Output (OUTA, OUTB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 23 - Write Current Input (IN2, IN3, IN4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 24 - LVDS Input (EN2, /EN2), (EN3, /EN3), (EN4, /EN4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 25 - Timing of Read or Write Channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 26 - Output Waveform Showing Addition of Read and Write Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 27 - Example of Write Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 28 - Example of Oscillator Waveform Superimposed on the Read Waveform . . . . . . . . . . . . . . . . . . . . . . 28 4 Zarlink Semiconductor Inc. ZL40510/14 1.0 Application Notes 1.1 Read and Write Channel Operation Data Sheet The read channel is activated by applying a 'High' signal to the PWR_UP pin. In this mode, the fast write channels can be enabled by applying a 'High' signal to the respective pair of write enable pins (EN2, /EN2), (EN3, /EN3) or (EN4, /EN4). The output currents of the four channels are summed together and output as a composite signal at either OUTA (if SELA select is 'High') or OUTB (if SELA select is 'Low'). This provides the ability to drive two different laser diodes with just one ZL40510/14. Voltage control of the channel reference inputs (INR, IN2, IN3 and IN4) can be achieved quite easily using an external resistor Rref in series with the reference channel input to convert a given reference potential Vref to an input current, Iin: I in = Vref Rref + Rin , where Rin is the input impedance of the respective reference channel. 1.2 On-chip RF Oscillator An on-chip RF oscillator is enabled if OSCEN = 'High', and its output signal is added to the appropriate current output (OUTA, if SELA select is 'High', or OUTB, if SELA select is 'Low'). The oscillator amplitude is set by an external resistor from RSA or RSB to GND. Its frequency is set by an external resistor RFA or RFB to GND. RSA and RFA are selected when SELA is ‘High’. The oscillator signal is summed with the programmed Write and Read levels before amplification to the output. The oscillator signal has zero DC level and +I_pk to –I_pk signal swing. Consequently, if the programmed DC level from the Write and Read Channels is less than the PK level programmed for the Oscillator, the combined signal will be clipped on the negative cycle of the signal. This will increase the harmonic content of the output signal and reduce the pk to pk amplitude output. 1.3 Thermal Considerations Package thermal resistance is 40°C/W under the EIA/JESD51-3 compliant PCB test board condition. Users should ensure that the junction temperature does not exceed 150°C. Thermal resistance from junction to case and to ambient is very much dependent on how the IC is mounted onto the board, on the PCB layout and on any heat extraction arrangements. Power consumption and system ambient operating temperature limits should be noted and careful thermal gradient calculations undertaken to ensure that the junction temperature never exceeds 150°C. 5 Zarlink Semiconductor Inc. ZL40510/14 1.4 Data Sheet Electrical and Optical Pulse Response Lfix = 3nH Iout En Vcc_A 2p K 500 15 C_out Lint Lfix = 3nH 17p K C_bypass Lint OutA ZL40510 Model Cd Lint=5nH , BW = 460MHz, Rd=7, Q=j20/(15+7) =0.9 Lint=5nH, BW = 460MHz, Rd=3, Q=j20/(15+3) = 1.11 Rd Vd Lint=7nH, BW = 411MHz, Rd=7, Q=j18/(15+7) = 0.8 Lint=7nH, BW = 411MHz, Rd=3, Q=j18/(15+3) = 1.0 Figure 3 - Pulse Response Model Figure 3 illustrates a simplified model of the typical ZL40510/14 and the application. The ZL40510/14 consists of an ideal switched current source and an equivalent model of the ZL40510/14 output stage. The Electrical Model for the Laser Diode is a Voltage source Vd (V_on) in series with the On Resistance Rd all in parallel with the Junction Capacitance Cd. This simplified model approximately represents the Laser Diode Electrical load when operated beyond the Laser Threshold. To a first approximation, the Optical output is proportional to the current flow in the Resistor Rd. The Laser Diode and the ZL40510/14 are connected together by interconnect tracks with the return current passing through the supply decoupling bypass capacitor between ground and output Vcc. The ZL40510/14 can be approximated to an ideal switched programmed current source with a propagation delay of Iout_on (1.2 nS) and a switch transition time of 400 ps. The final output electrical pulse response parameters, Trise, Tfall, Overshoot and Undershoot are determined by the combined electrical network as illustrated in Figure 3. For example, the Rise Time and Fall Time for large current steps can be slew rate limited by the combined interconnect and fixed interconnect inductance. The Fixed Inductance represents that associated with packaging and minimum interconnect distance. The Interconnect Inductance is that associated with the additional tracking between Laser Diode and the ZL40510/14 to accommodate application physical limitations. For example, if a pulse of 360 mA amplitude (40 mA to 400 mA) is to be switched in a time of 1 nS with the Vd = 1.6 V, then the maximum volt drop across the interconnect inductance is approximately 3.5 V (maximum Vpin for 500 mA output) – 1.6 V (Vdiode) = 1.9 V. Consequently, L*di/dt < 1.9 V. Hence, L < 1.9/ (0.36A/1 nS) = 5.3 nH. Small current step size Rise and Fall time will be determined by the Bandwidth of the combined network. This is dominated by the Interconnect Inductance and the output Capacitance. Similarly, the overshoot and undershoot will be determined by the Q of the network. This is a function of the Source Impedance from the ZL40510/14, the Interconnect inductance and the Load impedance of the Laser Diode. Figure 3 includes example simplified estimates of the Q and BW of the combined Laser Diode, ZL40510/14 and interconnect network for two different interconnect inductance values (5 nH and 7 nH) and two different Diode On resistance (3 Ohm and 7 Ohm). This simple analysis illustrates the change in BW and Q of the network depending on these parameters. This in turn effects the Rise Time and Fall time and the Overshoot and Undershoot performance achieved in the application. 6 Zarlink Semiconductor Inc. ZL40510/14 1.5 Data Sheet Specified Electrical Performance with 15 mm Interconnect and Zarlink ZLE40510/14 Evaluation Board The specified performance in the table are results based on the electrical measurements and simulations across full process corners using the Zarlink Evaluation Board using a 3.9 Ohm resistive load to ground. The track interconnect between ZL40510/14 and the 3.9 Ohm Resistor is 15 mm long and uses a 2 mm wide track on single sided FR4 board. The return path is via two 2 mm wide tracks spaced 0.25 mm either side of the track between output and the 3.9 Ohm resistor. The combined forward and return path forms a co planar transmission line with a characteristic impedance of approximately 120 Ohms. The tight coupled return paths carrying the return current reduce the effective series inductance (Leff) which can be approximated to: Leff = 2 * Lint * (1 - K) + 2 * Lfix * (1 - K). The ZLE40510 board has two positions for the Laser Diode at two different distances. (15 and 30 mm). • The measured value of Leff is 7 nH • The estimated value of Leff = 2 * 8 (1 – 0.5) = 8 nH The actual pulse response achieved in an application is thus dependent on the application. 1.6 Application Layout Guide Lines Minimize interconnect inductance by: a. Using Short Interconnect Distance b. Use wide interconnect tracks c. Keep the return path tightly coupled to the forward path. 7 Zarlink Semiconductor Inc. ZL40510/14 1.7 ZLE40510/14 Interconnect Figure 4 - ZLE40510/14 Application Board Electrical Interconnect 8 Zarlink Semiconductor Inc. Data Sheet ZL40510/14 2.0 Data Sheet Application Diagram 750R 750R 750R 620R 10K IN4 IN3 IN2 INR PWR_UP GND GND_IN 1nF 24 23 22 21 20 19 VCC_A EN2 1 /EN2 2 17 EN3 3 16 /EN3 4 15 OUTB EN4 5 14 VCC_B /EN4 6 13 SELA 18 ZL40510 OUTA GND VCC 8 9 10 11 12 VCC_IN OSCEN RFA RFB RSA RSB 470nF 7 470nF 470uF 4R7 750R 12k 12k 6k2 1nF 50R GND Figure 5 - Application Schematic Diagram 3.0 Evaluation Boards From Zarlink Semiconductor Zarlink Semiconductor provides an LDD evaluation board. This is primarily for those interested in performing their own assessment of the operation of the LDDs. Figure 5 shows a recommended application configuration. The inputs are connected via side launch SMA connectors. Please order as ZLE40510. 9 Zarlink Semiconductor Inc. ZL40510/14 4.0 Data Sheet Optical Pulse Response 5nS Figure 6 - Typical Optical Eye Diagram Response* * (Measured using Sanyo DL-7140-201S Infra Red Laser Mounted on ZLE40510 Application Board) (I read = 50 mA, I write =125 mA, at 15 mm with 200 MHz PRBS Pattern) Figure 6 illustrates the typical optical response measured with the ZL40510/14 mounted on the ZLE40510/14 application board driving a Sanyo DL-7140-201S Infra Red Laser. The test condition is driving a PRBS pattern at 200 MHz clock rate which is representative of a 16X DVD write pattern using Block Write Strategy with minimum write pulse of 2T duration. The Sanyo DL-7140-201S Infra Red Laser Diode On resistance is typically 3 Ohms which is representative of the On resistance of the Latest generation 250 mW pulsed High Power Red Laser Diodes that are targeted at 16X and 8X DVD. The pulse is measured stepping from a low level which is above the laser threshold thus avoiding the laser turn on transient which can distort the measured response. The ZL40510/14 exhibits excellent pulse response characteristics when used with the optimum interconnect. 10 Zarlink Semiconductor Inc. ZL40510/14 5.0 Data Sheet Pin List Pin No. Pin name Type Function 1 EN2 LVDS Positive digital control input for channel 2 2 /EN2 LVDS Negative digital control input for channel 2 3 EN3 LVDS Positive digital control input for channel 3 4 /EN3 LVDS Negative digital control input for channel 3 5 EN4 LVDS Positive digital control input for channel 4 6 /EN4 LVDS Negative digital control input for channel 4 7 VCC_IN supply +5 V Input power supply 8 OSCEN digital Oscillator enable control input, high active (TTL) 9 RFA analog Resistor to GND sets oscillator frequency when SELA = ’High’ 10 RFB analog Resistor to GND sets oscillator frequency when SELA = ’Low’ 11 RSA analog Resistor to GND sets oscillator amplitude when SELA = ’High’ 12 RSB analog Resistor to GND sets oscillator amplitude when SELA = ’Low’ 13 SELA digital Output select input; 'High' selects OUTA, 'Low' selects OUTB (TTL) 14 VCC_B supply Output B Vcc 15 OUTB analog Current output source B 16 GND supply Ground 17 OUTA analog Current output source A 18 VCC_A supply Output A Vcc 19 PWR_UP digital Digital chip enable control input, high active (CMOS) 20 INR analog Current input, Rin = 400 Ohms to GND 21 IN2 analog Current input, Rin = 250 Ohms to GND (Optional 500 Ohms) 22 IN3 analog Current input, Rin = 250 Ohms to GND (Optional 500 Ohms) 23 IN4 analog Current input, Rin = 250 Ohms to GND (Optional 500 Ohms) 24 GND_IN supply Ground for input circuit 11 Zarlink Semiconductor Inc. ZL40510/14 Data Sheet Absolute Maximum Ratings Characteristic Min. Typ. Max. Units Supply voltage (VCC, VCC_IN) -0.5 6.0 V Input voltage (INR, IN2, IN3, IN4) -0.5 6.0 V Input voltage (PWR_UP, EN2, /EN2, EN3, /EN3, EN4, /EN4, OSCEN, SELA) -0.5 (VCC_I N + 0.5) V Output voltage (OUTA, OUTB) -0.5 Vcc V 150 °C Max. Units 5.5 V Input voltage (INR) 0.7 V Input voltage (IN2, IN3, IN4) 0.7 V (VCCA, B-0.9) V Junction temperature Comments Operating Range Characteristic Min. Supply voltage (VCC, VCC_IN) Typ. 4.5 Output voltage (OUTA, OUTB) -0.3 Comments RF 1 kΩ External resistor to GND RS 1 kΩ External resistor to GND Operating temperature range, junction 0 150 °C Package Thermal Resistance Junction to Package Type 24 pin QFN Case RthJC ambient RthJA 40 Units K/W Comments Exposed paddle soldered to multi-layer PCB 12 Zarlink Semiconductor Inc. ZL40510/14 Data Sheet Electrical Characteristics Vcc = 5 V, Tamb = 25°C, INR = 400 µA, IN2 = IN3 = IN4 = 160 µA, PWR_UP = High, Ch2, Ch3, Ch4 disabled, OSCEN = Low, unless otherwise specified. Characteristic Min. Typ. Max. Units Comments Type Supply current, power down, IccPD 80 220 µA ENABLE = Low A Supply current, read mode, oscillator disabled, IccR0 69 84 mA INR = 400 µA A Supply current, read mode, oscillator enabled, IccR1 70 85 mA OSCEN = High, RF = 6.8 kOhm, RS = 8.2 kOhm, A Supply current, write mode, IccW 210 250 mA Ch2, Ch3, Ch4 enabled B Supply current, input off 18 mA Ch2, Ch3, Ch4 enabled INR = IN2 = IN3 = IN4 = 0 B Supply Current (into VCC-pin) SelA & OscEn Digital Inputs Logic low voltage Logic high voltage 0.8 2.2 Threshold level Logic low input current 1.68 A V A V Temperature stabilised B µA Vin = 0 V B 50 µA Vin = 3.3 V B 0.5 V CMOS compatible level A -50 Logic high input current V Power_Up Digital Input Logic low voltage Logic high voltage 2.7 V CMOS compatible level A Logic low input current -50 µA Vin = 0 V B 50 µA Vin = 3.3 V B 0 2.4 V Differential input voltage 100 600 mV Differential Input impedance 87 133 Ω Logic high input current LVDS Digital Inputs Input voltage range 110 Common mode input impedance 10 kΩ Note: A = 100% Tested B = Guaranteed by Characterization and Design C = Guaranteed by Simulation 13 Zarlink Semiconductor Inc. B V(EN2~/EN2) LVDS Compatible V(EN3~/EN3) LVDS Compatible V(EN4~/EN4) LVDS Compatible A B internal resistor to Vcc B ZL40510/14 Characteristic Min. Typ. Output current, ChR 150 200 Output current, Ch2, Ch3, Ch4 Total output current Max. Units Data Sheet Comments Type Current Outputs (OutA & OutB) mA Vout ≤ 3.5 V B 500 mA Channel enabled, INR = 0 µA, Vout ≤ 3.5 V,Iin = 2.8 mA A 700 mA Ch2, 3, 4 enabled, Vout ≤ 3.5 V A A Write Output current, zero input, Iout0 (ZL40510) 12 mA INR = IN2 = IN3 = IN4 = 0 µA, Ch2, or Ch3 or Ch4 enabled Write Output current, zero input, Iout0 (ZL40514) 15 mA INR = IN2 = IN3 = IN4 = 0 µA, Ch2, or Ch3 or Ch4 enabled Read Output current, zero input, Iout0 2.5 mA INR = IN2 = IN3 = IN4 = 0 µA, Ch2, 3 & 4 disabled A Input impedance (INR) 330 400 470 Ω Rin is to GND B Input impedance (IN2, IN3, IN4) 205 250 295 Ω Rin is to GND B +5 %/V Iout = 40 mA to 300 mA B Iout = 40 mA to 300 mA, Iin temp coefficient = 0 ppm/°C B Iout = 50 mA InR = 500 uA B Iout supply sensitivity (any channel) -5 Iout temperature sensitivity (any channel) Iout current output noise 300 ppm/° C 3 nA/ √Hz Current Output OutA & OutB Current gain, ChR, best fit 85 100 115 mA/m A Iout = 20 mA to 80 mA †Note 1 A Current gain, Ch2, best fit 205 240 275 mA/m A Iout = 20 mA to 120 mA † Note 2 A Current gain, Ch3, best fit 205 240 275 mA/m A Iout = 20 mA to 120 mA † Note 2 A Current gain, Ch4, best fit 205 240 275 mA/m A Iout = 20 mA to 120 mA † Note 2 A ZL40510 Output current offset, ChR, best fit. -1 8 mA Iout = 20 mA to 80 mA † Note 1 A Output current offset, Ch2, best fit -4 12 mA Iout = 20 mA to 120 mA † Note 2 A Output current offset, Ch3, best fit -4 12 mA Iout = 20 mA to 120 mA † Note 2 A 14 Zarlink Semiconductor Inc. ZL40510/14 Characteristic Min. Output current offset, Ch4, best fit Typ. Data Sheet Max. Units Comments Type -4 12 mA Iout = 20 mA to 120 mA † Note 2 A Output current offset, ChR, best fit. Note 3 -1 8 mA Iout = 20 mA to 80 mA † Note 1 A Output current offset, Ch2, best fit. Note 4 -7 15 mA Iout = 20 mA to 120 mA † Note 2 A Output current offset, Ch3, best fit. Note 4 -7 15 mA Iout = 20 mA to 120 mA † Note 2 A Output current offset, Ch4, best fit. Note 4 -7 15 mA Iout = 20 mA to 120 mA † Note 2 A Output current linearity (any channel). Note 3 -3.5 1.5 % Iout = 20 mA to 120 mA † Note 2 A Gain tracking, Ch2 to Ch3 to Ch4 -2.5 +2.5 % Iout = 20 mA to 120 mA † Note 2 A ZL40514 ZL40510 & Zl40514 Note: A = 100% Tested B = Guaranteed by Characterization and Design C= Guaranteed by Design Note 1: Gain, offset and linearity of a channel are derived from a best fit line (linear regression graph) to the following three operating points: Iout = 20mA, 50mA and 80mA. Note 2: Gain, offset and linearity of a channel are derived from a best fit line (linear regression graph) to the following three operating points: Iout = 20mA, 70mA and 120mA. Note 3: Best Fit output line through 20mA,50mA,80mA Note 4: Best Fit output line through 20mA,70mA,120mA † Electrical measurement into 3.9 Ohm to Gnd 15 Zarlink Semiconductor Inc. ZL40510/14 Characteristic Min. Data Sheet Typ. Max. Units Comments Type Channel rise time, (10% to 90%), tr2 0.9 1.2 ns 40 to 375 mA, Ch2, 3 or 4 pulsed B Channel fall time, (10% to 90%), tf2 1.1 1.4 ns 40 to 375 mA, Ch2, 3 or 4 pulsed B Output current overshoot (any write channel) 13 % 40 to 375 mA Ch2 3, 4 pulsed † B Output current undershoot (any write channel) 13 % 40 to 375 mA Ch2 3, 4 pulsed † B Timing Current Output OutA & OutB †‡ † ‡ Channel to Channel Enable Skew Tr 50 ps B Channel to Channel Enable Skew Tf 25 ps B Iout ON propagation delay, tonCh 1.4 1.8 ns 50% En High-Low to 50% Iout, any write channel B Iout OFF propagation delay, toffCh 1.2 1.6 ns 50% En Low-High to 50% Iout, any write channel B Amplifier -3dB bandwidth (ChR) 23 43 68 MHz INR = 400 µA C Amplifier -3dB bandwidth (Ch2, 3, 4) 6 11 16 MHz IN2, IN3, IN4 = 400 µA C Power_Up time, ton 1.5 3.5 µs 50% Enable Low-High to 50% Iout C Power_Up time, toff 20 33 ns 50% Enable High-Low to 50% Iout C Output A select delay 5 8 ns 50% DVD/CD select Low-High to 50% IOUTA C Output A deselect delay 5 8 ns 50% DVD/CD select High-Low to 50% IOUTA C Power_Up & SelA Note: A = 100% Tested B = Guaranteed by Characterization and Design C= Guaranteed by Design † (EN2, /EN2), (EN3, /EN3), (EN4, /EN4) input pulse rise and fall time = 0.4 ns. ‡ Parameter is measured Electrical Pulse Response using 3.9 Ohm load to gnd and Zarlink Application Board. Pulse response performance parameters Trise, Tfall, Overshoot and Undershoot can be limited by interconnect inductance. Optical Response is influenced by Laser Diode response. See Application Notes. 16 Zarlink Semiconductor Inc. ZL40510/14 Data Sheet Electrical Dynamic Characteristics Vcc = 5 V, Tamb = 25°C, INR = 400 uA, IN2 = IN3 = IN4 = 160 µA, PWR_UP = High, Ch2, Ch3, Ch4 disabled, OSCEN = Low, unless otherwise specified. Characteristic Min. Typ. Max. Units Comments Type 250 MHz RF = 16 kΩ, OSCEN = High B MHz RF = 2 kΩ, OSCEN = High B Oscillator Frequency adjust range Low Frequency adjust range High 575 Frequency tolerance (ZL40510) 338 375 412 MHz RF = 7.5 kΩ, OSCEN = High A Frequency tolerance (ZL40514) 322 375 428 MHz RF = 7.5 kΩ, OSCEN = High A ppm/ °C RF = 7.5 kΩ, OSCEN = High C mA pk to pk RS = 11 kΩ, OSCEN = High RF=9 K (350 MHz) InR = 1 mA B mA pk to pk RS = 1 kΩ, OSCEN = High RF = 9 K (330 MHz) InR = 1 mA B 200 Frequency temperature coefficient 36 Amplitude adjust range Low (RS=11KΩ) Amplitude adjust range High 100 (RS=1KΩ) Third Harmonic -30 dBC RS = 10 kΩ to 2 kΩ, OSCEN = High RF = 9 K (330 MHz) InR = 400 uA C Second Harmonic -20 dBC RS = 10 kΩ to 2 kΩ, OSCEN = High RF = 9 K (330 MHz) InR = 400 uA C Fosc= 250 MHz to 450 MHz, OSCEN = High, RS 1% C f = 375 MHz, RS = 7.5 kΩ, OSCEN = High C RS = 7.5 kΩ, RF = 9 kΩ to 4 kΩ B RF = 5.6 kΩ, OSCEN = High C Amplitude tolerance Amplitude (RS = 7.5 K) Amplitude flatness Amplitude temperature coefficient -20 0 20 % 42 mA pk to pk 4 dB 800 ppm/ °C Oscillator enable time, tonOsc 2 ns 50% OSCEN High-Low to 50% Iout B Oscillator disable time, toffOsc 3 ns 50% OSCEN Low-High to 50% Iout B Note: A = 100% Tested B = Guaranteed by Characterization and Design C= Guaranteed by Design † (EN2, /EN2), (EN3, /EN3), (EN4, /EN4) pulse rise and fall time = 0.4 ns. 17 Zarlink Semiconductor Inc. ZL40510/14 6.0 Characteristic Curves Figure 7 - Write Channel 2, 3 and 4 IP/OP Transfer Characteristic/Temp Figure 8 - Read Channel IP/OP Transfer Characteristic/Temp 18 Zarlink Semiconductor Inc. Data Sheet ZL40510/14 Figure 9 - Write Channel 2, 3 or 4 IP/OP Transfer Characteristic/Vcc Figure 10 - Write Channel 2, 3 or 4 IP/OP Best Fit Line% Error 19 Zarlink Semiconductor Inc. Data Sheet ZL40510/14 Figure 11 - Write Channel 2, 3 or 4 ∆ lout% Variation with Temperature Figure 12 - Write Channel 2, 3 or 4 ∆ lout% Variation with Vcc 20 Zarlink Semiconductor Inc. Data Sheet ZL40510/14 Figure 13 - Oscillator Frequency/RF Vcc = 5 V, Temp = 25°C Figure 14 - losc Out/Frequency/ RS = 1 K, 7.5 K, 11 K, Vcc = 5 V, Temp = 25°C 21 Zarlink Semiconductor Inc. Data Sheet ZL40510/14 Figure 15 - losc Amplitude mA pk-pk/RSA or RSB Vcc = 5 V, Temp = 25°C Figure 16 - losc/Frequency RS = 7.5 K, Vcc = 5 V, Temp = 25°C 22 Zarlink Semiconductor Inc. Data Sheet ZL40510/14 Figure 17 - ∆ Freq% Variation with Temperature Figure 18 - Oscillator Noise Spectral Density Vcc = 5 V, Temp = 25°C 23 Zarlink Semiconductor Inc. Data Sheet ZL40510/14 7.0 Data Sheet I/O Diagrams VCC 300k Figure 19 - CMOS/LVTTL Input (PWR_UP, OSCEN) VCC Vref Figure 20 - Oscillator Resistors (RF, RS) VCC 400R Figure 21 - Read Current Input (INR) 24 Zarlink Semiconductor Inc. ZL40510/14 Data Sheet VCC Figure 22 - Output (OUTA, OUTB) VCC 250R Figure 23 - Write Current Input (IN2, IN3, IN4) VCC 15k 15k 5k 5k 110R Figure 24 - LVDS Input (EN2, /EN2), (EN3, /EN3), (EN4, /EN4) 25 Zarlink Semiconductor Inc. ZL40510/14 8.0 Data Sheet Timing Waveforms Applying logic levels to the inputs, as shown in Table 1, gives the output waveform shown in Figure 26. PWR_UP EN2 EN3 EN4 OUTPUT 0 X X X OFF 1 0 0 0 READ 1 1 0 0 LEVEL 2 1 1 1 0 LEVEL 3 1 1 1 1 LEVEL 4 Note: 1 = logic high, 0 = logic low and X = "don’t care" Table 1 - Output Function for Set Logic Inputs 26 Zarlink Semiconductor Inc. ZL40510/14 9.0 Data Sheet Timing Diagrams /EN(n) EN(n) Iout=Iin(n)*gain Iout=0 t_on_ch t_off_ch Figure 25 - Timing of Read or Write Channels PWR_UP 50% En2 En3 En4 LEVEL 4 LEVEL 3 LEVEL 2 READ OFF tON_PWR_UP tON2 tON3 tON4 tOFF4 tOFF3 tOFF2 tOFF_PWR_UP Figure 26 - Output Waveform Showing Addition of Read and Write Levels 27 Zarlink Semiconductor Inc. ZL40510/14 10.0 Example Waveforms 10.1 Write Waveform Data Sheet The Write output waveform may be produced as shown in example 1, Figure 27. The Erase level is set by switching off both the Bias level and the Write level. The Write switching waveform is produced by switching off the Erase level and Switching on the Bias level and then modulating that with the Write level. The peak of the Write waveform is the sum of the Bias and the Write levels. WRITE INPUT ERASE BIAS WRITE ERASE WRITE OUTPUT ERASE BIAS Figure 27 - Example of Write Waveform NOTES: 1. Only the Write signal changes to modulate the output during the Write pulse. 2. Each of the Write Channels can provide up to 500 mA. It is not necessary to add together the output of more than one Write Channel to achieve 500 mA. 10.2 Oscillator Waveform The Oscillator may be enabled independently and is summed with the selected level. PWR_UP Osc_En 50% READ OFF Osc_tON Osc_tOFF Figure 28 - Example of Oscillator Waveform Superimposed on the Read Waveform NOTE: The amplitude of the Oscillator must be less than the programmed DC output level to avoid clipping and subsequent increase in harmonic distortion. 28 Zarlink Semiconductor Inc. For more information about all Zarlink products visit our Web Site at www.zarlink.com Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink. This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request. Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system conforms to the I2C Standard Specification as defined by Philips. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright Zarlink Semiconductor Inc. All Rights Reserved. TECHNICAL DOCUMENTATION - NOT FOR RESALE