Data Sheet, Rev. 6 March 2006 USS810 USB 2.0 Full-Speed/Low-Speed Transceiver 1 Features Complies with Universal Serial Bus Specification Rev. 2.0. Can be used as a USB device transceiver or a USB host transceiver. Supports full-speed (12 Mbits/s) and low-speed (1.5 Mbits/s) serial data rates. Includes two single-ended receivers with hysteresis. Low-power operation helps maximize battery life of portable electronic devices. Available in a small MLCC16 package measuring 3 mm x 3 mm. (A lead-free package is also available. See Ordering Information on page 14.) Supports a digital I/O voltage range from 1.75 V to 3.3 V. Supports the full industrial operating temperature range, −40 °C to +85 °C. 2 Description Agere’s USS810 is a Universal Serial Bus (USB) transceiver that is fully compliant with the Universal Serial Bus Specification Rev. 2.0. The USS810 can transmit and receive serial data at full-speed (12 Mbits/s) and low-speed (1.5 Mbits/s) data rates and, therefore, can be used as either a USB device transceiver or a USB host transceiver. Since the USS810 operates at digital I/O voltages between 1.75 V to 3.3 V, it is particularly suitable for portable electronic devices such as mobile phones, digital still cameras, personal digital assistants (PDAs), and a variety of information appliances. This transceiver provides an ideal interface to the physical layer of the universal serial bus for application-specific ICs (ASICs) and programmable logic devices (PLDs) with power supply voltages in the above range. The USB transceiver is currently available in an MLCC16 package that supports single-ended input data interface. 3 Suitable Applications Portable electronic devices, such as the following: Mobile phone Digital still camera Personal digital assistant (PDA) Information appliances USS810 USB 2.0 Full-Speed/Low-Speed Transceiver Data Sheet, Rev. 6 March 2006 Table of Contents Contents Page 1 2 3 4 5 Features ...............................................................................................................................................................1 Description ............................................................................................................................................................1 Suitable Applications ............................................................................................................................................1 Functional Diagram ..............................................................................................................................................3 Pin Information .....................................................................................................................................................3 5.1 Pin Descriptions ............................................................................................................................................ 4 6 Functional Description ..........................................................................................................................................5 6.1 Function Selection ........................................................................................................................................ 5 6.1 Operating Functions...................................................................................................................................... 5 7 Limiting Values .....................................................................................................................................................6 7.1 Absolute Maximum Ratings .......................................................................................................................... 6 8 Static Characteristics ............................................................................................................................................6 9 Dynamic Characteristics .......................................................................................................................................8 10 Test Information ................................................................................................................................................ 11 11 Package Outline Diagrams ............................................................................................................................... 12 11.1 16-Pin MLCC, 3 mm x 3 mm..................................................................................................................... 12 12 USB Application Support Contact Information .................................................................................................. 14 13 Ordering Information ......................................................................................................................................... 14 Figure Page Figure 1. USS810 Functional Diagram ..................................................................................................................... 3 Figure 2. USS810 MLCC Pin Diagram (Top View) ................................................................................................... 3 Figure 3. Rise and Fall Times ................................................................................................................................... 9 Figure 4. Timing of OE to D+, D– ........................................................................................................................... 10 Figure 5. Timing of D+, D– to RCV, VP, VM .......................................................................................................... 10 Figure 6. Timing of VO, FSE0 to D+, D– ................................................................................................................ 10 Figure 7. Load for D+, D– ....................................................................................................................................... 11 Table Page Table 1. USS810 Pin Description ............................................................................................................................ 4 Table 2. Function Table........................................................................................................................................... 5 Table 3. Transmit Function Using Single-Ended Input Data Interface (OE = L)...................................................... 5 Table 4. Receive Function (OE = H) ....................................................................................................................... 5 Table 5. Absolute Maximum Ratings....................................................................................................................... 6 Table 6. Recommended Operating Conditions ....................................................................................................... 6 Table 7. Static Characteristics: Supply Pins............................................................................................................ 6 Table 8. Static Characteristics: Digital Pins............................................................................................................. 7 Table 9. Static Characteristics: Analog I/O Pins (D+, D–) ....................................................................................... 7 Table 10. Dynamic Characteristics: Analog I/O Pins (D+, D–)1 .............................................................................. 8 Table 11. Pitch Variation ....................................................................................................................................... 13 Table 12. Common Dimensions ............................................................................................................................ 13 2 Agere Systems Inc. Data Sheet, Rev. 6 March 2006 USS810 USB 2.0 Full-Speed/Low-Speed Transceiver 4 Functional Diagram VDD VDD(I/O) VPU(3.3) SOFTCON OE SPEED FSE0 D+ 1.5 kΩ1 D– 24 Ω (1%) VO SUSPND RCV 24 Ω (1%) LEVEL SHIFTER + – VP VM GND 1. Connect pull-up to D– for low-speed operation. Figure 1. USS810 Functional Diagram 5 Pin Information SOFTCON VPU(3.3) NU VDD 16 15 14 13 OE 1 12 FSE0 RCV 2 11 VO VP 3 10 D+ VM 4 9 D– USS810 MLCC 5 6 7 8 SUSPND GND VDD(I/O) SPEED Figure 2. USS810 MLCC Pin Diagram (Top View) Agere Systems Inc. 3 USS810 USB 2.0 Full-Speed/Low-Speed Transceiver Data Sheet, Rev. 6 March 2006 5 Pin Information (continued) 5.1 Pin Descriptions Table 1. USS810 Pin Description Symbol MLCC Pin Type Description VPU(3.3) 15 — Pull-Up Voltage Source. Connect this pin through an external 1.5 kΩ resistor to D+ (for full-speed operation) or D– (for low-speed operation). This pin’s function is controlled by the SOFTCON input pin. To ensure zero pull-up current, set SOFTCON = low to cause VPU(3.3) to float (high impedance); when SOFTCON = high, VPU(3.3) = 3.3 V. SOFTCON 16 I Software-Controlled USB Connection. This pin allows USB connect/disconnect signaling to be controlled by software. A high level on this pin applies 3.3 V to pin VPU(3.3), which is connected to an external 1.5 kΩ pull-up resistor. OE 1 1 I Output Enable. This active-low pin enables the transceiver to transmit data on the USB bus. RCV 2 O Differential Data Receiver. When the SUSPND input is high, this pin is driven low. The state of RCV is unknown when FSE0 = 1. VP 3 O Single-Ended D+ Receiver. The VP pin is used for external detection of singleended zero (SE0), error conditions, and speed of connected device. VM 4 O Single-Ended D− Receiver. The VM pin is used for external detection of singleended zero (SE0), error conditions, and speed of connected device. SUSPND 5 I Suspend. When SUSPND is high, it enables a low-power state while the USB is inactive and drives output RCV to a low level. No dc power is consumed when SUSPND is high. GND 6 P Device Ground. VDD(I/O) 7 P Power Supply for Digital I/O. 1.75 V to 3.3 V. SPEED 8 I Speed Selection. This pin adjusts the slew rate of differential data outputs D+ and D–. Tie this pin low to enable low-speed data transmission (1.5 Mbits/s) and high to enable full-speed data transmission (12 Mbits/s). D– 9 D+ 10 Analog Negative USB Differential Data Bus. If this device is used in a USB peripheral I/O application, connect an external 24 Ω ± 1% resistor in series with this signal in order to meet the USB Specification, Rev. 2.0 impedance requirement. Connect this signal to pin VPU(3.3) via a 1.5 kΩ ± 5% resistor for low-speed USB peripheral applications. Analog Positive USB Differential Data Bus. If this device is used in a USB peripheral I/O application, connect an external 24 Ω ± 1% resistor in series with this signal in order to meet the USB Specification Rev. 2.0 impedance requirement. Connect this signal to pin VPU(3.3) via a 1.5 kΩ ± 5% resistor for full-speed USB peripheral applications. VO 11 I Single-Ended Data Input. Refer to Table 3.. FSE0 VDD 12 I 13 P 14 — Single-Ended Zero Mode. Refer to Table 3.. 3.3 V Power Supply. This voltage supply is used for the USB signals D+/D– and the internal level shifter. Not Usable. No external connections to this pin are allowed. NU 1. Symbol names with an overscore (e.g., NAME) indicate active-low signals. 4 Agere Systems Inc. Data Sheet, Rev. 6 March 2006 USS810 USB 2.0 Full-Speed/Low-Speed Transceiver 6 Functional Description 6.1 Function Selection Table 2. Function Table SUSPND (D+, D–) RCV VP/VM Active Active Normal transmit (differential receiver active) Active L2 Active Active L2 Active Receiving Transmitting during suspend (differential receiver inactive) Low-power state L OE L L H H L Transmitting and Receiving Receiving1 High-Z 3 H H High-Z 3 Function 1. Signal levels on (D+, D–) are determined by other USB devices and external pull-up/down resistors. 2. In suspend mode (SUSPND = high), the differential receiver is inactive and output RCV is always low. Out-of-suspend (K) signaling is detected via the single-ended receivers VP and VM. 3. In suspend mode, the D+/D– output is tristated. 6.1 Operating Functions Table 3. Transmit Function Using Single-Ended Input Data Interface (OE = L) FSE0 VO L L H H L H L H Data Differential logic 0 Differential logic 1 SE0 SE0 Table 4. Receive Function (OE = H) (D+, D–) RCV VP VM Differential Logic 0 Differential Logic 1 SE0 L H Unknown1 L H L H L L 1. The state of RCV is unknown when FSE0 = 1. Agere Systems Inc. 5 USS810 USB 2.0 Full-Speed/Low-Speed Transceiver Data Sheet, Rev. 6 March 2006 7 Limiting Values 7.1 Absolute Maximum Ratings Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability. Table 5. Absolute Maximum Ratings Symbol VDD(I/O) VDD(3.3) VI Tstg Parameter Conditions Min Max Unit — — — — 1.7 3.0 –0.5 –40 3.3 3.6 VDD + 0.5 125 V V V °C I/O Supply Voltage 3.3 V Supply Voltage dc Input Voltage Storage Temperature Table 6. Recommended Operating Conditions Symbol VDD(I/O) VDD(3.3) VI VI(AI/O) Tamb Parameter Conditions I/O Supply Voltage — 3.3 V Supply Voltage 3.3 V operation Input Voltage — Input Voltage on Analog — I/O Pins (D+/D–) Operating Ambient — Temperature Min Typical Max Unit 1.75 3.135 0 0 — 3.3 — — 3.3 3.465 3.3 VDD(I/O) V V V V –40 — 85 °C 8 Static Characteristics Table 7. Static Characteristics: Supply Pins VDD = 3.3 V; VDD(I/O) = 1.75 V to 3.3 V; VGND = 0 V; Tamb = –40 °C to +85 °C; unless otherwise specified. Symbol Conditions Min Typical Max Unit IDD Operating Supply Current Full-speed transmit and receive — 5 8 mA IDD(I/O) Operating I/O Supply Current Suspend Supply Current Full-speed transmit and receive at 12 Mbits/s SUSPND = high — — 100 µA — — 10 µA IDD(susp) 6 Parameter Agere Systems Inc. Data Sheet, Rev. 6 March 2006 USS810 USB 2.0 Full-Speed/Low-Speed Transceiver 8 Static Characteristics (continued) Table 8. Static Characteristics: Digital Pins VDD(I/O) = 1.75 V to 3.3 V; VGND = 0 V; Tamb = −40 °C to +85 °C; unless otherwise specified. Symbol Parameter Conditions Min Typical Max Unit VDD(I/O) = 1.75 V to 3.3 V Input Levels: VIL Low-level Input Voltage High-level Input Voltage VIH Output Levels: VOL Low-level Output Voltage High-level Output Voltage VOH — — — 1.7 — — 0.7 — V V IOL ≤ 6 mA IOH ≤ 6 mA — VDD – 0.4 — — 0.4 — V V Table 9. Static Characteristics: Analog I/O Pins (D+, D–) VDD = 3.3 V; VGND = 0 V; Tamb = −40 °C to +85 °C; unless otherwise specified. Symbol Parameter Conditions Min Typical Max Unit 0.2 0 — — — VDD V V 0.3 — — V Input Levels VDI VCM Differential Receiver Differential Input Sensitivity IVI(D+) – VI(D–)I Differential Common-mode Includes VDI range Voltage Single-Ended Receiver Hysteresis Voltage — Vhys Output Levels VOL Low-level Output Voltage VOH High-level Output Voltage Leakage Current ILZ High-impedance Leakage Current Capacitance CIN Transceiver Capacitance Agere Systems Inc. RL = 1.5 kΩ to 3.6 V RL = 15 kΩ to GND — — 0.3 V 2.8 — 3.6 V OE = 1 –10 — 10 µA Pin to GND — — 3 pF 7 USS810 USB 2.0 Full-Speed/Low-Speed Transceiver Data Sheet, Rev. 6 March 2006 9 Dynamic Characteristics Table 10. Dynamic Characteristics: Analog I/O Pins (D+, D–)1 VDD = 3.3 V; VDD(I/O) = 1.75 V to 3.3 V; VGND = 0 V; Tamb = –40 °C to +85 °C; unless otherwise specified. Symbol Parameter Conditions Min Typical Max Unit Driver Characteristics Full-Speed Mode (Speed = 1) tR Rise Time OE = 0, CL = 50 pF; 10% to 90% of |VOL − VOH|; see Figure 3.. 4 — 20 ns tF Fall Time OE = 0, CL = 50 pF; 90% to 10% of |VOH − VOL|; see Figure 3. 4 — 20 ns Differential Rise/Fall Time Matching OE = 0, CL = 50 pF. 90 100 110 % Output Signal Crossover Voltage OE = 0, CL = 50 pF: see Figures 4, 5, 6. 1.3 — 2.0 V DRFM VCRS Low-Speed Mode (Speed = 0) tR Rise Time OE = 0, CL = 50 pF or 350 pF; 10% to 90% of |VOL − VOH|; see Figure 3. 75 — 300 ns tF Fall Time OE = 0, CL = 50 pF or 350 pF; 90% to 10% of |VOH − VOL|; see Figure 3. 75 — 300 ns DRFM Differential Rise/Fall Time Matching CL = 50 pF or 350 pF. 80 100 120 % VCRS Output Signal Crossover Voltage 1.3 — 2.0 V — — 18 ns — — 18 ns — — 2.5 ns — — 2.5 ns — — 20 ns — — 20 ns CL = 50 pF or 350 pF; see Figures 4, 5, 6. Driver Timing Full-Speed Mode (Speed = 1) tPLH tPHL tPHZ tPLZ tPZH tPZL Driver Propagation Delay: OE = 0, CL = 50 pF; see Low-to-High (VO, FSE0 to D+, D–) Figure 6. OE = 0, CL = 50 pF; see Driver Propagation Delay: High-to-Low (VO, FSE0 to D+, D–) Figure 6. Tristate Output Disable: High-to-Off OE switching; see Figure 4. (OE to D+, D−) Tristate Output Disable: Low-to-Off OE switching; see Figure 4. (OE to D+, D−) Tristate Output Enable: Off-to-High OE switching; see Figure 4. (OE to D+, D−) Tristate Output Enable: Off-to-Low OE switching; see Figure 4. (OE to D+, D−) 1. Test circuit: see Figure 7. 8 Agere Systems Inc. Data Sheet, Rev. 6 March 2006 USS810 USB 2.0 Full-Speed/Low-Speed Transceiver 9 Dynamic Characteristics (continued) Table 10. Dynamic Characteristics: Analog I/O Pins (D+, D–)1 (continued) Symbol Parameter Conditions Min Typical Max Unit — 250 ns — 250 ns — 4 ns — 4 ns — 400 ns — 400 ns — 5 ns — 5 ns — 3 ns — 3 ns Driver Timing (continued) Low-Speed Mode (SPEED = 0) tPLH tPHL tPHZ tPLZ tPZH tPZL tPLH(dif) tPHL(dif) tPLH(se) tPHL(se) — Driver Propagation Delay: OE = 0, CL = 50 pF; see Low-to-High (VO, FSE0 to D+, D–) Figure 6. — OE = 0, CL = 50 pF; see Driver Propagation Delay: High-to-Low (VO, FSE0 to D+, D–) Figure 6. Tristate Output Disable: High-to-Off OE switching; see Figure 4. — (OE to D+, D−) — Tristate Output Disable: Low-to-Off OE switching; see Figure 4. (OE to D+, D−) — Tristate Output Enable: Off-to-High OE switching; see Figure 4. (OE to D+, D−) — Tristate Output Enable: Off-to-Low OE switching; see Figure (OE to D+, D−) 4.. Receiver Timing (Full-Speed and Low-Speed Mode) Differential Receiver See Figure 5.. — Propagation Delay; Low-to-High (D+, D− to RCV) See Figure 5.. — Propagation Delay; High-to-Low (D+, D− to RCV) Single-Ended Receiver See Figure 5.. — Propagation Delay; Low-to-High (D+, D− to VP, VM) See Figure 5.. — Propagation Delay; High-to-Low (D+, D− to VP, VM) 1. Test circuit: see Figure 7 . t FFtF , t LF t FRtR , t LR VOH 90% 10% VOL 90% 10% MGS963 Figure 3. Rise and Fall Times Agere Systems Inc. 9 USS810 USB 2.0 Full-Speed/Low-Speed Transceiver Data Sheet, Rev. 6 March 2006 9 Dynamic Characteristics (continued) 1.65 1.75 V V LOGIC INPUT logic input 0.9 V 0.9 V 0V t PZH t PZL VOH t PHZ t PLZ VOH −0.3 V differential DIFFERENTIAL data lines DATA LINES VCRS VOL +0.3 V VOL MGS966 Figure 4. Timing of OE to D+, D– 2.0 V DIFFERENTIAL differential DATAdata LINES lines VCRS VCRS 0.8 V t PLH(rcv) t PLH(se) t PHL(rcv) t PHL(se) VOH LOGIC OUTPUT logic output 0.9 V 0.9 V VOL MGS965 Figure 5. Timing of D+, D– to RCV, VP, VM 1.75 V 1.65 V LOGIC INPUT logic input 0.9 V 0.9 V 0V t PLH(drv) t PHL(drv) VOH DIFFERENTIAL differential DATA data LINES lines VCRS VOL VCRS MGS964 Figure 6. Timing of VO, FSE0 to D+, D– 10 Agere Systems Inc. Data Sheet, Rev. 6 March 2006 USS810 USB 2.0 Full-Speed/Low-Speed Transceiver 10 Test Information VPU(3.3) 1.5 kΩ1 DUT TEST POINT D+/D– 24 Ω2 CL 15 kΩ Load Capacitance: CL = 50 pF (full-speed mode). CL = 50 pF or 350 pF (low-speed mode). 1. Full-speed mode: connected to D+, low-speed mode: connected to D–. 2. Complies with USB2.0. Figure 7. Load for D+, D– Agere Systems Inc. 11 USS810 USB 2.0 Full-Speed/Low-Speed Transceiver Data Sheet, Rev. 6 March 2006 11 Package Outline Diagram 11.1 16-Pin MLCC, 3 mm x 3 mm Dimensions are in millimeters. 4 2X 0.10 M C A B 0.05 M C b 0.10 C A A SEE DETAIL A FOR PIN #1 ID AND TIE BAR MARK OPTION D2 D D/2 D2/2 D1 D1/2 4X P 2X N PIN #1 ID R0.20 N 0.10 C B 4X P 1 5 6 1 E/2 E1/2 0.45 2 E1 0.50 DIA 2 E E2/2 E2 (Ne – 1) X e REF. (MIN. 0.35) 0.10 C B (MIN. 0.35) B 2X e TOP VIEW 0.10 C (Nd – 1) X e REF. A 2X BOTTOM VIEW 0.05 C 0.10 C DATUM A OR B A1 NX R STANDARD A2 A3 (L) DETAIL A - PIN# ID AND TIEBAR MARK FIGURES 4 b 10 e/2 e FOR EVEN TERMINAL/SIDE A1 GENERAL: NOMINAL EXPOSED PAD (D2/E2) DIMENSION = NOMINAL DIE ATACHED PAD DIMENSION – 0. SECTION C-C SCALE: NONE NOMINAL DIE ATTACH PAD DIMENSION 0.10 C SEATING PLANE NOMINAL EXPOSED PAD (D2/E2) DIMENSION 0.10 <DIE ATTACH PAD X — SECTION VIEW> SIDE VIEW Notes (Refer also to Tables 11 and 12): 1. Die thickness allowable is 0.305 mm maximum (0.012 inches maximum). 2. Dimensioning and tolerances conform to ASME Y14.5M-1994. 3. N is the number of terminals. Nd is the number of terminals in X direction, and Ne is the number of terminals in the Y direction. 4. Dimension b applies to plated terminal and is measured between 0.2 mm and 0.25 mm from terminal tip. 5. The pin #1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body. 6. Exact shape and size of this feature is optional. 7. All dimensions are in millimeters. 8. The shape shown on four corners is not actual I/O. 9. Bilateral coplanarity zone applies to the exposed pad as well as the terminals. 10. Applied only for terminals. 11. Q and R apply only for straight tie bar shapes. 12 Agere Systems Inc. Data Sheet, Rev. 6 March 2006 USS810 USB 2.0 Full-Speed/Low-Speed Transceiver 11 Package Outline Diagram (continued) Table 11. Pitch Variation Symbol e N Nd Ne L b D2 E2 Pitch Variation Min Nom 0.3 0.18 1.40 1.40 0.5 BSC 16 4 4 0.4 0.23 1.50 1.50 Notes Max — 3 3 3 — 4 — — 0.5 0.3 1.60 1.60 Table 12. Common Dimensions Symbol A A1 A2 A3 D D1 E E1 θ P R Agere Systems Inc. Common Dimensions Notes Min Nom Max 0.8 0.0 0.6 0.85 0.01 0.65 0.20 REF 3.0 BSC 2.75 BSC 3.0 BSC 2.75 BSC — 0.42 0.17 0.9 0.05 0.70 0 0.24 0.13 12 0.6 0.23 — 11 — — — — — — — — 12 13 USS810 USB 2.0 Full-Speed/Low-Speed Transceiver Data Sheet, Rev. 6 March 2006 12 USB Application Support Contact Information E-mail: [email protected] 13 Ordering Information Device Code USS810M-D USS810M-DT L-USS810M-D*† L-USS810M-D*† Description USS810 in dry-packed tube USS810 in dry-packed tape and reel Lead-free USS810 in dry-packed tube Lead-free USS810 in dry-packed tape and reel Package Comcode MLCC16 MLCC16 MLCC16 MLCC16 700057479 700058082 700067200 700067201 * Lead-free: No intentional addition of lead, and less than 1000 ppm. † Agere Systems lead-free devices are fully compliant with the Restriction of Hazardous Substances (RoHS) directive that restricts the content of six hazardous substances in electronic equipment in the European Union. Beginning July 1, 2006, electronic equipment sold in the European Union must be manufactured in accordance with the standards set by the RoHS directive. For additional information, contact your Agere Systems Account Manager or the following: INTERNET: Home: http://www.agere.com Sales: http://www.agere.com/sales E-MAIL: [email protected] N. AMERICA: Agere Systems Inc., Lehigh Valley Central Campus, Room 10A-301C, 1110 American Parkway NE, Allentown, PA 18109-9138 1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106) ASIA: CHINA: (86) 21-54614688 (Shanghai), (86) 755-25881122 (Shenzhen), (86) 10-65391096 (Beijing) JAPAN: (81) 3-5421-1600 (Tokyo), KOREA: (82) 2-767-1850 (Seoul), SINGAPORE: (65) 6741-9855, TAIWAN: (886) 2-2725-5858 (Taipei) EUROPE: Tel. (44) 1344 296 400 Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. Agere, Agere Systems, and the Agere logo are registered trademarks of Agere Systems Inc. Copyright © 2006 Agere Systems Inc. All Rights Reserved March 2006 DS05-035CMPR-6 (Replaces DS05-035CMPR-5)