APEX PB58A

������������������������
������������
��������������������������������������������������������������
� � � � � � � � � � � � � � �
FEATURES
• WIDE SUPPLY RANGE — ±15V to ±150V
• HIGH OUTPUT CURRENT —
1.5A Continuous (PB58)
2.0A Continuous (PB58A)
• VOLTAGE AND CURRENT GAIN
• HIGH SLEW — 50V/µs Minimum (PB58)
75V/µs Minimum (PB58A)
• PROGRAMMABLE OUTPUT CURRENT LIMIT
• HIGH POWER BANDWIDTH — 320 kHz Minimum
• LOW QUIESCENT CURRENT — 12mA Typical
• EVALUATION KIT — See EK50
8-PIN TO-3
PACKAGE STYLE CE
EQUIVALENT SCHEMATIC
�
���
APPLICATIONS
• HIGH VOLTAGE INSTRUMENTATION
• Electrostatic TRANSDUCERS & DEFLECTION
• Programmable Power Supplies Up to 280V p-p
��
��
DESCRIPTION
The PB58 is a high voltage, high current amplifier designed
to provide voltage and current gain for a small signal, general
purpose op amp. Including the power booster within the feedback loop of the driver amplifier results in a composite amplifier
with the accuracy of the driver and the extended output voltage
range and current capability of the booster. The PB58 can also
be used without a driver in some applications, requiring only
an external current limit resistor to function properly.
The output stage utilizes complementary MOSFETs, providing symmetrical output impedance and eliminating second
breakdown limitations imposed by Bipolar Transistors. Internal
feedback and gainset resistors are provided for a pin-strapable
gain of 3. Additional gain can be achieved with a single external
resistor. Compensation is not required for most driver/gain
configurations, but can be accomplished with a single external
capacitor. Enormous flexibility is provided through the choice
of driver amplifier, current limit, supply voltage, voltage gain,
and compensation.
This hybrid circuit utilizes a beryllia (BeO) substrate, thick
film resistors, ceramic capacitors and semiconductor chips to
maximize reliability, minimize size and give top performance.
Ultrasonically bonded aluminum wires provide reliable interconnections at all operating temperatures. The 8-pin TO-3
package is electrically isolated and hermetically sealed using
one-shot resistance welding. The use of compressible isolation
washers voids the warranty.
TYPICAL APPLICATION
���
��
����
��
���
����
Figure 1. Inverting
composite amplifier.
��
��
���
���
����
���
��
�
��
��
��
���� ����
�
���
�
���
����
�
��
��
���
�
���
����
�
��
��
���
���
�
EXTERNAL CONNECTIONS
���
��
�
���
�
�
�� �
���
��������
���
�
��� �
��
���
��
�
�
����
����
��
��
���
��
��
��
APEX MICROTECHNOLOGY CORPORATION • TELEPHONE (520) 690-8600 • FAX (520) 888-3329 • ORDERS (520) 690-8601 • EMAIL [email protected]
1
PB58 • PB58A
ABSOLUTE MAXIMUM RATINGS
ABSOLUTE MAXIMUM RATINGS
SPECIFICATIONS
SUPPLY VOLTAGE, +VS to –VS
OUTPUT CURRENT, within SOA
POWER DISSIPATION, internal at TC = 25°C1
INPUT VOLTAGE, referred to COM
TEMPERATURE, pin solder—10 sec max
TEMPERATURE, junction1
TEMPERATURE, storage
OPERATING TEMPERATURE RANGE, case
300V
2.0A
83W
±15V
300°C
175°C
–65 to +150°C
–55 to +125°C
SPECIFICATIONS
PARAMETER
TEST CONDITIONS2
INPUT
OFFSET VOLTAGE, initial
OFFSET VOLTAGE, vs. temperature
INPUT IMPEDANCE, DC
INPUT CAPACITANCE
CLOSED LOOP GAIN RANGE
GAIN ACCURACY, internal Rg, Rf
GAIN ACCURACY, external Rf
PHASE SHIFT
OUTPUT
VOLTAGE SWING
VOLTAGE SWING
VOLTAGE SWING
CURRENT, continuous
SLEW RATE
CAPACITIVE LOAD
SETTLING TIME to .1%
POWER BANDWIDTH
SMALL SIGNAL BANDWIDTH
SMALL SIGNAL BANDWIDTH
POWER SUPPLY
VOLTAGE, ±VS4
CURRENT, quiescent
THERMAL
RESISTANCE, AC junction to case5
RESISTANCE, DC junction to case
RESISTANCE, junction to air
TEMPERATURE RANGE, case
MIN
Full temperature range3
25
3
AV = 3
AV = 10
f = 10kHz, AVCL = 10, CC = 22pF
f = 200kHz, AVCL = 10, CC = 22pF
Io = 1.5A (PB58), 2A (PB58A)
Io = 1A
Io = .1A
Full temperature range
Full temperature range
RL = 100Ω, 2V step
VC = 100 Vpp
CC = 22pF, AV = 25, Vcc = ±100
CC = 22pF, AV = 3, Vcc = ±30
Full temperature range
VS = ±15
VS = ±60
VS = ±150
Full temp. range, f > 60Hz
Full temp. range, f < 60Hz
Full temperature range
Meets full range specifications
VS–11
VS–10
VS–8
1.5
50
160
±156
–25
PB58
TYP
±.75
–4.5
50
3
10
±10
±15
10
60
MAX
MIN
±1.75
–7
*
25
±15
±25
VS –8
VS –7
VS –5
*
VS–15
*
*
2.0
75
100
2200
2
320
100
1
240
±60
11
12
14
±150
1.2
1.6
30
25
1.3
1.8
*
18
85
*
PB58A
TYP
*
*
*
*
*
*
*
*
*
MAX
UNITS
±1.0
*
V
mV/°C
kΩ
pF
V/V
%
%
°
°
*
*
*
VS–11
*
*
V
V
V
A
V/µs
pF
µs
kHz
kHz
MHz
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
V
mA
mA
mA
°C/W
°C/W
°C/W
°C
NOTES: * The specification of PB58A is identical to the specification for PB58 in applicable column to the left.
1. Long term operation at the maximum junction temperature will result in reduced product life. Derate internal power dissipation to
achieve high MTTF (Mean Time to Failure).
2. The power supply voltage specified under typical (TYP) applies, TC = 25°C unless otherwise noted.
3. Guaranteed by design but not tested.
4. +VS and –VS denote the positive and negative supply rail respectively.
5. Rating applies if the output current alternates between both output transistors at a rate faster than 60Hz.
6. +VS/–VS must be at least 15V above/below COM.
CAUTION
The PB58 is constructed from MOSFET transistors. ESD handling procedures must be observed.
The internal substrate contains beryllia (BeO). Do not break the seal. If accidentally broken, do not crush, machine, or
subject to temperatures in excess of 850°C to avoid generating toxic fumes.
APEX MICROTECHNOLOGY CORPORATION • 5980 NORTH SHANNON ROAD • TUCSON, ARIZONA 85741 • USA • APPLICATIONS HOTLINE: 1 (800) 546-2739
2
PB58 • PB58A
���������
��
��������
�
���������
�����������������
��
��
�������
�������
�
���
�
��
��
�� ��� ���
�������������������������
����������������������
���
��
��
��
��
��
����
����
��
��
�����������������
���
����
���������
����
��
���
���
��
���
��
�
���
���
��
���
��
��
���
�������������������
��
��������������
��
��
����
���
�����������������
���
�
���
�
��
��
�� ��� ���
�������������������������
��
���
���������
���
��������������������
�
����
���
��������������
���
���������
���
�
�����
�
��
��
�� ��� ���
�������������������������
�������������������
��������������
��������
�����������
�
��
�
�
���
�������������������������
�����������������������������
��������������������������
��
�������
����
��
���
�����������������
���
���
���
��
��������
�
���������
��
��
���������������������
�
���
��
�
��
��
��� ����
��
�����������������
����
���
���
�
���
����������������������
�
����
�
���
�
��
����
�
�
���
����
�
���������������������
�������������������
��
��
�
��
��
�� ��� ���
�������������������������
��
��
�
���
��
�
���
�
���
��
�
���������������������
����������
��
�
��
��
�� ��� ���
�������������������������
����������������������
�
���
�� ��
�����
�
�
������������������������
��
��
��������������������
��
� �
�� ���
�
��������������������
��
���
�����������������������
��
���
�������������������������������������
�������������
�
��
��
����������������������
��������������
���
������������������������
��������������������������������
TYPICAL PERFORMANCE
GRAPHS
����
���
���
�
�
�
�
�
������������
�
�
�
����
���
���
��
��
�����������������
���
APEX MICROTECHNOLOGY CORPORATION • TELEPHONE (520) 690-8600 • FAX (520) 888-3329 • ORDERS (520) 690-8601 • EMAIL [email protected]
3
PB58 • PB58A
OPERATING
CONSIDERATIONS
GENERAL
Please read Application Note 1 "General Operating Considerations" which covers stability, supplies, heat sinking,
mounting, current limit, SOA interpretation, and specification
interpretation. Visit www.apexmicrotech.com for design tools
that help automate tasks such as calculations for stability,
internal power dissipation, current limit; heat sink selection;
Apex’s complete Application Notes library; Technical Seminar
Workbook; and Evaluation Kits.
CURRENT LIMIT
����������������������������������
For proper operation, the current limit resistor (RCL) must be
connected as shown in the external connection diagram. The
minimum value is 0.33Ω with a maximum practical value of
47Ω. For optimum reliability the resistor value should be set
as high as possible. The value is calculated as follows: +IL=
.65/RCL + .010, -IL = .65/RCL.
���
�
�
�
��
��
��
���
��
���
���
��
��
���
��
���
��
��
�
��
�
��
�
��
��
�
�
��
�
���
��
��
��
��
��
��
�
�
���
��
�
��
�
��
��
��
�
��
STABILITY
Stability can be maximized by observing the following
guidelines:
1. Operate the booster in the lowest practical gain.
2. Operate the driver amplifier in the highest practical effective
gain.
3. Keep gain-bandwidth product of the driver lower than the
closed loop bandwidth of the booster.
4. Minimize phase shift within the loop.
A good compromise for (1) and (2) is to set booster gain
from 3 to 10 with total (composite) gain at least a factor of 3
times booster gain. Guideline (3) implies compensating the
driver as required in low composite gain configurations. Phase
shift within the loop (4) is minimized through use of booster
and loop compensation capacitors Cc and Cf when required.
Typical values are 5pF to 33pF.
Stability is the most difficult to achieve in a configuration where
driver effective gain is unity (ie; total gain = booster gain). For
this situation, Table 1 gives compensation values for optimum
square wave response with the op amp drivers listed.
DRIVER
OP07
741
LF155
LF156
TL070
CCH
22p
CF
22p
18p
4.7p
4.7p
15p
CC
22p
10p
10p
10p
10p
FPBW
4kHz
20kHz
60kHz
80kHz
80kHz
SR
1.5
7
>60
>60
>60
For: RF = 33K, RI = 3.3K, RG = 22K
��
��
�� �� �� ��
���
��� ���
�������������������������������������������������
Table 1: Typical values for case where op amp effective gain
= 1.
��
SAFE OPERATING AREA
NOTE: The output stage is protected against transient flyback.
However, for protection against sustained, high energy
flyback, external fast-recovery diodes should be used.
COMPOSITE AMPLIFIER CONSIDERATIONS
Cascading two amplifiers within a feedback loop has many
advantages, but also requires careful consideration of several
amplifier and system parameters. The most important of these
are gain, stability, slew rate, and output swing of the driver.
Operating the booster amplifier in higher gains results in a
higher slew rate and lower output swing requirement for the
driver, but makes stability more difficult to achieve.
GAIN SET
RG = [ (Av-1) • 3.1K] – 6.2K
R + 6.2K
Av = G
+1
3.1K
The booster’s closed-loop gain is given by the equation
above. The composite amplifier’s closed loop gain is determined
by the feedback network, that is: –Rf/Ri (inverting) or 1+Rf/Ri
(non-inverting). The driver amplifier’s “effective gain” is equal
to the composite gain divided by the booster gain.
Example: Inverting configuration (figure 1) with
R i = 2K, R f = 60K, R g = 0 :
Av (booster) = (6.2K/3.1K) + 1 = 3
Av (composite) = 60K/2K = – 30
Av (driver) = – 30/3 = –10
��
����
���
��
���
��
���
���
���
��
��� ����
����
���
���
����
��
��
���� ��
Figure 2. Non-inverting composite amplifier.
SLEW RATE
The slew rate of the composite amplifier is equal to the slew
rate of the driver times the booster gain, with a maximum value
equal to the booster slew rate.
OUTPUT SWING
The maximum output voltage swing required from the driver
op amp is equal to the maximum output swing from the booster
divided by the booster gain. The Vos of the booster must also
be supplied by the driver, and should be subtracted from the
available swing range of the driver. Note also that effects of
Vos drift and booster gain accuracy should be considered
when calculating maximum available driver swing.
This data
sheet has been carefully CORPORATION
checked and is believed
to be NORTH
reliable, however,
no responsibility
assumed for
possible inaccuracies
omissions.
All specifications HOTLINE:
are subject to1change
without
notice.
APEX
MICROTECHNOLOGY
• 5980
SHANNON
ROAD • is
TUCSON,
ARIZONA
85741 •orUSA
• APPLICATIONS
(800)
546-2739
4
PB58U REV I OCTOBER 2004
© 2004 Apex Microtechnology Corp.