TLW.76.. Vishay Telefunken TELUX Color Red Yellow True Green Blue Green Blue White Type TLWR76.. TLWY76.. TLWTG76.. TLWBG76.. TLWB76.. TLWW76.. Technology AlInGaP on GaAs AlInGaP on GaAs InGaN on SiC InGaN on SiC InGaN on SiC InGaN / YAG on SiC Angle of Half Intensity ±ö 30° 30° 30° 30° 30° 30° Description The TELUX series is a clear, non diffused LED for high end applications where supreme luminous flux is required. It is designed in an industry standard 7.62 mm square package utilizing highly developed (AS) AllnGaP and InGaN technologies. The supreme heat dissipation of TELUX allows applications at high ambient temperatures. All packing units are binned for luminous flux and color to achieve best homogenous light appearance in application. 16 012 Features D D D D D Utilizing (AS) AllnGaP and InGaN technologies High luminous flux Supreme heat dissipation: RthJP is 90 K/W High operating temperature: Tj up to + 125 °C Type TLWR meets SAE and ECE color requirements D Luminous flux and color categorized for each tube D Small mechanical tolerances allow precise usage of external reflectors or lightguides D TLWR types additionally forward voltage categorized D Packed in tubes for automatic insertion Applications Exterior lighting Dashboard illumination Tail–, Stop – and Turn Signals of motor vehicles Replaces incandescant lamps Traffic signals and signs Document Number 83138 Rev. A5, 10-May-00 www.vishay.de • FaxBack +1-408-970-5600 1 (13) TLW.76.. Vishay Telefunken Absolute Maximum Ratings Tamb = 25_C, unless otherwise specified TLWR76.. ,TLWY76.. Parameter Reverse voltage DC forward current Surge forward current Power dissipation Junction temperature Operating temperature range Storage temperature range Soldering temperature Thermal resistance junction/ambient Test Conditions IR = 10mA Tamb ≤ 85°C tp ≤ 10 ms Tamb ≤ 85°C Type TLWR76 TLWR76.. TLWY76 TLWY76.. Symbol Value Unit VR 10 V IF 70 mA IFSM 1 A S PV 187 mW Tj 125 °C Tamb –40 to +110 °C Tstg Tsd –55 to +110 260 °C °C RthJA 200 K/W Type Symbol Value Unit TLWTG76 TLWTG76.. VR 5 V IF 50 mA IFSM S 01 0.1 A PV 230 mW PV Tj 255 100 mW °C Tamb –40 to +100 °C Tstg –55 to +100 °C Tsd 260 °C RthJA 200 K/W t ≤ 5 s, 1.5 mm from body preheat temperature 100°C/30sec. with cathode heatsink of 70 mm2 Tamb = 25_C, unless otherwise specified TLWTG76.. ,TLWBG76.. ,TLWB76.. ,TLWW76.. Parameter g Reverse voltage Test Conditions IR = 10mA DC forward current Tamb ≤ 50°C g forward current Surge tp ≤ 10 ms TLWBG76 TLWBG76.. TLWB76 TLWB76.. TLWW76 TLWW76.. TLWTG76.. Power dissi dissipation ation Tamb ≤ 50°C Junction temperature Operating temperature range Storage temperature range Soldering temperature t ≤ 5 s, 1.5 mm from body preheat temperature 100°C/30sec. Thermal resistance junction/ambient with cathode heatsink of 70 mm2 www.vishay.de • FaxBack +1-408-970-5600 2 (13) TLWBG76.. TLWB76.. TLWW76.. Document Number 83138 Rev. A5, 10-May-00 TLW.76.. Vishay Telefunken Optical and Electrical Characteristics Tamb = 25_C, unless otherwise specified Red (TLWR76.. ) Parameter Total flux Luminous intensity/ Total flux Dominant wavelength Peak wavelength Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Test Conditions Type mA RthJA=200 200 °K/W IF = 70 mA, Symbol Min 1500 Typ 2100 0.8 Max 3000 ld lp 611 616 624 ±30 75 2.2 20 17 634 fV IV/fV ϕ ϕ0.9V VF VR Cj 90 % of Total Flux Captured IF = 70 mA, RthJA=200 °K/W IR = 10 mA VR = 0, f = 1 MHz 1.83 10 2.67 Unit mlm mcd/ mlm nm nm deg deg V V pF Yellow (TLWY76.. ) Parameter Total flux Luminous intensity/ Total flux Dominant wavelength Peak wavelength Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Test Conditions Type mA RthJA=200 200 °K/W IF = 70 mA, Symbol Min 1000 Typ 1400 0.8 Max 2400 ld lp 585 590 594 ±30 75 2.1 15 32 597 fV IV/fV ϕ ϕ0.9V VF VR Cj 90 % of Total Flux Captured IF = 70 mA, RthJA=200 °K/W IR = 10 mA VR = 0, f = 1 MHz 1.83 10 2.67 Unit mlm mcd/ mlm nm nm deg deg V V pF True Green (TLWTG76.. ) Parameter Total flux Luminous intensity/ Total flux Dominant wavelength Peak wavelength Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Document Number 83138 Rev. A5, 10-May-00 Test Conditions IF = 50 mA, mA RthJA=200 200 °K/W 90 % of Total Flux Captured IF = 50 mA, RthJA=200 °K/W IR = 10 mA VR = 0, f = 1 MHz Type Symbol Min 630 Typ 900 0.8 Max 1800 ld lp 509 521 520 ±30 75 4.2 10 50 529 fV IV/fV ϕ ϕ0.9V VF VR Cj 5 4.7 Unit mlm mcd/ mlm nm nm deg deg V V pF www.vishay.de • FaxBack +1-408-970-5600 3 (13) TLW.76.. Vishay Telefunken Blue Green (TLWBG76.. ) Parameter Total flux Luminous intensity/ Total flux Dominant wavelength Peak wavelength Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Test Conditions Type Symbol fV IV/fV mA RthJA=200 200 °K/W IF = 50 mA, ld lp ϕ ϕ0.9V VF VR Cj 90 % of Total Flux Captured IF = 50 mA, RthJA=200 °K/W IR = 10 mA VR = 0, f = 1 MHz Min 400 Typ 700 0.8 Max 1250 492 505 503 ±30 75 4.2 10 50 510 Min 200 Typ 330 0.8 Max 630 462 470 465 ±30 75 4.3 10 50 476 Typ 650 0.8 Max 1250 5 4.7 Unit mlm mcd/ mlm nm nm deg deg V V pF Blue (TLWB76.. ) Parameter Total flux Luminous intensity/ Total flux Dominant wavelength Peak wavelength Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Test Conditions Type Symbol fV IV/fV IF = 50 mA, mA RthJA=200 200 °K/W ld lp ϕ ϕ0.9V VF VR Cj 90 % of Total Flux Captured IF = 50 mA, RthJA=200 °K/W IR = 10 mA VR = 0, f = 1 MHz 5 4.7 Unit mlm mcd/ mlm nm nm deg deg V V pF White (TLWW76.. ) Parameter Total flux Luminous intensity/ Total flux Color temperature Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Test Conditions IF = 50 mA,, RthJA=200 °K/W 90 % of Total Flux Captured IF = 50 mA, RthJA=200 °K/W IR = 10 mA VR = 0, f = 1 MHz www.vishay.de • FaxBack +1-408-970-5600 4 (13) Type Symbol fV IV/fV TK ϕ ϕ0.9V VF VR Cj Min 400 5 5500 ±30 75 4.3 10 50 5.1 Unit mlm mcd/ mlm K deg deg V V pF Document Number 83138 Rev. A5, 10-May-00 TLW.76.. Vishay Telefunken Typical Characteristics (Tamb = 25_C, unless otherwise specified) 60 175 I F – Forward Current ( mA ) PV – Power Dissipation ( mW ) 200 Red Yellow 150 125 100 75 50 25 RthJA=200K/W Blue Blue Green True Green White 40 30 20 10 RthJA=200K/W 0 0 0 20 40 60 80 100 0 120 Tamb – Ambient Temperature ( °C ) 15982 20 40 60 80 100 Figure 4 Forward Current vs. Ambient Temperature 10000 100 IF – Forward Current ( mA ) Red Yellow 80 60 40 20 120 Tamb – Ambient Temperature ( °C ) 16067 Figure 1 Power Dissipation vs. Ambient Temperature I F – Forward Current ( mA ) 50 Red Yellow tp/T=0.01 1000 Tamb v85°C 0.02 0.05 0.1 100 1 10 0.2 0.5 RthJA=200K/W 0 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) 15983 1 0.01 120 0.1 Figure 2 Forward Current vs. Ambient Temperature 1 Figure 5 Forward Current vs. Pulse Length 0° 250 10° 20° 30° 200 I v rel – Relative Luminous Intensity 225 PV – Power Dissipation ( mW ) 100 10 tp – Pulse Length ( ms ) 16010 Blue Blue Green True Green White 175 150 125 100 75 50 RthJA=200K/W 25 40° 1.0 0.9 50° 0.8 60° 70° 0.7 80° 0 0 16066 20 40 60 80 100 120 Tamb – Ambient Temperature ( °C ) Figure 3 Power Dissipation vs. Ambient Temperature Document Number 83138 Rev. A5, 10-May-00 0.6 0.4 0.2 0 0.2 0.4 0.6 16006 Figure 6 Rel. Luminous Intensity vs. Angular Displacement www.vishay.de • FaxBack +1-408-970-5600 5 (13) TLW.76.. Vishay Telefunken 1.8 90 1.6 FVrel – Relative Luminous Flux 100 80 % Total Luminous Flux 70 60 50 40 30 20 10 0 0 25 50 75 100 IF = 70 mA 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 –40 125 Total Included Angle (Degrees) 16005 Red –20 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) 15976 Figure 7 Percentage Total Luminous Flux vs. Total Included Angle (Degrees) Figure 10 Rel. Luminous Flux vs. Ambient Temperature 230 Red I Spec– Specific Luminous Flux Padsize 8 mm2 per Anode Pin 220 RthJA in K/W 210 200 190 180 170 160 0 50 100 150 200 250 0.1 1 300 Cathode Padsize in mm2 16009 100 Figure 11 Specific Luminous Flux vs. Forward Current 100 10.00 I Vrel– Relative Luminous Flux Red 80 I F – Forward Current ( mA ) 10 IF – Forward Current ( mA ) 15980 Figure 8 Thermal Resistance Junction Ambient vs. Cathode Padsize 90 1.0 70 60 50 40 30 20 Red 1.00 0.10 10 0 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 15974 VF – Forward Voltage ( V ) Figure 9 Forward Current vs. Forward Voltage www.vishay.de • FaxBack +1-408-970-5600 6 (13) 0.01 1 15978 10 100 IF – Forward Current ( mA ) Figure 12 Relative Luminous Flux vs. Forward Current Document Number 83138 Rev. A5, 10-May-00 TLW.76.. Vishay Telefunken l – Wavelength ( nm ) 16007 Yellow I Spec– Specific Luminous Flux I Vrel– Relative Luminous Intensity 1.2 Red IF = 70 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 570 580 590 600 610 620 630 640 650 660 670 0.1 1 100 Figure 16 Specific Luminous Flux vs. Forward Current 100 10.00 Yellow I Vrel– Relative Luminous Flux Yellow 80 I F – Forward Current ( mA ) 10 IF – Forward Current ( mA ) 15981 Figure 13 Relative Luminous Intensity vs. Wavelength 90 1.0 70 60 50 40 30 20 1.00 0.10 10 0 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 VF – Forward Voltage ( V ) 15975 0.01 1 15979 Figure 14 Forward Current vs. Forward Voltage I Vrel– Relative Luminous Intensity FVrel – Relative Luminous Flux IF = 70 mA 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 –40 15977 Yellow –20 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) Figure 15 Rel. Luminous Flux vs. Ambient Temperature Document Number 83138 Rev. A5, 10-May-00 100 Figure 17 Relative Luminous Flux vs. Forward Current 2.0 1.8 10 IF – Forward Current ( mA ) 16008 1.2 Yellow IF = 70 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 540 550 560 570 580 590 600 610 620 630 640 l – Wavelength ( nm ) Figure 18 Relative Luminous Intensity vs. Wavelength www.vishay.de • FaxBack +1-408-970-5600 7 (13) TLW.76.. Vishay Telefunken 100 True Green I Vrel– Relative Luminous Flux 90 10.00 I F – Forward Current ( mA ) 80 70 60 50 40 30 20 True Green 1.00 0.10 10 0 2.5 3.0 3.5 4.0 4.5 5.0 VF – Forward Voltage ( V ) 16037 0.01 1 5.5 Figure 19 Forward Current vs. Forward Voltage 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 –40 –20 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) 16056 1.2 True Green IF = 50 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 460 480 500 520 540 560 580 600 620 I Vrel– Relative Luminous Intensity FVrel – Relative Luminous Flux 1.6 IF = 50 mA l – Wavelength ( nm ) 16068 Figure 20 Rel. Luminous Flux vs. Ambient Temperature 100 Figure 22 Relative Luminous Flux vs. Forward Current 1.8 True Green 10 IF – Forward Current ( mA ) 16039 Figure 23 Relative Luminous Intensity vs. Wavelength 100 1.0 0.1 1 16038 90 10 Figure 21 RSpecific Luminous Flux vs. Forward Current www.vishay.de • FaxBack +1-408-970-5600 8 (13) 70 60 50 40 30 20 10 0 2.5 100 IF – Forward Current ( mA ) Blue Green 80 I F – Forward Current ( mA ) I Spec– Specific Luminous Flux True Green 16058 3.0 3.5 4.0 4.5 5.0 5.5 VF – Forward Voltage ( V ) Figure 24 Forward Current vs. Forward Voltage Document Number 83138 Rev. A5, 10-May-00 TLW.76.. Vishay Telefunken Blue Green 1.6 IF = 50 mA 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 –40 –20 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) 16061 1.2 Blue Green IF = 50 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 440 460 480 500 520 540 560 580 600 I Vrel– Relative Luminous Intensity FVrel – Relative Luminous Flux 1.8 l – Wavelength ( nm ) 16070 Figure 25 Rel. Luminous Flux vs. Ambient Temperature Figure 28 Relative Luminous Intensity vs. Wavelength 100 90 1.0 0.1 1 10 70 60 50 40 30 20 10 0 2.5 100 IF – Forward Current ( mA ) 16059 3.5 4.0 4.5 5.0 5.5 VF – Forward Voltage ( V ) Figure 29 Forward Current vs. Forward Voltage 10.00 1.8 Blue Green FVrel – Relative Luminous Flux I Vrel– Relative Luminous Flux 3.0 16040 Figure 26 Specific Luminous Flux vs. Forward Current 1.00 0.10 0.01 1 16060 Blue 80 I F – Forward Current ( mA ) I Spec– Specific Luminous Flux Blue Green 10 IF – Forward Current ( mA ) Figure 27 Relative Luminous Flux vs. Forward Current Document Number 83138 Rev. A5, 10-May-00 16057 IF = 50 mA 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 –40 100 Blue 1.6 –20 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) Figure 30 Rel. Luminous Flux vs. Ambient Temperature www.vishay.de • FaxBack +1-408-970-5600 9 (13) TLW.76.. Vishay Telefunken 100 90 1.0 0.1 1 10 70 60 50 40 30 20 10 0 2.5 100 IF – Forward Current ( mA ) 16041 FVrel – Relative Luminous Flux Blue 60 50 40 30 20 10 3.0 3.5 4.0 4.5 5.0 VF – Forward Voltage ( V ) Figure 32 Forward Current vs. Forward Voltage I Vrel– Relative Luminous Intensity 4.5 1.2 Blue IF = 50 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 400 420 440 460 480 500 520 540 560 l – Wavelength ( nm ) Figure 33 Relative Luminous Intensity vs. Wavelength www.vishay.de • FaxBack +1-408-970-5600 10 (13) White 1.6 5.0 5.5 IF = 50 mA 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 –40 5.5 –20 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) 16065 Figure 35 Rel. Luminous Flux vs. Ambient Temperature White I Spec– Specific Luminous Flux I F – Forward Current ( mA ) 70 16069 4.0 1.8 80 16040 3.5 VF – Forward Voltage ( V ) Figure 34 Forward Current vs. Forward Voltage 100 0 2.5 3.0 16062 Figure 31 Specific Luminous Flux vs. Forward Current 90 White 80 I F – Forward Current ( mA ) I Spec– Specific Luminous Flux Blue 1.0 0.1 1 16063 10 100 IF – Forward Current ( mA ) Figure 36 Specific Luminous Flux vs. Forward Current Document Number 83138 Rev. A5, 10-May-00 TLW.76.. Vishay Telefunken White 1.00 0.10 0.01 1 16064 I Vrel– Relative Luminous Intensity I Vrel– Relative Luminous Flux 10.00 10 100 IF – Forward Current ( mA ) Figure 37 Rel. Luminous Flux vs. Ambient Temperature Document Number 83138 Rev. A5, 10-May-00 16071 1.2 White IF = 50 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 400 450 500 550 600 650 700 750 800 l – Wavelength ( nm ) Figure 38 Specific Luminous Flux vs. Forward Current www.vishay.de • FaxBack +1-408-970-5600 11 (13) TLW.76.. Vishay Telefunken Dimensions in mm 16004 www.vishay.de • FaxBack +1-408-970-5600 12 (13) Document Number 83138 Rev. A5, 10-May-00 TLW.76.. Vishay Telefunken Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances ( ODSs ). The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency ( EPA ) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423 Document Number 83138 Rev. A5, 10-May-00 www.vishay.de • FaxBack +1-408-970-5600 13 (13)