VISHAY TLCY5101

TLCB / R / TG / Y5100
Vishay Semiconductors
Ultrabright LED, ∅ 5 mm Untinted Non-Diffused
Description
The TLC.51.. series is a clear, non diffused 5 mm LED
for high end applications where supreme luminous
intensity required.
These lamps with clear untinted plastic case utilize
the highly developed ultrabright AlInGaP (AS) and
InGaN technologies.
The lens and the viewing angle is optimized to
achieve best performance of light output and visibility.
19223
Features
• Untinted non diffused lens
• Utilizing ultrabright AllnGaP (AS) and
InGaN technology
e2
• High luminous intensity
• High operating tempreature: Tj (chip junction temperature) up to 125 °C for AllnGaP devices
• Luminous intensity and color categorized for each
packing unit
• ESD-withstand voltage: 2 kV acc. to MIL STD 883
D, Method 3015.7 for AllnGaP, 1 kV for InGaN
• Lead-free device
Applications
Interior and exterior lighting
Outdoor LED panels
Instrumentation and front panel indicators
Central high mounted stop lights (CHMSL) for motor
vehicles
Replaces incandescent lamps
Traffic signals
Light guide design
Parts Table
Part
Color, Luminous Intensity
Angle of Half Intensity
(±ϕ)
Technology
TLCR5100
Red, IV > 11000 mcd (typ.)
9°
AllnGaP on GaAs
TLCY5100
Yellow, IV > 7500 mcd (typ.)
9°
AllnGaP on GaAs
TLCY5101
Yellow, IV > 5750 mcd to 20000 mcd
9°
AllnGaP on GaAs
TLCTG5100
True green, IV > 5000 mcd (typ.)
9°
InGaN on SiC
TLCB5100
Blue, IV > 1500 mcd (typ.)
9°
InGaN on SiC
Document Number 83176
Rev. 1.4, 16-Feb-05
www.vishay.com
1
TLCB / R / TG / Y5100
Vishay Semiconductors
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
TLCR5100 , TLCY5100
Parameter
Test condition
Symbol
Value
VR
5
V
IF
50
mA
Reverse voltage
DC Forward current
Tamb ≤ 85 °C
Surge forward current
tp ≤ 10 µs
Power dissipation
Tamb ≤ 85 °C
Unit
IFSM
1
A
PV
135
mW
Tj
125
°C
Operating temperature range
Tamb
- 40 to + 100
°C
Storage temperature range
Tstg
- 40 to + 100
°C
Junction temperature
Soldering temperature
t ≤ 5 s, 2 mm from body
Thermal resistance junction/
ambient
Tsd
260
°C
RthJA
300
K/W
Symbol
Value
Unit
VR
5
V
IF
30
mA
TLCTG5100 , TLCB5100
Parameter
Test condition
Reverse voltage
DC Forward current
Tamb ≤ 60 °C
Surge forward current
tp ≤ 10 µs
Power dissipation
Tamb ≤ 60 °C
IFSM
0.1
A
PV
135
mW
Tj
100
°C
Operating temperature range
Tamb
- 40 to + 100
°C
Storage temperature range
Tstg
- 40 to + 100
°C
Tsd
260
°C
RthJA
300
K/W
Junction temperature
Soldering temperature
t ≤ 5 s, 2 mm from body
Thermal resistance junction/
ambient
Optical and Electrical Characteristics
Tamb = 25 °C, unless otherwise specified
Red
TLCR5100
Parameter
Luminous intensity
1)
Test condition
IF = 50 mA
Part
Symbol
Min
Typ.
TLCR5100
IV
4300
11000
611
616
Max
Unit
mcd
Dominant wavelength
IF = 50 mA
λd
Peak wavelength
IF = 50 mA
λp
622
nm
Spectral bandwidth at
50 % Irel max
IF = 50 mA
∆λ
18
nm
Angle of half intensity
IF = 50 mA
ϕ
±9
Forward voltage
IF = 50 mA
VF
2.1
Reverse voltage
IR = 10 µA
VR
Temperature coefficient of VF
IF = 50 mA
TCVF
- 3.5
mV/K
Temperature coefficient of λd
IF = 50 mA
TCλd
0.05
nm/K
1)
nm
deg
2.7
V
V
in one Packing Unit IVmax/IVmin ≤ 2.0
www.vishay.com
2
5
622
Document Number 83176
Rev. 1.4, 16-Feb-05
TLCB / R / TG / Y5100
Vishay Semiconductors
Yellow
TLCY5100
Parameter
Luminous intensity
1)
Test condition
IF = 50 mA
Part
Symbol
Min
Typ.
TLCY5100
IV
3200
7500
Max
Unit
mcd
IV
6900
Dominant wavelength
IF = 50 mA
λd
585
Peak wavelength
IF = 50 mA
λp
593
nm
Spectral bandwidth at
50 % Irel max
IF = 50 mA
∆λ
17
nm
Angle of half intensity
IF = 50 mA
ϕ
±9
Forward voltage
IF = 50 mA
VF
2.1
Reverse voltage
IR = 10 µA
VR
Temperature coefficient of VF
IF = 50 mA
TCVF
- 3.5
mV/K
Temperature coefficient of λd
IF = 50 mA
TCλd
0.1
nm/K
TLCY5101
1)
16000
590
597
mcd
nm
deg
2.7
5
V
V
in one Packing Unit IVmax/IVmin ≤ 2.0
True green
TLCTG5100
Parameter
Test condition
Luminous intensity 1)
IF = 30 mA
Dominant wavelength
IF = 30 mA
Part
Symbol
Min
Typ.
TLCTG5100
IV
1800
5000
λd
515
525
Max
Unit
mcd
535
nm
Peak wavelength
IF = 30 mA
λp
520
nm
Spectral bandwidth at
50 % Irel max
IF = 30 mA
∆λ
37
nm
Angle of half intensity
IF = 30 mA
ϕ
±9
Forward voltage
IF = 30 mA
VF
3.9
deg
4.5
V
Reverse voltage
IR = 10 µA
VR
Temperature coefficient of VF
IF = 30 mA
TCVF
- 4.5
mV/K
Temperature coefficient of λd
IF = 30 mA
TCλd
0.02
nm/K
1)
5
V
in one Packing Unit IVmax/IVmin ≤ 2.0
Blue
TLCB5100
Parameter
Test condition
Luminous intensity 1)
IF = 30 mA
Dominant wavelength
IF = 30 mA
Part
Symbol
Min
Typ.
TLCB5100
IV
575
1500
λd
462
470
Max
Unit
mcd
476
nm
Peak wavelength
IF = 30 mA
λp
464
nm
Spectral bandwidth at
50 % Irel max
IF = 30 mA
∆λ
25
nm
Angle of half intensity
IF = 30 mA
ϕ
±9
Forward voltage
IF = 30 mA
VF
3.9
deg
4.5
V
Reverse voltage
IR = 10 µA
VR
Temperature coefficient of VF
IF = 30 mA
TCVF
- 5.0
mV/K
Temperature coefficient of λd
IF = 30 mA
TCλd
0.02
nm/K
1)
5
V
in one Packing Unit IVmax/IVmin ≤ 2.0
Document Number 83176
Rev. 1.4, 16-Feb-05
www.vishay.com
3
TLCB / R / TG / Y5100
Vishay Semiconductors
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
60
140
I F–Forward Current ( mA )
PV –Power Dissipation (mW)
160
120
Yellow
Red
100
80
60
40
20
0
20
40
60
80
100
20
40
60
80
100
120
Tamb – Ambient Temperature ( °C )
Figure 4. Forward Current vs. Ambient Temperature
60
140
120
Blue
Truegreen
100
80
60
40
I F–Forward Current ( mA )
PV –Power Dissipation (mW)
10
0
160
20
0
50
Blue
Truegreen
40
30
20
10
0
0
10 20 30 40 50 60 70 80 90 100
Tamb – Ambient Temperature ( °C )
0
Figure 5. Forward Current vs. Ambient Temperature
100
100
90
Red
Yellow
70
60
50
40
30
20
I F - Forward Current ( mA )
90
80
10
0
1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
V F – Forward Voltage ( V )
Figure 3. Forward Current vs. Forward Voltage
www.vishay.com
10 20 30 40 50 60 70 80 90 100
Tamb – Ambient Temperature ( °C )
16711
Figure 2. Power Dissipation vs. Ambient Temperature
I F – Forward Current ( mA )
20
16710
Figure 1. Power Dissipation vs. Ambient Temperature
4
Yellow
Red
30
120
Tamb – Ambient Temperature ( °C )
16708
15974
40
0
0
16709
50
80
70
Blue
Truegreen
60
50
40
30
20
10
0
2.5
16040
3.0
3.5
4.0
4.5
5.0
V F - Forward Voltage ( V )
5.5
Figure 6. Forward Current vs. Forward Voltage
Document Number 83176
Rev. 1.4, 16-Feb-05
TLCB / R / TG / Y5100
Vishay Semiconductors
10
IV rel - Relative Luminous Intensity
I Vrel - Relative Luminous Intensity
10
Red
1
0.1
0.01
10
1
15979
100
10.00
IVrel - Relative Luminous Intensity
10.00
10
IF - Forward Current ( mA )
Figure 10. Relative Luminous Flux vs. Forward Current
Figure 7. Relative Luminous Flux vs. Forward Current
I Vrel - Relative Luminous Intensity
0.1
100
IF - Forward Current ( mA )
15978
Blue
1.00
0.10
0.01
True Green
1.00
0.10
0.01
1
10
100
IF - Forward Current ( mA )
1
16039
λ - Wavelength ( nm )
16007
Figure 9. Relative Intensity vs. Wavelength
Document Number 83176
Rev. 1.4, 16-Feb-05
I Vrel - Relative Luminous Intensity
1.2
Red
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
570 580 590 600 610 620 630 640 650 660 670
10
IF - Forward Current ( mA )
100
Figure 11. Relative Luminous Flux vs. Forward Current
Figure 8. Relative Luminous Flux vs. Forward Current
I Vrel - Relative Luminous Intensity
1
0.01
1
16042
Yellow
16008
1.2
Yellow
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
540 550 560 570 580 590 600 610 620 630 640
λ - Wavelength ( nm )
Figure 12. Relative Intensity vs. Wavelength
www.vishay.com
5
TLCB / R / TG / Y5100
1.2
Blue
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
400 420 440 460 480 500 520 540 560
λ - W avelength ( nm )
16069
Figure 13. Relative Intensity vs. Wavelength
I Vrel - Relative Luminous Intensity
I Vrel - Relative Luminous Intensity
Vishay Semiconductors
16068
1.2
True Green
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
460 480 500 520 540 560 580 600 620
λ - Wavelength ( nm )
Figure 14. Relative Intensity vs. Wavelength
Package Dimensions in mm
9612121
www.vishay.com
6
Document Number 83176
Rev. 1.4, 16-Feb-05
TLCB / R / TG / Y5100
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and
operatingsystems with respect to their impact on the health and safety of our employees and the public, as
well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use
of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
Document Number 83176
Rev. 1.4, 16-Feb-05
www.vishay.com
7