TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors TELUX™ LED Description The TELUX™ series is a clear, non diffused LED for high end applications where supreme luminous flux is required. It is designed in an industry standard 7.62 mm square package utilizing highly developed (AS) AllnGaP and InGaN technologies. The supreme heat dissipation of TELUX™ allows applications at high ambient temperatures. All packing units are binned for luminous flux and color to achieve best homogenous light appearance in application. Features • • • • • • • • • • 19232 e3 Pb Pb-free • Lead-free device Utilizing (AS) AlInGaP and InGaN technologies High luminous flux Supreme heat dissipation: RthJP is 90 K/W High operating temperature: Tamb = - 40 to + 110 °C Type TLWR meets SAE and ECE color requirements Packed in tubes for automatic insertion Luminous flux and color categorized for each tube Small mechanical tolerances allow precise usage of external reflectors or lightguides TLWR and TLWY types additionally forward voltage categorized ESD-withstand voltage: > 2 kV acc. to MIL STD 883 D, Method 3015.7 for AlInGaP, > 1 kV for InGaN Applications Exterior lighting Dashboard illumination Tail-, Stop - and Turn Signals of motor vehicles Replaces incandescent lamps Traffic signals and signs Parts Table Part TLWR7900 Color, Luminous Intensity Red, φV = 2100 mlm (typ.) Angle of Half Intensity (±ϕ) 45 ° Technology AllnGaP on GaAs TLWO7900 Softorange, φV = 2100 mlm (typ.) 45 ° AllnGaP on GaAs TLWY7900 Yellow, φV = 1400 mlm (typ.) 45 ° AllnGaP on GaAs TLWTG7900 True green, φV = 900 mlm (typ.) 45 ° InGaN on SiC TLWBG7900 Blue green, φV = 700 mlm (typ.) 45 ° InGaN on SiC TLWB7900 Blue, φV = 330 mlm (typ.) 45 ° InGaN on SiC TLWW7900 White, φV = 650 mlm (typ.) 45 ° InGaN / TAG on SiC Document Number 83144 Rev. 1.8, 14-Jan-05 www.vishay.com 1 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors Absolute Maximum Ratings Tamb = 25 °C, unless otherwise specified TLWR7900 , TLWO7900 , TLWY7900 Symbol Value Reverse voltage Parameter IR = 10 µA Test condition VR 10 V DC Forward current Tamb ≤ 85 °C IF 70 mA Surge forward current tp ≤ 10 µs Power dissipation Tamb ≤ 85 °C Unit IFSM 1 A PV 187 mW Junction temperature Tj 125 °C Operating temperature range Tamb - 40 to + 110 °C Storage temperature range Tstg - 55 to + 110 °C Tsd 260 °C RthJA 200 K/W RthJP 90 K/W Unit Soldering temperature t ≤ 5 s, 1.5 mm from body preheat temperature 100 °C/ 30 sec. Thermal resistance junction/ ambient with cathode heatsink of 70 mm2 Thermal resistance junction/pin TLWTG7900 , TLWBG7900 , TLWB7900 , TLWW7900 Symbol Value Reverse voltage Parameter IR = 10 µA Test condition VR 5 V DC Forward current Tamb ≤ 50 °C IF 50 mA Surge forward current tp ≤ 10 µs IFSM 0.1 A Power dissipation Tamb ≤ 50 °C PV 230 mW PV 230 mW PV 230 mW PV 255 mW Tj 100 °C Tamb - 40 to + 100 °C Tstg - 55 to + 100 °C Tsd 260 °C RthJA 200 K/W RthJP 90 K/W Junction temperature Operating temperature range Storage temperature range Soldering temperature t ≤ 5 s, 1.5 mm from body preheat temperature 100 °C/ 30 sec. Thermal resistance junction/ ambient with cathode heatsink of 70 mm2 Thermal resistance junction/pin Optical and Electrical Characteristics Tamb = 25 °C, unless otherwise specified Red TLWR7900 Symbol Min Typ. Max Unit Total flux Parameter IF = 70 mA, RthJA = 200 °K/W Test condition φV 1500 2100 3000 mlm Luminous intensity/Total flux IF = 70 mA, RthJA = 200 °K/W IV/φV Dominant wavelength IF = 70 mA, RthJA = 200 °K/W λd 611 618 0.7 mcd/mlm 634 nm Peak wavelength IF = 70 mA, RthJA = 200 °K/W λp 624 nm Angle of half intensity IF = 70 mA, RthJA = 200 °K/W ϕ ± 45 deg Total included angle 90 % of Total Flux Captured ϕ Forward voltage IF = 70 mA, RthJA = 200 °K/W VF www.vishay.com 2 100 1.83 2.2 deg 2.67 V Document Number 83144 Rev. 1.8, 14-Jan-05 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors Symbol Min Typ. Reverse voltage Parameter IR = 10 µA Test condition VR 10 20 Max Unit V Junction capacitance VR = 0, f = 1 MHz Cj 17 pF Temperature coefficient of λdom IF = 50 mA TCλdom 0.05 nm/K Soft Orange TLWO7900 Symbol Min Typ. Max Unit Total flux Parameter IF = 70 mA, RthJA = 200 °K/W Test condition φV 1500 2100 3000 mlm Luminous intensity/Total flux IF = 70 mA, RthJA = 200 °K/W IV/φV Dominant wavelength IF = 70 mA, RthJA = 200 °K/W λd 598 605 Peak wavelength IF = 70 mA, RthJA = 200 °K/W λp 610 0.7 mcd/mlm 611 nm nm Angle of half intensity IF = 70 mA, RthJA = 200 °K/W ϕ ± 45 deg Total included angle 90 % of Total Flux Captured ϕ 100 deg Forward voltage IF = 70 mA, RthJA = 200 °K/W VF 1.83 2.2 Reverse voltage IR = 10 µA VR 10 20 Junction capacitance VR = 0, f = 1 MHz Temperature coefficient of λdom IF = 50 mA 2.67 V V Cj 17 pF TCλdom 0.06 nm/K Yellow TLWY7900 Symbol Min Typ. Max Unit Total flux Parameter IF = 70 mA, RthJA = 200 °K/W Test condition φV 1000 1400 2400 mlm Luminous intensity/Total flux IF = 70 mA, RthJA = 200 °K/W IV/φV Dominant wavelength IF = 70 mA, RthJA = 200 °K/W λd 585 592 0.7 mcd/mlm 597 nm Peak wavelength IF = 70 mA, RthJA = 200 °K/W λp 594 nm Angle of half intensity IF = 70 mA, RthJA = 200 °K/W ϕ ± 45 deg Total included angle 90 % of Total Flux Captured ϕ Forward voltage IF = 70 mA, RthJA = 200 °K/W VF 1.83 10 100 2.1 deg 2.67 V Reverse voltage IR = 10 µA VR 15 V Junction capacitance VR = 0, f = 1 MHz Cj 32 pF Temperature coefficient of λdom IF = 50 mA TCλdom 0.1 nm/K True green TLWTG7900 Symbol Min Typ. Max Unit Total flux Parameter IF = 50 mA, RthJA = 200 °K/W Test condition φV 630 900 1800 mlm Luminous intensity/Total flux IF = 50 mA, RthJA = 200 °K/W IV/φV 0.7 mcd/mlm Dominant wavelength IF = 50 mA, RthJA = 200 °K/W λd Peak wavelength IF = 50 mA, RthJA = 200 °K/W λp 518 nm Angle of half intensity IF = 50 mA, RthJA = 200 °K/W ϕ ± 45 deg 509 523 Total included angle 90 % of Total Flux Captured ϕ 100 Forward voltage IF = 50 mA, RthJA = 200 °K/W VF 4.2 Reverse voltage IR = 10 µA VR Junction capacitance VR = 0, f = 1 MHz Temperature coefficient of λdom IF = 30 mA Document Number 83144 Rev. 1.8, 14-Jan-05 5 535 nm deg 4.7 V 10 V Cj 50 pF TCλdom 0.02 nm/K www.vishay.com 3 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors Blue green TLWBG7900 Symbol Min Typ. Max Unit Total flux Parameter IF = 50 mA, RthJA = 200 °K/W Test condition φV 400 700 1250 mlm Luminous intensity/Total flux IF = 50 mA, RthJA = 200 °K/W IV/φV Dominant wavelength IF = 50 mA, RthJA = 200 °K/W λd Peak wavelength IF = 50 mA, RthJA = 200 °K/W λp 503 nm deg 0.7 492 505 Angle of half intensity IF = 50 mA, RthJA = 200 °K/W ϕ ± 45 Total included angle 90 % of Total Flux Captured ϕ 100 Forward voltage IF = 50 mA, RthJA = 200 °K/W VF 4.2 Reverse voltage IR = 10 µA VR Junction capacitance VR = 0, f = 1 MHz Temperature coefficient of λdom IF = 30 mA 5 mcd/mlm 510 nm deg 4.7 10 V V Cj 50 pF TCλdom 0.02 nm/K Blue TLWB7900 Symbol Min Typ. Max Unit Total flux Parameter IF = 50 mA, RthJA = 200 °K/W Test condition φV 200 330 630 mlm Luminous intensity/Total flux IF = 50 mA, RthJA = 200 °K/W IV/φV Dominant wavelength IF = 50 mA, RthJA = 200 °K/W λd 462 470 Peak wavelength IF = 50 mA, RthJA = 200 °K/W λp 460 nm deg 0.7 Angle of half intensity IF = 50 mA, RthJA = 200 °K/W ϕ ± 45 Total included angle 90 % of Total Flux Captured ϕ 100 Forward voltage IF = 50 mA, RthJA = 200 °K/W VF 4.3 mcd/mlm 476 nm deg 4.7 V Reverse voltage IR = 10 µA VR 10 V Junction capacitance VR = 0, f = 1 MHz Cj 50 pF Temperature coefficient of λdom IF = 30 mA TCλdom 0.03 nm/K 5 White TLWW7900 Symbol Min Typ. Max Unit Total flux Parameter IF = 50 mA, RthJA = 200 °K/W Test condition φV 400 650 1250 mlm Luminous intensity/Total flux IF = 50 mA, RthJA = 200 °K/W IV/φV 0.7 mcd/mlm Color temperature IF = 50 mA, RthJA = 200 °K/W TK 5500 K deg Angle of half intensity IF = 50 mA, RthJA = 200 °K/W ϕ ± 45 Total included angle 90 % of Total Flux Captured ϕ 100 Forward voltage IF = 50 mA, RthJA = 200 °K/W VF 4.3 Reverse voltage IR = 10 µA VR Junction capacitance VR = 0, f = 1 MHz Cj www.vishay.com 4 5 deg 5.1 V 10 V 50 pF Document Number 83144 Rev. 1.8, 14-Jan-05 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors Typical Characteristics (Tamb = 25 °C unless otherwise specified) 60 PV – Power Dissipation ( mW ) 200 Red 150 125 100 75 50 25 50 I F - Forward Current ( mA ) 175 RthJA=200K/W 40 30 20 10 0 RthJA = 200 K/W 0 0 20 40 60 80 100 0 120 Tamb – Ambient Temperature ( qC ) 15982 Figure 1. Power Dissipation vs. Ambient Temperature 20 40 60 80 100 120 T amb - Ambient Temperature ( ° C ) 16067 Figure 4. Forward Current vs. Ambient Temperature for InGaN 10000 Red, Softorange, Yellow IF – Forward Current ( mA ) I F – Forward Current ( mA ) 100 Red 80 60 40 20 1000 tp/T=0.01 Tamb 85°C 0.02 0.05 0.1 100 1 10 0.5 0.2 RthJA=200K/W 1 0.01 0 0 15983 20 40 60 80 100 120 Tamb – Ambient Temperature ( qC ) 0.1 100 10 tp – Pulse Length ( ms ) 16010 Figure 2. Forward Current vs. Ambient Temperature Figure 5. Forward Current vs. Pulse Length 0° 250 10° 20° 30° I V rel - Relative Luminous Intensity PV - Power Dissipation ( mW ) 1 225 200 175 150 125 100 75 RthJA = 200 K/W 50 25 40° 1.0 0.9 50° 0.8 60° 70° 0.7 80° 0 0 16066 20 40 60 80 100 120 T amb - Ambient Temperature ( ° C ) Figure 3. Power Dissipation vs. Ambient Temperature for InGaN Document Number 83144 Rev. 1.8, 14-Jan-05 0.6 16200 0.4 0.2 0 0.2 0.4 Angular Displacement 0.6 Figure 6. Rel. Luminous Intensity vs. Angular Displacement www.vishay.com 5 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors 100 1.8 Φ Vrel – Relative Luminous Flux % Total Luminous Flux 90 80 70 60 50 40 30 20 10 0 0 25 50 75 100 1.2 1.0 0.8 0.6 0.4 0.2 125 0.0 -40 15976 Figure 7. Percentage Total Luminous Flux vs. Total Included Angle for 90 ° emission angle I F = 70 mA 1.4 Total Included Angle (Degrees) 16201 Red, Softorange 1.6 -20 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) Figure 10. Rel. Luminous Flux vs. Ambient Temperature 230 210 R thJA in K/W Red, Softorange I Spec - Specific Luninous Flux Padsize 8 mm 2 per Anode Pin 220 200 190 180 170 1.0 160 0.1 0 50 100 150 200 250 300 Cathode Padsize in mm 2 16009 1 100 I F – Forward Current ( mA ) Red Yellow 70 60 50 40 30 20 10 0 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 V F – Forward Voltage ( V ) Figure 9. Forward Current vs. Forward Voltage www.vishay.com 6 I Vrel - Relative Luminous Intensity 10 90 15974 100 Figure 11. Specific Luminous Flux vs. Forward Current Figure 8. Thermal Resistance Junction Ambient vs. Cathode Padsize 80 10 IF - Forward Current ( mA ) 15980 Red 1 0.1 0.01 1 15978 10 100 IF - Forward Current ( mA ) Figure 12. Relative Luminous Flux vs. Forward Current Document Number 83144 Rev. 1.8, 14-Jan-05 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors I Vrel - Relative Luminous Intensity Dominant Wavelength λ ( nm ) 605.0 1.2 Red 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 570 580 590 600 610 620 630 640 650 660 670 604.5 Softorange 604.0 603.5 603.0 0 20 30 40 50 60 70 I F - Forward Current ( mA ) λ - Wavelength ( nm ) 16007 Figure 16. Dominant Wavelength vs. Forward Current Figure 13. Relative Intensity vs. Wavelength 100 90 I F - Forward Current ( mA ) 1.2 1.1 Soft orange 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 560 570 580 590 600 610 620 630 640 650 660 I Vrel - Relative Luminous Intensity 10 16436 70 60 50 40 30 20 10 0 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 λ- Wavelength ( nm ) 16314 Yellow 80 V F – Forward Voltage ( V ) 15975 Figure 17. Forward Current vs. Forward Voltage Figure 14. Relative Intensity vs. Wavelength 2.0 618.5 Φ V rel – Relative Luminous Flux Dominant Wavelength λ ( nm ) 619.0 618.0 Red 617.5 617.0 616.5 616.0 0 16434 10 20 30 40 50 60 1.8 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40 I F - Forward Current ( mA ) 15977 Document Number 83144 Rev. 1.8, 14-Jan-05 I F = 70 mA 1.4 70 Figure 15. Dominant Wavelength vs. Forward Current Yellow 1.6 -20 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) Figure 18. Rel. Luminous Flux vs. Ambient Temperature www.vishay.com 7 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors Dominant Wavelength λ ( nm ) 592.0 I Spec - Specific Luninous Flux Yellow 1.0 591.5 591.0 590.5 590.0 0 0.1 1 10 IF - Forward Current ( mA ) 15981 100 20 30 40 50 60 70 I F - Forward Current ( mA ) Figure 22. Dominant Wavelength vs. Forward Current 100 10 IV rel - Relative Luminous Intensity 10 16435 Figure 19. Specific Luminous Flux vs. Forward Current I F - Forward Current ( mA ) Yellow 1 0.1 90 True Green 80 70 60 50 40 30 20 10 0.01 0 1 10 100 IF - Forward Current ( mA ) 15979 2.5 λ - Wavelength ( nm ) 16008 Figure 21. Relative Intensity vs. Wavelength www.vishay.com 3.5 4.0 4.5 5.0 5.5 V F - Forward Current ( V ) Figure 23. Forward Current vs. Forward Voltage 1.8 Φ V rel – Relative Luminous Flux I Vrel - Relative Luminous Intensity 1.2 Yellow 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 540 550 560 570 580 590 600 610 620 630 640 3.0 16037 Figure 20. Relative Luminous Flux vs. Forward Current 8 Yellow I F = 50 mA 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40 16056 True Green 1.6 -20 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) Figure 24. Rel. Luminous Flux vs. Ambient Temperature Document Number 83144 Rev. 1.8, 14-Jan-05 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors 541 539 Dominant Wavelength λ ( nm ) I Spec - Specific Luminous Flux True Green 1.0 537 535 533 531 True Green 529 527 525 523 0.1 521 1 10 I F - Forward Current ( mA ) 16038 0 100 10 20 30 40 50 I F - Forward Current ( mA ) 16301 Figure 28. Dominant Wavelength vs. Forward Current 10.00 100 90 True Green I F - Forward Current ( mA ) IVrel - Relative Luminous Intensity Figure 25. Specific Luminous Flux vs. Forward Current 1.00 0.10 0.01 1 16039 10 IF - Forward Current ( mA ) λ - Wavelength ( nm ) Figure 27. Relative Intensity vs. Wavelength Document Number 83144 Rev. 1.8, 14-Jan-05 50 40 30 20 10 3.0 3.5 4.0 4.5 5.0 5.5 V F - Forward Voltage ( V ) Figure 29. Forward Current vs. Forward Voltage 1.8 Φ Vrel - Relative Luminous Flux I Vrel - Relative Luminous Intensity 16068 60 16058 Figure 26. Relative Luminous Flux vs. Forward Current 1.2 True Green 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 460 480 500 520 540 560 580 600 620 70 0 2.5 100 Blue Green 80 I F = 50 mA 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40 16061 Blue Green 1.6 -20 0 20 40 60 80 100 Tamb − Ambient Temperature ( °C ) Figure 30. Rel. Luminous Flux vs. Ambient Temperature www.vishay.com 9 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors Dominant Wavelength λ ( nm ) 511 I Spec - Specific Luninous Flux Blue Green 1.0 510 509 508 507 Blue Green 506 505 504 503 502 0 10 20 30 40 50 0.1 1 10 100 16300 IF - Forward Current ( mA ) 16059 Figure 31. Specific Luminous Flux vs. Forward Current Figure 34. Dominant Wavelength vs. Forward Current 10.00 100 90 Blue Green I F - Forward Current ( mA ) I Vrel - Relative Luminous Flux I F - Forward Current ( mA ) 1.00 0.10 80 70 Blue Truegreen 60 50 40 30 20 10 0.01 1 10 IF - Forward Current ( mA ) 16060 0 2.5 100 www.vishay.com 10 4.5 Blue 1.6 5.0 5.5 I F = 50 mA 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40 16057 Figure 33. Relative Intensity vs. Wavelength 4.0 1.8 λ - Wavelength ( nm ) 16070 3.5 V F - Forward Voltage ( V ) Figure 35. Forward Current vs. Forward Voltage Φ Vrel - Relative Luminous Flux I Vrel - Relative Luminous Intensity Figure 32. Relative Luminous Flux vs. Forward Current 1.2 Blue Green I F = 50 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 420 440 460 480 500 520 540 560 580 600 3.0 16040 -20 0 20 40 60 80 100 T amb - Ambient Temperature ( ° C ) Figure 36. Rel. Luminous Flux vs. Ambient Temperature Document Number 83144 Rev. 1.8, 14-Jan-05 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors Dominant Wavelength λ ( nm ) 473 I Spec - Specific Luninous Flux Blue 1.0 Blue 472 471 470 469 0 0.1 1 16041 10 I F - Forward Current ( mA ) 100 20 30 40 50 I F - Forward Current ( mA ) Figure 40. Dominant Wavelength vs. Forward Current Figure 37. Specific Luminous Flux vs. Forward Current 10.00 100 90 Blue I F - Forward Current ( mA ) I Vrel - Relative Luminous Intensity 10 16299 1.00 0.10 White 80 70 60 50 40 30 20 10 0.01 1 16042 10 0 2.5 100 IF - Forward Current ( mA ) λ - W avelength ( nm ) Figure 39. Relative Intensity vs. Wavelength Document Number 83144 Rev. 1.8, 14-Jan-05 4.0 4.5 5.0 5.5 1.8 Φ V rel - Relative Luminous Flux I Vrel - Relative Luminous Intensity 16069 3.5 Figure 41. Forward Current vs. Forward Voltage Figure 38. Relative Luminous Flux vs. Forward Current 1.2 Blue 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 400 420 440 460 480 500 520 540 560 3.0 V F - Forward Voltage ( V ) 16062 I F = 50 mA 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40 16065 White 1.6 -20 0 20 40 60 80 100 T amb - Ambient Temperature ( ° C ) Figure 42. Rel. Luminous Flux vs. Ambient Temperature www.vishay.com 11 TLWB / BG / O / R / TG / W / Y7900 f - Chromaticity coordinate shift (x,y) Vishay Semiconductors I Spec - Specific Luminous Flux White 1.0 0.1 1 10 White 0.340 X 0.335 0.330 Y 0.325 0.320 0.315 0 100 16198 I F - Forward Current ( mA ) 16063 0.345 Figure 43. Specific Luminous Flux vs. Forward Current 10 20 30 40 50 60 I F - Forward Current ( mA ) Figure 46. Chromaticity Coordinate Shift vs. Forward Current I V rel - Relative Luminous Flux 10.00 White 1.00 0.10 0.01 1 16064 10 I F - Forward Current ( mA ) 100 I V rel - Relative Luminous Intensity Figure 44. Relative Luminous Flux vs. Forward Current 1.2 White I F = 50 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 400 450 500 550 600 650 700 750 800 λ - Wavelength ( nm ) 16071 Figure 45. Relative Intensity vs. Wavelength www.vishay.com 12 Document Number 83144 Rev. 1.8, 14-Jan-05 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors Package Dimensions in mm 15984 Document Number 83144 Rev. 1.8, 14-Jan-05 www.vishay.com 13 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423 www.vishay.com 14 Document Number 83144 Rev. 1.8, 14-Jan-05