VISHAY TLWW7900

TLWB / BG / O / R / TG / W / Y7900
Vishay Semiconductors
TELUX™ LED
Description
The TELUX™ series is a clear, non diffused LED for
high end applications where supreme luminous flux is
required.
It is designed in an industry standard 7.62 mm square
package utilizing highly developed (AS) AllnGaP and
InGaN technologies.
The supreme heat dissipation of TELUX™ allows
applications at high ambient temperatures.
All packing units are binned for luminous flux and
color to achieve best homogenous light appearance
in application.
Features
•
•
•
•
•
•
•
•
•
•
19232
e3 Pb
Pb-free
• Lead-free device
Utilizing (AS) AlInGaP and InGaN technologies
High luminous flux
Supreme heat dissipation: RthJP is 90 K/W
High operating temperature:
Tamb = - 40 to + 110 °C
Type TLWR meets SAE and ECE color requirements
Packed in tubes for automatic insertion
Luminous flux and color categorized for
each tube
Small mechanical tolerances allow precise usage
of external reflectors or lightguides
TLWR and TLWY types additionally
forward voltage categorized
ESD-withstand voltage:
> 2 kV acc. to MIL STD 883 D, Method 3015.7
for AlInGaP, > 1 kV for InGaN
Applications
Exterior lighting
Dashboard illumination
Tail-, Stop - and Turn Signals of motor vehicles
Replaces incandescent lamps
Traffic signals and signs
Parts Table
Part
TLWR7900
Color, Luminous Intensity
Red, φV = 2100 mlm (typ.)
Angle of Half Intensity (±ϕ)
45 °
Technology
AllnGaP on GaAs
TLWO7900
Softorange, φV = 2100 mlm (typ.) 45 °
AllnGaP on GaAs
TLWY7900
Yellow, φV = 1400 mlm (typ.)
45 °
AllnGaP on GaAs
TLWTG7900
True green, φV = 900 mlm (typ.)
45 °
InGaN on SiC
TLWBG7900
Blue green, φV = 700 mlm (typ.)
45 °
InGaN on SiC
TLWB7900
Blue, φV = 330 mlm (typ.)
45 °
InGaN on SiC
TLWW7900
White, φV = 650 mlm (typ.)
45 °
InGaN / TAG on SiC
Document Number 83144
Rev. 1.8, 14-Jan-05
www.vishay.com
1
TLWB / BG / O / R / TG / W / Y7900
Vishay Semiconductors
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
TLWR7900 , TLWO7900 , TLWY7900
Symbol
Value
Reverse voltage
Parameter
IR = 10 µA
Test condition
VR
10
V
DC Forward current
Tamb ≤ 85 °C
IF
70
mA
Surge forward current
tp ≤ 10 µs
Power dissipation
Tamb ≤ 85 °C
Unit
IFSM
1
A
PV
187
mW
Junction temperature
Tj
125
°C
Operating temperature range
Tamb
- 40 to + 110
°C
Storage temperature range
Tstg
- 55 to + 110
°C
Tsd
260
°C
RthJA
200
K/W
RthJP
90
K/W
Unit
Soldering temperature
t ≤ 5 s, 1.5 mm from body
preheat temperature
100 °C/ 30 sec.
Thermal resistance junction/
ambient
with cathode heatsink
of 70 mm2
Thermal resistance junction/pin
TLWTG7900 , TLWBG7900 , TLWB7900 , TLWW7900
Symbol
Value
Reverse voltage
Parameter
IR = 10 µA
Test condition
VR
5
V
DC Forward current
Tamb ≤ 50 °C
IF
50
mA
Surge forward current
tp ≤ 10 µs
IFSM
0.1
A
Power dissipation
Tamb ≤ 50 °C
PV
230
mW
PV
230
mW
PV
230
mW
PV
255
mW
Tj
100
°C
Tamb
- 40 to + 100
°C
Tstg
- 55 to + 100
°C
Tsd
260
°C
RthJA
200
K/W
RthJP
90
K/W
Junction temperature
Operating temperature range
Storage temperature range
Soldering temperature
t ≤ 5 s, 1.5 mm from body
preheat temperature
100 °C/ 30 sec.
Thermal resistance junction/
ambient
with cathode heatsink
of 70 mm2
Thermal resistance junction/pin
Optical and Electrical Characteristics
Tamb = 25 °C, unless otherwise specified
Red
TLWR7900
Symbol
Min
Typ.
Max
Unit
Total flux
Parameter
IF = 70 mA, RthJA = 200 °K/W
Test condition
φV
1500
2100
3000
mlm
Luminous intensity/Total flux
IF = 70 mA, RthJA = 200 °K/W
IV/φV
Dominant wavelength
IF = 70 mA, RthJA = 200 °K/W
λd
611
618
0.7
mcd/mlm
634
nm
Peak wavelength
IF = 70 mA, RthJA = 200 °K/W
λp
624
nm
Angle of half intensity
IF = 70 mA, RthJA = 200 °K/W
ϕ
± 45
deg
Total included angle
90 % of Total Flux Captured
ϕ
Forward voltage
IF = 70 mA, RthJA = 200 °K/W
VF
www.vishay.com
2
100
1.83
2.2
deg
2.67
V
Document Number 83144
Rev. 1.8, 14-Jan-05
TLWB / BG / O / R / TG / W / Y7900
Vishay Semiconductors
Symbol
Min
Typ.
Reverse voltage
Parameter
IR = 10 µA
Test condition
VR
10
20
Max
Unit
V
Junction capacitance
VR = 0, f = 1 MHz
Cj
17
pF
Temperature coefficient of λdom
IF = 50 mA
TCλdom
0.05
nm/K
Soft Orange
TLWO7900
Symbol
Min
Typ.
Max
Unit
Total flux
Parameter
IF = 70 mA, RthJA = 200 °K/W
Test condition
φV
1500
2100
3000
mlm
Luminous intensity/Total flux
IF = 70 mA, RthJA = 200 °K/W
IV/φV
Dominant wavelength
IF = 70 mA, RthJA = 200 °K/W
λd
598
605
Peak wavelength
IF = 70 mA, RthJA = 200 °K/W
λp
610
0.7
mcd/mlm
611
nm
nm
Angle of half intensity
IF = 70 mA, RthJA = 200 °K/W
ϕ
± 45
deg
Total included angle
90 % of Total Flux Captured
ϕ
100
deg
Forward voltage
IF = 70 mA, RthJA = 200 °K/W
VF
1.83
2.2
Reverse voltage
IR = 10 µA
VR
10
20
Junction capacitance
VR = 0, f = 1 MHz
Temperature coefficient of λdom
IF = 50 mA
2.67
V
V
Cj
17
pF
TCλdom
0.06
nm/K
Yellow
TLWY7900
Symbol
Min
Typ.
Max
Unit
Total flux
Parameter
IF = 70 mA, RthJA = 200 °K/W
Test condition
φV
1000
1400
2400
mlm
Luminous intensity/Total flux
IF = 70 mA, RthJA = 200 °K/W
IV/φV
Dominant wavelength
IF = 70 mA, RthJA = 200 °K/W
λd
585
592
0.7
mcd/mlm
597
nm
Peak wavelength
IF = 70 mA, RthJA = 200 °K/W
λp
594
nm
Angle of half intensity
IF = 70 mA, RthJA = 200 °K/W
ϕ
± 45
deg
Total included angle
90 % of Total Flux Captured
ϕ
Forward voltage
IF = 70 mA, RthJA = 200 °K/W
VF
1.83
10
100
2.1
deg
2.67
V
Reverse voltage
IR = 10 µA
VR
15
V
Junction capacitance
VR = 0, f = 1 MHz
Cj
32
pF
Temperature coefficient of λdom
IF = 50 mA
TCλdom
0.1
nm/K
True green
TLWTG7900
Symbol
Min
Typ.
Max
Unit
Total flux
Parameter
IF = 50 mA, RthJA = 200 °K/W
Test condition
φV
630
900
1800
mlm
Luminous intensity/Total flux
IF = 50 mA, RthJA = 200 °K/W
IV/φV
0.7
mcd/mlm
Dominant wavelength
IF = 50 mA, RthJA = 200 °K/W
λd
Peak wavelength
IF = 50 mA, RthJA = 200 °K/W
λp
518
nm
Angle of half intensity
IF = 50 mA, RthJA = 200 °K/W
ϕ
± 45
deg
509
523
Total included angle
90 % of Total Flux Captured
ϕ
100
Forward voltage
IF = 50 mA, RthJA = 200 °K/W
VF
4.2
Reverse voltage
IR = 10 µA
VR
Junction capacitance
VR = 0, f = 1 MHz
Temperature coefficient of λdom
IF = 30 mA
Document Number 83144
Rev. 1.8, 14-Jan-05
5
535
nm
deg
4.7
V
10
V
Cj
50
pF
TCλdom
0.02
nm/K
www.vishay.com
3
TLWB / BG / O / R / TG / W / Y7900
Vishay Semiconductors
Blue green
TLWBG7900
Symbol
Min
Typ.
Max
Unit
Total flux
Parameter
IF = 50 mA, RthJA = 200 °K/W
Test condition
φV
400
700
1250
mlm
Luminous intensity/Total flux
IF = 50 mA, RthJA = 200 °K/W
IV/φV
Dominant wavelength
IF = 50 mA, RthJA = 200 °K/W
λd
Peak wavelength
IF = 50 mA, RthJA = 200 °K/W
λp
503
nm
deg
0.7
492
505
Angle of half intensity
IF = 50 mA, RthJA = 200 °K/W
ϕ
± 45
Total included angle
90 % of Total Flux Captured
ϕ
100
Forward voltage
IF = 50 mA, RthJA = 200 °K/W
VF
4.2
Reverse voltage
IR = 10 µA
VR
Junction capacitance
VR = 0, f = 1 MHz
Temperature coefficient of λdom
IF = 30 mA
5
mcd/mlm
510
nm
deg
4.7
10
V
V
Cj
50
pF
TCλdom
0.02
nm/K
Blue
TLWB7900
Symbol
Min
Typ.
Max
Unit
Total flux
Parameter
IF = 50 mA, RthJA = 200 °K/W
Test condition
φV
200
330
630
mlm
Luminous intensity/Total flux
IF = 50 mA, RthJA = 200 °K/W
IV/φV
Dominant wavelength
IF = 50 mA, RthJA = 200 °K/W
λd
462
470
Peak wavelength
IF = 50 mA, RthJA = 200 °K/W
λp
460
nm
deg
0.7
Angle of half intensity
IF = 50 mA, RthJA = 200 °K/W
ϕ
± 45
Total included angle
90 % of Total Flux Captured
ϕ
100
Forward voltage
IF = 50 mA, RthJA = 200 °K/W
VF
4.3
mcd/mlm
476
nm
deg
4.7
V
Reverse voltage
IR = 10 µA
VR
10
V
Junction capacitance
VR = 0, f = 1 MHz
Cj
50
pF
Temperature coefficient of λdom
IF = 30 mA
TCλdom
0.03
nm/K
5
White
TLWW7900
Symbol
Min
Typ.
Max
Unit
Total flux
Parameter
IF = 50 mA, RthJA = 200 °K/W
Test condition
φV
400
650
1250
mlm
Luminous intensity/Total flux
IF = 50 mA, RthJA = 200 °K/W
IV/φV
0.7
mcd/mlm
Color temperature
IF = 50 mA, RthJA = 200 °K/W
TK
5500
K
deg
Angle of half intensity
IF = 50 mA, RthJA = 200 °K/W
ϕ
± 45
Total included angle
90 % of Total Flux Captured
ϕ
100
Forward voltage
IF = 50 mA, RthJA = 200 °K/W
VF
4.3
Reverse voltage
IR = 10 µA
VR
Junction capacitance
VR = 0, f = 1 MHz
Cj
www.vishay.com
4
5
deg
5.1
V
10
V
50
pF
Document Number 83144
Rev. 1.8, 14-Jan-05
TLWB / BG / O / R / TG / W / Y7900
Vishay Semiconductors
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
60
PV – Power Dissipation ( mW )
200
Red
150
125
100
75
50
25
50
I F - Forward Current ( mA )
175
RthJA=200K/W
40
30
20
10
0
RthJA = 200 K/W
0
0
20
40
60
80
100
0
120
Tamb – Ambient Temperature ( qC )
15982
Figure 1. Power Dissipation vs. Ambient Temperature
20
40
60
80
100
120
T amb - Ambient Temperature ( ° C )
16067
Figure 4. Forward Current vs. Ambient Temperature for InGaN
10000
Red, Softorange,
Yellow
IF – Forward Current ( mA )
I F – Forward Current ( mA )
100
Red
80
60
40
20
1000
tp/T=0.01
Tamb 85°C
0.02
0.05
0.1
100
1
10
0.5
0.2
RthJA=200K/W
1
0.01
0
0
15983
20
40
60
80
100 120
Tamb – Ambient Temperature ( qC )
0.1
100
10
tp – Pulse Length ( ms )
16010
Figure 2. Forward Current vs. Ambient Temperature
Figure 5. Forward Current vs. Pulse Length
0°
250
10°
20°
30°
I V rel - Relative Luminous Intensity
PV - Power Dissipation ( mW )
1
225
200
175
150
125
100
75
RthJA = 200 K/W
50
25
40°
1.0
0.9
50°
0.8
60°
70°
0.7
80°
0
0
16066
20
40
60
80
100
120
T amb - Ambient Temperature ( ° C )
Figure 3. Power Dissipation vs. Ambient Temperature for InGaN
Document Number 83144
Rev. 1.8, 14-Jan-05
0.6
16200
0.4
0.2
0
0.2
0.4
Angular Displacement
0.6
Figure 6. Rel. Luminous Intensity vs. Angular Displacement
www.vishay.com
5
TLWB / BG / O / R / TG / W / Y7900
Vishay Semiconductors
100
1.8
Φ Vrel – Relative Luminous Flux
% Total Luminous Flux
90
80
70
60
50
40
30
20
10
0
0
25
50
75
100
1.2
1.0
0.8
0.6
0.4
0.2
125
0.0
-40
15976
Figure 7. Percentage Total Luminous Flux vs. Total Included Angle
for 90 ° emission angle
I F = 70 mA
1.4
Total Included Angle (Degrees)
16201
Red,
Softorange
1.6
-20
0
20
40 60 80 100
Tamb – Ambient Temperature ( °C )
Figure 10. Rel. Luminous Flux vs. Ambient Temperature
230
210
R thJA in K/W
Red,
Softorange
I Spec - Specific Luninous Flux
Padsize 8 mm 2
per Anode Pin
220
200
190
180
170
1.0
160
0.1
0
50
100
150
200
250
300
Cathode Padsize in mm 2
16009
1
100
I F – Forward Current ( mA )
Red
Yellow
70
60
50
40
30
20
10
0
1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
V F – Forward Voltage ( V )
Figure 9. Forward Current vs. Forward Voltage
www.vishay.com
6
I Vrel - Relative Luminous Intensity
10
90
15974
100
Figure 11. Specific Luminous Flux vs. Forward Current
Figure 8. Thermal Resistance Junction Ambient vs. Cathode
Padsize
80
10
IF - Forward Current ( mA )
15980
Red
1
0.1
0.01
1
15978
10
100
IF - Forward Current ( mA )
Figure 12. Relative Luminous Flux vs. Forward Current
Document Number 83144
Rev. 1.8, 14-Jan-05
TLWB / BG / O / R / TG / W / Y7900
Vishay Semiconductors
I Vrel - Relative Luminous Intensity
Dominant Wavelength λ ( nm )
605.0
1.2
Red
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
570 580 590 600 610 620 630 640 650 660 670
604.5
Softorange
604.0
603.5
603.0
0
20
30
40
50
60
70
I F - Forward Current ( mA )
λ - Wavelength ( nm )
16007
Figure 16. Dominant Wavelength vs. Forward Current
Figure 13. Relative Intensity vs. Wavelength
100
90
I F - Forward Current ( mA )
1.2
1.1
Soft orange
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
560 570 580 590 600 610 620 630 640 650 660
I Vrel - Relative Luminous Intensity
10
16436
70
60
50
40
30
20
10
0
1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4
λ- Wavelength ( nm )
16314
Yellow
80
V F – Forward Voltage ( V )
15975
Figure 17. Forward Current vs. Forward Voltage
Figure 14. Relative Intensity vs. Wavelength
2.0
618.5
Φ V rel – Relative Luminous Flux
Dominant Wavelength λ ( nm )
619.0
618.0
Red
617.5
617.0
616.5
616.0
0
16434
10
20
30
40
50
60
1.8
1.2
1.0
0.8
0.6
0.4
0.2
0.0
-40
I F - Forward Current ( mA )
15977
Document Number 83144
Rev. 1.8, 14-Jan-05
I F = 70 mA
1.4
70
Figure 15. Dominant Wavelength vs. Forward Current
Yellow
1.6
-20
0
20
40
60
80
100
Tamb – Ambient Temperature ( °C )
Figure 18. Rel. Luminous Flux vs. Ambient Temperature
www.vishay.com
7
TLWB / BG / O / R / TG / W / Y7900
Vishay Semiconductors
Dominant Wavelength λ ( nm )
592.0
I Spec - Specific Luninous Flux
Yellow
1.0
591.5
591.0
590.5
590.0
0
0.1
1
10
IF - Forward Current ( mA )
15981
100
20
30
40
50
60
70
I F - Forward Current ( mA )
Figure 22. Dominant Wavelength vs. Forward Current
100
10
IV rel - Relative Luminous Intensity
10
16435
Figure 19. Specific Luminous Flux vs. Forward Current
I F - Forward Current ( mA )
Yellow
1
0.1
90
True Green
80
70
60
50
40
30
20
10
0.01
0
1
10
100
IF - Forward Current ( mA )
15979
2.5
λ - Wavelength ( nm )
16008
Figure 21. Relative Intensity vs. Wavelength
www.vishay.com
3.5
4.0
4.5
5.0
5.5
V F - Forward Current ( V )
Figure 23. Forward Current vs. Forward Voltage
1.8
Φ V rel – Relative Luminous Flux
I Vrel - Relative Luminous Intensity
1.2
Yellow
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
540 550 560 570 580 590 600 610 620 630 640
3.0
16037
Figure 20. Relative Luminous Flux vs. Forward Current
8
Yellow
I F = 50 mA
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
-40
16056
True Green
1.6
-20
0
20
40
60
80
100
Tamb – Ambient Temperature ( °C )
Figure 24. Rel. Luminous Flux vs. Ambient Temperature
Document Number 83144
Rev. 1.8, 14-Jan-05
TLWB / BG / O / R / TG / W / Y7900
Vishay Semiconductors
541
539
Dominant Wavelength λ ( nm )
I Spec - Specific Luminous Flux
True Green
1.0
537
535
533
531
True Green
529
527
525
523
0.1
521
1
10
I F - Forward Current ( mA )
16038
0
100
10
20
30
40
50
I F - Forward Current ( mA )
16301
Figure 28. Dominant Wavelength vs. Forward Current
10.00
100
90
True Green
I F - Forward Current ( mA )
IVrel - Relative Luminous Intensity
Figure 25. Specific Luminous Flux vs. Forward Current
1.00
0.10
0.01
1
16039
10
IF - Forward Current ( mA )
λ - Wavelength ( nm )
Figure 27. Relative Intensity vs. Wavelength
Document Number 83144
Rev. 1.8, 14-Jan-05
50
40
30
20
10
3.0
3.5
4.0
4.5
5.0
5.5
V F - Forward Voltage ( V )
Figure 29. Forward Current vs. Forward Voltage
1.8
Φ Vrel - Relative Luminous Flux
I Vrel - Relative Luminous Intensity
16068
60
16058
Figure 26. Relative Luminous Flux vs. Forward Current
1.2
True Green
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
460 480 500 520 540 560 580 600 620
70
0
2.5
100
Blue Green
80
I F = 50 mA
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
-40
16061
Blue Green
1.6
-20
0
20
40
60
80
100
Tamb − Ambient Temperature ( °C )
Figure 30. Rel. Luminous Flux vs. Ambient Temperature
www.vishay.com
9
TLWB / BG / O / R / TG / W / Y7900
Vishay Semiconductors
Dominant Wavelength λ ( nm )
511
I Spec - Specific Luninous Flux
Blue Green
1.0
510
509
508
507
Blue Green
506
505
504
503
502
0
10
20
30
40
50
0.1
1
10
100
16300
IF - Forward Current ( mA )
16059
Figure 31. Specific Luminous Flux vs. Forward Current
Figure 34. Dominant Wavelength vs. Forward Current
10.00
100
90
Blue Green
I F - Forward Current ( mA )
I Vrel - Relative Luminous Flux
I F - Forward Current ( mA )
1.00
0.10
80
70
Blue
Truegreen
60
50
40
30
20
10
0.01
1
10
IF - Forward Current ( mA )
16060
0
2.5
100
www.vishay.com
10
4.5
Blue
1.6
5.0
5.5
I F = 50 mA
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
-40
16057
Figure 33. Relative Intensity vs. Wavelength
4.0
1.8
λ - Wavelength ( nm )
16070
3.5
V F - Forward Voltage ( V )
Figure 35. Forward Current vs. Forward Voltage
Φ Vrel - Relative Luminous Flux
I Vrel - Relative Luminous Intensity
Figure 32. Relative Luminous Flux vs. Forward Current
1.2
Blue Green
I F = 50 mA
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
420 440 460 480 500 520 540 560 580 600
3.0
16040
-20
0
20
40
60
80
100
T amb - Ambient Temperature ( ° C )
Figure 36. Rel. Luminous Flux vs. Ambient Temperature
Document Number 83144
Rev. 1.8, 14-Jan-05
TLWB / BG / O / R / TG / W / Y7900
Vishay Semiconductors
Dominant Wavelength λ ( nm )
473
I Spec - Specific Luninous Flux
Blue
1.0
Blue
472
471
470
469
0
0.1
1
16041
10
I F - Forward Current ( mA )
100
20
30
40
50
I F - Forward Current ( mA )
Figure 40. Dominant Wavelength vs. Forward Current
Figure 37. Specific Luminous Flux vs. Forward Current
10.00
100
90
Blue
I F - Forward Current ( mA )
I Vrel - Relative Luminous Intensity
10
16299
1.00
0.10
White
80
70
60
50
40
30
20
10
0.01
1
16042
10
0
2.5
100
IF - Forward Current ( mA )
λ - W avelength ( nm )
Figure 39. Relative Intensity vs. Wavelength
Document Number 83144
Rev. 1.8, 14-Jan-05
4.0
4.5
5.0
5.5
1.8
Φ V rel - Relative Luminous Flux
I Vrel - Relative Luminous Intensity
16069
3.5
Figure 41. Forward Current vs. Forward Voltage
Figure 38. Relative Luminous Flux vs. Forward Current
1.2
Blue
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
400 420 440 460 480 500 520 540 560
3.0
V F - Forward Voltage ( V )
16062
I F = 50 mA
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
-40
16065
White
1.6
-20
0
20
40
60
80
100
T amb - Ambient Temperature ( ° C )
Figure 42. Rel. Luminous Flux vs. Ambient Temperature
www.vishay.com
11
TLWB / BG / O / R / TG / W / Y7900
f - Chromaticity coordinate shift (x,y)
Vishay Semiconductors
I Spec - Specific Luminous Flux
White
1.0
0.1
1
10
White
0.340
X
0.335
0.330
Y
0.325
0.320
0.315
0
100
16198
I F - Forward Current ( mA )
16063
0.345
Figure 43. Specific Luminous Flux vs. Forward Current
10
20
30
40
50
60
I F - Forward Current ( mA )
Figure 46. Chromaticity Coordinate Shift vs. Forward Current
I V rel - Relative Luminous Flux
10.00
White
1.00
0.10
0.01
1
16064
10
I F - Forward Current ( mA )
100
I V rel - Relative Luminous Intensity
Figure 44. Relative Luminous Flux vs. Forward Current
1.2
White
I F = 50 mA
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
400 450 500 550 600 650 700 750 800
λ - Wavelength ( nm )
16071
Figure 45. Relative Intensity vs. Wavelength
www.vishay.com
12
Document Number 83144
Rev. 1.8, 14-Jan-05
TLWB / BG / O / R / TG / W / Y7900
Vishay Semiconductors
Package Dimensions in mm
15984
Document Number 83144
Rev. 1.8, 14-Jan-05
www.vishay.com
13
TLWB / BG / O / R / TG / W / Y7900
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and
operatingsystems with respect to their impact on the health and safety of our employees and the public, as
well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use
of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
www.vishay.com
14
Document Number 83144
Rev. 1.8, 14-Jan-05