CS42438 108 dB, 192 kHz 6-In, 8-Out TDM CODEC FEATURES GENERAL DESCRIPTION Six 24-bit A/D, Eight 24-bit D/A Converters The CS42438 CODEC provides six multi-bit analog-todigital and eight multi-bit digital-to-analog delta-sigma converters. The CODEC is capable of operation with either differential or single-ended inputs and outputs, in a 52-pin MQFP package. ADC Dynamic Range – – 105 dB Differential 102 dB Single-Ended DAC Dynamic Range – – Six fully differential, or single-ended, inputs are available on stereo ADC1, ADC2, and ADC3. When operating in Single-ended Mode, an internal MUX before ADC3 allows selection from up to four single-ended inputs. Digital volume control is provided for each ADC channel, with selectable overflow detection. 108 dB Differential 105 dB Single-Ended ADC/DAC THD+N – – -98 dB Differential -95 dB Single-Ended All eight DAC channels provide digital volume control and can operate with differential or single-ended outputs. Compatible with Industry-Standard Time Division Multiplexed (TDM) Serial Interface An auxiliary serial input is available for an additional two channels of PCM data. DAC Sampling Rates up to 192 kHz ADC Sampling Rates up to 96 kHz The CS42438 is available in a 52-pin MQFP package in Commercial (-10° to +70°) and Automotive (-40° to +105°) grades. The CDB42438 Customer Demonstration board is also available for device evaluation and implementation suggestions. Please refer to “Ordering Information” on page 61 for complete ordering information. Programmable ADC High-Pass Filter for DC Offset Calibration Logarithmic Digital Volume Control Hardware Mode or Software I²C® & SPI™ Supports Logic Levels Between 5 V and 1.8 V TDM Serial Audio Input Auxilliary Serial Audio Input Input Master Clock Analog Supply = 3.3 V to 5 V Internal Voltage Reference Volume Controls Digital Filters Multibit DAC1-4 and Analog Filters ∆Σ Modulators High Pass Filter Digital Filters Multibit Oversampling ADC1&2 High Pass Filter Digital Filters Multibit Oversampling ADC3 8 Differential or Single-Ended Outputs 8 4 4 4:2* TDM Serial Audio Output Digital Supply = 3.3 V Register Configuration TDM Serial Interface Reset Level Translator Hardware Mode or I2C/SPI Software Mode Control Data Level Translator Control Port & Serial Audio Port Supply = 1.8 V to 5 V The CS42438 is ideal for audio systems requiring wide dynamic range, negligible distortion and low noise, such as A/V receivers, DVD receivers, and automotive audio systems. Differential or Single-Ended Analog Inputs 2 2 *Optional MUX allows selection from up to 4 single-ended inputs. http://www.cirrus.com Copyright © Cirrus Logic, Inc. 2006 (All Rights Reserved) AUGUST '06 DS646F1 CS42438 TABLE OF CONTENTS 1. PIN DESCRIPTIONS - SOFTWARE MODE ........................................................................................... 6 1.1 Digital I/O Pin Characteristics ........................................................................................................... 8 2. PIN DESCRIPTIONS - HARDWARE MODE .......................................................................................... 9 3. TYPICAL CONNECTION DIAGRAMS ................................................................................................. 11 4. CHARACTERISTICS AND SPECIFICATIONS..................................................................................... 13 RECOMMENDED OPERATING CONDITIONS ................................................................................... 13 ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 13 ANALOG INPUT CHARACTERISTICS (COMMERCIAL) .................................................................... 14 ANALOG INPUT CHARACTERISTICS (AUTOMOTIVE) ..................................................................... 15 ADC DIGITAL FILTER CHARACTERISTICS ....................................................................................... 16 ANALOG OUTPUT CHARACTERISTICS (COMMERCIAL) ................................................................ 17 ANALOG OUTPUT CHARACTERISTICS (AUTOMOTIVE) ................................................................. 18 COMBINED DAC INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE .............................. 20 SWITCHING SPECIFICATIONS - ADC/DAC PORT ............................................................................ 21 SWITCHING CHARACTERISTICS - AUX PORT ................................................................................. 22 SWITCHING SPECIFICATIONS - CONTROL PORT - I²C MODE ....................................................... 23 SWITCHING SPECIFICATIONS - CONTROL PORT - SPI FORMAT ................................................. 24 DC ELECTRICAL CHARACTERISTICS .............................................................................................. 25 DIGITAL INTERFACE SPECIFICATIONS & CHARACTERISTICS ..................................................... 25 5. APPLICATIONS .................................................................................................................................... 26 5.1 Overview ......................................................................................................................................... 26 5.2 Analog Inputs .................................................................................................................................. 27 5.2.1 Line-Level Inputs ................................................................................................................... 27 5.2.1.1 Hardware Mode ......................................................................................................... 27 5.2.1.2 Software Mode ........................................................................................................... 27 5.2.2 ADC3 Analog Input ................................................................................................................ 28 5.2.3 Hardware Mode ..................................................................................................................... 29 5.2.4 Software Mode ...................................................................................................................... 29 5.2.5 High-Pass Filter and DC Offset Calibration ........................................................................... 29 5.2.5.1 Hardware Mode ......................................................................................................... 29 5.2.5.2 Software Mode ........................................................................................................... 29 5.3 Analog Outputs ............................................................................................................................... 30 5.3.1 Initialization ............................................................................................................................ 30 5.3.2 Line-Level Outputs and Filtering ............................................................................................ 30 5.3.3 Digital Volume Control ........................................................................................................... 32 5.3.3.1 Hardware Mode ......................................................................................................... 32 5.3.3.2 Software Mode ........................................................................................................... 32 5.3.4 De-Emphasis Filter ................................................................................................................ 32 5.4 System Clocking ............................................................................................................................. 33 5.4.1 Hardware Mode ..................................................................................................................... 33 5.4.2 Software Mode ...................................................................................................................... 33 5.5 CODEC Digital Interface ................................................................................................................. 33 5.5.1 TDM ................................................................................................................................ 33 5.5.2 I/O Channel Allocation ........................................................................................................... 34 5.6 AUX Port Digital Interface Formats ................................................................................................. 34 5.6.1 Hardware Mode ..................................................................................................................... 34 5.6.2 Software Mode ...................................................................................................................... 34 5.6.3 I²S .......................................................................................................................................... 34 5.6.4 Left-Justified .......................................................................................................................... 35 5.7 Control Port Description and Timing ............................................................................................... 35 5.7.1 SPI Mode ............................................................................................................................... 35 5.7.2 I²C Mode ................................................................................................................................ 36 2 DS646F1 CS42438 5.8 Recommended Power-Up Sequence ............................................................................................. 37 5.8.1 Hardware Mode ..................................................................................................................... 37 5.8.2 Software Mode ...................................................................................................................... 38 5.9 Reset and Power-Up ...................................................................................................................... 38 5.10 Power Supply, Grounding, and PCB Layout ................................................................................. 38 6. REGISTER QUICK REFERENCE ......................................................................................................... 39 7. REGISTER DESCRIPTION ................................................................................................................... 41 7.1 Memory Address Pointer (MAP) ..................................................................................................... 41 7.1.1 Increment (INCR) .................................................................................................................. 41 7.1.2 Memory Address Pointer (MAP[6:0]) ..................................................................................... 41 7.2 Chip I.D. and Revision Register (Address 01h) (Read Only) .......................................................... 41 7.2.1 Chip I.D. (CHIP_ID[3:0]) ........................................................................................................ 41 7.2.2 Chip Revision (REV_ID[3:0]) ................................................................................................. 41 7.3 Power Control (Address 02h) ......................................................................................................... 42 7.3.1 Power Down ADC Pairs (PDN_ADCX) ................................................................................. 42 7.3.2 Power Down DAC Pairs (PDN_DACX) ................................................................................. 42 7.3.3 Power Down (PDN) ............................................................................................................... 42 7.4 Functional Mode (Address 03h) ...................................................................................................... 43 7.4.1 MCLK Frequency (MFREQ[2:0]) ........................................................................................... 43 7.5 Miscellaneous Control (Address 04h) ............................................................................................. 43 7.5.1 Freeze Controls (FREEZE) ................................................................................................... 43 7.5.2 Auxiliary Digital Interface Format (AUX_DIF) ........................................................................ 43 7.6 ADC Control & DAC De-Emphasis (Address 05h) ......................................................................... 44 7.6.1 ADC1-2 High-Pass Filter Freeze (ADC1-2_HPF FREEZE) .................................................. 44 7.6.2 ADC3 High Pass Filter Freeze (ADC3_HPF FREEZE) ......................................................... 44 7.6.3 DAC De-Emphasis Control (DAC_DEM) ............................................................................... 44 7.6.4 ADC1 Single-Ended Mode (ADC1 SINGLE) ......................................................................... 44 7.6.5 ADC2 Single-Ended Mode (ADC2 SINGLE) ......................................................................... 45 7.6.6 ADC3 Single-Ended Mode (ADC3 SINGLE) ......................................................................... 45 7.6.7 Analog Input Ch. 5 Multiplexer (AIN5_MUX) ......................................................................... 45 7.6.8 Analog Input Ch. 6 Multiplexer (AIN6_MUX) ......................................................................... 45 7.7 Transition Control (Address 06h) .................................................................................................... 46 7.7.1 Single Volume Control (DAC_SNGVOL, ADC_SNGVOL) .................................................... 46 7.7.2 Soft Ramp and Zero Cross Control (ADC_SZC[1:0], DAC_SZC[1:0]) .................................. 46 7.7.3 Auto-Mute (AMUTE) .............................................................................................................. 47 7.7.4 Mute ADC Serial Port (MUTE ADC_SP) ............................................................................... 47 7.8 DAC Channel Mute (Address 07h) ................................................................................................. 47 7.8.1 Independent Channel Mute (AOUTX_MUTE) ....................................................................... 47 7.9 AOUTX Volume Control (Addresses 08h- 0Fh) .......................................................................... 47 7.9.1 Volume Control (AOUTX_VOL[7:0]) ...................................................................................... 47 7.10 DAC Channel Invert (Address 10h) .............................................................................................. 48 7.10.1 Invert Signal Polarity (INV_AOUTX) .................................................................................... 48 7.11 AINX Volume Control (Address 11h-16h) ..................................................................................... 48 7.11.1 AINX Volume Control (AINX_VOL[7:0]) .............................................................................. 48 7.12 ADC Channel Invert (Address 17h) .............................................................................................. 49 7.12.1 Invert Signal Polarity (INV_AINX) ........................................................................................ 49 7.13 Status (Address 19h) (Read Only) ................................................................................................ 49 7.13.1 CLOCK ERROR (CLK ERROR) .......................................................................................... 49 7.13.2 ADC Overflow (ADCX_OVFL) ............................................................................................. 49 7.14 Status Mask (Address 1Ah) .......................................................................................................... 49 8. EXTERNAL FILTERS............................................................................................................................ 50 8.1 ADC Input Filter .............................................................................................................................. 50 8.1.1 Passive Input Filter ................................................................................................................ 51 8.1.2 Passive Input Filter w/Attenuation ......................................................................................... 51 DS646F1 3 CS42438 8.2 DAC Output Filter ........................................................................................................................... 53 9. ADC FILTER PLOTS............................................................................................................................. 54 10. DAC FILTER PLOTS........................................................................................................................... 56 11. PARAMETER DEFINITIONS............................................................................................................... 58 12. REFERENCES..................................................................................................................................... 59 13. PACKAGE INFORMATION................................................................................................................. 60 13.1 Thermal Characteristics ............................................................................................................. 60 14. ORDERING INFORMATION ............................................................................................................... 61 15. REVISION HISTORY ........................................................................................................................... 61 LIST OF FIGURES Figure 1.Typical Connection Diagram (Software Mode) ........................................................................... 11 Figure 2.Typical Connection Diagram (Hardware Mode) .......................................................................... 12 Figure 3.Output Test Circuit for Maximum Load ....................................................................................... 19 Figure 4.Maximum Loading ....................................................................................................................... 19 Figure 5.TDM Serial Audio Interface Timing ............................................................................................. 21 Figure 6.Serial Audio Interface Slave Mode Timing .................................................................................. 22 Figure 7.Control Port Timing - I²C Format ................................................................................................. 23 Figure 8.Control Port Timing - SPI Format ................................................................................................ 24 Figure 9.Full-Scale Input ........................................................................................................................... 28 Figure 10.ADC3 Input Topology ................................................................................................................ 28 Figure 11.Audio Output Initialization Flow Chart ....................................................................................... 31 Figure 12.Full-Scale Output ...................................................................................................................... 32 Figure 13.De-Emphasis Curve .................................................................................................................. 33 Figure 14.TDM Serial Audio Format ......................................................................................................... 34 Figure 15.AUX I²S Format ......................................................................................................................... 34 Figure 16.AUX Left-Justified Format ......................................................................................................... 35 Figure 17.Control Port Timing in SPI Mode .............................................................................................. 36 Figure 18.Control Port Timing, I²C Write ................................................................................................... 36 Figure 19.Control Port Timing, I²C Read ................................................................................................... 37 Figure 20.Single to Differential Active Input Filter ..................................................................................... 50 Figure 21.Single-Ended Active Input Filter ................................................................................................ 50 Figure 22.Passive Input Filter ................................................................................................................... 51 Figure 23.Passive Input Filter w/Attenuation ............................................................................................. 52 Figure 24.Active Analog Output Filter ....................................................................................................... 53 Figure 25.Passive Analog Output Filter .................................................................................................... 53 Figure 26.SSM Stopband Rejection .......................................................................................................... 54 Figure 27.SSM Transition Band ................................................................................................................ 54 Figure 28.SSM Transition Band (Detail) ................................................................................................... 54 Figure 29.SSM Passband Ripple .............................................................................................................. 54 Figure 30.DSM Stopband Rejection .......................................................................................................... 54 Figure 31.DSM Transition Band ................................................................................................................ 54 Figure 32.DSM Transition Band (Detail) ................................................................................................... 55 Figure 33.DSM Passband Ripple .............................................................................................................. 55 Figure 34.SSM Stopband Rejection .......................................................................................................... 56 Figure 35.SSM Transition Band ................................................................................................................ 56 Figure 36.SSM Transition Band (detail) .................................................................................................... 56 Figure 37.SSM Passband Ripple .............................................................................................................. 56 Figure 38.DSM Stopband Rejection .......................................................................................................... 56 Figure 39.DSM Transition Band ................................................................................................................ 56 Figure 40.DSM Transition Band (detail) .................................................................................................... 57 Figure 41.DSM Passband Ripple .............................................................................................................. 57 Figure 42.QSM Stopband Rejection ......................................................................................................... 57 4 DS646F1 CS42438 Figure 43.QSM Transition Band ................................................................................................................ 57 Figure 44.QSM Transition Band (detail) .................................................................................................... 57 Figure 45.QSM Passband Ripple .............................................................................................................. 57 LIST OF TABLES Table 1. I/O Power Rails ............................................................................................................................. 8 Table 2. Hardware Configurable Settings ................................................................................................. 26 Table 3. AIN5 Analog Input Selection ....................................................................................................... 29 Table 4. AIN6 Analog Input Selection ....................................................................................................... 29 Table 5. MCLK Frequency Settings .......................................................................................................... 33 Table 6. Serial Audio Interface Channel Allocations ................................................................................. 34 Table 7. MCLK Frequency Settings .......................................................................................................... 43 Table 8. Example AOUT Volume Settings ................................................................................................ 48 Table 9. Example AIN Volume Settings .................................................................................................... 48 DS646F1 5 CS42438 AIN2+ AIN2- AIN3- AIN3+ AIN4- AIN4+ VA FILT+ AGND AIN5-/AIN5B AIN5+/AIN5A AIN6-/AIN6B AIN6+/AIN6A 1. PIN DESCRIPTIONS - SOFTWARE MODE 52 51 50 49 48 47 46 45 44 43 42 41 40 SCL/CCLK 1 39 AIN1+ SDA/CDOUT 2 38 AIN1- AD0/CS AD1/CDIN 3 37 VA 4 VQ RST VLC 5 36 35 34 33 AOUT8AOUT7+ AGND FS 6 7 VD 8 32 DGND 9 31 AOUT7- VLS 10 30 AOUT6- SCLK 11 12 29 AOUT6+ MCLK AOUT5+ ADC_SDOUT 13 28 27 42438 AOUT8+ AOUT5- # AOUT4+ AOUT4- AOUT3+ AOUT3- AOUT2- AOUT2+ AOUT1+ AOUT1- DGND AUX_SDIN AUX_SCLK DAC_SDIN Pin Name AUX_LRCK 14 15 16 17 18 19 20 21 22 23 24 25 26 Pin Description SCL/CCLK 1 Serial Control Port Clock (Input) - Serial clock for the control port interface. SDA/CDOUT 2 Serial Control Data I/O (Input/Output) - Input/Output for I²C data. Output for SPI data. AD0/CS 3 Address Bit [0]/ Chip Select (Input) - Chip address bit in I²C Mode. Control signal used to select the chip in SPI Mode. AD1/CDIN 4 Address Bit [1]/ SPI Data Input (Input) - Chip address bit in I²C Mode. Input for SPI data. RST 5 Reset (Input) - The device enters a low-power mode and all internal registers are reset to their default settings when low. VLC 6 Control Port Power (Input) - Determines the required signal level for the control port interface. See “Digital I/O Pin Characteristics” on page 8. FS 7 Frame Sync (Input) - Signals the start of a new TDM frame in the TDM digital interface format. VD 8 Digital Power (Input) - Positive power supply for the digital section. DGND 9,18 Digital Ground (Input) - VLS 10 Serial Port Interface Power (Input) - Determines the required signal level for the serial port interfaces. See “Digital I/O Pin Characteristics” on page 8. SCLK 11 Serial Clock (Input) - Serial clock for the serial audio interface. Input frequency must be 256 x Fs. MCLK 12 Master Clock (Input) - Clock source for the delta-sigma modulators and digital filters. ADC_SDOUT 13 Serial Audio Data Output (Output) - TDM output for two’s complement serial audio data. DAC_SDIN 14 DAC Serial Audio Data Input (Input) - TDM Input for two’s complement serial audio data. AUX_LRCK 15 Auxiliary Left/Right Clock (Output) - Determines which channel, Left or Right, is currently active on the Auxiliary serial audio data line. 6 DS646F1 CS42438 AUX_SCLK 16 Auxiliary Serial Clock (Output) - Serial clock for the Auxiliary serial audio interface. AUX_SDIN 17 Auxiliary Serial Input (Input) - The 42438 provides an additional serial input for two’s complement serial audio data. AOUT1 +,AOUT2 +,AOUT3 +,AOUT4 +,AOUT5 +,AOUT6 +,AOUT7 +,AOUT8 +,- 20,19 21,22 24,23 Differential Analog Output (Output) - The full-scale differential analog output level is specified in 25,26 the Analog Characteristics specification table. Each positive leg of the differential outputs may 28,27 also be used single-ended. 29,30 31,32 33,34 AGND 35,48 Analog Ground (Input) - Ground reference for the analog section. VQ 36 Quiescent Voltage (Output) - Filter connection for internal quiescent reference voltage. VA 37,46 Analog Power (Input) - Positive power supply for the analog section. AIN1 +,AIN2 +,AIN3 +,AIN4 +,AIN5 +,AIN6 +,- 39,38 41,40 43,42 45,44 50,49 52,51 AIN5 A,B AIN6 A,B Single-Ended Analog Input (Input) - In Single-Ended Mode, an internal analog mux allows 50,49 selection between two channels for both analog inputs AIN5 and AIN6 (see Sections 7.6.6-7.6.8 52,51 for details). The unused leg of each input is internally connected to common mode. The full-scale input level is specified in the Analog Characteristics specification table. FILT+ DS646F1 47 Differential Analog Input (Input) - Signals are presented differentially to the delta-sigma modulators. The full-scale input level is specified in the Analog Characteristics specification table. Singleended inputs may be applied to the positive terminals when the ADCx SINGLE bit is enabled. Once in Single-Ended Mode, the negative terminal of AIN1-AIN4 must be externally driven to common mode. See below for a description of AIN5-AIN6 in Single-Ended Mode. Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits. 7 CS42438 1.1 Digital I/O Pin Characteristics Various pins on the CS42438 are powered from separate power supply rails. The logic level for each input should adhere to the corresponding power rail and should not exceed the maximum ratings. Power Rail Pin Name SW/(HW) I/O Driver Receiver VLC RST Input - 1.8 V - 5.0 V, CMOS SCL/CCLK (AIN5_MUX) Input - 1.8 V - 5.0 V, CMOS, with Hysteresis SDA/CDOUT (AIN6_MUX) Input/ Output 1.8 V - 5.0 V, CMOS/Open Drain 1.8 V - 5.0 V, CMOS, with Hysteresis AD0/CS (MFREQ) Input - 1.8 V - 5.0 V, CMOS Input - 1.8 V - 5.0 V, CMOS AD1/CDIN (ADC3_HPF) VLS MCLK Input - 1.8 V - 5.0 V, CMOS LRCK Input - 1.8 V - 5.0 V, CMOS SCLK Input - 1.8 V - 5.0 V, CMOS 1.8 V - 5.0 V, CMOS - ADC_SDOUT3 Input/ (ADC3_SINGLE) Output DAC_SDIN Input - 1.8 V - 5.0 V, CMOS AUX_LRCK Output 1.8 V - 5.0 V, CMOS - AUX_SCLK Output 1.8 V - 5.0 V, CMOS - AUX_SDIN Input - 1.8 V - 5.0 V, CMOS Table 1. I/O Power Rails 8 DS646F1 CS42438 AIN2+ AIN2- AIN3- AIN3+ AIN4- AIN4+ FILT+ VA AIN5-/AIN5B AGND AIN5+/AIN5A AIN6-/AIN6B AIN6+/AIN6A 2. PIN DESCRIPTIONS - HARDWARE MODE 52 51 50 49 48 47 46 45 44 43 42 41 40 AIN5_MUX 1 39 AIN1+ AIN6_MUX 2 38 AIN1- MFREQ ADC3_HPF 3 37 VA 4 VQ RST VLC 5 36 35 34 33 AOUT8- FS 6 7 VD 8 32 AOUT7+ DGND 9 31 AOUT7- VLS 10 30 AOUT6- SCLK 11 12 29 AOUT6+ 28 27 AOUT5- 13 AOUT5+ AOUT4+ AOUT4- AOUT3+ AOUT3- AOUT2- AOUT2+ AOUT1- AOUT1+ DGND AUX_SDIN AUX_SCLK DAC_SDIN Pin Name AOUT8+ 14 15 16 17 18 19 20 21 22 23 24 25 26 AUX_LRCK MCLK ADC_SDOUT/ ADC3_SINGLE 42438 AGND # Pin Description AIN5_MUX AIN6_MUX 1 2 Analog Input Multiplexer (Input) - Allows selection between the A and B single-ended inputs of ADC3. See Section 7.6.7 and 7.6.8 for details. MFREQ 3 MCLK Frequency (Input) - Sets the required frequency range of the input Master Clock. See Section 5.4 for the appropriate settings. ADC3_HPF 4 ADC3 High-Pass Filter Freeze (Input) - When this pin is driven high, the internal high-pass filter will be disabled for ADC3. The current DC offset value will be frozen and continue to be subtracted from the conversion result. See “ADC Digital Filter Characteristics” on page 16. RST 5 Reset (Input) - The device enters a low-power mode and all internal registers are reset to their default settings when low. VLC 6 Control Port Power (Input) - Determines the required signal level for the control port interface. See “Digital I/O Pin Characteristics” on page 8. FS 7 Frame Sync (Input) - Signals the start of a new TDM frame in the TDM digital interface format. VD 8 Digital Power (Input) - Positive power supply for the digital section. VLS 10 Serial Port Interface Power (Input) - Determines the required signal level for the serial port interfaces. SCLK 11 Serial Clock (Input) - Serial clock for the serial audio interface. Input frequency must be 256 x Fs. ADC_SDOUT/ ADC3_SINGLE 13 Serial Audio Data Output (Output) - TDM output for two’s complement serial audio data. Startup Option for Hardware Mode: Pull-up to VLS enables Single-Ended Mode for AIN5-AIN6. DAC_SDIN 14 DAC Serial Audio Data Input (Input) - Input for two’s complement serial audio data. AUX_LRCK 15 Auxiliary Left/Right Clock (Output) - Determines which channel, Left or Right, is currently active on the Auxiliary serial audio data line. DS646F1 9 CS42438 AUX_SCLK 16 Auxiliary Serial Clock (Output) - Serial clock for the Auxiliary serial audio interface. AUX_SDIN 17 Auxiliary Serial Input (Input) - The 42438 provides an additional serial input for two’s complement serial audio data. AOUT1 +,AOUT2 +,AOUT3 +,AOUT4 +,AOUT5 +,AOUT6 +,AOUT7 +,AOUT8 +,- 20,19 21,22 24,23 Differential Analog Output (Output) - The full-scale differential analog output level is specified in 25,26 the Analog Characteristics specification table. Each positive leg of the differential outputs may 28,27 also be used single-ended. 29,30 31,32 33,34 AGND 35,48 Analog Ground (Input) - Ground reference for the analog section. VQ 36 Quiescent Voltage (Output) - Filter connection for internal quiescent reference voltage. VA 37,46 Analog Power (Input) - Positive power supply for the analog section. AIN1 +,AIN2 +,AIN3 +,AIN4 +,AIN5 +,AIN6 +,AIN7 +,AIN8 +,- 39,38 41,40 43,42 45,44 50,49 52,51 52,53 AIN5 A,B AIN6 A,B Single-Ended Analog Input (Input) - In Single-Ended Mode, an internal analog mux allows 50,49 selection between 2 channels for both analog inputs AIN5 and AIN6 (see Sections 7.6.6-7.6.8 for 52,51 details). The unused leg of each input is internally connected to common mode. The full-scale input level is specified in the Analog Characteristics specification table. FILT+ 10 47 Differential Analog Input (Input) - Signals are presented differentially to the delta-sigma modulators. The full-scale input level is specified in the Analog Characteristics specification table. Single-ended inputs may be applied to the positive terminals when the ADCx SINGLE pin is enabled. Once in Single-Ended Mode, the negative terminal of AIN1-AIN4 must be externally driven to common mode. See below for a description of AIN5-AIN6 in Single-Ended Mode. Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits. DS646F1 CS42438 3. TYPICAL CONNECTION DIAGRAMS +3.3 V 10 µF 0.01 µF 0.01 µF + + +3.3 V to +5 V 10 µF 0.01 µF 8 37 VD 10 VA 16 15 17 12 11 7 +1.8 V to +5.0 V Digital Audio Processor 14 13 VA VLS 0.01 µF CS5341 A/D Converter 46 AUX_SCLK AUX_LRCK AUX_SDIN AOUT1+ AOUT1- 20 19 Analog Output Filter 2 AOUT2+ AOUT2- 21 22 Analog Output Filter 2 AOUT3+ AOUT3- 24 23 Analog Output Filter 2 AOUT4+ AOUT4- 25 26 Analog Output Filter 2 AOUT5+ AOUT5- 28 27 Analog Output Filter 2 AOUT6+ AOUT6- 29 30 Analog Output Filter 2 AOUT7+ AOUT7- 32 31 Analog Output Filter 2 AOUT8+ AOUT8- 33 34 Analog Output Filter 2 AIN1+ 39 AIN1- 38 AIN2+ 41 AIN2- 40 AIN3+ 43 AIN3- 42 AIN4+ 45 AIN4- 44 AIN5+/AIN5A 50 AIN5-/AIN5B 49 SCLK FS DAC_SDIN ADC_SDOUT 52 5 RST 1 SCL/CCLK 2 SDA/CDOUT 4 3 ** 2 kΩ AIN6-/AIN6B 51 AD1/CDIN AD0/CS ** 2 kΩ +1.8 V to +5 V 6 Analog Input 1 Input Filter 1 Analog Input 2 Input Filter 1 Analog Input 3 Input Filter 1 Analog Input 4 MCLK AIN6+/AIN6A MicroController Input Filter 1 VLC 0.1 µF VQ FILT+ ** Resistors are required for I2C control port operation Input Filter 1 Analog Input 5 Input Filter 1 Analog Input 6 Input Filter 1 Analog Input 5A Input Filter 1 Analog Input 5B Input Filter 1 Analog Input 6A Input Filter 1 Analog Input 6B 37 47 + DGND DGND 9 18 AGND 35 AGND 0.1 µF + 100 µF 0.1 µF 4.7 µF 48 Connect DGND and AGND at Codec 1. See the ADC Input Filter section in the Appendix. 2. See the DAC Output Filter section in the Appendix. Figure 1. Typical Connection Diagram (Software Mode) DS646F1 11 CS42438 +3.3 V 10 µF + 0.01 µF 0.01 µF + +3.3 V to +5 V 10 µF 0.01 µF 8 37 VD 10 16 AUX_SCLK AUX_LRCK AUX_SDIN 15 17 12 20 19 Analog Output Filter 2 AOUT2+ AOUT2- 21 22 Analog Output Filter 2 AOUT3+ AOUT3- 24 23 Analog Output Filter 2 AOUT4+ AOUT4- 25 26 Analog Output Filter 2 AOUT5+ AOUT5- 28 AOUT6+ AOUT6- 29 30 Analog Output Filter 2 AOUT7+ AOUT7- 32 31 Analog Output Filter 2 AOUT8+ AOUT8- 33 34 Analog Output Filter 2 Analog Output Filter 2 27 AIN1+ 39 AIN1- 38 AIN2+ 41 AIN2- 40 AIN3+ 43 AIN3- 42 AIN4+ 45 AIN4- 44 AIN5+/AIN5A 50 AIN5-/AIN5B 49 SCLK 7 FS DAC_SDIN 14 VLS * 13 Digital Audio Processor AOUT1+ AOUT1- Input Filter 1 Analog Input 1 Input Filter 1 Analog Input 2 Input Filter 1 Analog Input 3 Input Filter 1 Analog Input 4 MCLK 11 +1.8 V to +5.0 V VA VLS 0.01 µF CS5341 A/D Converter 46 VA ADC_SDOUT/ ADC3_SINGLE * Input Filter 1 Analog Input 5 Input Filter 1 Analog Input 6 Input Filter 1 Analog Input 5A Input Filter 1 Analog Input 5B Input Filter 1 Analog Input 6A Input Filter 1 Analog Input 6B 52 AIN6+/AIN6A 5 RST 1 AIN5_MUX 2 AIN6_MUX 4 ADC3_HPF 3 51 AIN6-/AIN6B MFREQ 6 VLC VQ 0.1 µF FILT+ 37 47 + * MUX configuration settings for AIN5-AIN6. See the ADC Input MUX section. DGND DGND 9 18 AGND 35 AGND 0.1 µF + 100 µF 0.1 µF 4.7 µF 48 Connect DGND and AGND at Codec 1. See the ADC Input Filter section in the Appendix. 2. See the DAC Output Filter section in the Appendix. Figure 2. Typical Connection Diagram (Hardware Mode) 12 DS646F1 CS42438 4. CHARACTERISTICS AND SPECIFICATIONS RECOMMENDED OPERATING CONDITIONS (AGND=DGND=0 V, all voltages with respect to ground.) Parameters DC Power Supply Analog Digital Serial Audio Interface Control Port Interface Ambient Temperature Commercial Automotive (Note 1) (Note 2) -CMZ -DMZ Symbol Min Max Units VA VD VLS VLC 3.14 3.14 1.71 1.71 5.25 3.47 5.25 5.25 V V V V TA -10 -40 +70 +105 °C °C Symbol VA VD VLS VLC Iin VIN VIND-S VIND-C TA Min -0.3 -0.3 -0.3 -0.3 AGND-0.7 -0.3 -0.3 -50 Max 6.0 6.0 6.0 6.0 ±10 VA+0.7 VLS+ 0.4 VLC+ 0.4 +125 Units V V V V mA V V V °C Tstg -65 +150 °C ABSOLUTE MAXIMUM RATINGS (AGND = DGND = 0 V; all voltages with respect to ground.) Parameters DC Power Supply Input Current Analog Input Voltage Digital Input Voltage (Note 4) Ambient Operating Temperature (power applied) Storage Temperature Analog Digital Serial Port Interface Control Port Interface (Note 3) (Note 4) Serial Port Interface Control Port Interface WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. Notes: 1. Typical Analog input/output performance will slightly degrade at VA = 3.3 V. 2. The ADC_SDOUT may not meet timing requirements in Double-Speed Mode. 3. Any pin except supplies. Transient currents of up to ±100 mA on the analog input pins will not cause SCR latch-up. 4. The maximum over/under voltage is limited by the input current. DS646F1 13 CS42438 ANALOG INPUT CHARACTERISTICS (COMMERCIAL) (Test Conditions (unless otherwise specified): TA = -10 to +70°C; VD = VLS = VLC = 3.3 V±5%, VA = 5 V±5%; Full-scale input sine wave: 1 kHz through the active input filter in Figure 20 on page 50 and Figure 21 on page 50; Measurement Bandwidth is 10 Hz to 20 kHz.) Differential Parameter Fs=48 kHz, 96 kHz Dynamic Range Min Typ Single-Ended Max Min Typ Max Unit A-weighted 99 105 96 102 dB unweighted 96 102 93 99 dB 40 kHz bandwidth unweighted 99 96 dB dB -89 -95 -92 -98 Total Harmonic Distortion + Noise -1 dB dB -79 -82 (Note 5) -20 dB dB -39 -42 -60 dB dB -90 -90 40 kHz bandwidth -1 dB ADC1-3 Interchannel Isolation 90 90 dB ADC3 MUX Interchannel Isolation 90 90 dB DC Accuracy Interchannel Gain Mismatch 0.1 0.1 dB Gain Drift ±100 ±100 ppm/°C Analog Input Full-Scale Input Voltage 1.06*VA 1.12*VA 1.18*VA 0.53*VA 0.56*VA 0.59*VA Vpp Differential Input Impedance (Note 6) 18 kΩ Single-Ended Input Impedance (Note 7) 18 kΩ Common Mode Rejection Ratio (CMRR) 82 dB 14 DS646F1 CS42438 ANALOG INPUT CHARACTERISTICS (AUTOMOTIVE) (Test Conditions (unless otherwise specified): TA = -40 to +85°C; VD = VLS = VLC = 3.3 V±5%, VA = 5 V±5%; Full-scale input sine wave: 1 kHz through the active input filter in Figure 20 on page 50 and Figure 21 on page 50; Measurement Bandwidth is 10 Hz to 20 kHz.) Differential Parameter Fs=48 kHz, 96 kHz Dynamic Range Min Typ Single-Ended Max Min Typ Max Unit A-weighted 97 105 94 102 dB unweighted 94 102 91 99 dB 40 kHz bandwidth unweighted 99 96 dB dB -87 -95 -90 -98 Total Harmonic Distortion + Noise -1 dB dB -79 -82 (Note 5) -20 dB dB -39 -42 -60 dB dB -87 -87 40 kHz bandwidth -1 dB ADC1-3 Interchannel Isolation 90 90 dB ADC3 MUX Interchannel Isolation 85 85 dB DC Accuracy Interchannel Gain Mismatch 0.1 0.1 dB Gain Drift ±100 ±100 ppm/°C Analog Input Full-Scale Input Voltage 1.04*VA 1.12*VA 1.20*VA 0.52*VA 0.56*VA 0.60*VA Vpp Differential Input Impedance (Note 6) 18 kΩ Single-Ended Input Impedance (Note 7) 18 kΩ Common Mode Rejection Ratio (CMRR) 82 dB Notes: 5. Referred to the typical full-scale voltage. 6. Measured between AINx+ and AINx-. 7. Measured between AINxx and AGND. DS646F1 15 CS42438 ADC DIGITAL FILTER CHARACTERISTICS Parameter (Notes 8, 9) Min Typ Max Unit 0 - 0.4896 Fs - - 0.08 dB 0.5688 - - Fs Single-Speed Mode (Note 9) Passband (Frequency Response) to -0.1 dB corner Passband Ripple Stopband Stopband Attenuation Total Group Delay 70 - - dB - 12/Fs - s 0 - 0.4896 Fs Double-Speed Mode (Note 9) Passband (Frequency Response) Passband Ripple Stopband Stopband Attenuation Total Group Delay to -0.1 dB corner - - 0.16 dB 0.5604 - - Fs 69 - - dB - 9/Fs - s High-Pass Filter Characteristics Frequency Response -3.0 dB -0.13 dB - 1 20 - Hz Hz Phase Deviation @ 20 Hz - 10 - Deg - - 0 dB - 5 0 s Passband Ripple Filter Settling Time 10 /Fs Notes: 8. Filter response is guaranteed by design. 9. Response is clock-dependent and will scale with Fs. Note that the response plots (Figures 26 to 33) have been normalized to Fs and can be de-normalized by multiplying the X-axis scale by Fs. 16 DS646F1 CS42438 ANALOG OUTPUT CHARACTERISTICS (COMMERCIAL) (Test Conditions (unless otherwise specified): TA = -10 to +70°C; VD = VLS = VLC = 3.3 V±5%, VA = 5 V±5%; Full-scale 997 Hz output sine wave (see Note 11) into passive filter in Figure 26 on page 54 and active filter in Figure 26 on page 54; Measurement Bandwidth is 10 Hz to 20 kHz.) Parameter Min Fs = 48 kHz, 96 kHz, 192 kHz Dynamic Range 102 18 to 24-Bit A-weighted 99 unweighted 16-Bit A-weighted unweighted Total Harmonic Distortion + Noise 18 to 24-Bit 0 dB -20 dB -60 dB 16-Bit 0 dB -20 dB -60 dB Interchannel Isolation (1 kHz) Analog Output Full-Scale Output 1.235•VA Interchannel Gain Mismatch Gain Drift Output Impedance DC Current draw from an AOUT pin (Note 10) AC-Load Resistance (RL) (Note 12) 3 Load Capacitance (CL) DS646F1 (Note 12) - Differential Typ Max Min Single-Ended Typ Max Unit 108 105 99 96 - 99 96 - 105 102 96 93 - dB dB dB dB -98 -85 -45 -93 -76 -36 100 -92 - - -95 -82 -42 -90 -73 -33 100 -89 - dB dB dB dB dB dB dB - 1.300•VA 1.365•VA 0.618•VA 0.650•VA 0.683•VA Vpp 0.1 0.25 0.1 0.25 dB ±100 ±100 ppm/°C 100 100 Ω 10 10 µA - - 3 - - kΩ - 100 - - 100 pF 17 CS42438 ANALOG OUTPUT CHARACTERISTICS (AUTOMOTIVE) (Test Conditions (unless otherwise specified): TA = -40 to +85°C; VD = VLS = VLC = 3.3 V±5%, VA = 5 V±5%; Full-scale 997 Hz output sine wave (see Note 11) in Figure 26 on page 54 and Figure 26 on page 54; Measurement Bandwidth is 10 Hz to 20 kHz.) Parameter Min Fs = 48 kHz, 96 kHz, 192 kHz Dynamic Range 100 18 to 24-Bit A-weighted 97 unweighted 16-Bit A-weighted unweighted Total Harmonic Distortion + Noise 18 to 24-Bit 0 dB -20 dB -60 dB 16-Bit 0 dB -20 dB -60 dB Interchannel Isolation (1 kHz) Analog Output Full-Scale Output 1.210•VA Interchannel Gain Mismatch Gain Drift Output Impedance DC Current draw from an AOUT pin (Note 10) AC-Load Resistance (RL) (Note 12) 3 Load Capacitance (CL) (Note 12) - Differential Typ Max Min Single-Ended Typ Max Unit 108 105 99 96 - 97 94 - 105 102 96 93 - dB dB dB dB -98 -85 -45 -93 -76 -36 100 -90 - - -95 -82 -42 -90 -73 -33 100 -87 - dB dB dB dB dB dB dB 1.300•VA 1.392•VA 0.605•VA 0.650•VA 0.696•VA Vpp 0.1 0.25 0.1 0.25 dB ±100 ±100 ppm/°C 100 100 Ω 10 10 µA - - 3 - - kΩ - 100 - - 100 pF Notes: 10. Guaranteed by design. The DC current draw represents the allowed current draw from the AOUT pin due to typical leakage through the electrolytic DC-blocking capacitors. 11. One-half LSB of triangular PDF dither is added to data. 12. Guaranteed by design. See Figure 3. RL and CL reflect the recommended minimum resistance and maximum capacitance required for the internal op-amp's stability and signal integrity. In this circuit topology, CL will effectively move the dominant pole of the two-pole amp in the output stage. Increasing this value beyond the recommended 100 pF can cause the internal op-amp to become unstable. See “External Filters” on page 50 for a recommended output filter. 18 DS646F1 CS42438 DAC1-4 AOUTxx 3.3 µF Analog Output + RL CL Capacitive Load -- C L (pF) 125 100 75 Safe Operating Region 50 25 AGND 2.5 3 Figure 3. Output Test Circuit for Maximum Load DS646F1 5 10 15 20 Resistive Load -- RL (kΩ ) Figure 4. Maximum Loading 19 CS42438 COMBINED DAC INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE Parameter (Notes 8, 13) Min Typ Max Unit 0 0 - 0.4780 0.4996 Fs Fs -0.2 - +0.08 dB 0.5465 - - Fs 50 - - dB - s Single-Speed Mode Passband (Frequency Response) to -0.05 dB corner to -3 dB corner Frequency Response 10 Hz to 20 kHz StopBand StopBand Attenuation (Note 14) Group Delay De-emphasis Error (Note 15) - 10/Fs Fs = 32 kHz Fs = 44.1 kHz Fs = 48 kHz - - to -0.1 dB corner to -3 dB corner 0 0 - 0.4650 0.4982 Fs Fs +1.5/+0 dB +0.05/-0.25 dB -0.2/-0.4 dB Double-Speed Mode Passband (Frequency Response) Frequency Response 10 Hz to 20 kHz -0.2 - +0.7 dB 0.5770 - - Fs 55 - - dB - 5/Fs - s 0 0 - 0.397 0.476 Fs Fs Frequency Response 10 Hz to 20 kHz -0.2 - +0.05 dB StopBand 0.7 - - Fs StopBand StopBand Attenuation (Note 14) Group Delay Quad-Speed Mode Passband (Frequency Response) StopBand Attenuation to -0.1 dB corner to -3 dB corner (Note 14) Group Delay 51 - - dB - 2.5/Fs - s Notes: 13. Response is clock-dependent and will scale with Fs. Note that the response plots (Figures 34 to 45) have been normalized to Fs and can be de-normalized by multiplying the X-axis scale by Fs. 14. Single- and Double-Speed Mode Measurement Bandwidth is from Stopband to 3 Fs. Quad-Speed Mode Measurement Bandwidth is from Stopband to 1.34 Fs. 15. De-emphasis is only available in Single-Speed Mode. 20 DS646F1 CS42438 SWITCHING SPECIFICATIONS - ADC/DAC PORT (Inputs: Logic 0 = DGND, Logic 1 = VLS, ADC_SDOUT CLOAD = 15 pF.) Parameters Symbol Min Max Units 1 0.512 45 4 50 100 45 8 8 5 16 3 5 5 10 15 - ms 50 55 50 100 200 55 - MHz % kHz kHz kHz % ns ns ns ns ns ns ns ns ns Slave Mode RST pin Low Pulse Width MCLK Frequency MCLK Duty Cycle Input Sample Rate (FS pin) (Note 16) (Note 17) Single-Speed Mode Double-Speed Mode (Note 18) Quad-Speed Mode (Note 19) Fs Fs Fs SCLK Duty Cycle SCLK High Time SCLK Low Time FS Rising Edge to SCLK Rising Edge SCLK Rising Edge to FS Falling Edge DAC_SDIN Setup Time Before SCLK Rising Edge DAC_SDIN Hold Time After SCLK Rising Edge DAC_SDIN Hold Time After SCLK Rising Edge ADC_SDOUT Hold Time After SCLK Rising Edge ADC_SDOUT Valid Before SCLK Rising Edge tsckh tsckl tfss tfsh tds tdh tdh1 tdh2 tdval Notes: 16. After powering up the CS42438, RST should be held low after the power supplies and clocks are settled. 17. See Table 7 on page 43 for suggested MCLK frequencies. 18. VLS is limited to nominal 2.5 V to 5.0 V operation only. 19. ADC does not meet timing specification for Quad-Speed Mode. FS (input) tfss tfsh tsckh tsckl SCLK (input) tds tdh1 DAC_SDIN tdh2 ADC_SDOUT MSB-1 MSB MSB tdval MSB-1 Figure 5. TDM Serial Audio Interface Timing DS646F1 21 CS42438 SWITCHING CHARACTERISTICS - AUX PORT (Inputs: Logic 0 = DGND, Logic 1 = VLS.) Parameters Symbol Min Fs Max Units Master Mode Output Sample Rate (AUX_LRCK) All Speed Modes - LRCK kHz AUX_SCLK Frequency - 64·LRCK kHz AUX_SCLK Duty Cycle 45 55 % AUX_LRCK Edge to SCLK Rising Edge tlcks - 5 ns AUX_SDIN Setup Time Before SCLK Rising Edge tds 3 - ns AUX_SDIN Hold Time After SCLK Rising Edge tdh 5 - ns AUX_LRCK tlcks tsckh tsckl AUX_SCLK tds AUX_SDIN tdh MSB MSB-1 Figure 6. Serial Audio Interface Slave Mode Timing 22 DS646F1 CS42438 SWITCHING SPECIFICATIONS - CONTROL PORT - I²C MODE (VLC = 1.8 V - 5.0 V, VLS = VD = 3.3 V, VA = 5.0 V; Inputs: Logic 0 = DGND, Logic 1 = VLC, SDA CL = 30 pF) Parameter Symbol Min Max Unit SCL Clock Frequency fscl - 100 kHz RST Rising Edge to Start tirs 500 - ns Bus Free Time Between Transmissions tbuf 4.7 - µs Start Condition Hold Time (prior to first clock pulse) thdst 4.0 - µs Clock Low time tlow 4.7 - µs Clock High Time thigh 4.0 - µs Setup Time for Repeated Start Condition tsust 4.7 - µs thdd 0 - µs tsud 250 - ns SDA Hold Time from SCL Falling (Note 20) SDA Setup time to SCL Rising Rise Time of SCL and SDA (Note 21) trc - 1 µs Fall Time SCL and SDA (Note 21) tfc - 300 ns Setup Time for Stop Condition tsusp 4.7 - µs Acknowledge Delay from SCL Falling tack 300 1000 ns Notes: 20. Data must be held for sufficient time to bridge the transition time, tfc, of SCL. 21. Guaranteed by design. RST t irs Stop R e p e a te d Sta rt Start t rd t fd Stop SDA t buf t t hdst t high t fc hdst t susp SCL t lo w t hdd t sud t ack t sust t rc Figure 7. Control Port Timing - I²C Format DS646F1 23 CS42438 SWITCHING SPECIFICATIONS - CONTROL PORT - SPI FORMAT (VLC = 1.8 V - 5.0 V, VLS = VD = 3.3 V, VA = 5.0 V; Inputs: Logic 0 = DGND, Logic 1 = VLC, CDOUT CL = 30 pF) Parameter Symbol Min Max Units CCLK Clock Frequency fsck 0 6.0 MHz RST Rising Edge to CS Falling tsrs 20 - ns CS Falling to CCLK Edge tcss 20 - ns CS High Time Between Transmissions tcsh 1.0 - µs CCLK Low Time tscl 66 - ns CCLK High Time tsch 66 - ns CDIN to CCLK Rising Setup Time tdsu 40 - ns tdh 15 - ns CCLK Falling to CDOUT Stable tpd - 50 ns Rise Time of CDOUT tr1 - 25 ns Fall Time of CDOUT tf1 - 25 ns CCLK Rising to DATA Hold Time (Note 22) Rise Time of CCLK and CDIN (Note 23) tr2 - 100 ns Fall Time of CCLK and CDIN (Note 23) tf2 - 100 ns Notes: 22. Data must be held for sufficient time to bridge the transition time of CCLK. 23. For fsck <1 MHz. RST tsrs CS tcsh tcss tsch tscl tr2 CCLK tf2 tdsu tdh MSB CDIN tpd CDOUT MSB Figure 8. Control Port Timing - SPI Format 24 DS646F1 CS42438 DC ELECTRICAL CHARACTERISTICS (AGND = 0 V; all voltages with respect to ground.) Parameters Normal Operation (Note 24) Power Supply Current VA = 5.0 V VLS = VLC = VD = 3.3 V (Note 25) Power Dissipation VLS = VLC = VD = 3.3 V, VA = 5 V Power Supply Rejection Ratio 1 kHz (Note 26) 60 Hz Power-Down Mode (Note 27) Power Dissipation VLS = VLC = VD = 3.3 V, VA = 5 V VQ Characteristics Nominal Voltage Output Impedance DC Current Source/Sink (Note 28) FILT+ Nominal Voltage Symbol Min Typ Max Units IA - 80 - mA IDT - 60.6 600 60 40 850 - mA mW dB dB - 1.25 - mW - 0.5•VA 23 VA 10 - V kΩ µA V PSRR Notes: 24. Normal operation is defined as RST = HI with a 997 Hz, 0 dBFS input to the DAC and AUX port, and a 1 kHz, -1 dB analog input to the ADC port sampled at the highest Fs for each speed mode. DAC outputs are open, unless otherwise specified. 25. IDT measured with no external loading on pin 2 (SDA). 26. Valid with the recommended capacitor values on FILT+ and VQ. Increasing the capacitance will also increase the PSRR. 27. Power-Down Mode is defined as RST = LO with all clocks and data lines held static and no analog input. 28. Guaranteed by design. The DC current draw represents the allowed current draw from the VQ pin due to typical leakage through the electrolytic de-coupling capacitors. DIGITAL INTERFACE SPECIFICATIONS & CHARACTERISTICS Parameters (Note 29) High-Level Output Voltage at Io=2 mA Low-Level Output Voltage at Io=2 mA High-Level Input Voltage Low-Level Input Voltage Leakage Current Input Capacitance (Note 21) Symbol Serial Port Control Port Serial Port Control Port Serial Port Control Port Serial Port Control Port VOH VOL VIH VIL Iin Min VLS-1.0 VLC-1.0 0.7xVLS 0.7xVLC - Typ - Max 0.4 0.4 0.2xVLS 0.2xVLC ±10 10 Units V V V V V V V V µA pF Notes: 29. See “Digital I/O Pin Characteristics” on page 8 for serial and control port power rails. DS646F1 25 CS42438 5. APPLICATIONS 5.1 Overview The CS42438 is a highly integrated mixed signal 24-bit audio CODEC comprised of 6 analog-to-digital converters (ADC) implemented using multi-bit delta-sigma techniques and 8 digital-to-analog converters (DAC) also implemented using multi-bit delta-sigma techniques. Other functions integrated within the CODEC include independent digital volume controls for each DAC, digital de-emphasis filters for the DAC, digital volume control with gain on each ADC channel, ADC high-pass filters, and an on-chip voltage reference,. The serial audio interface ports allow up to 8 DAC channels and 8 ADC channels in a Time-Division Multiplexed (TDM) interface format. The CS42438 features an Auxiliary Port used to accommodate an additional two channels of PCM data on the ADC_SDOUT data line in the TDM digital interface format. See “AUX Port Digital Interface Formats” on page 34 for details. The CS42438 operates in one of three oversampling modes based on the input sample rate. Mode selection is determined automatically based on the MCLK frequency setting. Single-Speed Mode (SSM) supports input sample rates up to 50 kHz and uses a 128x oversampling ratio. Double-Speed Mode (DSM) supports input sample rates up to 100 kHz and uses an oversampling ratio of 64x. Quad-Speed Mode (QSM) supports input sample rates up to 200 kHz and uses an oversampling ratio of 32x (Note: QSM for the ADC is only supported in the I²S, Left-Justified, Right-Justified interface formats. QSM is not supported for the ADC). Note: QSM is only available in Software Mode (see “System Clocking” on page 33 for details). All functions can be configured through software via a serial control port operable in SPI Mode or in I²C Mode. A Hardware, Stand-Alone Mode is also available, allowing configuration of the CODEC on a more limited basis. See Table 2 for the default configuration in Hardware Mode. Figure 1 on page 11 and Figure 2 on page 12 show the recommended connections for the CS42438 in Software and Hardware Mode, respectively. See “Register Description” on page 41 for the default register settings and options in Software Mode. Hardware Mode Feature Summary Function Power Down ADC Power Down DAC Power Down Device MCLK Frequency Select Freeze Control AUX Serial Port Interface Format ADC1/ADC2 High Pass Filter Freeze ADC3 High Pass Filter Freeze DAC De-Emphasis ADC1/ADC2 Single-Ended Mode ADC3 Single-Ended Mode AIN5 Multiplexer Default Configuration Hardware Control All ADC’s are enabled All DAC’s are enabled Device is powered up Selectable between 256Fs and 512Fs N/A Left-Justified High Pass Filter is always enabled High Pass Filter can be enabled/disabled No De-Emphasis applied Disabled Selectable between Differential and Single-Ended Selects between AIN5A and AIN5B when ADC3 in SingleEnded Mode “MFREQ” pin 3 Note see Section 5.4 - - - - “ADC3_HPF” pin 4 “ADC_SDOUT/ ADC3_SINGLE” pin 13 “AIN5_MUX” pin 1 see Section 5.2.5 see Section 5.2.2 see Section 5.2.2 Table 2. Hardware Configurable Settings 26 DS646F1 CS42438 Hardware Mode Feature Summary Function Default Configuration AIN6 Multiplexer DAC Volume Control/Mute/Invert ADC Volume Control DAC Soft Ramp/Zero Cross ADC Soft Ramp/Zero Cross DAC Auto-Mute Status Interrupt Selects between AIN6A and AIN6B when ADC3 in SingleEnded Mode All DAC Volume = 0 dB, unmuted, not inverted All ADC Volume = 0 dB Immediate Change Immediate Change Enabled N/A Hardware Control Note “AIN6_MUX” pin 2 see Section 5.2.2 - - - - Table 2. Hardware Configurable Settings (Continued) 5.2 Analog Inputs 5.2.1 Line-Level Inputs AINx+ and AINx- are the line-level differential analog inputs internally biased to VQ, approximately VA/2. Figure 9 on page 28 shows the full-scale analog input levels. The CS42438 also accommodates singleended signals on all inputs, AIN1-AIN6. See “ADC Input Filter” on page 50 for the recommended input filters. 5.2.1.1 Hardware Mode AIN Volume Control and ADC Overflow status are not accessible in Hardware Mode. Single-ended operation is only supported for ADC3. See Section 5.2.2. 5.2.1.2 Software Mode For single-ended operation on ADC1-ADC3 (AIN1 to AIN6), the ADCx_SINGLE bit in the register “ADC Control & DAC De-Emphasis (Address 05h)” on page 44 must be set appropriately (see Figure 21 on page 50 for required external components). The gain/attenuation of the signal can be adjusted for each AINx independently through the “AINX Volume Control (Address 11h-16h)” on page 48. The ADC output data is in 2’s complement binary format. For inputs above positive full scale or below negative full scale, the ADC will output 7FFFFFH or 800000H, respectively, and cause the ADC Overflow bit in the register “Status (Address 19h) (Read Only)” on page 49 to be set to a ‘1’. DS646F1 27 CS42438 5.0 V 3.9 V VA 2.5 V AINx+ 2.5 V AINx- 1.1 V 3.9 V 1.1 V Full-Scale Differential Input Level = (AINx+) - (AINx-) = 5.6 VPP = 1.98 VRMS Figure 9. Full-Scale Input 5.2.2 ADC3 Analog Input ADC3 accommodates differential as well as single-ended inputs. In Single-Ended Mode, an internal MUX selects from up to four single-ended inputs. AIN5A ADC3 Single-Ended Input Filter AIN5_MUX AIN5B ADC3 SINGLE Single-Ended Input Filter 1 0 1 50 AIN5+/- Differential Input Filter 0 + AIN5 49 0 VQ - 1 AIN6_MUX 1 0 1 52 AIN6+/- Differential Input Filter 0 AIN6 51 0 VQ AIN6A AIN6B + - 1 Single-Ended Input Filter Single-Ended Input Filter Figure 10. ADC3 Input Topology 28 DS646F1 CS42438 5.2.3 Hardware Mode Single-Ended Mode is selected using a pull-up on the ADC_SDOUT/ADC3_SINGLE pin during startup. Analog input selection is then made via the AINx_MUX pins. See Tables 3-4 for ADC3 set-up options. Refer to Figure 10 on page 28 for the internal ADC3 analog input topology. Configuration Setting ADC_SDOUT (pin 13) 47 kΩ Pull-down 47 kΩ Pull-up 47 kΩ Pull-up AIN5_MUX (pin 1) X Low High AIN5 Input Selection Differential Input (pins 50 & 49) AIN5A Input (pin 50) AIN5B Input (pin 49) Table 3. AIN5 Analog Input Selection Configuration Setting ADC_SDOUT (pin 13) 47 kΩ Pull-down 47 kΩ Pull-up 47 kΩ Pull-up AIN6_MUX (pin 2) X Low High AIN6 Input Selection Differential Input (pins 52 & 51) AIN5A Input (pin 52) AIN5B Input (pin 51) Table 4. AIN6 Analog Input Selection 5.2.4 Software Mode Single-Ended Mode is selected using the ADC3_SINGLE bit. Analog input selection is then made via the AINx_MUX bits. See register “ADC Control & DAC De-Emphasis (Address 05h)” on page 44 for all bit selections. Refer to Figure 11 on page 31 for the internal ADC3 analog input topology. 5.2.5 High-Pass Filter and DC Offset Calibration The high-pass filter continuously subtracts a measure of the DC offset from the output of the decimation filter. If the high-pass filter is disabled during normal operation, the current value of the DC offset for the corresponding channel is frozen and this DC offset will continue to be subtracted from the conversion result. This feature makes it possible to perform a system DC offset calibration by: 1. Running the CS42438 with the high-pass filter enabled until the filter settles. See the Digital Filter Characteristics for filter settling time. 2. Disabling the high-pass filter and freezing the stored DC offset. 5.2.5.1 Hardware Mode The high pass filters for ADC1 and ADC2 are permanently enabled in Hardware Mode. The high pass filter for ADC3 is enabled by driving the ADC3_HPF (pin 4) high. 5.2.5.2 Software Mode The high-pass filter for ADC1/ADC2 can be enabled and disabled. The high pass filter for ADC3 can be independently enabled and disabled. The high-pass filters are controlled using the HPF_FREEZE bit in the register “ADC Control & DAC De-Emphasis (Address 05h)” on page 44. DS646F1 29 CS42438 5.3 5.3.1 Analog Outputs Initialization The initialization and Power-Down sequence flow chart is shown in Figure 11 on page 31. The CS42438 enters a power-down state upon initial power-up. The interpolation and decimation filters, delta-sigma modulators and control port registers are reset. The internal voltage reference, multi-bit digital-to-analog and analog-to-digital converters and switched-capacitor low-pass filters are powered down. The device remains in the power-down state until the RST pin is brought high. The control port is accessible once RST is high, and the desired register settings can be loaded per the interface descriptions in the “Control Port Description and Timing” on page 35. In Hardware Mode operation, the Hardware Mode pins must be set up before RST is brought high. All features will default to the Hardware Mode defaults as listed in Table 2. Once MCLK is valid, VQ will quickly charge to VA/2, and the internal voltage reference, FILT+, will begin powering up to normal operation. Power is applied to the D/A converters and switched-capacitor filters, and the analog outputs are clamped to the quiescent voltage, VQ. Once LRCK is valid, MCLK occurrences are counted over one LRCK period to determine the MCLK/LRCK frequency ratio. After an approximate 2000 sample period delay, normal operation begins. 5.3.2 Line-Level Outputs and Filtering The CS42438 contains on-chip buffer amplifiers capable of producing line-level differential as well as single-ended outputs on AOUT1-AOUT8. These amplifiers are biased to a quiescent DC level of approximately VQ. The delta-sigma conversion process produces high-frequency noise beyond the audio passband, most of which is removed by the on-chip analog filters. The remaining out-of-band noise can be attenuated using an off-chip low-pass filter. See “DAC Output Filter” on page 53 for recommended output filter. The active filter configuration accounts for the normally differing AC loads on the AOUTx+ and AOUTx- differential output pins. Also shown is a passive filter configuration which minimizes costs and the number of components. Figure 12 shows the full-scale analog output levels. All outputs are internally biased to VQ, approximately VA/2. 30 DS646F1 CS42438 No Power 1. VQ = ? 2. Aout bias = ? 3. No audio signal generated. PDN bit = '1'b? Yes Power-Down 1. VQ discharge to 0 V. 2. Aout bias = Hi-Z. 3. No audio signal generated. 4. Control Port Registers retain settings. No Power-Down (Power Applied) 1. VQ = 0 V. 2. Aout = Hi-Z. 3. No audio signal generated. 4. Control Port Registers reset to default. Power-Up 1. VQ = VA/2. 2. Aout bias = VQ. Yes RST = Low? No Control Port Accessed No Sub-Clocks Applied 1. LRCK valid. 2. SCLK valid. 3. Audio samples processed. Control Port Access Detected? Yes No Hardware Mode H/W pins setup to desired settings. Valid MCLK/LRCK Ratio? Software Mode Registers setup to desired settings. Yes No No Valid MCLK Applied? Valid MCLK Applied? 2000 LRCK delay Yes Yes RST = Low ERROR: Power removed Normal Operation 1. VQ = VA/2. 2. Aout bias = VA/2. 3. Audio signal generated per register settings. PDN bit set to '1'b ERROR: MCLK/LRCK ratio change ERROR: MCLK removed Analog Output Mute 1. VQ = VA/2. 2. Aout bias = VA/2. 3. No audio signal generated. Analog Output Freeze 1. VQ = VA/2. 2. Aout bias = VA/2 + last audio sample. 3. No audio signal generated. Figure 11. Audio Output Initialization Flow Chart DS646F1 31 CS42438 5.0 V 4.125 V VA AOUTx+ 2.5 V 0.875 V 4.125 V AOUTx- 2.5 V 0.875 V Full-Scale Differential Output Level = (AOUTx+) - (AOUTx-) = 6.5 VPP = 2.3 VRMS Figure 12. Full-Scale Output 5.3.3 Digital Volume Control 5.3.3.1 Hardware Mode DAC Volume Control and Mute are not accessible in Hardware Mode. 5.3.3.2 Software Mode Each DAC’s output level is controlled via the Volume Control registers operating over the range of 0 to -127.5 dB attenuation with 0.5 dB resolution. See “AOUTX Volume Control (Addresses 08h- 0Fh)” on page 47. Volume control changes are programmable to ramp in increments of 0.125 dB at the rate controlled by the SZC[1:0] bits in the Digital Volume Control register. See “Transition Control (Address 06h)” on page 46. Each output can be independently muted via mute control bits in the register “DAC Channel Mute (Address 07h)” on page 47. When enabled, each AOUTx_MUTE bit attenuates the corresponding DAC to its maximum value (-127.5 dB). When the AOUTx_MUTE bit is disabled, the corresponding DAC returns to the attenuation level set in the Volume Control register. The attenuation is ramped up and down at the rate specified by the SZC[1:0] bits. 5.3.4 De-Emphasis Filter The CS42438 includes on-chip digital de-emphasis optimized for a sample rate of 44.1 kHz. The filter response is shown in Figure 13. The de-emphasis feature is included to accommodate audio recordings that utilize 50/15 µs pre-emphasis equalization as a means of noise reduction. De-emphasis is only available in Single-Speed Mode. Please see “DAC De-Emphasis Control (DAC_DEM)” on page 44 for de-emphasis control. 32 DS646F1 CS42438 Gain dB T1=50 µs 0dB T2 = 15 µs -10dB F1 3.183 kHz Frequency F2 10.61 kHz Figure 13. De-Emphasis Curve 5.4 System Clocking The CODEC serial audio interface ports operate as a slave andaccept externally generated clocks. The CODEC requires external generation of the master clock (MCLK). The frequency of this clock must be an integer multiple of, and synchronous with, the system sample rate, Fs. 5.4.1 Hardware Mode The allowable ratios include 256Fs and 512Fs in Single-Speed Mode and 256Fs in Double-Speed Mode. The frequency of MCLK must be specified using the MFREQ (pin 3). See Table 5 for the required frequency range. Ratio (xFs) MFREQ Description SSM DSM QSM 0 1.5360 MHz to 12.8000 MHz 256 N/A N/A 1 2.0480 MHz to 25.6000 MHz 512 256 N/A Table 5. MCLK Frequency Settings 5.4.2 Software Mode The frequency range of MCLK must be specified using the MFREQ bits in register “MCLK Frequency (MFREQ[2:0])” on page 43. 5.5 CODEC Digital Interface The ADC and DAC serial ports operate as a slave and support the TDM digital interface formats with varying bit depths from 16 to 32 as shown in . Data is clocked out of the ADC on the falling edge of SCLK and clocked into the DAC on the rising edge. TDM is the only interface supported in Hardware and Software Mode. 5.5.1 TDM TDM data is received most significant bit (MSB) first, on the second rising edge of the SCLK occurring after a an FS rising edge. All data is valid on the rising edge of SCLK. The AIN1 MSB is transmitted early, but is guaranteed valid for a specified time after SCLK rises. All other bits are transmitted on the falling edge of SCLK. Each time slot is 32 bits wide, with the valid data sample left ‘justified within the time slot. Valid data lengths are 16, 18, 20, or 24. SCLK must operate at 256Fs. FS identifies the start of a new frame and is equal to the sample rate, Fs. DS646F1 33 CS42438 FS is sampled as valid on the rising SCLK edge preceding the most significant bit of the first data sample and must be held valid for at least 1 SCLK period. Note: The ADC does not meet the timing requirements for proper operation in Quad-Speed Mode. 256 clks Bit or Word Wide FS SCLK DAC_SDIN LSB MSB LSB MSB AOUT1 32 clks ADC_SDOUT MSB LSB MSB AOUT2 LSB MSB AOUT3 LSB MSB AOUT4 LSB MSB LSB MSB AOUT6 AOUT5 LSB MSB LSB MSB AOUT7 AOUT8 32 clks 32 clks 32 clks 32 clks 32 clks 32 clks 32 clks LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB AIN1 AIN2 AIN3 AIN4 AIN5 AIN6 AUX1 AUX2 32 clks 32 clks 32 clks 32 clks 32 clks 32 clks 32 clks 32 clks Figure 14. TDM Serial Audio Format 5.5.2 I/O Channel Allocation Interface Digital Input/Output Format DAC_SDIN TDM ADC_SDOUT TDM Analog Output/Input Channel Allocation from/to Digital I/O AOUT 1,2,3,4,5,6,7,8 ,5,6AIN 1,2,3,4,5,6; (2 additional channels from AUX_SDIN) Table 6. Serial Audio Interface Channel Allocations 5.6 AUX Port Digital Interface Formats These serial data lines are used when supporting the TDM Mode of operation with an external ADC or S/PDIF receiver attached. The AUX serial port operates only as a clock master. The AUX_SCLK will operate at 64xFs, where Fs is equal to the ADC sample rate (FS on the TDM interface). If the AUX_SDIN signal is not being used, it should be tied to AGND via a pull-down resistor. 5.6.1 Hardware Mode The AUX port will only operate in the Left-Justified digital interface format and supports bit depths ranging from 16 to 24 bits (see Figure 18 on page 36 for timing relationship between AUX_LRCK and AUX_SCLK). 5.6.2 Software Mode The AUX port will operate in either the Left-Justified or I²S digital interface format with bit depths ranging from 16 to 24 bits. Settings for the AUX port are made through the register “Miscellaneous Control (Address 04h)” on page 43. 5.6.3 I²S AUX_LRCK L eft C h a n n el R ig ht C h a n n el AUX_SCLK AUX_SDIN MSB LS B M SB LS B MSB AUX2 AUX1 Figure 15. AUX I²S Format 34 DS646F1 CS42438 5.6.4 Left-Justified AUX_LRCK L e ft C h a n n el R ig ht C h a n n el AUX_SCLK AUX_SDIN MSB LS B M SB LS B MSB AUX2 AUX1 Figure 16. AUX Left-Justified Format 5.7 Control Port Description and Timing The control port is used to access the registers, in Software Mode, allowing the CS42438 to be configured for the desired operational modes and formats. The operation of the control port may be completely asynchronous with respect to the audio sample rates. However, to avoid potential interference problems, the control port pins should remain static if no operation is required. The control port has two modes: SPI and I²C, with the CS42438 acting as a slave device. SPI Mode is selected if there is a high-to-low transition on the AD0/CS pin, after the RST pin has been brought high. I²C Mode is selected by connecting the AD0/CS pin through a resistor to VLC or DGND, thereby permanently selecting the desired AD0 bit address state. 5.7.1 SPI Mode In SPI Mode, CS is the CS42438 chip-select signal, CCLK is the control port bit clock (input into the CS42438 from the microcontroller), CDIN is the input data line from the microcontroller, CDOUT is the output data line to the microcontroller. Data is clocked in on the rising edge of CCLK and out on the falling edge. Figure 17 shows the operation of the control port in SPI Mode. To write to a register, bring CS low. The first seven bits on CDIN form the chip address and must be 1001111. The eighth bit is a read/write indicator (R/W), which should be low to write. The next eight bits form the Memory Address Pointer (MAP), which is set to the address of the register that is to be updated. The next eight bits are the data which will be placed into the register designated by the MAP. During writes, the CDOUT output stays in the Hi-Z state. It may be externally pulled high or low with a 47 kΩ resistor, if desired. There is a MAP auto-increment capability, enabled by the INCR bit in the MAP register. If INCR is a zero, the MAP will stay constant for successive read or writes. If INCR is set to a 1, the MAP will auto-increment after each byte is read or written, allowing block reads or writes of successive registers. To read a register, the MAP has to be set to the correct address by executing a partial write cycle which finishes (CS high) immediately after the MAP byte. The MAP auto-increment bit (INCR) may be set or not, as desired. To begin a read, bring CS low, send out the chip address and set the read/write bit (R/W) high. The next falling edge of CCLK will clock out the MSB of the addressed register (CDOUT will leave the high impedance state). If the MAP auto-increment bit is set to 1, the data for successive registers will appear consecutively. DS646F1 35 CS42438 CS CC LK C H IP ADDRESS MAP 1001111 C D IN C H IP ADDRESS DATA 1001111 LSB MSB R/W b y te 1 R/W b y te n High Impedance LSB MSB MSB CDOUT LSB MAP = Memory Address Pointer, 8 bits, MSB first Figure 17. Control Port Timing in SPI Mode 5.7.2 I²C Mode In I²C Mode, SDA is a bidirectional data line. Data is clocked into and out of the part by the clock, SCL. There is no CS pin. Pins AD0 and AD1 form the two least-significant bits of the chip address and should be connected through a resistor to VLC or DGND as desired. The state of the pins is sensed while the CS42438 is being reset. The signal timings for a read and write cycle are shown in Figure 18 and Figure 19. A Start condition is defined as a falling transition of SDA while the clock is high. A Stop condition is a rising transition while the clock is high. All other transitions of SDA occur while the clock is low. The first byte sent to the CS42438 after a Start condition consists of a 7-bit chip address field and a R/W bit (high for a read, low for a write). The upper 5 bits of the 7-bit address field are fixed at 10010. To communicate with a CS42438, the chip address field, which is the first byte sent to the CS42438, should match 10010 followed by the settings of the AD1 and AD0. The eighth bit of the address is the R/W bit. If the operation is a write, the next byte is the Memory Address Pointer (MAP) which selects the register to be read or written. If the operation is a read, the contents of the register pointed to by the MAP will be output. Setting the auto-increment bit in MAP allows successive reads or writes of consecutive registers. Each byte is separated by an acknowledge bit. The ACK bit is output from the CS42438 after each input byte is read, and is input to the CS42438 from the microcontroller after each transmitted byte. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 24 25 26 27 28 SCL CHIP ADDRESS (WRITE) 1 SDA 0 0 1 0 AD1 AD0 0 MAP BYTE INCR ACK 6 5 4 3 1 0 7 ACK 6 1 DATA +n DATA +1 DATA 2 0 7 ACK START 6 1 0 7 6 1 0 ACK STOP Figure 18. Control Port Timing, I²C Write 36 DS646F1 CS42438 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 SCL CHIP ADDRESS (WRITE) SDA 1 0 0 1 STOP MAP BYTE 0 AD1 AD0 0 INCR 6 5 4 3 2 1 ACK CHIP ADDRESS (READ) 1 0 ACK START 0 0 1 DATA 0 AD1 AD0 1 7 ACK DATA +1 0 7 ACK START 0 DATA + n 7 0 NO ACK STOP Figure 19. Control Port Timing, I²C Read Since the read operation cannot set the MAP, an aborted write operation is used as a preamble. As shown in Figure 19, the write operation is aborted after the acknowledge for the MAP byte by sending a stop condition. The following pseudocode illustrates an aborted write operation followed by a read operation. Send start condition. Send 10010xx0 (chip address & write operation). Receive acknowledge bit. Send MAP byte, auto increment off. Receive acknowledge bit. Send stop condition, aborting write. Send start condition. Send 10010xx1(chip address & read operation). Receive acknowledge bit. Receive byte, contents of selected register. Send acknowledge bit. Send stop condition. Setting the auto-increment bit in the MAP allows successive reads or writes of consecutive registers. Each byte is separated by an acknowledge bit. 5.8 Recommended Power-Up Sequence 5.8.1 Hardware Mode 1. Hold RST low until the power supply, clocks and hardware control pins are stable. In this state, the control port is reset to its default settings and VQ will remain low. 2. Bring RST high. The device will initially be in a low power state with VQ low. 3. The device will initiate the Hardware Mode power up sequence. All features will default to the Hardware Mode defaults as listed in Table 2 on page 26 according to the Hardware Mode control pins. VQ will quick-charge to approximately VA/2 and the analog output bias will clamp to VQ. 4. Following approximately 2000 sample periods, the device is initialized and ready for normal operation. Note: During the Hardware Mode power-up sequence, there must be no transitions on any of the hardware control pins. DS646F1 37 CS42438 5.8.2 Software Mode 1. Hold RST low until the power supply and clocks are stable. In this state, the control port is reset to its default settings and VQ will remain low. 2. Bring RST high. The device will initially be in a low power state with VQ low. All features will default as described in the “Register Quick Reference” on page 39. 3. Perform a write operation to the Power Control register (“Power Control (Address 02h)” on page 42) to set bit 0 to a ‘1’b. This will place the device in a power down state. 4. Load the desired register settings while keeping the PDN bit set to ‘1’b. 5. Mute all DACs. Muting the DACs suppresses any noise associated with the CODEC's first initialization after power is applied. 6. Set the PDN bit in the power control register to ‘0’b.Following approximately 2000 LRCK cycles, the device is initialized and ready for normal operation. 7. After the CODEC is initialized, wait ~90 LRCK cycles (~1.9 ms @48 kHz) and then unmute the DACs. 8. Normal operation begins. 5.9 Reset and Power-Up It is recommended that reset be activated if the analog or digital supplies drop below the recommended operating condition to prevent power-glitch-related issues. The delta-sigma modulators settle in a matter of microseconds after the analog section is powered, either through the application of power or by setting the RST pin high. However, the voltage reference will take much longer to reach a final value due to the presence of external capacitance on the FILT+ pin. A time delay of approximately 400 ms is required after applying power to the device or after exiting a reset state. During this voltage reference ramp delay, all serial ports and DAC outputs will be automatically muted. 5.10 Power Supply, Grounding, and PCB Layout As with any high-resolution converter, the CS42438 requires careful attention to power supply and grounding arrangements if its potential performance is to be realized. Figures 1 and 2 show the recommended power arrangements, with VA connected to clean supplies. VD, which powers the digital circuitry, may be run from the system logic supply. Extensive use of power and ground planes, ground plane fill in unused areas and surface mount decoupling capacitors are recommended. Decoupling capacitors should be as near to the pins of the CS42438 as possible. The low value ceramic capacitor should be the nearest to the pin and should be mounted on the same side of the board as the CS42438 to minimize inductance effects. All signals, especially clocks, should be kept away from the FILT+, VQ pins in order to avoid unwanted coupling into the modulators. The FILT+ and VQ decoupling capacitors, particularly the 0.1 µF, must be positioned to minimize the electrical path from FILT+ and AGND. The CDB42438 evaluation board demonstrates the optimum layout and power supply arrangements. For optimal heat dissipation from the package, it is recommended that the area directly under the part be filled with copper and tied to the ground plane. The use of vias connecting the topside ground to the backside ground is also recommended. 38 DS646F1 CS42438 6. REGISTER QUICK REFERENCE Software Mode register defaults are as shown. Note: The default value in all “Reserved” registers must be preserved. Addr Function 7 6 5 4 3 2 1 0 Chip_ID3 Chip_ID2 Chip_ID1 Chip_ID0 Rev_ID3 Rev_ID2 Rev_ID1 Rev_ID0 01h ID p 41 default 0 0 0 0 0 0 0 1 02h Power Control PDN_ADC3 PDN_ADC2 PDN_ADC1 PDN_DAC4 PDN_DAC3 PDN_DAC2 PDN_DAC1 PDN p 42 default 03h 04h 05h Functional Mode 0 0 0 0 0 0 0 0 Reserved Reserved Reserved Reserved MFreq2 MFreq1 MFreq0 Reserved p 43 default 1 1 1 1 0 0 0 0 Misc Control FREEZE AUX_DIF Reserved Reserved Reserved Reserved Reserved Reserved p 43 default 0 0 1 1 0 1 1 0 ADC Control ADC1-2_HPF FREEZE ADC3_HPF FREEZE DAC_DEM ADC1 SINGLE ADC2 SINGLE ADC3 SINGLE AIN5_MUX AIN6_MUX (w/DAC_DEM) p 44 default 0 0 0 0 0 0 0 0 DAC_SNG VOL DAC_SZC1 DAC_SZC0 AMUTE MUTE ADC_SP ADC_SNG VOL ADC_SZC1 ADC_SZC0 06h Transition Control 07h Channel Mute p 47 default 0 0 0 0 0 0 0 0 08h Vol. Control AOUT1 AOUT1 VOL7 AOUT1 VOL6 AOUT1 VOL5 AOUT1 VOL4 AOUT1 VOL3 AOUT1 VOL2 AOUT1 VOL1 AOUT1 VOL0 p 47 default 0 0 0 0 0 0 0 0 09h Vol. Control AOUT2 AOUT2 VOL7 AOUT2 VOL6 AOUT2 VOL5 AOUT2 VOL4 AOUT2 VOL3 AOUT2 VOL2 AOUT2 VOL1 AOUT2 VOL0 p 47 default 0 0 0 0 0 0 0 0 0Ah Vol. Control AOUT3 AOUT3 VOL7 AOUT3 VOL6 AOUT3 VOL5 AOUT3 VOL4 AOUT3 VOL3 AOUT3 VOL2 AOUT3 VOL1 AOUT3 VOL0 p 47 default 0 0 0 0 0 0 0 0 0Bh Vol. Control AOUT4 AOUT4 VOL7 AOUT4 VOL6 AOUT4 VOL5 AOUT4 VOL4 AOUT4 VOL3 AOUT4 VOL2 AOUT4 VOL1 AOUT4 VOL0 p 47 default 0 0 0 0 0 0 0 0 0Ch Vol. Control AOUT5 AOUT5 VOL7 AOUT5 VOL6 AOUT5 VOL5 AOUT5 VOL4 AOUT5 VOL3 AOUT5 VOL2 AOUT5 VOL1 AOUT5 VOL0 p 47 default 0 0 0 0 0 0 0 0 0Dh Vol. Control AOUT6 AOUT6 VOL7 AOUT6 VOL6 AOUT6 VOL5 AOUT6 VOL4 AOUT6 VOL3 AOUT6 VOL2 AOUT6 VOL1 AOUT6 VOL0 p 47 default 0 0 0 0 0 0 0 0 0Eh Vol. Control AOUT7 AOUT7 VOL7 AOUT7 VOL6 AOUT7 VOL5 AOUT7 VOL4 AOUT7 VOL3 AOUT7 VOL2 AOUT7 VOL1 AOUT7 VOL0 p 46 default 0 0 0 1 0 0 0 0 AOUT8 MUTE AOUT7 MUTE AOUT6 MUTE AOUT5 MUTE AOUT4 MUTE AOUT3 MUTE AOUT2 MUTE AOUT1 MUTE p 47 default 0 0 0 0 0 0 0 0 0Fh Vol. Control AOUT8 AOUT8 VOL7 AOUT8 VOL6 AOUT8 VOL5 AOUT8 VOL4 AOUT8 VOL3 AOUT8 VOL2 AOUT8 VOL1 AOUT8 VOL0 0 0 0 0 0 0 10h DAC Channel Invert p 47 default p 48 default DS646F1 0 0 INV_AOUT8 INV_AOUT7 0 0 INV_AOUT6 INV_AOUT5 INV_AOUT4 INV_AOUT3 INV_AOUT2 INV_AOUT1 0 0 0 0 0 0 39 CS42438 Addr Function 11h 12h 13h 14h 15h 16h 17h 7 6 5 4 3 2 1 0 Vol. Control AIN1 AIN1 VOL7 AIN1 VOL6 AIN1 VOL5 AIN1 VOL4 AIN1 VOL3 AIN1 VOL2 AIN1 VOL1 AIN1 VOL0 p 47 default 0 0 0 0 0 0 0 0 Vol. Control AIN2 AIN2 VOL7 AIN2 VOL6 AIN2 VOL5 AIN2 VOL4 AIN2 VOL3 AIN2 VOL2 AIN2 VOL1 AIN2 VOL0 p 48 default 0 0 0 0 0 0 0 0 Vol. Control AIN3 AIN3 VOL7 AIN3 VOL6 AIN3 VOL5 AIN3 VOL4 AIN3 VOL3 AIN3 VOL2 AIN3 VOL1 AIN3 VOL0 p 47 default 0 0 0 0 0 0 0 0 Vol. Control AIN4 AIN4 VOL7 AIN4 VOL6 AIN4 VOL5 AIN4 VOL4 AIN4 VOL3 AIN4 VOL2 AIN4 VOL1 AIN4 VOL0 p 48 default 0 0 0 0 0 0 0 0 Vol. Control AIN5 AIN5 VOL7 AIN5 VOL6 AIN5 VOL5 AIN5 VOL4 AIN5 VOL3 AIN5 VOL2 AIN5 VOL1 AIN5 VOL0 p 47 default 0 0 0 0 0 0 0 0 Vol. Control AIN6 AIN6 VOL7 AIN6 VOL6 AIN6 VOL5 AIN6 VOL4 AIN6 VOL3 AIN6 VOL2 AIN6 VOL1 AIN6 VOL0 p 48 default 0 0 0 0 0 0 0 0 Reserved Reserved INV_A6 INV_A5 INV_A4 INV_A3 INV_A2 INV_A1 0 0 0 0 0 0 0 0 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved 0 0 0 0 0 0 0 0 Reserved Reserved Reserved Reserved CLK Error ADC3 OVFL ADC2 OVFL ADC1 OVFL ADC Channel Invert p 48 default 18h Reserved default 19h Status p 49 default 0 0 0 X X X X X 1Ah Status Mask Reserved Reserved Reserved Reserved CLK Error_M ADC3 OVFL_M ADC2 OVFL_M ADC1 OVFL_M p 49 default 0 0 0 0 0 0 0 0 40 DS646F1 CS42438 7. REGISTER DESCRIPTION All registers are read/write except for the I.D. and Revision Register and Interrupt Status Register which are read only. See the following bit-definition tables for bit assignment information. The default state of each bit after a powerup sequence or reset is listed in each bit description. 7.1 Memory Address Pointer (MAP) Not a register 7 6 5 4 3 2 1 0 INCR MAP6 MAP5 MAP4 MAP3 MAP2 MAP1 MAP0 7.1.1 Increment (INCR) Default = 1 Function: Memory address pointer auto increment control 0 - MAP is not incremented automatically. 1 - Internal MAP is automatically incremented after each read or write. 7.1.2 Memory Address Pointer (MAP[6:0]) Default = 0000001 Function: Memory address pointer (MAP). Sets the register address that will be read or written by the control port. 7.2 Chip I.D. and Revision Register (Address 01h) (Read Only) 7 6 5 4 3 2 1 0 Chip_ID3 Chip_ID2 Chip_ID1 Chip_ID0 Rev_ID3 Rev_ID2 Rev_ID1 Rev_ID0 7.2.1 Chip I.D. (CHIP_ID[3:0]) Default = 0000 Function: I.D. code for the CS42438. Permanently set to 0000. 7.2.2 Chip Revision (REV_ID[3:0]) Default = 0001 Function: CS42438 revision level. Revision A is coded as 0001. DS646F1 41 CS42438 7.3 Power Control (Address 02h) 7 6 5 4 3 2 1 0 PDN_ADC3 PDN_ADC2 PDN_ADC1 PDN_DAC4 PDN_DAC3 PDN_DAC2 PDN_DAC1 PDN 7.3.1 Power Down ADC Pairs (PDN_ADCX) Default = 0 0 - Disable 1 - Enable Function: When enabled, the respective ADC channel pair (ADC1 - AIN1/AIN2; ADC2 - AIN3/AIN4; and ADC3 AIN5/AIN6) will remain in a reset state. 7.3.2 Power Down DAC Pairs (PDN_DACX) Default = 0 0 - Disable 1 - Enable Function: When enabled, the respective DAC channel pair (DAC1 - AOUT1/AOUT2; DAC2 - AOUT3/AOUT4; DAC3 - AOUT5/AOUT6; and DAC4 - AOUT7/AOUT8) will remain in a reset state. It is advised that any change of these bits be made while the DACs are muted or the power down bit (PDN) is enabled to eliminate the possibility of audible artifacts. 7.3.3 Power Down (PDN) Default = 0 0 - Disable 1 - Enable Function: The entire device will enter a low-power state when this function is enabled. The contents of the control registers are retained in this mode. 42 DS646F1 CS42438 7.4 Functional Mode (Address 03h) 7 6 5 4 3 2 1 0 Reserved Reserved Reserved Reserved MFreq2 MFreq1 MFreq0 Reserved 7.4.1 MCLK Frequency (MFREQ[2:0]) Default = 000 Function: Sets the appropriate frequency for the supplied MCLK. For TDM operation, SCLK must equal 256Fs. MCLK can be equal to or greater than SCLK. MFreq2 MFreq1 MFreq0 0 0 0 0 1 0 0 1 1 X 0 1 0 1 X Description 1.0290 MHz to 12.8000 MHz 1.5360 MHz to 19.2000 MHz 2.0480 MHz to 25.6000 MHz 3.0720 MHz to 38.4000 MHz 4.0960 MHz to 51.2000 MHz SSM 256 384 512 768 1024 Ratio (xFs) DSM N/A N/A 256 384 512 QSM N/A N/A N/A N/A 256 Table 7. MCLK Frequency Settings 7.5 MISCELLANEOUS CONTROL (Address 04h) 7 6 5 4 3 2 1 0 FREEZE AUX_DIF Reserved Reserved Reserved Reserved Reserved Reserved 7.5.1 Freeze Controls (FREEZE) Default = 0 Function: This function will freeze the previous settings of, and allow modifications to be made to the channel mutes, the DAC and ADC Volume Control/Channel Invert registers without the changes taking effect until the FREEZE is disabled. To have multiple changes in these control port registers take effect simultaneously, enable the FREEZE bit, make all register changes, then disable the FREEZE bit. 7.5.2 Auxiliary Digital Interface Format (AUX_DIF) Default = 0 0 - Left Justified 1 - I²S Function: This bit selects the digital interface format used for the AUX Serial Port. The required relationship between the Left/Right clock, serial clock and serial data is defined by the Digital Interface Format and the options are detailed in Figures 17-18. DS646F1 43 CS42438 7.6 ADC Control & DAC De-Emphasis (Address 05h) 7 6 5 4 3 2 1 0 ADC1-2_HPF FREEZE ADC3_HPF FREEZE DAC_DEM ADC1 SINGLE ADC2 SINGLE ADC3 SINGLE AIN5_MUX AIN6_MUX 7.6.1 ADC1-2 High-Pass Filter Freeze (ADC1-2_HPF FREEZE) Default = 0 Function: When this bit is set, the internal high-pass filter will be disabled for ADC1 and ADC2.The current DC offset value will be frozen and continue to be subtracted from the conversion result. See “ADC Digital Filter Characteristics” on page 16. 7.6.2 ADC3 High Pass Filter Freeze (ADC3_HPF FREEZE) Default = 0 Function: When this bit is set, the internal high-pass filter will be disabled for ADC3.The current DC offset value will be frozen and continue to be subtracted from the conversion result. See “ADC Digital Filter Characteristics” on page 16. 7.6.3 DAC De-Emphasis Control (DAC_DEM) Default = 0 0 - No De-Emphasis 1 - De-Emphasis Enabled (Auto-Detect Fs) Function: Enables the digital filter to maintain the standard 15µs/50µs digital de-emphasis filter response at the auto-detected sample rate of either 32, 44.1, or 48 kHz. De-emphasis will not be enabled, regardless of this register setting, at any other sample rate. 7.6.4 ADC1 Single-Ended Mode (ADC1 SINGLE) Default = 0 0 - Disabled; Differential input to ADC1 1 - Enabled; Single-Ended input to ADC1 Function: When enabled, this bit allows the user to apply a single-ended input to the positive terminal of ADC1. A +6 dB digital gain is automatically applied to the serial audio data of ADC1. The negative leg must be driven to the common mode of the ADC. See Figure 21 on page 50 for a graphical description. 44 DS646F1 CS42438 7.6.5 ADC2 Single-Ended Mode (ADC2 SINGLE) Default = 0 0 - Disabled; Differential input to ADC2 1 - Enabled; Single-Ended input to ADC2 Function: When enabled, this bit allows the user to apply a single-ended input to the positive terminal of ADC2. A +6 dB digital gain is automatically applied to the serial audio data of ADC2. The negative leg must be driven to the common mode of the ADC. See Figure 21 on page 50 for a graphical description. 7.6.6 ADC3 Single-Ended Mode (ADC3 SINGLE) Default = 0 0 - Disabled; Differential input to ADC 1 - Enabled; Single-Ended input to ADC Function: When disabled, this bit removes the 4:2 multiplexer from the signal path of ADC3 allowing a differential input. When enabled, this bit allows the user to choose between four single-ended inputs to ADC3, using the AIN5_MUX and AIN6_MUX bits. See Figure 11 on page 31 and Figure 21 on page 50 for graphical descriptions. 7.6.7 Analog Input Ch. 5 Multiplexer (AIN5_MUX) Default = 0 0 - Single-Ended Input AIN5A 1 - Single-Ended Input AIN5B Function: ADC3 can accept single-ended input signals when the ADC3 SINGLE bit is enabled. The AIN5_MUX bit selects between two input channels (AIN5A or AIN5B) to be sent to ADC3 in Single-Ended Mode. This bit is ignored when the ADC3_SINGLE bit is disabled. See Figure 11 on page 31 for a graphical description. 7.6.8 Analog Input Ch. 6 Multiplexer (AIN6_MUX) Default = 0 0 - Single-Ended Input AIN6A 1 - Single-Ended Input AIN6B Function: ADC3 can accept a single-ended input signal when the ADC3 SINGLE bit is enabled. The AIN6_MUX bit selects between two input channels (AIN6A or AIN6B) to be sent to ADC3 in Single-Ended Mode. This bit is ignored when the ADC3_SINGLE bit is disabled. See Figure 11 on page 31 for a graphical description. DS646F1 45 CS42438 7.7 Transition Control (Address 06h) 7 6 5 4 3 2 1 0 DAC_SNGVOL DAC_SZC1 DAC_SZC0 AMUTE MUTE ADC_SP ADC_SNGVOL ADC_SZC1 ADC_SZC0 7.7.1 Single Volume Control (DAC_SNGVOL, ADC_SNGVOL) Default = 0 Function: The individual channel volume levels are independently controlled by their respective Volume Control registers when this function is disabled. When enabled, the volume on all channels is determined by the AOUT1 and AIN1 Volume Control register and the other Volume Control registers are ignored. 7.7.2 Soft Ramp and Zero Cross Control (ADC_SZC[1:0], DAC_SZC[1:0]) Default = 00 00 - Immediate Change 01 - Zero Cross 10 - Soft Ramp 11 - Soft Ramp on Zero Crossings Function: Immediate Change When Immediate Change is selected, all volume-level changes will take effect immediately in one step. Zero Cross Zero Cross Enable dictates that signal level changes, either by gain changes, attenuation changes or muting, will occur on a signal zero crossing to minimize audible artifacts. The requested level change will occur after a timeout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently monitored and implemented for each channel. Soft Ramp Soft Ramp allows level changes, either by gain changes, attenuation changes or muting, to be implemented by incrementally ramping, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per 8 left/right clock periods. Soft Ramp on Zero Crossing Soft Ramp and Zero Cross Enable dictates that signal level changes, either by gain changes, attenuation changes or muting, will occur in 1/8 dB steps and be implemented on a signal zero crossing. The 1/8 dB level change will occur after a timeout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently monitored and implemented for each channel. 46 DS646F1 CS42438 7.7.3 Auto-Mute (AMUTE) Default = 1 0 - Disabled 1 - Enabled Function: The Digital-to-Analog converters of the CS42438 will mute the output following the reception of 8192 consecutive audio samples of static 0 or -1. A single sample of non-static data will release the mute. Detection and muting is done independently for each channel. The quiescent voltage on the output will be retained during the mute period. The muting function is affected, similar to volume control changes, by the Soft and Zero Cross bits (SZC[1:0]). 7.7.4 Mute ADC Serial Port (MUTE ADC_SP) Default = 0 0 - Disabled 1 - Enabled Function: When enabled, the ADC Serial Port will be muted. 7.8 DAC Channel Mute (Address 07h) 7 6 5 4 3 2 1 0 AOUT8_MUTE AOUT7_MUTE AOUT6_MUTE AOUT5_MUTE AOUT4_MUTE AOUT3_MUTE AOUT2_MUTE AOUT1_MUTE 7.8.1 Independent Channel Mute (AOUTX_MUTE) Default = 0 0 - Disabled 1 - Enabled Function: The respective Digital-to-Analog converter outputs of the CS42438 will mute when enabled. The quiescent voltage on the outputs will be retained. The muting function is affected by the DAC Soft and Zero Cross bits (DAC_SZC[1:0]). 7.9 AOUTX Volume Control (Addresses 08h- 0Fh) 7 6 5 4 3 2 1 0 AOUTx_VOL7 AOUTx_VOL6 AOUTx_VOL5 AOUTx_VOL4 AOUTx_VOL3 AOUTx_VOL2 AOUTx_VOL1 AOUTx_VOL0 7.9.1 Volume Control (AOUTX_VOL[7:0]) Default = 00h Function: The AOUTx Volume Control registers allow independent setting of the signal levels in 0.5 dB increments from 0 dB to -127.5 dB. Volume settings are decoded as shown in Table 8. The volume changes are im- DS646F1 47 CS42438 plemented as dictated by the Soft and Zero Cross bits (DAC_SZC[1:0]). All volume settings less than 127.5 dB are equivalent to enabling the AOUTx_MUTE bit for the given channel. Binary Code 00000000 00101000 01010000 01111000 10110100 Volume Setting 0 dB -20 dB -40 dB -60 dB -90 dB Table 8. Example AOUT Volume Settings 7.10 DAC Channel Invert (Address 10h) 7 6 5 4 3 2 1 0 INV_AOUT8 INV_AOUT7 INV_AOUT6 INV_AOUT5 INV_AOUT4 INV_AOUT3 INV_AOUT2 INV_AOUT1 7.10.1 Invert Signal Polarity (INV_AOUTX) Default = 0 0 - Disabled 1 - Enabled Function: When enabled, these bits will invert the signal polarity of their respective channels. 7.11 AINX Volume Control (Address 11h-16h) 7 6 5 4 3 2 1 0 AINx_VOL7 AINx_VOL6 AINx_VOL5 AINx_VOL4 AINx_VOL3 AINx_VOL2 AINx_VOL1 AINx_VOL0 7.11.1 AINX Volume Control (AINX_VOL[7:0]) Default = 00h Function: The level of AIN1 - AIN6 can be adjusted in 0.5 dB increments as dictated by the ADC Soft and Zero Cross bits (ADC_SZC[1:0]) from +24 to -64 dB. Levels are decoded in two’s complement, as shown in Table 9. Binary Code 0111 1111 ··· 0011 0000 ··· 0000 0000 1111 1111 1111 1110 ··· 1000 0000 Volume Setting +24 dB ··· +24 dB ··· 0 dB -0.5 dB -1 dB ··· -64 dB Table 9. Example AIN Volume Settings 48 DS646F1 CS42438 7.12 ADC Channel Invert (Address 17h) 7 6 5 4 3 2 1 0 Reserved Reserved INV_AIN6 INV_AIN5 INV_AIN4 INV_AIN3 INV_AIN2 INV_AIN1 7.12.1 Invert Signal Polarity (INV_AINX) Default = 0 0 - Disabled 1 - Enabled Function: When enabled, these bits will invert the signal polarity of their respective channels. 7.13 Status (Address 19h) (Read Only) 7 6 5 4 3 2 1 0 Reserved Reserved Reserved Reserved CLK Error ADC3_OVFL ADC2_OVFL ADC1_OVFL For all bits in this register, a “1” means the associated error condition has occurred at least once since the register was last read. A”0” means the associated error condition has NOT occurred since the last reading of the register. Reading the register resets all bits to 0. Status bits that are masked off in the associated mask register will always be “0” in this register. 7.13.1 CLOCK ERROR (CLK ERROR) Default = x Function: Indicates an invalid MCLK to FS ratio. This status flag is set to “Level Active Mode” and becomes active during the error condition. See “System Clocking” on page 33 for valid clock ratios. 7.13.2 ADC Overflow (ADCX_OVFL) Default = x Function: Indicates that there is an over-range condition anywhere in the CS42438 ADC signal path of each of the associated ADC’s. 7.14 Status Mask (Address 1Ah) 7 6 5 4 3 2 1 0 Reserved Reserved Reserved Reserved CLK Error_M ADC3_OV FL_M ADC2_OVFL_M ADC1_OVFL_M Default = 0000 Function: The bits of this register serve as a mask for the error sources found in the register “Status (Address 19h) (Read Only)” on page 49. If a mask bit is set to 1, the error is unmasked, meaning that its occurrence will affect the status register. If a mask bit is set to 0, the error is masked, meaning that its occurrence will not affect status register. The bit positions align with the corresponding bits in the Status register. DS646F1 49 CS42438 8. EXTERNAL FILTERS 8.1 ADC Input Filter The analog modulator samples the input at 6.144 MHz (internal MCLK=12.288 MHz). The digital filter will reject signals within the stopband of the filter. However, there is no rejection for input signals which are multiples of the digital passband frequency (n × 6.144 MHz), where n=0,1,2,... Refer to Figures 20 and 21 for a recommended analog input filter that will attenuate any noise energy at 6.144 MHz, in addition to providing the optimum source impedance for the modulators. Refer to Figures 22 and 23 for low-cost, low-componentcount passive input filters. The use of capacitors that have a large voltage coefficient (such as general-purpose ceramics) must be avoided since these can degrade signal linearity 634 Ω 470 pF C0G ADC1-3 91 Ω - 4.7 µF AINx+ + 100 k Ω 634 Ω 634 Ω VA 2700 pF C0G 470 pF C0G 10 k Ω 100 k Ω 91 Ω - AINx- + 100 k Ω 0.1 µF 100 µF 332 Ω Figure 20. Single to Differential Active Input Filter 634 Ω VA 100 kΩ 470 pF - 4.7 µF C0G ADC1-2 91 Ω AIN1+,2+,3+,4+ + 100 kΩ 2700 pF C0G 100 kΩ 4.7 µF AIN1-,2-,3-,4- 634 Ω VA 100 kΩ 470 pF - 4.7 µF C0G ADC3 91 Ω AIN5A,6A + 100 kΩ 2700 pF C0G 100 kΩ 634 Ω VA 100 kΩ 470 pF - 4.7 µF C0G 91 Ω AIN5B,6B + 100 kΩ 100 kΩ 2700 pF C0G Figure 21. Single-Ended Active Input Filter 50 DS646F1 CS42438 8.1.1 Passive Input Filter The passive filter implementation shown in Figure 22 will attenuate any noise energy at 6.144 MHz but will not provide optimum source impedance for the ADC modulators. Full analog performance will therefore not be realized using a passive filter. Figure 22 illustrates the unity gain, passive input filter solution. In this topology the distortion performance is affected, but the dynamic range performance is not limited. 150 Ω ADC1-2 10 µF AIN1+,2+,3+,4+ 2700 pF 100 kΩ C0G AIN1-,2-,3-,44.7 µF 150 Ω ADC3 10 µF AIN5A,6A 2700 pF 100 kΩ C0G 150 Ω 10 µF AIN5B,6B 2700 pF 100 kΩ C0G Figure 22. Passive Input Filter 8.1.2 Passive Input Filter w/Attenuation Some applications may require signal attenuation prior to the ADC. The full-scale input voltage will scale with the analog power supply voltage. For VA = 5.0 V, the full-scale input voltage is approximately 2.8 Vpp, or 1 Vrms (most consumer audio line-level outputs range from 1.5 to 2 Vrms). Figure 23 shows a passive input filter with 6 dB of signal attenuation. Due to the relatively high input impedance on the analog inputs, the full distortion performance cannot be realized. Also, the resistor divider circuit will determine the input impedance into the input filter. In the circuit shown in Figure 23, the input impedance is approximately 5 kΩ. By doubling the resistor values, the input impedance will increase to 10 kΩ. However, in this case the distortion performance will drop due to the increase in series resistance on the analog inputs. DS646F1 51 CS42438 10 µF 2.5 kΩ ADC1-2 AIN1+,2+,3+,4+ 2.5 k Ω 2700 pF C0G AIN1-,2-,3-,44.7 µF 10 µF 2.5 kΩ ADC3 AIN5A,6A 2.5 k Ω 2700 pF C0G 10 µF 2.5 kΩ AIN5B,6B 2.5 k Ω 2700 pF C0G Figure 23. Passive Input Filter w/Attenuation 52 DS646F1 CS42438 8.2 DAC Output Filter The CS42438 is a linear phase design and does not include phase or amplitude compensation for an external filter. Therefore, the DAC system phase and amplitude response will be dependent on the external analog circuitry. Shown below is the recommended active and passive output filters. 1800 pF DAC1-4 4.75 kΩ 390 pF C0G AOUTx - 5.49 kΩ 2.94 kΩ 1.65 kΩ 887 Ω AOUTx + C0G + 562Ω 47.5 k Ω 1200 pF 5600 pF C0G 22 µF C0G 1.87 kΩ 22 µF Figure 24. Active Analog Output Filter DAC1-4 3.3 µF AOUTx+ 560 Ω + 10 kΩ C C= R ext Rext+ 560 4 πFSRext560 Figure 25. Passive Analog Output Filter DS646F1 53 CS42438 9. ADC FILTER PLOTS Figure 27. SSM Transition Band 0 0.10 -1 0.08 -2 0.06 -3 0.04 Amplitude (dB) Amplitude (dB) Figure 26. SSM Stopband Rejection -4 -5 -6 -7 0.02 0.00 -0.02 -0.04 -8 -0.06 -9 -0.08 -10 0.45 -0.10 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55 0 0.05 0 0 -10 -10 -20 -20 -30 -30 -40 -40 -50 -60 -70 -80 -90 -100 0.7 0.8 0.9 Frequency (normalized to Fs) Figure 30. DSM Stopband Rejection 54 0.45 0.5 -90 -130 -140 0.6 0.4 -100 -120 0.5 0.35 -80 -130 0.4 0.3 -70 -110 0.3 0.25 -60 -120 0.2 0.2 -50 -110 0.1 0.15 Figure 29. SSM Passband Ripple Amplitude (dB) Amplitude (dB) Figure 28. SSM Transition Band (Detail) 0.0 0.1 Frequency (normalized to Fs) Frequency (normalized to Fs) 1.0 -140 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 Frequency (normalized to Fs) Figure 31. DSM Transition Band DS646F1 CS42438 ‘ 0 0 .10 -1 0 .0 8 0 .0 6 Amplitude (dB) Amplitude (dB) -2 -3 -4 -5 -6 -7 0 .0 4 0 .0 2 0 .0 0 -0 .0 2 -0 .0 4 -0 .0 6 -8 -0 .0 8 -9 -10 0.46 -0 .10 0 .0 0 0.47 0.48 0.49 0.50 0.51 Frequency (normalized to Fs) Figure 32. DSM Transition Band (Detail) DS646F1 0.52 0 .0 5 0 .10 0 .15 0 .2 0 0 .2 5 0 .3 0 0 .3 5 0 .4 0 0 .4 5 0 .50 Fr e que ncy (norm alize d to Fs ) Figure 33. DSM Passband Ripple 55 CS42438 10.DAC FILTER PLOTS Figure 34. SSM Stopband Rejection Figure 35. SSM Transition Band 0.05 0 Amplitude dB -0.05 -0. 1 -0.15 -0. 2 -0.25 0 56 0.05 0.1 0.15 0.2 0.25 0.3 Frequency (normalized to Fs) 0.35 0.4 0.45 Figure 36. SSM Transition Band (detail) Figure 37. SSM Passband Ripple Figure 38. DSM Stopband Rejection Figure 39. DSM Transition Band 0.5 DS646F1 CS42438 0.8 0.7 0.6 0.5 Amplitude dB 0.4 0.3 0.2 0.1 0 -0. 1 -0. 2 0 Figure 40. DSM Transition Band (detail) 0.05 0.1 0.15 0.2 0.25 0.3 Frequency (normalized to Fs) 0.35 0.4 0.45 0.5 Figure 41. DSM Passband Ripple 0 0 -10 -10 -20 -30 -20 Amplitude (dB) Amplitude (dB) -40 -50 -60 -30 -40 -70 -50 -80 -60 -90 -100 0 0.1 0.2 0.3 0.4 0.5 0.6 Frequency(normalized to Fs) 0.7 0.8 0.9 1 0.35 Figure 42. QSM Stopband Rejection 0.4 0.45 0.5 0.55 0.6 Frequency(normalized to Fs) 0.65 0.7 0.75 Figure 43. QSM Transition Band 0 0 -5 -10 -0. 5 -20 Amplitude dB Amplitude (dB) -15 -25 -30 -1 -35 -40 -45 -50 0.4 0.45 0.5 0.55 0.6 Frequency(normalized to Fs) 0.65 Figure 44. QSM Transition Band (detail) DS646F1 0.7 -1. 5 0 0.05 0.1 0.15 0.2 0.25 0.3 Frequency (normalized to Fs) 0.35 0.4 0.45 0.5 Figure 45. QSM Passband Ripple 57 CS42438 11.PARAMETER DEFINITIONS Dynamic Range The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified bandwidth. Dynamic Range is a signal-to-noise ratio measurement over the specified band width made with a -60 dBFS signal. 60 dB is added to resulting measurement to refer the measurement to full-scale. This technique ensures that the distortion components are below the noise level and do not affect the measurement. This measurement technique has been accepted by the Audio Engineering Society, AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307. Expressed in decibels. Total Harmonic Distortion + Noise The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified band width (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels. Measured at -1 and -20 dBFS as suggested in AES17-1991 Annex A. Frequency Response A measure of the amplitude response variation from 10 Hz to 20 kHz relative to the amplitude response at 1 kHz. Units in decibels. Interchannel Isolation A measure of crosstalk between the left and right channel pairs. Measured for each channel at the converter's output with no signal to the input under test and a full-scale signal applied to the other channel. Units in decibels. Interchannel Gain Mismatch The gain difference between left and right channel pairs. Units in decibels. Gain Error The deviation from the nominal full-scale analog output for a full-scale digital input. Gain Drift The change in gain value with temperature. Units in ppm/°C. Offset Error The deviation of the mid-scale transition (111...111 to 000...000) from the ideal. Units in mV. 58 DS646F1 CS42438 12.REFERENCES 1. Cirrus Logic, AN18: Layout and Design Rules for Data Converters and Other Mixed Signal Devices, Version 6.0, February 1998. 2. Cirrus Logic, Techniques to Measure and Maximize the Performance of a 120 dB, 96 kHz A/D Converter Integrated Circuit, by Steven Harris, Steven Green and Ka Leung. Presented at the 103rd Convention of the Audio Engineering Society, September 1997. 3. Cirrus Logic, A Stereo 16-bit Delta-Sigma A/D Converter for Digital Audio, by D.R. Welland, B.P. Del Signore, E.J. Swanson, T. Tanaka, K. Hamashita, S. Hara, K. Takasuka. Paper presented at the 85th Convention of the Audio Engineering Society, November 1988. 4. Cirrus Logic, The Effects of Sampling Clock Jitter on Nyquist Sampling Analog-to-Digital Converters, and on Oversampling Delta Sigma ADC's, by Steven Harris. Paper presented at the 87th Convention of the Audio Engineering Society, October 1989. 5. Cirrus Logic, An 18-Bit Dual-Channel Oversampling Delta-Sigma A/D Converter, with 19-Bit Mono Application Example, by Clif Sanchez. Paper presented at the 87th Convention of the Audio Engineering Society, October 1989. 6. Cirrus Logic, How to Achieve Optimum Performance from Delta-Sigma A/D and D/A Converters, by Steven Harris. Presented at the 93rd Convention of the Audio Engineering Society, October 1992. 7. Cirrus Logic, A Fifth-Order Delta-Sigma Modulator with 110 dB Audio Dynamic Range, by I. Fujimori, K. Hamashita and E.J. Swanson. Paper presented at the 93rd Convention of the Audio Engineering Society, October 1992. 8. Philips Semiconductor, The I²C-Bus Specification: Version 2.1, January 2000. http://www.semiconductors.philips.com DS646F1 59 CS42438 13.PACKAGE INFORMATION 52L MQFP PACKAGE DRAWING E E1 D D1 1 e B ∝ A A1 L DIM A A1 B D D1 E E1 e* L ∝ MIN --0.000 0.009 ----------0.029 0.00° INCHES NOM ------0.519 0.394 0.519 0.394 0.026 0.035 4° MAX 0.096 0.010 0.016 ----------0.041 7.00° MILLIMETERS NOM ------13.20 BSC 10.00 BSC 13.20 BSC 10.00 BSC 0.65 BSC 0.88 4° MIN --0.00 0.22 ----------0.73 0.00° MAX 2.45 0.25 0.40 ----------1.03 7.00° * Nominal pin pitch is 0.65 mm Controlling dimension is mm. JEDEC Designation: MS022 13.1 Thermal Characteristics Parameter Junction to Ambient Thermal Impedance 60 2 Layer Board 4 Layer Board Symbol Min Typ Max Units qJA θJA - 47 38 - °C/Watt °C/Watt DS646F1 CS42438 14.ORDERING INFORMATION Product Description Package Pb-Free CS42438 6-in, 8-out, TDM CODEC for Surround Sound Apps 52L-MQFP YES - - CDB42438 CS42438 Evaluation Board Grade Temp Range Container Order # Rail CS42438-CMZ Commercial -10° to +70° C Tape & Reel CS42438-CMZR Rail CS42438-DMZ Automotive -40° to +105° C Tape & Reel CS42438-DMZR CDB42438 15.REVISION HISTORY Revision Changes A1 Initial Release A2 Corrected I²C Address in Section 5.7.2 on page 36. Corrected Chip I.D. in Section 7.2.1 on page 41. PP1 Initial Preliminary Product (PP) Release subject to legal notice below. Added pin numbers to “Typical Connection Diagram (Software Mode)” on page 11 and “Typical Connection Diagram (Hardware Mode)” on page 12. Changed ADC Double-Speed Mode parameters. See Note 2 on page 13 and Note 18 on page 21. Added ADC3 MUX Interchannel Isolation characteristic in “Characteristics and Specifications” beginning on page 13. Changed ADC Passband Ripple maximum specifications for SSM, DSM & QSM in section “Characteristics and Specifications” beginning on page 13. Changed DAC Frequency Response specifications for SSM, DSM & QSM in “Characteristics and Specifications” beginning on page 13. Removed ADC Quad-Speed Mode feature. See Note 19 on page 21. Added section “De-Emphasis Filter” on page 32. Corrected section “TDM data is received most significant bit (MSB) first, on the second rising edge of the SCLK occurring after a an FS rising edge. All data is valid on the rising edge of SCLK. The AIN1 MSB is transmitted early, but is guaranteed valid for a specified time after SCLK rises. All other bits are transmitted on the falling edge of SCLK. Each time slot is 32 bits wide, with the valid data sample left ‘justified within the time slot. Valid data lengths are 16, 18, 20, or 24.” on page 33. Changed AIN1-6 Volume Control range from (+12 dB to -115.5 dB) to (+24 dB to -64 dB) in register “AINX Volume Control (AINX_VOL[7:0])” on page 48. Removed the register “Status Control (address 18h)”. See “CLOCK ERROR (CLK ERROR)” on page 49 and “ADC Overflow (ADCX_OVFL)” on page 49 for the Active Mode setting. PP2 Corrected Figures 21-23. Added “Ordering Information” on page 61. F1 DS646F1 Updated temperature and voltage specifications in the “Recommended Operating Conditions” on page 13. Added test conditions to the Analog Input and Analog Output Characteristics tables. 61 CS42438 Contacting Cirrus Logic Support For all product questions and inquiries, contact a Cirrus Logic Sales Representative. To find the one nearest to you, go to www.cirrus.com. IMPORTANT NOTICE Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES. Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners. I²C is a registered trademark of Philips Semiconductor. SPI is a registered trademark of Motorola, Inc. 62 DS646F1