Lot No. Package type : P622 MS6M 00765 25A 1200V JAPAN 7M BP25 TEA1 20 O Dimensions in mm Odered No. in monthly Manufactured month (Jan.~Sep.:1~9,Oct.:O,Nov.:N,Dec.:D) Last digit of manufactured year Indication of Lot No. 1.□は理論寸法を示す。 "□" means theoretical dimensions. 2.端子ピッチは根元寸法とする。 The dimensions of the terminals are defined at the bottom. 3.( )内寸法は、参考値とする。 The dimensions in ( ) means referential values. 注) Notes 1. Package Outline Drawings a 3 a 23 H04-004-03a 2.Pin Descriptions 端子定義 Main circuit 主回路 Symbol Description P Positive input supply voltage. U Output (U). V Output (V). W Output (W). N Negative input supply voltage. B Collector terminal of Brake IGBT. Control circuit 制御回路 № Symbol ① GNDU High side ground (U). ② ALMU Alarm signal output (U). ③ VinU Logic input for IGBT gate drive (U). ④ VccU High side supply voltage (U). ⑤ GNDV High side ground (V). ⑥ ALMV Alarm signal output (V). ⑦ VinV Logic input for IGBT gate drive (V). ⑧ VccV High side supply voltage (V). ⑨ GNDW High side ground (W). ⑩ ALMW Alarm signal output (W). ⑪ VinW Logic input for IGBT gate drive (W). ⑫ VccW High side supply voltage (W). ⑬ GND Low side ground. ⑭ Vcc Low side supply voltage. ⑮ Description VinDB Logic input for Brake IGBT gate drive. ⑯ VinX Logic input for IGBT gate drive (X). ⑰ VinY Logic input for IGBT gate drive (Y). ⑱ VinZ Logic input for IGBT gate drive (Z). ⑲ ALM Low side alarm signal output. MS6M 00765 a 4 23 H04-004-03a 3. Block Diagram P VccU 4 VinU 3 Pre- Driver ALMU 2 RALM 1.5k Vz GNDU 1 VccV 8 VinV 7 U Pre- Driver ALMV 6 RALM 1.5k Vz GNDV 5 VccW 12 VinW 11 ALMW 10 V Pre- Driver RALM 1.5k Vz GNDW 9 Vcc 14 VinX 16 W Pre- Driver Vz GND VinY 13 17 Pre- Driver Vz VinZ 18 Pre- Driver Vz B VinDB 15 ALM 19 Pre- Driver RALM 1.5k Vz N Pre-drivers include following functions 1.Amplifier for driver 2.Short circuit protection 3.Under voltage lockout circuit 4.Over current protection 5.IGBT chip over heating protection MS6M 00765 5 a 23 H04-004-03a 4. Absolute Maximum Ratings 絶対最大定格 Tc=25℃ unless otherwise specified. Items Bus Voltage (between terminal P and N) DC Surge Inverter Min. 0 Max. 900 Units V 1000 800 V V Short operating Vsc 0 400 DC Vces Ic 0 - 1200 25 V A Icp -Ic Pc Ic - 50 25 139 15 A A W A Icp IF - 30 A Pc Vcc -0.5 15 139 20 A W V Vin Iin VALM IALM Tj -0.5 -0.5 - Vcc+0.5 3 Vcc 20 150 V mA V mA Topr Tstg Tsol -20 -40 - 100 125 260 ℃ ℃ Viso - AC2500 Vrms - - 3.5 Nm Collector-Emitter Voltage *1 Brake Symbol VDC VDC(surge) Collector Current 1ms Duty= 100% *2 Collector Power Dissipation One transistor *3 DC Collector Current 1ms Forward Current Diode Collector Power Dissipation One transistor *3 Supply Voltage of Pre-Driver *4 Input Signal Voltage *5 Input Signal Current Alarm Signal Voltage *6 Alarm Signal Current *7 Junction Temperature Operating Case Temperature Storage Temperature Solder Temperature *8 Isolating Voltage (Terminal to base, 50/60Hz sine wave 1min.) Screw Torque Mounting (M5) ℃ ℃ Note *1 : Vces shall be applied to the input voltage between terminal P and U or V or W or DB, N and U or V or W or DB. *2 : 125℃/FWD Rth(j-c)/(Ic×VF MAX)=125/2.05/(25×2.0)×100>100% *3 : Pc=125℃/IGBT Rth(j-c)=125/0.59=139W [Inverter] Pc=125℃/IGBT Rth(j-c)=125/0.59=139W [Brake] *4 : Vcc shall be applied to the input voltage between terminal No.4 and 1, 8 and 5, 12 and 9, 14 and 13 *5 : Vin shall be applied to the input voltage between terminal No.3 and 1, 7 and 5, 11 and 9, 16,17,18 and 13. *6 : VALM shall be applied to the voltage between terminal No.2 and 1, No6 and 5, No10 and 9, No.19 and 13. *7 : IALM shall be applied to the input current to terminal No.2,6,10 and 19. *8 : Immersion time 10±1sec. MS6M 00765 a 6 23 H04-004-03a 5. Electrical Characteristics Tj=25℃,Vcc=15V unless otherwise specified. 5.1 Main circuit Item Collector Current Inverter at off signal input Collector-Emitter saturation voltage Forward voltage of FWD Collector Current Brake at off signal input Collector-Emitter saturation voltage Conditions Symbol ICES VCE(sat) VF ICES Min. Typ. Max. Units - - 1.0 mA Terminal - - 3.1 V Chip - 2.4 - V Terminal - - 2.0 V Chip - 1.6 - V - - 1.0 mA Terminal - - 2.6 V Chip - 1.9 - V Terminal - - 3.3 V Chip - 1.9 - V VCE =1200V Vin terminal open. Ic=25A -Ic=25A VCE=1200V Vin terminal open. VCE(sat) Ic=15A VF -Ic=15A Turn-on time ton VDC=600V、Tj=125℃ 1.2 - - Turn-off time toff Ic=25A Fig.1,Fig.6 - - 3.6 Reverse recovery time trr - - 0.3 Min. Typ. Max. Units - - 15 mA - - 45 mA ON 1.00 1.35 1.70 OFF 1.25 1.60 1.95 - 8.0 - Tc=-20℃ 1.1 - - Tc=25℃ - 2.0 - Tc=125℃ - - 4.0 1425 1500 1575 Forward voltage of Diode VDC=600V IF=25A Fig.1,Fig.6 µs 5.2 Control circuit Item Supply current of P-side pre-driver (one unit) Supply current of N-side pre-driver Input signal threshold voltage Input Zener Voltage Conditions Symbol Iccp Iccn Vin(th) Vz Switching Frequency : 0~15kHz Tc=-20~100℃ Fig.7 Rin=20kΩ Fig.2 Alarm Signal Hold Time Resistor for current limit tALM RALM MS6M 00765 V V ms Ω 7 a 23 H04-004-03a 5.3 Protection Section (Vcc=15V) Item Symbol Over Current Protection Level of Inverter circuit Conditions Min. Typ. Max. Units Tj=125℃ 38 - - A Tj=125℃ 23 - - A Ioc Over Current Protection Level of Brake circuit Over Current Protection Delay time tdoc Tj=125℃ - 5 - µs SC Protection Delay time tsc Tj=125℃ Fig.4 - - 8 µs IGBT Chips Over Heating TjOH 150 - - ℃ TjH - 20 - ℃ VUV 11.0 - 12.5 VH 0.2 0.5 - Symbol Min. Typ. Max. IGBT Rth(j-c) - - 0.90 FWD Rth(j-c) - - 2.05 IGBT Rth(j-c) - - 0.90 Rth(c-f) - 0.05 - Min. Typ. Max. Units ±2.0 - - kV ±5.0 - - kV Symbol Min. Typ. Max. Units DC Bus Voltage VDC - - 800 V Power Supply Voltage of Pre-Driver Vcc 13.5 15.0 16.5 V - 2.5 - 3.0 Nm Symbol Min. Typ. Max. Units Wt - 270 - g Surface Protection Temperature Level of IGBT Chips Over Heating Protection Hysteresis Under Voltage Protection Level Under Voltage Protection Hysteresis V 6. Thermal Characteristics (Tc=25℃) Item Junction to Case Inverter Thermal Resistance *9 Brake Case to Fin Thermal Resistance with Compound Units ℃/W *9:( For 1device ,Case is under the device ) 7. Noise Immunity (Vdc=300V, Vcc=15V, Test Circuit Fig 5. ) Conditions Item Common mode rectangular noise Common mode lightning surge Pulse width 1µs,polarity ±,10 minuets Judge:no over-current, no miss operating Rise time 1.2us,Fall time 50µs Interval 20s,10 times Judge:no over-current, no miss operating 8. Recommended Operating Conditions Item Screw Torque (M5) 9. Weight Item Weight MS6M 00765 8 a 23 H04-004-03a Vin Vin(th) On Vin(th) trr 90% 50% Ic 90% 10% toff ton Figure 1. Switching Time Waveform Definitions Vge (Inside IPM) Fault (Inside IPM) off off /Vin on on Gate On Gate Off normal alarm /ALM tALM>Max. tALM 2ms(typ.) ③ tALM>Max. ① ② Fault:Over-current,Over-heat or Under-voltage Figure 2. Input/Output Timing Diagram Necessary conditions for alarm reset (refer to 1 to 3 in figure2.) 1 This represents the case when a failure-causing Fault lasts for a period more than tALM. The alarm resets when the input Vin is OFF and the Fault has disappeared. 2 This represents the case when the ON condition of the input Vin lasts for a period more than tALM. The alarm resets when the Vin turns OFF under no Fault conditions. 3 This represents the case when the Fault disappears and the Vin turns OFF within tALM. The alarm resets after lasting for a period of the specified time tALM. off /Vin on on Ioc Ic /ALM ① ② <tdoc alarm tdoc Figure 3. Over-current Protection Timing Diagram Period 1 : When a collector current over the OC level flows and the OFF command is input within a period less than the trip delay time tdoc, the current is hard-interrupted and no alarm is output. Period 2 : When a collector current over the OC level flows for a period more than the trip delay time tdoc, the current is soft-interrupted. If this is detected at the lower arm IGBTs, an alarm is output. MS6M 00765 a 9 23 H04-004-03a t SC Ic Ic IALM Ic IALM IALM Figure.4 Definition of tsc VccU 20k IPM VinU DC15V SW1 CT P U GNDU V AC400V Vcc 20k W VinX DC15V SW2 Earth Noise 4700p N GND Cooling Fin Figure 5. Noise Test Circuit Vcc 20k P IPM L Vin DC15V DC600V Ic HCPL4504 GND N Figure 6. Switching Characteristics Test Circuit Icc Vcc P U IPM V Vin DC15V P.G +8V fsw W GND N Figure 7. Icc Test Circuit MS6M 00765 a 10 23 H04-004-03a 10. Truth table 10.1 IGBT Control The following table shows the IGBT ON/OFF status with respect to the input signal Vin. The IGBT turn-on when Vin is at “Low” level under no alarm condition. Input (Vin) Output (IGBT) Low ON High OFF 10.2 Fault Detection (1) When a fault is detected at the high side, only the detected arm stops its output. At that time the IPM dosen’t any alarm. (2) When a fault is detected at the low side, all the lower arms stop their outputs and the IPM outputs an alarm of the low side. Fault High side U-phase High side V-phase High side W-phase Low side IGBT Alarm Output U-phase V-phase W-phase Low side ALM-U ALM-V ALM-W ALM OC OFF * * * L H H H UV OFF * * * L H H H TjOH OFF * * * L H H H OC * OFF * * H L H H UV * OFF * * H L H H TjOH * OFF * * H L H H OC * * OFF * H H L H UV * * OFF * H H L H TjOH * * OFF * H H L H OC * * * OFF H H H L UV * * * OFF H H H L TjOH * * * OFF H H H L *:Depend on input logic. MS6M 00765 a 11 23 H04-004-03a 11. Cautions for design and application 設計・適用上の注意点 1. Trace routing layout should be designed with particular attention to least stray capacity between the primary and secondary sides of optical isolators by minimizing the wiring length between the optical isolators and the IPM input terminals as possible. フォトカプラとIPMの入力端子間の配線は極力短くし、フォトカプラの一次側と二次側の浮遊容量を小さくした パターンレイアウトにして下さい。 2. Mount a capacitor between Vcc and GND of each high-speed optical isolator as close to as possible. 高速フォトカプラのVcc-GND間に、コンデンサを出来るだけ近接して取り付けて下さい。 3. For the high-speed optical isolator, use high-CMR type one with tpHL, tpLH ≦ 0.8µs. 高速フォトカプラは、tpHL,tpLH≦0.8us、高CMRタイプをご使用ください。 4. For the alarm output circuit, use low-speed type optical isolators with CTR ≧ 100%. アラーム出力回路は、低速フォトカプラCTR≧100%のタイプをご使用ください。 5. For the control power Vcc, use four power supplies isolated each. And they should be designed to reduce the voltage variations. 制御電源Vccは、絶縁された4電源を使用してください。また、電圧変動を抑えた設計として下さい。 6. Suppress surge voltages as possible by reducing the inductance between the DC bus P and N, and connecting some capacitors between the P and N terminals. P-N間の直流母線は出来るだけ低インダクタンス化し、P-N端子間にコンデンサを接続するなどしてサージ 電圧を低減して下さい。 7. To prevent noise intrusion from the AC lines, connect a capacitor of some 4700pF between the three-phase lines each and the ground. ACラインからのノイズ侵入を防ぐために、3相各線-アース間に4700pF程のコンデンサを接続して下さい。 8. At the external circuit, never connect the control terminal GNDU to the main terminal U-phase, GNDV to V-phase, GNDW to W-phase, and GND to N-phase. Otherwise, malfunctions may be caused. 制御端子GNDUと主端子U相、制御端子GNDVと主端子V相、制御端子GNDWと主端子W相、 制御端子GNDと主端子Nを外部回路で接続しないで下さい。誤動作の原因になります。 9. Take note that an optical isolator’s response to the primary input signal becomes slow if a capacitor is connected between the input terminal and GND. 入力端子-GND間にコンデンサを接続すると、フォトカプラ一次側入力信号に対する応答時間が長くなります のでご注意ください。 10. Taking the used isolator’s CTR into account, design with a sufficient allowance to decide the primary forward current of the optical isolator. フォトカプラの一次側電流は、お使いのフォトカプラのCTRを考慮し十分に余裕をもった設計にして下さい。 MS6M 00765 12 a 23 H04-004-03a 11. In case of mounting this product on cooling fin, use thermal compound to secure thermal conductivity. If the thermal compound amount was not enough or its applying method was not suitable, its spreading will not be enough, then, thermal conductivity will be worse and thermal run away destruction may occur. Confirm spreading state of the thermal compound when its applying to this product. (Spreading state of the thermal compound can be confirmed by removing this product after mounting.) 素子を冷却フィンに取り付ける際には、熱伝導を確保するためのコンパウンド等をご使用ください。 又、塗布量が不足したり、塗布方法が不適だったりすると、コンパウンドが十分に素子全体に広がらず、 放熱悪化による熱暴走破壊に繋がる事があります。コンバウンドを塗布する際には、 製品全面にコンパウンドが広がっている事を確認してください。 (実装した後に素子を取りはずすとコンパウンドの広がり具合を確認する事が出来ます。) 12. Use this product with keeping the cooling fin's flatness between screw holes within 100um at 100mm and the roughness within 10um. Also keep the tightening torque within the limits of this specification. Too large convex of cooling fin may cause isolation breakdown and this may lead to a critical accident. On the other hand, too large concave of cooling fin makes gap between this product and the fin bigger, then, thermal conductivity will be worse and over heat destruction may occur. +100μm 0 冷却フィンはネジ取り付け位置間で平坦度を100mmで 100um以下、表面の粗さは10um以下にして下さい。 Heat sink 過大な凸反りがあったりすると本製品が絶縁破壊を 起こし、重大事故に発展する場合があります。 また、過大な凹反りやゆがみ等があると、本製品と 冷却フインの間に空隙が生じて放熱が悪くなり、 Mounting holes 熱破壊に繋がることがあります。 13. This product is designed on the assumption that it applies to an inverter use. Sufficient examination is required when applying to a converter use. Please contact Fuji Electric Co.,Ltd if you would like to applying to converter use. 本製品は、インバータ用途への適用を前提に設計されております。コンバータ用途へ適用される場合は、 十分な検討が必要です。もし、コンバータへ適用される場合は御連絡ください。 14. Please see the 『Fuji IGBT-IPM R SERIES APPLICATION MANUAL』 and 『Fuji IGBT MODULES N-SERIES APPLICATION MANUAL』. 『富士IGBT-IPM Rシリーズ アプリケーションマニュアル』及び『IGBTモジュール Nシリーズ アプリケーションマニュアル』 を御参照ください。 15. There is thermal interference between nearby power devices, because the Econo IPM is a compact package. Therefore you measure the case temperature just under the IGBT chips that showed in report MT6M04545, and estimate the chip temperature. Econo IPM はパッケージ小型化のため、パワー素子の熱干渉が考えられます。 その為、チップ温度推定は必ず MT6M04545 に示すチップ直下のケース温度を測定して行って下さい。 MS6M 00765 a 13 23 H04-004-03a 12. Example of applied circuit 応用回路例 VccU +5V VccU HCPL4504 20kΩ 0.1uF “H“で U相IGBTオン +5V P ④ +10uF 20kΩ 0.1uF ③ GNDU HCPL4504 R ③ GNDU ① V W ⑧ +10uF B ⑦ N C + V M ② W ⑧ +10uF B ⑦ N C + M VccV 20kΩ 0.1uF “H“で V相IGBTオン GNDV 20kΩ 0.1uF “H“で V相IGBTオン GNDV ⑤ ⑤ ⑥ ⑥ VccW VccW 20kΩ 20kΩ ⑫ +10uF 0.1uF “H“で W相IGBTオン ⑫ +10uF 0.1uF “H“で W相IGBTオン ⑪ GNDW ⑪ GNDW ⑨ ⑨ ⑩ 20kΩ 0.1uF “H“で X相IGBTオン ⑭ ⑩ IPM GND Vcc +10uF ⑯ “H“で Y相IGBTオン 0.1uF ⑭ IPM +10uF ⑯ GND ⑬ ⑬ 0.1uF 20kΩ ⑰ “H“で Y相IGBTオン ⑱ “H“で Z相IGBTオン ⑮ “H“で DB_IGBTオン ⑰ 0.1uF 20kΩ “H“で Z相IGBTオン 20kΩ “H“で X相IGBTオン 0.1uF 20kΩ 0.1uF 20kΩ ⑱ 0.1uF 20kΩ “H“で DB_IGBTオン AC20V U VccV Vcc R ① V 0 2 C A U ② P ④ +10uF “H“で U相IGBTオン 0.1uF 20kΩ ⑮ ⑲ ⑲ TLP521 (a)In case of use of High side alarm 上アームアラーム使用の場合 TLP521 (b)In case of no use of High side alarm 上アームアラーム不使用の場合 13. Package and Marking 梱包仕様 Please see the MT6M4140 which is packing specification of IPM. IPM梱包仕様書 MT6M4140を御参照ください。 14. Cautions for storage and transportation 保管、運搬上の注意 ・ Store the modules at the normal temperature and humidity (5 to 35°C, 45 to 75%). 常温常湿(5~35℃、45~75%)で保存して下さい。 ・ Avoid a sudden change in ambient temperature to prevent condensation on the module surfaces. モジュールの表面が結露しないよう、急激な温度変化を避けて下さい。 ・ Avoid places where corrosive gas generates or much dust exists. 腐食性ガスの発生場所、粉塵の多い場所は避けて下さい。 ・ Store the module terminals under unprocessed conditions モジュールの端子は未加工の状態で保管すること。. ・ Avoid physical shock or falls during the transportation. 運搬時に衝撃を与えたり落下させないで下さい。 15. Scope of application 適用範囲 This specification is applied to the IGBT-IPM (type: 7MBP25TEA120). 本仕様書は、IGBT-IPM (型式:7MBP25TEA120)に適用する。 16. Based safety standards 準拠安全規格 UL1557 MS6M 00765 a 14 23 H04-004-03a 17.Characteristics 17-1.Control Circuit Characteristics(Respresentative) Power supply current v s. Switching frequency Tj=125°C (typ.) Input signal threshold voltage v s. Power supply v oltage (typ.) 2.5 P-side N-side 25 Vcc=1 7V 20 Vcc=1 5V Vcc=1 3V 15 10 Vcc=1 7V Vcc=1 5V Vcc=1 3V 5 Input signal threshold voltage : Vin(on),Vin(off) (V) Power s upply current : Icc (mA) 30 0 2 } Vin(off) 1 0.5 5 10 15 20 25 12 14 15 16 17 18 1 Under voltage hys terisis : VH (V) 12 10 8 6 4 2 0 0.8 0.6 0.4 0.2 0 40 60 80 100 120 140 20 40 60 80 100 120 140 Junction temperature : Tj (°C) Junction tem perature : Tj (°C) Ov er heating characteristics TjO H,TjH v s. Vcc (typ.) Alarm hold tim e v s. Power supply v oltage (typ.) 200 Over heating protection : TjOH (°C) O H hysterisis : TjH (°C) 3 2.5 Tc=100°C 2 Tc=25°C 1.5 1 0.5 0 12 14 Under voltage hys terisis vs. Jnc tion temperature (typ.) Under v oltage v s. Junction tem perature (typ.) 20 13 Power supply voltage : Vcc (V) Switching frequency : fsw (kHz) Under voltage : VUVT (V) } Vin(o n) 1.5 0 0 Alarm hold time : tALM (m Sec ) Tj=25°C Tj =125°C 13 14 15 16 17 Power supply voltage : Vcc (V) 18 TjOH 150 100 50 TjH 0 12 13 14 15 16 17 18 Power supply voltage : Vcc (V) MS6M 00765 a 15 23 H04-004-03a 17-2.Main Circuit Characteristics (Representative) Collector current v s. Collector-Emitter v oltage (typ.) Tj=25°C / Chip Collector current v s. Collector-Em itter v oltage (typ.) Tj=25°C / Term inal 50 Vcc=1 5V 40 Vcc=1 7V 30 C ollector Current : Ic (A) Collector Current : Ic (A) 50 Vcc=1 3V 20 10 Vcc=15V 40 Vcc=1 7V 30 Vcc=1 3V 20 10 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4 Collector-Em itter voltage : Vce (V) Collector-Emitter voltage : Vce (V) Collector current v s. Collector-Em itter v oltage (typ.) Tj=125°C / Chip Collector current v s. Collector-Emitter v oltage (typ.) Tj=125°C / Term inal 50 Vcc=1 5V 40 Vcc=1 7V 30 Vcc=1 3V 20 Collector Current : Ic (A) Collector Current : Ic (A) 50 10 Vcc=17V 30 Vcc=13V 20 10 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4 Collector-Em itter voltage : Vce (V) Collector-Emitter voltage : Vce (V) Forward current v s. Forward v oltage (typ.) Chip Forward current v s. Forward v oltage (typ.) Term inal 50 50 40 40 25°C Forward Current : If (A) Forward Current : If (A) Vcc=1 5V 40 125°C 30 20 10 25°C 125°C 30 20 10 0 0 0 0.5 1 1.5 Forward voltage : Vf (V) 2 2.5 0 0.5 1 1.5 2 2.5 Forward voltage : Vf (V) MS6M 00765 a 16 23 H04-004-03a 15 Switching Loss vs. Collector Current (typ.) Edc=600V,Vcc=15V,Tj=125°C Switching Loss : Eon,Eoff,Err (m J/cyc le) Switching Loss : Eon,Eoff,Err (mJ/cycle) Switching Loss v s. Collector Current (typ.) Edc=600V,Vcc=15V,Tj=25°C 10 Eon 5 Eoff Err 0 15 Eon 10 5 Eoff Err 0 0 10 20 30 40 50 0 10 Collector Current : Ic (A) 20 30 40 50 Collector Current : Ic (A) Reversed biased safe operating area Vcc=15V,Tj≦125℃ (min.) Transient thermal resistance (max.) Thermal resistance : Rth(j-c) (℃/W) 350 Collector current : Ic (A) 300 250 SCSOA (non-repetitive pulse) 200 150 100 50 RBSOA (Repetitive pulse) 0 FWD IGBT 1 0.1 0.01 0 200 400 600 800 1000 1200 1400 0.001 0.01 Collector-Emitter voltage : Vce (V) 1 10 Pulse width :Pw (sec) Power derating for IG BT (m ax.) (per dev ice) Power derating for FW D (max.) (per dev ice) 200 100 Collecter Power Dissipation : Pc (W ) Collecter Power Dissipation : Pc (W ) 0.1 150 100 50 0 80 60 40 20 0 0 20 40 60 80 100 120 Case Tem perature : Tc (°C) 140 160 0 20 40 60 80 100 120 140 160 Case Tem perature : Tc (°C) MS6M 00765 a 17 23 H04-004-03a Switching tim e vs. Collector current (typ.) Edc=600V,Vcc=15V,Tj=125°C Switching tim e v s. Collector current (typ.) Edc=600V,Vcc=15V,Tj=25°C 10000 Switching time : ton,toff,tf (nSec ) Switching time : ton,toff,tf (nSec) 10000 ton toff 1000 100 tf 10 toff ton 1000 tf 100 10 0 10 20 30 40 Collector current : Ic (A) 50 0 10 20 30 40 50 Collector current : Ic (A) Rev erse recovery characteristics trr,Irr v s.IF (typ.) Reverse recovery current:Irr(A) Reverse recovery time:trr(nsec) trr125°C trr25°C 100 Irr25°C Irr125°C 10 1 0 10 20 30 40 50 Forward c urrent:IF(A) MS6M 00765 a 18 23 H04-004-03a 17-3.Dynamic Brake Characteristics (Respresentative) Collector current v s. Collector-Emitter v oltage (typ.) Tj=25°C 40 Vcc=15V Collector C urrent : Ic (A) Collector Current : Ic (A) 40 Collector current v s. Collector-Emitter v oltage (typ.) Tj=125°C 30 Vcc=1 7V Vcc=1 3V 20 10 0 30 Vcc=1 7V Vcc=13V 20 10 0 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4 Collector-Em itter voltage : Vce (V) Collector-Emitter voltage : Vce (V) Transient thermal resistance (max.) Reversed biased safe operating area Vcc=15V,Tj≦125℃ (min.) 210 1 IGBT 180 Collector current : Ic (A) Thermal resistance : Rth(j-c) (℃/W) Vcc=1 5V 0.1 150 120 SCSOA (non-repetitive pulse) 90 60 30 RBSOA (Repetitive pulse) 0 0.01 0.001 0.01 0.1 1 0 200 400 600 800 1000 1200 1400 Collector-Emitter voltage : Vce (V) Pulse width :Pw (sec) Power derating for IGBT (max.) (per dev ice) Collecter Power Dissipation : Pc (W ) 200 150 100 50 0 0 20 40 60 80 100 120 140 160 Case Tem perature : Tc (°C) MS6M 00765 a 19 23 H04-004-03a 18. Reliability Test Items Test categories Test items Environment Tests Mechanical Tests 1 Terminal strength 端子強度 (Pull test) 2 Mounting Strength 締付け強度 3 Vibration 振動 Reference norms EIAJ ED-4701 Test methods and conditions Pull force : 20 N (main terminal) 10 N (control terminal) Test time : 10 ±1 sec. Screw torque : 2.5 ~ 3.5 N・m (M5) Test time : 10 ±1 sec. Range of frequency : 10~500 Hz Sweeping time : 15 min. Acceleration : 100 m/s2 Sweeping direction : Each X,Y,Z axis Test time : 6 hr. (2hr./direction) 4 Shock Maximum acceleration : 5000 m/s2 Pulse width 1.0 ms 衝撃 Direction : Each X,Y,Z axis Test time : 3 times/direction 5 Solderabitlity Solder temp. : 235 ±5 ℃ はんだ付け性 Immersion duration : 5.0 ±0.5 sec. Test time : 1 time Each terminal should be Immersed in solder within 1~1.5mm from the body. 6 Resistance to Solder temp. : 260 ±5 ℃ soldering heat Immersion time : 10 ±1sec. はんだ耐熱性 Test time : 1 time Each terminal should be Immersed in solder within 1~1.5mm from the body. 1 High temperature Storage temp. : 125 ±5 ℃ storage 高温保存 Test duration : 1000 hr. 2 Low temperature Storage temp. : -40 ±5 ℃ storage 低温保存 Test duration : 1000 hr. 3 Temperature Storage temp. : 85 ±2 ℃ humidity storage Relative humidity : 85 ±5% Test duration : 1000hr. 高温高湿保存 4 Unsaturated Test temp. : 120 ±2 ℃ pressure cooker Atmospheric pressure : 1.7x105 Pa : 85 ±5% プレッシャークッカー Test humidity Test duration : 96 hr. 5 Temperature Test temp. : Minimum storage temp. -40 ±5℃ cycle Maximum storage temp. 125 ±5℃ Normal temp. 5 ~ 35℃ 温度サイクル Dwell time : Tmin ~ TN ~ Tmax ~ TN 1hr. 0.5hr. 1hr. 0.5hr. Number of cycles : 100 cycles 6 Thermal shock +0 Test temp. : High temp. side 100 -5 ℃ 熱衝撃 +5 Fluid used Dipping time Transfer time Number of cycles : : : : Number Acceptof ance sample number 5 (1:0) Test Method 402 methodⅡ Test Method 403 Condition code B 5 (1:0) 5 (1:0) Test Method 404 Condition code B 5 (1:0) Test Method 303 Condition code A 5 (1:0) Test Method 302 Condition code A 5 (1:0) Test Method 201 5 (1:0) Test Method 202 5 (1:0) Test Method 103 Test code C 5 (1:0) Test Method 103 Test code E 5 (1:0) Test Method 105 5 (1:0) Test Method 307 method Ⅰ Condition code A 5 (1:0) Test Method 401 MethodⅠ Low temp. side 0 -0 ℃ Pure water (running water) 5 min. par each temp. 10 sec. 10 cycles MS6M 00765 a 20 23 H04-004-03a Test categories Endurance Endurance Tests Tests Test items AcceptReference norms Number EIAJ ance of sample ED-4701 number Test methods and conditions 1 High temperature reverse bias 高温逆バイアス Test temp. Bias Voltage Bias Method Test duration ON time OFF time Test temp. 2 Intermitted operating life (Power cycle) 断続動作 Number of cycles : Ta = 125 ±5℃ (Tj ≦ 150 ℃) : VC = 0.8×VCES : Applied DC voltage to C-E Vcc = 15V : 1000 hr. : 2 sec. : 18 sec. : ∆ Tj=100 ±5deg Tj ≦ 150 ℃, Ta=25 ±5℃ : 15000 cycles Test Method 101 5 (1:0) Test Method 106 5 (1:0) 19. Failure Criteria Item Electrical characteristic Characteristic Leakage current Saturation voltage Forward voltage inspection Failure criteria Lower limit Upper limit Unit ICES - USL×2 mA VCE(sat) - USL×1.2 V VF - USL×1.2 V Thermal IGBT Rth(j-c) - USL×1.2 ℃/W resistance FWD Rth(j-c) - USL×1.2 ℃/W Ioc LSL×0.8 USL×1.2 A Alarm signal hold time tALM LSL×0.8 USL×1.2 ms Isolation voltage Viso Broken insulation - - The visual sample - Over Current Protection Visual Symbol Note Visual inspection Peeling Plating and the others LSL : Lower specified limit. USL : Upper specified limit. Note : Each parameter measurement read-outs shall be made after stabilizing the components at room ambient for 2 hours minimum, 24 hours maximum after removal from the tests. And in case of the wetting tests, for example, moisture resistance tests, each component shall be made wipe or dry completely before the measurement. MS6M 00765 21 23 a H04-004-03a Warnings 1. This product shall be used within its absolute maximum rating (voltage, current, and temperature). This product may be broken in case of using beyond the ratings. 製品の絶対最大定格(電圧,電流,温度等)の範囲内で御使用下さい。絶対最大定格を超えて使用すると、素子が 破壊する場合があります。 2. Connect adequate fuse or protector of circuit between three-phase line and this product to prevent the equipment from causing secondary destruction. 万一の不慮の事故で素子が破壊した場合を考慮し、商用電源と本製品の間に適切な容量のヒューズ又はブレーカーを 必ず付けて2次破壊を防いでください。 3. When studying the device at a normal turn-off action, make sure that working paths of the turn-off voltage and current are within the RBSOA specification. And ,when studying the device duty at a short-circuit current non-repetitive interruption, make sure that the paths are also within the avalanche proof(PAV) specification which is calculated from the snubber inductance, the IPM inner inductance and the turn-off current. In case of use of IGBT-IPM over these specifications, it might be possible to be broken. 通常のターンオフ動作における素子責務の検討の際には、ターンオフ電圧・電流の動作軌跡がRBSOA仕様内にある ことを確認して下さい。また、非繰返しの短絡電流遮断における素子責務の検討に際しては、スナバーインダクタンスと IPM内部インダクタンス及びターンオフ電流から算出されるアバランシェ耐量(PAV)仕様内である事を確認して下さい。 これらの仕様を越えて使用すると、素子が破壊する場合があります。 4. Use this product after realizing enough working on environment and considering of product's reliability life. This product may be broken before target life of the system in case of using beyond the product's reliability life. 製品の使用環境を十分に把握し、製品の信頼性寿命が満足できるか検討の上、本製品を適用して下さい。 製品の信頼性寿命を超えて使用した場合、装置の目標寿命より前に素子が破壊する場合があります。 5. If the product had been used in the environment with acid, organic matter, and corrosive gas (For example : hydrogen sulfide, sulfurous acid gas), the product's performance and appearance can not be ensured easily. 酸・有機物・腐食性ガス(硫化水素,亜硫酸ガス等)を含む環境下で使用された場合、製品機能・外観などの保証は 致しかねます。 6. Use this product within the power cycle curve (Technical Rep.No. : MT6M04057). Power cycle capability is classified to delta-Tj mode which is stated as above and delta-Tc mode. Delta-Tc mode is due to rise and down of case temperature (Tc), and depends on cooling design of equipment which use this product. In application which has such frequent rise and down of Tc, well consideration of product life time is necessary. 本製品は、パワーサイクル寿命カーブ以下で使用下さい(技術資料No.: MT6M04057)。 パワーサイクル耐量にはこのΔTjによる場合の他に、ΔTcによる場合があります。 これはケース温度(Tc)の上昇下降による熱ストレスであり、本製品をご使用する際の放熱設計に依存します。 ケース温度の上昇下降が頻繁に起こる場合は、製品寿命に十分留意してご使用下さい。 MS6M 00765 22 23 a H04-004-03a 7. Never add mechanical stress to deform the main or control terminal. The deformed terminal may cause poor contact problem. 主端子及び制御端子に応力を与えて変形させないで下さい。 端子の変形により、接触不良などを引き起こす場合が あります。 8. If excessive static electricity is applied to the control terminals, the devices can be broken. Implement some countermeasures against static electricity. 制御端子に過大な静電気が印加された場合、素子が破壊する場合があります。取り扱い時は静電気対策を 実施して下さい。 Caution 1. Fuji Electric Device Technology is constantly making every endeavor to improve the product quality and reliability. However, semiconductor products may rarely happen to fail or malfunction. To prevent accidents causing injury or death, damage to property like by fire, and other social damage resulted from a failure or malfunction of the semiconductor products made by Fuji Electric Device Technology, take some measures to keep safety such as redundant design, spread-fire-preventive design, and malfunction-protective design. 富士電機デバイステクノロジーは絶えず製品の品質と信頼性の向上に努めています。しかし、半導体製品は故障が発生したり、 誤動作する場合があります。富士電機デバイステクノロジー製半導体製品の故障または誤動作が、結果として人身事故・火災等による 財産に対する損害や社会的な損害を起こさないように冗長設計・延焼防止設計・誤動作防止設計など安全確保のための手段を 講じて下さい。 2. The application examples described in this specification only explain typical ones that used the Fuji Electric Device Technology products. This specification never ensure to enforce the industrial property and other rights, nor license the enforcement rights. 本仕様書に記載してある応用例は、富士電機デバイステクノロジー製品を使用した代表的な応用例を説明するものであり、本仕様書に よって工業所有権、その他権利の実施に対する保障または実施権の許諾を行うものではありません。 3. The product described in this specification is not designed nor made for being applied to the equipment or systems used under life-threatening situations. When you consider applying the product of this specification to particular used, such as vehicle-mounted units, shipboard equipment, aerospace equipment, medical devices, atomic control systems and submarine relaying equipment or systems, please apply after confirmation of this product to be satisfied about system construction and required reliability. 本仕様書に記載された製品は、人命にかかわるような状況下で使用される機器あるいはシステムに用いられることを 目的として設計・製造されたものではありません。本仕様書の製品を車両機器、船舶、航空宇宙、医療機器、原子力 制御、海底中継機器あるいはシステムなど、特殊用途へのご利用をご検討の際は、システム構成及び要求品質に 満足することをご確認の上、ご利用下さい。 If there is any unclear matter in this specification, please contact Fuji Electric Device Technology Co., Ltd. MS6M 00765 23 23 a H04-004-03a