AGILENT HSDL-4230

High-Performance T-13/4 (5 mm)
TS AlGaAs Infrared (875 nm)
Lamp
Technical Data
Features
• Very High Power TS AlGaAs
Technology
• 875 nm Wavelength
• T-13/4 Package
• Low Cost
• Very High Intensity:
HSDL-4220 - 38 mW/sr
HSDL-4230 - 75 mW/sr
• Choice of Viewing Angle:
HSDL-4220 - 30°
HSDL-4230 - 17°
• Low Forward Voltage for
Series Operation
• High Speed: 40 ns Rise Times
HSDL-4200 Series
HSDL-4220 30°
HSDL-4230 17°
• Copper Leadframe for
Improved Thermal and
Optical Characteristics
Applications
• IR Audio
• IR Telephones
• High Speed IR
Communications
IR LANs
IR Modems
IR Dongles
• Industrial IR Equipment
• IR Portable Instruments
Description
Package Dimensions
5.00 ± 0.20
(0.197 ± 0.008)
8.70 ± 0.20
(0.343 ± 0.008)
1.14 ± 0.20
(0.045 ± 0.008)
2.35
MAX.
(0.093)
0.70
MAX.
(0.028)
31.4 MIN.
(1.23)
CATHODE
0.50 ± 0.10 SQUARE
(0.020 ± 0.004)
1.27
NOM.
(0.050)
5.80 ± 0.20
(0.228 ± 0.008)
• Interfaces with Crystal
Semiconductor CS8130
Infrared Transceiver
CATHODE
2.54 NOM.
(0.100)
The HSDL-4200 series of emitters
are the first in a sequence of
emitters that are aimed at high
power, low forward voltage, and
high speed. These emitters utilize
the Transparent Substrate, double
heterojunction, Aluminum Gallium Arsenide (TS AlGaAs) LED
technology. These devices are
optimized for speed and efficiency
at emission wavelengths of 875
nm. This material produces high
radiant efficiency over a wide
range of currents up to 500 mA
peak current. The HSDL-4200
series of emitters are available in
a choice of viewing angles, the
HSDL-4230 at 17° and the
HSDL-4220 at 30°. Both lamps
are packaged in clear T-13/4
(5 mm) packages.
2
The package design of these
emitters is optimized for efficient
power dissipation. Copper
leadframes are used to obtain
better thermal performance than
the traditional steel leadframes.
The wide angle emitter, HSDL4220, is compatible with the IrDA
SIR standard and can be used
with the HSDL-1000 integrated
SIR transceiver.
Absolute Maximum Ratings
Parameter
Peak Forward Current
Symbol
IFPK
Average Forward Current
DC Forward Current
Power Dissipation
Reverse Voltage (IR = 100 µA)
Transient Forward Current (10 µs Pulse)
Operating Temperature
Storage Temperature
LED Junction Temperature
Lead Soldering Temperature
[1.6 mm (0.063 in.) from body]
IFAVG
IFDC
PDISS
VR
IFTR
TO
TS
TJ
Min.
Max.
500
Unit
mA
100
100
260
mA
mA
mW
V
A
°C
°C
°C
°C
5
0
-20
1.0
70
85
110
260 for
5 seconds
Reference
[2], Fig. 2b
Duty Factor = 20%
Pulse Width = 100 µs
[2]
[1], Fig. 2a
[3]
Notes:
1. Derate linearly as shown in Figure 4.
2. Any pulsed operation cannot exceed the Absolute Max Peak Forward Current as specified in Figure 5.
3. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and
the wire bonds.
Electrical Characteristics at 25°C
Parameter
Forward Voltage
Symbol
VF
Forward Voltage
Temperature Coefficient
Series Resistance
Diode Capacitance
Reverse Voltage
Thermal Resistance,
Junction to Pin
∆V/∆T
RS
CO
VR
Rθjp
Min.
1.30
2
Typ.
1.50
2.15
-2.1
-2.1
2.8
40
20
110
Max.
1.70
Unit
V
mV/°C
ohms
pF
V
°C/W
Condition
IFDC = 50 mA
IFPK = 250 mA
IFDC = 50 mA
IFDC = 100 mA
IFDC = 100 mA
0 V, 1 MHz
IR = 100 µA
Reference
Fig. 2a
Fig. 2b
Fig. 2c
3
Optical Characteristics at 25°C
Parameter
Radiant Optical Power
HSDL-4220
Symbol
Min.
PO
HSDL-4230
HSDL-4230
IE
22
IE
39
38
76
190
75
150
375
-0.35
-0.35
∆IE /∆T
Radiant On-Axis Intensity
Temperature Coefficient
Viewing Angle
HSDL-4220
HSDL-4230
Peak Wavelength
Peak Wavelength
Temperature Coefficient
Spectral Width–at FWHM
Optical Rise and Fall
Times, 10%-90%
Bandwidth
2θ1/2
2θ1/2
λPK
∆λ/∆T
Max.
19
38
16
32
PO
Radiant On-Axis Intensity
HSDL-4220
Typ.
860
30
17
875
0.25
Condition
mW
IFDC = 50 mA
IFDC = 100 mA
IFDC = 50 mA
IFDC = 100 mA
mW
60
mW/sr
131
mW/sr
%/°C
895
IFDC = 50 mA
IFDC = 100 mA
IFPK = 250 mA
IFDC = 50 mA
IFDC = 100 mA
IFPK = 250 mA
IFDC = 50 mA
IFDC = 100 mA
Reference
Fig. 3a
Fig. 3b
Fig. 3a
Fig. 3b
deg
deg
nm
nm/°C
IFDC = 50 mA
IFDC = 50 mA
IFDC = 50 mA
IFDC = 50 mA
Fig. 6
Fig. 7
Fig. 1
∆λ
tr/tf
37
40
nm
ns
IFDC = 50 mA
IFDC = 50 mA
Fig. 1
fc
9
MHz
IF = 50 mA
± 10 mA
Fig. 8
Ordering Information
Part Number
HSDL-4220
HSDL-4230
Unit
Lead Form
Straight
Straight
Shipping Option
Bulk
Bulk
TA = 25 °C
IFDC = 50 mA
1.0
0.5
0
800
850
1,000
IFDC – DC FORWARD CURRENT – mA
TA = 25 °C
100
10
1
950
900
0
λ – WAVELENGTH – nm
2.0
1.5
IFDC = 100 mA
IFDC = 50 mA
1.4
IFDC = 1 mA
1.0
-20
0
40
20
RELATIVE RADIANT INTENSITY
(NORMALIZED AT 50 mA)
TA = 25 °C
1.2
1.6
1.2
0.8
0.4
0
80
60
TA = 25 °C
0
20
40
60
80
100
IFDC – DC FORWARD CURRENT – mA
Figure 2c. Forward Voltage vs
Ambient Temperature.
Figure 3a. Relative Radiant Intensity
vs. DC Forward Current.
IFDC – MAX. DC FORWARD CURRENT – mA
IFPK – PEAK FORWARD CURRENT – mA
RθJA = 300 °C/W
80
RθJA = 400 °C/W
60
RθJA = 500 °C/W
40
20
0
0
10
20
30
40
50 60
1
0
70
80
TA – AMBIENT TEMPERATURE – °C
Figure 4. Maximum DC Forward
Current vs. Ambient Temperature.
Derated Based on TJMAX = 110°C.
0.5
1.0
1.5
2.0
2.5
3.0
2.0
TA – AMBIENT TEMPERATURE – °C
100
10
Figure 2b. Peak Forward Current vs.
Forward Voltage.
2.0
1.6
TA = 25 °C
100
VF – FORWARD VOLTAGE – V
Figure 2a. DC Forward Current vs.
Forward Voltage.
2.0
1.8
1,000
VF – FORWARD VOLTAGE – V
Figure 1. Relative Radiant Intensity
vs. Wavelength.
VF – FORWARD VOLTAGE – V
1.0
0.5
NORMALIZED RADIANT INTENSITY
RELATIVE RADIANT INTENSITY
1.5
IFPK – PEAK FORWARD CURRENT – mA
4
TA = 25 °C
PULSE WIDTH < 100 µs
0.1
DUTY FACTOR
Figure 5. Maximum Peak Forward
Current vs. Duty Factor.
1.5
VALID FOR PULSE
WIDTH = 1.6 µs
TO 100 µs
1.0
0.5
0
0
100
200
300
400
1
500
IFPK – PEAK FORWARD CURRENT – mA
Figure 3b. Normalized Radiant
Intensity vs. Peak Forward Current.
1,000
100
0.01
NORMALIZED TO IFPK = 250 mA
5
RELATIVE RADIANT INTENSITY
1.0
TA = 25 °C
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
100°90° 80° 70° 60° 50° 40° 30° 20° 10° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90°100°
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
Figure 6. Relative Radiant Intensity vs.
Angular Displacement HSDL-4220.
RELATIVE RADIANT INTENSITY
1.0
TA = 25 °C
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
100°90° 80° 70° 60° 50° 40° 30° 20° 10° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90°100°
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
RELATIVE RADIANT INTENSITY – dB
Figure 7. Relative Radiant Intensity vs.
Angular Displacement HSDL-4230.
2
1
TA = 25 °C
0
-1
-2
-3
-4
9 MHz
-5
-6
-7
-8
-9
-10
1E+5
1E+6
1E+7
1E+8
f – FREQUENCY – Hz
Figure 8. Relative Radiant Intensity
vs. Frequency.
www.semiconductor.agilent.com
Data subject to change.
Copyright © 1999 Agilent Technologies Inc.
Obsoletes 5968-0956E (8/98)
5968-5912E (11/99)