HSDL-4260 High-Power T-1¾ (5mm) AlGaAs Infrared (875nm) Lamp Datasheet Description Features The HSDL-4260 High Power Infrared emitter was designed for applications that require high power, low forward voltage and high speed. It utilizes Aluminum Galium Arsenide (AlGaAs) LED technology and is optimized for speed and efficiency at emission wavelengths of 875nm. The material used produces high radiant efficiency over a wide range of currents. The emitter is packaged in clear T-1¾ (5mm) package. • High Power AlGaAs LED Technology 5.0 ± 0.2 • 875nm Wavelength • T-1¾ Package • Low Cost • Low Forward Voltage: 1.4V at 20mA • High Speed: 15ns Rise Times Applications • Industrial Infrared Equipments and applications • Portable Infrared Instruments • Consumer Electronics (Optical mouse, Infrared Remote Controllers etc) 8.7 ± 0.2 1.14 ± 0.2 • High Speed Infrared Communications (IR LANs, IR Modems, IR Dongles etc) 31.6 min. 5.8 ± 0.2 0.7 max. 2.54 1.0 min. CATHODE FLAT 0.50 ± 0.1 Part Number Lead Form Shipping Option HSDL-4260 Straight Bulk Absolute Maximum Ratings at 25°°C Parameter Symbol Minimum Maximum Unit Reference Peak Forward Current IFPK - 500 mA Figure 3 Duty cycle = 20% Pulse Width = 100us Forward Current IFDC - 100 mA [1] Power Dissipation PDISS - 230 mW Reverse Voltage VR 4 - V Storage Temperature TS -40 100 °C LED Junction Temperature TJ 110 °C 260 for 5 sec °C Lead Soldering Temperature IR=100uA Notes: Derate as shown in Figure 6. Recommended Operating Conditions Parameter Symbol Min Max Unit Operating Temperature TO -40 85 °C Reference Electrical Characteristics at 25°° C Parameter Symbol Min. Typ. Max. Unit Condition Reference Forward Voltage VF - 1.4 1.7 1.9 2.3 V IFDC=20mA IFDC=100mA Figure 2 Forward Voltage Temperature Coefficient ∆V/∆T - -1.3 - mV/°C IFDC=100mA Figure 4 Series Resistance RS - 4 - Ohms IFDC=100mA Diode Capacitance CO - 70 - pF Vbias=0V, f=1MHz Thermal Resistance, Junction to Ambient Rθja - 300 - °C/W Optical Characteristics at 25°° C Parameter Symbol Min. Typ. Max. Unit Condition Reference Radiant On-Axis Intensity IE 150 200 - mW/Sr IFDC=100mA Figure 5 Radiant On-Axis Intensity Temperature Coefficient ∆IE/∆T - -0.36 - %/°C IFDC=100mA Viewing Angle 2θ1/2 - 15 - ° Figure 7 Peak Wavelength λpk - 875 - nm Figure 1 Peak wavelength Temperature Coefficient ∆λ/∆T - 0.2 - nm/°C IFDC=100mA Spectral Width ∆λ 45 - nm IFDC=20mA Optical Rise and Fall Time tr/tf 15 - ns IFDC=500mA Duty Ratio = 20% Pulse Width=100ns 2 Figure 1 Peak Wavelength Vs Relative Radiant Intensity V-I Characteristics 100 If - Forward Current - (mA) Relative Radiant Intensity 1.2 1.0 0.8 0.6 0.4 0.2 0 800 4260Vf-If 10 1 820 840 860 880 900 Peak Wavelength - nm 920 0 940 0.5 Figure 1. Relative Radiant Intensity vs. Wavelength Forward Voltage Vs Temperature 1.7 Forward Voltage in Volts Ifpk - Peak Forward Current - (mA) 2 1.8 1000 100 10 1.6 1.5 1.4 1.3 1.2 I-Led=20mA I-Led=100mA 1.1 1 1 0 0.5 1 1.5 2 Vfpk - Peak Forward Voltage - (V) 2.5 Figure 3. Peak Forward Current vs. Forward Voltage -25 0 25 50 75 Temperature in Degrees 100 I-Led Vs Relative Radiant Intensity at T=25˚C Maximum Permisible DC forward current vs. ambient temperature 110 100 300 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 TA- Ambient Temperature -˚C IFDC MAX - Maximum DC Forward Current - mA 1 0.8 0.6 0.4 0.2 0 0 20 40 60 80 125 Figure 4. Forward Voltage vs. Ambient Temperature 1.2 Relative Radiant Intensity 1.5 Figure 2. DC Forward Current vs. Forward Voltage Peak Forward VoltagePeak Forward Current 100 I-Led - mA Figure 5. Relative Radiant Intensity vs. DC Forward Curren 3 1 Vf - Forward Voltage - (V) 120 Figure 6. DC Forward Current vs. Ambient Temperature Derated Based on TJMAX =110°° C Relative Radiant Intensity Beam Intensity Vs Angle 1.2 1 0.8 0.6 0.4 0.2 0 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 Angle in degrees Figure 7. Radiant Intensity vs. Angular Displacement for HSDL-4260 For company and product information, please go to our web site: WWW.liteon.com or http://optodatabook.liteon.com/databook/databook.aspx Data subject to change. Copyright © 2007 Lite-On Technology Corporation. All rights reserved.