HT82V24 16-Bit, 15MSPS, 3-Channel CCD/CIS Analog Signal Processor Features · Operating voltage: 5V · Input clamp circuitry · Low power consumption at 380mW (Typ.) · Internal voltage reference · Power-down mode: Under 2mA (Typ.) · Multiplexed byte/nibble-wide output (8´2/4´4 format) · 16-bit 15 MSPS A/D converter · Programmable 3-wire serial interface · Supports ADI/WM mode data output formats selec- · 3V/5V digital I/O compatibility tion · 3-channel operation up to 5 MSPS for each channel · Guaranteed won¢t miss codes · 2-channel (Even-Odd) operation up to 7.5 MSPS for · 1~6x programmable gain each channel · Correlated Double Sampling · 1-channel operation up to 15 MSPS · ±300mV programmable offset · 20/28-pin SOP/SSOP package (Pb-free on request) Applications Flatbed document scanners Digital color copiers Film scanners Multifunction peripherals General Description The 16-bit digital output is multiplexed into an 8/4-bit output word that is accessed using two/four read cycles. The internal registers are programmed through a 3-wire serial interface, which provides gain, offset and operating mode adjustments. HT82V24 supports ADI/WM mode data output formats. The HT82V24 is a complete analog signal processor for CCD imaging applications. It features a 3-channel architecture designed to sample and condition the outputs of tri-linear color CCD arrays. Each channel consists of an input clamp, Correlated Double Sampler (CDS), offset DAC and Programmable Gain Amplifier (PGA), and a high performance 16-bit A/D converter. The HT82V24 operates from a single 5V power supply, typically consumes 380mW of power. The CDS amplifiers may be disabled for use with sensors such as Contact Image Sensors (CIS) and CMOS active pixel sensors, which do not require CDS. Block Diagram A V D D V IN R A V S S R E F T R E F B + A V D D C D S A V S S D V D D P G A O E 9 - B it D A C V IN G + B A N D G A P R e fe re n c e C D S C D S O F F S E T C D S C L K 1 /V S M P Rev. 1.00 1 6 M U X 8 o r 4 D O U T + C o n fig u r a tio n R e g is te r M U X R e g is te r P G A 6 In p u t C la m p B ia s 1 6 - B it A D C 3 .1 M U X P G A 9 - B it D A C V IN B D V S S 9 - B it D A C 9 R E D G R E E N B L U E R E D G R E E N B L U E G a in R e g is te r s D ig ita l C o n tro l In te rfa c e S C L K S L O A D S D A T A O ffs e t R e g is te r s C D S C L K 2 A D C C L K 1 September 7, 2005 HT82V24 Pin Assignment C D S C L K 1 /V S M P 1 2 8 A V D D C D S C L K 2 2 2 7 A V S S A D C C L K 3 2 6 V IN R O E 4 2 5 O F F S E T A V S S 1 2 0 V IN R D V D D 5 2 4 V IN G A V D D 2 1 9 O F F S E T D V S S 6 2 3 C M L V S M P 3 1 8 C M L D 7 (M S B ) 7 2 2 V IN B A D C C L K 4 1 7 R E F T D 6 8 2 1 R E F T D V D D 5 1 6 R E F B D 5 9 2 0 R E F B D V S S 6 1 5 A V S S D 4 1 0 1 9 A V S S D 7 7 1 4 A V D D D 3 1 1 1 8 A V D D D 6 8 1 3 S L O A D D 2 1 2 1 7 S L O A D D 5 9 1 2 S C L K D 1 1 3 1 6 S C L K D 4 1 0 1 1 S D A T A D 0 (L S B ) 1 4 1 5 S D A T A H T 8 2 V 2 4 2 0 S O P -A /S S O P -A H T 8 2 V 2 4 2 8 S O P -A /S S O P -A Pin Description Pin Name I/O Description CDSCLK1/VSMP DI CDS reference clock pulse input ADI mode: CDSCLK1 WM mode: VSMP CDSCLK2 DI CDS data clock pulse input ADCCLK DI A/D sample clock input for 3-channels mode OE DI Output enable, active low DVDD P Digital power DVSS P Digital ground D7~D0 DO SDATA Digital data output DI/DO Serial data input/output SCLK DI SLOAD DI Clock input for serial interface Serial interface load pulse AVSS P Analog ground AVDD P Analog supply REFB AO Reference decoupling REFT AO Reference decoupling VINB AI Analog input, blue CML AO Internal reference output VING AI Analog input, green OFFSET AO Clamp bias level decoupling VINR AI Analog input, red Absolute Maximum Ratings Supply Voltage ..........................VSS-0.3V to VSS+5.5V Storage Temperature ...........................-50°C to 125°C Input Voltage .............................VSS-0.3V to VDD+0.3V Operating Temperature ..........................-25°C to 75°C Note: These are stress ratings only. Stresses exceeding the range specified under ²Absolute Maximum Ratings² may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability. Rev. 1.00 2 September 7, 2005 HT82V24 D.C. Characteristics Symbol Parameter Test Conditions VDD Conditions Min. Typ. Max. Unit ¾ ¾ V Logic Inputs VIH High Level Input Voltage ¾ ¾ 0.8´DVDD VIL Low Level Input Voltage ¾ ¾ ¾ ¾ 0.2´DVDD V IIH High Level Input Current ¾ ¾ ¾ 10 ¾ mA IIL Low Level Input Current ¾ ¾ ¾ 10 ¾ mA CIN Input Capacitance ¾ ¾ ¾ 10 ¾ pF ¾ ¾ DVDD-0.5 ¾ ¾ V Logic Outputs VOH High Level Output Voltage VOL Low Level Output Voltage ¾ ¾ ¾ ¾ 0.5 V IOH High Level Output Current 5V ¾ ¾ 0.7 ¾ mA IOL Low Level Output Current 5V ¾ ¾ 1.1 ¾ mA Min. Typ. Max. Unit A.C. Characteristics Symbol Parameter Test Conditions VDD Conditions Power Supplies AVDD Analog Power ¾ ¾ 4.75 5 5.25 V DVDD Digital I/O Power ¾ ¾ 3 5 5.25 V Maximum Conversion Rate fMAX3 3-channel Mode with CDS ¾ ¾ 15 ¾ ¾ MSPS fMAX2 2-channel Mode with CDS ¾ ¾ 15 ¾ ¾ MSPS fMAX1 1-channel Mode with CDS ¾ ¾ 15 ¾ ¾ MSPS ADC Resolution ¾ ¾ ¾ 16 ¾ Bits Integral Nonlinear (INL) ¾ ¾ ¾ ±32 ¾ LSB Differential Nonlinear (DNL) ¾ ¾ -1 ¾ 1 LSB Offset Error ¾ ¾ -150 ¾ 150 mV Gain Error ¾ ¾ ¾ 5 ¾ %FSR 2.0/3.0* ¾ Vp-p Accuracy (Entire Signal Path) Analog Inputs RFS Full-scale Input Range ¾ ¾ ¾ Vi Input Limits ¾ ¾ AVSS-0.3 ¾ AVDD+0.3 V Ci Input Capacitance ¾ ¾ ¾ 10 ¾ pF Ii Input Current ¾ ¾ ¾ 10 ¾ nA Amplifiers Rev. 1.00 PGA Gain at Minimum ¾ ¾ ¾ 1 ¾ V/V PGA Gain at Maximum ¾ ¾ ¾ 6 ¾ V/V PGA Gain Resolution ¾ ¾ ¾ 6 ¾ Bits Programmable Offset at Minimum ¾ ¾ ¾ -300 ¾ mV Programmable Offset at Maximum ¾ ¾ ¾ 300 ¾ mV Offset Resolution ¾ ¾ ¾ 9 ¾ Bits 3 September 7, 2005 HT82V24 Symbol Parameter Test Conditions Min. Typ. Max. Unit ¾ 0 ¾ 70 °C VDD Conditions ¾ Temperature Range tA Operating Power Consumption Ptot3 Total Power Consumption (3CH) ¾ ¾ ¾ 380 ¾ mW Ptot2 Total Power Consumption (2CH) ¾ ¾ ¾ 340 ¾ mW Ptot1 Total Power Consumption (1CH) ¾ ¾ ¾ 300 ¾ mW Note: ²*² means the full-scale input range select by configuration register Timing Specification Symbol Parameter Min. Typ. Max. Unit Clock Parameters tPRA 3-channel pixel rate 200 ¾ ¾ ns tPRB 2-channel (Even-Odd) pixel rate 133 ¾ ¾ ns tPRC 1-channel pixel rate 66 ¾ ¾ ns tADCLK ADCCLK Pulse Width 33 ¾ ¾ ns tC1 CDSCLK1 Pulse Width 15 30 ¾ ns tC2 CDSCLK2 Pulse Width 15 30 ¾ ns tC1C2 CDSCLK1 Falling to CDSCLK2 Rising 0 ¾ ¾ ns tADC2 ADCCLK Rising to CDSCLK2 Falling 0 ¾ ¾ ns tC2ADR CDSCLK2 Rising to ADCCLK Rising 5 ¾ ¾ ns tC2ADF CDSCLK2 Falling to ADCCLK Falling 30 ¾ ¾ ns tC2C1 CDSCLK2 Falling to CDSCLK1 Rising 30 ¾ ¾ ns tAD Analog Sampling Delay ¾ 5 ¾ ns Serial Interface fSCLK Maximum SCLK Frequency 10 ¾ ¾ MHz tLS SLOAD to SCLK Setup Time 10 ¾ ¾ ns tLH SCLK to SLOAD Hold Time 10 ¾ ¾ ns tDS SDATA to SCLK Rising Setup Time 10 ¾ ¾ ns tDH SCLK Rising to SDATA Hold Time 10 ¾ ¾ ns tRDV Falling to SDATA Valid 10 ¾ ¾ ns Output Delay ¾ 12 ¾ ns Data Output tOD Rev. 1.00 4 September 7, 2005 HT82V24 Functional Description The offset error is the deviation of the actual first code transition level from the ideal level. Integral Nonlinear (INL) Integral nonlinear error refers to the deviation of each individual code from a line drawn from zero scale through a positive full scale. The point used as zero scale occurs 1/2 LSB before the first code transition. A positive full scale is defined as a level 1/2 LSB beyond the last code transition. The deviation is measured from the middle of each particular code to the true straight line. Gain Error The last code transition should occur for an analog value of 1/2 LSB below the nominal full-scale voltage. Gain error is the deviation of the actual difference between the first and the last code transitions and the ideal difference between the first and the last code transitions. Differential Nonlinear (DNL) An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. Thus every code must have a finite width. No missing codes guaranteed for the 16-bit resolution indicates that all the 65536 codes respectively, are present in the over-all operating range. Sampling Delay The sampling delay is the time delay that occurs when a sampling edge is applied to the HT82V24 until the actual sample of the input signal is held. Both CDSCLK1 and CDSCLK2 sample the input signal during the transition from high to low, so the sampling delay is measured from each clock¢s falling edge to the instant the actual internal sample is taken. Offset Error The first ADC code transition should occur at a level 1/2 LSB above the nominal zero scale voltage. Internal Register Descriptions Address Data Bits Register Name A2 A1 A0 D8 Configuration 0 0 0 0 MUX 0 0 1 0 RGB/ BGR Red Green Red PGA 0 1 0 0 0 0 MSB LSB Green PGA 0 1 1 0 0 0 MSB LSB Blue PGA 1 0 0 0 0 0 MSB LSB Red Offset 1 0 1 MSB LSB Green Offset 1 1 0 MSB LSB Blue Offset 1 1 1 MSB LSB D7 D6 Don¢t care D5 D4 3-CH CDS on D3 Clamp Voltage Blue 0 D2 D1 D0 Enable Input 1 byte Power Range out Down 0 0 0 Internal Register Map (ADI Mode) Register Name Address A2 A1 Data Bits A0 D8 D7 D6 D5 D4 Clamp Timing 3-CH CDS on Control D3 Clamp Voltage D2 D1 D0 Enable Input Output Power Range Format Down Configuration 0 0 0 1 MUX 0 0 1 DEL RGB/ BGR Red Green Red PGA 0 1 0 0 0 0 MSB LSB LSB Blue POSNNEG VDEL Green PGA 0 1 1 0 0 0 MSB Blue PGA 1 0 0 0 0 0 MSB Red Offset 1 0 1 MSB LSB Green Offset 1 1 0 MSB LSB Blue Offset 1 1 1 MSB LSB LSB Internal Register Map (Wolfson Mode) Rev. 1.00 5 September 7, 2005 HT82V24 Configuration Register clamp bias, unless a CCD with a reset feed through transient exceeding 2V is used. Setting the bit D3 low, the clamp voltage is 3V. Bit D2 controls the power-down mode. Setting bit D2 high will place the HT82V24 into a very low power ²sleep² mode. All register contents are retained while the HT82V24 is in the power-down state. Setting bit D1 high will select the 3V input range, otherwise the 2V input range is selected. The configuration register controls the HT82V24¢s operating mode and bias levels. Bits D7 and D6 set the clamp timing in WM mode and there are don't care in ADI Mode. Bit D5 will configure the HT82V24 for the 3-channel (high) mode of operation. Setting the bit D4 high will enable the CDS mode of operation, and setting this bit low will enable the SHA mode of operation. Bit D3 sets the dc bias level of the HT82V24¢s input clamp. This bit should always be set high for the 4V D8 D7 D6 D5 D4 D3 D2 D1 D0 Power-down Input Range 1 byte out (High-byte only) 1=4V* 1=On 1=3V 1=On 0=3V 0=Off (Normal)* 0=2V* 0=Off* 3 channels CDS operation Clamp bias Set to 0 Don¢t care 1=On* 0=Off 1=CDS mode* 0=SHA mode Configuration Register Settings (ADI Mode) D8 D7 D6 D5 D4 D3 Clamp Timing Control 3 channels CDS operation Clamp bias Set to 1 CDSREF1 CDSREF0 0* 0* D2 D1 D0 Power-down Input Range Output Format 1=On* 1=CDS mode* 1=4V* 1=On 1=3V 1=Byte output 0=Off 0=SHA mode 0=3V 0=Off (Normal)* 0=2V* 0=Nibble output*,** Configuration Register Settings (Wolfson Mode) Note: * Power-on default value ** It needs D5=0, D0=0 to enable Nibble output (1CH WM mode) Bits D7 and D6 control the reset sample and clamp timing A D C C L K V S M P R S /C L C D S R E F = 0 0 R S /C L C D S R E F = 0 1 R S /C L C D S R E F = 1 0 R S /C L C D S R E F = 1 1 Reset Sample and Clamp Timing (RS/CL) Note: CDSREF=(CDSREF1,CDSREF0) Rev. 1.00 6 September 7, 2005 HT82V24 Bit D0 control the ADC output cycle of the HT82V24. Bit D8 selects the ADC data output format selection. Setting D8 high enables the WM mode data output format while setting bit D8 low enables the ADI mode output data format. The one nibble data will output data to pins D7~D4 and 4´4 (WM) mode output the data format selected. The output format as the following table: D8 D0 ADC Output Format 0 0 D5=1: 3-CH 8´2 (ADI) D5=0: 1 or 2-CH 8´2 (ADI) 0 1 D5=1: 3-CH 8´1 (ADI) D5=0: 1 or 2-CH 8´1 (ADI) 1 0 D5=0: 1-CH 4´4 (WM) 1 1 D5=1: 3-CH 8´2 (WM) D5=0: 1-CH 8´2 (WM) A D C C L K A D C C L K O u tp u t D a ta D 7 ~ D 4 A B C O u tp u t D a ta D 7 ~ D 0 D H ig h N ib b le L o w N ib b le A 1 B 1 H ig h B y te L o w B y te A 2 B 2 8 x 2 (A D I) O u tp u t D a ta F o r m a t 4 x 4 (W M ) O u tp u t D a ta F o rm a t A D C C L K A D C C L K O u tp u t D a ta D 7 ~ D 0 O u tp u t D a ta D 7 ~ D 0 A B H ig h B y te L o w B y te 8 x 2 (W M ) O u tp u t D a ta F o rm a t A 1 A 2 H ig h B y te H ig h B y te 8 x 1 (A D I) O u tp u t D a ta F o r m a t MUX Register MUX to sample the blue channel first. Bits D6, D5 and D4 are used when operating in 1 or 2-channel mode. Bit D6 is set high to sample the red channel. Bit D5 is set high to sample the green channel. Bit D4 is set high to sample the blue channel. The MUX will remain stationary during 1-channel mode. The two channel mode is selected by setting two of the channel select bits (D4~D6) high. The MUX samples the channels in the order selected by bit D7. In WM mode, Bits D0~D2 are used to control the sampling point delay option. Bit D3 is used to select the rising or falling edge on the CDSCLK1 input pin and generates an internal VSMP pulse. Bits D0~D3 set to 0 in ADI Mode. The MUX register controls the sampling channel order and the 2-channel mode configuration in the HT82V24. Bit D8 is used to set the output latency in ADC clock period and is only valid when WM mode data output format is selected. Bit D7 is used when operating in the 3-channel mode or the 2-channel mode. Setting bit D7 high will sequence the MUX to sample the red channel first, then the green channel, and then the blue channel. When in the 3-channel mode, the CDSCLK2 rising edge always resets the MUX to sample the red channel first (see timing diagrams). When bit D7 is set low, the channel order is reversed to blue first, green second, and red third. The CDSCLK2 rising edge will always reset the D8 D7 D6 MUX Order Set to 0 D5 D4 D3 D2 D1 D0 Channel Select 1=R-G-B* 1=RED* 1=GREEN 1=BLUE 0=B-G-R 0=Off 0=Off* 0=Off* Set to 0 MUX Register Settings (ADI Mode) Rev. 1.00 7 September 7, 2005 HT82V24 D8 D7 D6 DEL MUX Order D5 D4 D3 Channel Select 0=Off 0=Off* D1 D0 CDS Edge Detection Select Delay Period Select 1: Delay by two ADC 1=R-G-B* 1=RED* 1=GREEN 1=BLUE clock 0: Minimum latency* 0=B-G-R D2 VDEL VDEL VDEL 2 1 0 POSNNEG 0=Off* 0* 0* 0* 0* MUX Register Settings (Wolfson Mode) Note: * Power-on default value D0~D3 and D8 are valid only at WM mode. A D C C L K V S M P P O S N N E G = 1 (V D E L = 0 0 0 ) IN T V S M P V V S (V D E L = 0 0 1 ) IN T V S M P V V S (V D E L = 0 1 0 ) IN T V S M P V V V V V V V S V S V S S S S S (V D E L = 1 1 1 ) IN T V S M P V V V S S S S (V D E L = 1 1 0 ) IN T V S M P V V V S S S S (V D E L = 1 0 1 ) IN T V S M P V V V S S S (V D E L = 0 1 1 ) IN T V S M P (V D E L = 1 0 0 ) IN T V S M P V S S V S S P O S N N E G = 0 V (V D E L = 0 0 0 ) IN T V S M P V S V (V D E L = 0 0 1 ) IN T V S M P V S V (V D E L = 0 1 0 ) IN T V S M P V (V D E L = 1 0 0 ) IN T V S M P V (V D E L = 1 0 1 ) IN T V S M P V (V D E L = 1 1 0 ) IN T V S M P (V D E L = 1 1 1 ) IN T V S M P V S V S V S V S S V S V S S V S V S S V S V S S V S V S S V S V S V (V D E L = 0 1 1 ) IN T V S M P V S S S Note: VDEL=(VDEL2, VDEL1, VDEL0) Rev. 1.00 8 September 7, 2005 HT82V24 PGA Gain Registers Where G is the decimal value of the gain register contents, and varies from 0 to 63. 1 6 6 1 2 5 .0 D7 D6 D5 D4 Set to 0 Set to 0 Set to 0 MSB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 4 .0 6 3 .0 3 2 .0 0 1 .0 G A IN -d B ( The HT82V24 uses one Programmable Gain Amplifier (PGA) for each channel. Each PGA has a gain range from 1x (0dB) to 6x (15.6dB), adjustable in 64 steps. The Figure shows the PGA gain as a function of the PGA register code. Although the gain curve is approximately linear in dB, the gain in V/V varies in nonlinear proportion with the register code, according to the following the 6 equation: Gain= 63 - G 1+ 4.85x( ) 63 D8 9 G A IN -V /V ( ) ) There are three PGA registers for use in individually programming the gain in the red, green and blue channels. Bits D8, D7 and D6 in each register must be set low, and bits D5 through D0 control the gain range in 64 increments. See figure for a graph of the PGA gain versus PGA register code. The coding for the PGA registers is a straight binary, with an all zero words corresponding to the minimum gain setting (1x) and an all one word corresponding to the maximum gain setting (6x). PGA Gain Transfer Function D3 D2 D1 D0 Gain (V/V) Gain (dB) 1.0 1.039 . . . 5.57 6 0.0 0.33 . . . 14.9 15.6 LSB 0 0 . . . 1 1 0 0 0 0 0* 1 1 1 1 1 0 1 PGA Gain Register Settings Note: * Power-on default value Offset Registers There are three offset registers for use in individually programming the offset in the red, green, and blue channels. Bits D8 through D0 control the offset range from -300mV to 300mV in 512 increments. The coding for the offset registers is sign magnitude, with D8 as the sign bit. The following table shows the offset range as a function of the bits D8 through D0. D8 D7 D6 D5 D4 D3 D2 D1 MSB D0 Offset (mV) LSB 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 0 0 . . . 1 0 0 . . . 1 0 0 0 0 0* 1 1 0 0 1 0 0 1 0 1 1 1 1 0 1.17 . . . 300 0 -1.17 . . . -300 Note: * Power-on default value Rev. 1.00 9 September 7, 2005 HT82V24 Timing Diagrams S D A T A A 2 R /W b tD A 1 A 0 H tD D 7 D 8 D 6 D 5 D 4 D 3 D 2 D 1 D 0 S S C L K tL tL S H S L O A D Serial Write Operation Timing S D A T A A 2 R /W b A 1 D 8 A 0 tR D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0 D V S C L K tL tL S H S L O A D Serial Read Operation Timing Part (A): 8´2 (ADI) Output Format A n a lo g In p u t (R , G , B ) P ix e l ( N + 2 ) tA P ix e l ( N + 3 ) P ix e l ( N + 4 ) D tC tA 1 D tC tP 2 C 1 R A C D S C L K 1 tC 1 C 2 C D S C L K 2 tA tC 2 tC 2 A D F tC 2 A D R D C L K tA D C 2 A D C C L K tA O u tp u t D a ta D 7 ~ D 0 R (N -2 ) G (N -2 ) G H ig h B y te tO D C L K (N -2 ) L o w B y te B (N -2 ) B (N -2 ) R (N -1 ) H ig h B y te L o w B y te H ig h B y te R (N -1 ) G L o w B y te tO D (N -1 ) H ig h B y te G (N -1 ) B (N -1 ) L o w B y te D B (N -1 ) R (N ) R (N ) G L o w B y te H ig h B y te L o w B y te H ig h B y te H ig h B y te (N ) G (N ) L o w B y te 3-Channel CDS Mode Timing A n a lo g In p u t (R , G , B ) P ix e l ( N + 3 ) tA P ix e l ( N + 4 ) P ix e l ( N + 5 ) D tC tC 1 tP 2 C 1 R A C D S C L K 1 tC tC 1 C 2 2 C D S C L K 2 tA tC 2 A D R tC D C 2 2 A D F A D C C L K tA O u tp u t D a ta D 7 ~ D 0 G (N -2 ) H ig h B y te D C L K G (N -2 ) L o w B y te tA D C L K B (N -2 ) B (N -2 ) H ig h B y te L o w B y te G (N -1 ) H ig h B y te G (N -1 ) L o w B y te B (N -1 ) B (N -1 ) H ig h B y te L o w B y te G (N ) H ig h B y te G (N ) L o w B y te 2-Channel CDS Mode Timing Rev. 1.00 10 September 7, 2005 HT82V24 P ix e l ( N ) A n a lo g In p u t tA P ix e l ( N + 1 ) P ix e l ( N + 2 ) D tC tA 1 D tC tP 2 C 1 R A C D S C L K 1 tC tC 1 C 2 2 C D S C L K 2 tC tC 2 A D R tA A D C C L K tA O u tp u t D a ta D 7 ~ D 0 2 A D F D C L K tO D C L K D P ix e l ( N - 9 ) P ix e l ( N - 9 ) P ix e l ( N - 8 ) P ix e l ( N - 8 ) P ix e l ( N - 7 ) H ig h B y te L o w B y te H ig h B y te L o w B y te H ig h B y te P ix e l ( N - 7 ) L o w B y te 1-Channel CDS Mode Timing P ix e l ( N + 2 ) A n a lo g In p u t (R , G , B ) tA tC C D S C L K 2 tA tA D C L K P ix e l ( N + 3 ) D tP 2 tC tC D C 2 R A 2 A D 2 A D R A D C C L K tA O u tp u t D a ta D 7 ~ D 0 R (N -2 ) G (N -2 ) G H ig h B y te tO D C L K (N -2 ) L o w B y te B (N -2 ) B (N -2 ) R (N -1 ) H ig h B y te L o w B y te H ig h B y te R (N -1 ) G L o w B y te D (N -1 ) H ig h B y te G (N -1 ) B (N -1 ) L o w B y te H ig h B y te B (N -1 ) R (N ) R (N ) G L o w B y te H ig h B y te L o w B y te H ig h B y te (N ) G (N ) L o w B y te 3-Channel SHA Mode Timing P ix e l ( N + 3 ) A n a lo g In p u t (R , G , B ) tA tC P ix e l ( N + 4 ) D 2 C D S C L K 2 tA tC 2 A D R tC D C 2 2 A D F A D C C L K tA O u tp u t D a ta D 7 ~ D 0 G (N -2 ) H ig h B y te D C L K G (N -2 ) L o w B y te tA D C L K B (N -2 ) B (N -2 ) H ig h B y te L o w B y te G (N -1 ) H ig h B y te G (N -1 ) L o w B y te B (N -1 ) B (N -1 ) H ig h B y te L o w B y te G (N ) H ig h B y te G (N ) L o w B y te 2-Channel SHA Mode Timing Rev. 1.00 11 September 7, 2005 HT82V24 P ix e l ( N ) tA A n a lo g In p u t P ix e l ( N + 1 ) D tC tP 2 R B C D S C L K 2 tC tC 2 A D R tA A D C C L K tA O u tp u t D a ta D 7 ~ D 0 2 A D F D C L K tO D C L K P ix e l ( N - 9 ) P ix e l ( N - 9 ) H ig h B y te L o w B y te D P ix e l ( N - 8 ) P ix e l ( N - 8 ) P ix e l ( N - 7 ) H ig h B y te L o w H ig h B y te B y te P ix e l ( N - 7 ) L o w B y te 1-Channel SHA Mode Timing Part (B): WM Mode Output Format at VDEL=(0,0,0), POSNEG=1 (Those Diagrams are identical for both CDS and SHA Operation) · 3-CH 8´2 (WM) 1 6 .5 A D C C L K P e r io d s A D C C L K V S M P A n a lo g In p u t (R , G , B ) O u tp u t D a ta D 7 ~ 8 x 2 (W D E L O u tp u t D a ta D 7 ~ 8 x 2 (W D E L D 0 M ) = 0 D 0 M ) = 1 R B R A B A G B R B G A R A B B B A G B G A R B B R B A B A G B R B G A R A B B G B B A G A R B B R A B A B B G R B G A R A B B G B B A G A R B B B R A B A G B R B G A R A B B G B B A G A R B B B R A B A G B R B G A R A B B G B B A B G A B 3-Channel Mode Timing (Select R-G-B Mode) · 1-CH 8´2 (WM) 1 6 .5 A D C C L K P e r io d s A D C C L K V S M P A n a lo g In p u t (R , G , B ) O u tp u t D a ta D 7 ~ 8 x 2 (W D E L O u tp u t D a ta D 7 ~ 8 x 2 (W D E L D 0 M ) = 0 D 0 M ) = 1 R R A x x B x R x R A x B x x R x R A x x B x R x R A x x x B R x R A x x B x R x R A x x x B R x R A x x B x R x R A x x B x R x R A x B x 1-Channel Mode Timing (Select R Mode) · 1-CH 4´4 (WM) 1 6 .5 A D C C L K P e r io d s A D C C L K V S M P A n a lo g In p u t ( R ) O u tp u t D a ta D 7 ~ 4 x 4 (W D E L O u tp u t D a ta D 7 ~ 4 x 4 (W D E L D 4 M ) A = 0 D 4 M ) = 1 B D C A A D B C D B C A A D B C D B C A A D B C D B C A A D B C B C D D 1-Channel Mode Timing (Select R Mode) Rev. 1.00 12 September 7, 2005 HT82V24 Application Circuits The recommended circuit configuration for the 3-channel CDS mode operation is shown in the figure below (ADI mode data output format). The recommended input coupling capacitor value is 0.1mF. A single ground plane is recommended for the HT82V24. A separate power supply may be used for DRVDD, the digital driver supply, but this supply pin should still be decoupled to the same ground plane as with the rest of the HT82V24. The loading of the digital outputs should be minimized, either by using short traces to the digital ASIC, or by using external digital buffers. To minimize the effect of digital transients during major output code transitions, the falling edge of the CDSCLK2 should occur in coincidence with or before the rising edge of ADCCLK. All 0.1mF decoupling capacitors should be located as close as possible to the HT82V24 pins. When operating in a single channel mode, the unused analog inputs should be grounded. V C lo c k In p u ts V 1 2 D D 0 .1 m F 3 R e d In p u t 0 .1 m F 1 2 C lo c k In p u ts 3 A V S S V IN R A V D D O F F S E T V S M P 5 V /3 V 4 5 0 .1 m F 6 R E F T D V D D R E F B D V S S 7 8 9 1 0 D a ta O u tp u ts C M L A D C C L K A V S S D 7 A V D D D 6 S L O A D D 5 S C L K D 4 S D A T A 5 V /3 V 4 1 8 1 3 1 2 1 1 H T 8 2 V 2 4 (C D S M o d e ) 0 .1 m F 6 8 0 .1 m F 1 6 1 4 5 7 1 7 1 5 1 .0 m F 0 .1 m F 0 .1 m F 0 .1 m F 1 0 m F 9 0 .1 m F 1 0 1 1 0 .1 m F 1 2 5 V 1 3 S e r ia l In p u ts D a ta O u tp u ts A V D D C D S C L K 2 A V S S A D C C L K V IN R O E 2 0 1 9 C D S C L K 1 /V S M P 1 4 O F F S E T D V D D V IN G D V S S C M L D 7 (M S B ) V IN B D 6 R E F T D 5 R E F B D 4 A V S S D 3 A V D D D 2 S L O A D D 1 D 0 (L S B ) S C L K S D A T A 2 8 0 .1 m F 2 7 2 6 0 .1 m F 2 4 0 .1 m F 2 3 2 2 2 0 .1 m F 1 2 C lo c k In p u ts 3 5 V /3 V 4 5 0 .1 m F 6 7 8 9 1 0 D a ta O u tp u ts Note: 1 A V S S V IN R A V D D O F F S E T V S M P C M L A D C C L K R E F T D V D D R E F B D V S S A V S S D 7 A V D D D 6 S L O A D D 5 S C L K D 4 S D A T A H T 8 2 V 2 4 (S H A M o d e ) R e d In p u t D C L e v e l 2 0 1 9 1 8 1 3 1 2 1 1 4 6 8 9 0 .1 m F 1 0 1 1 0 .1 m F 1 2 5 V S e r ia l In p u ts 1 3 D a ta O u tp u ts A V S S A D C C L K V IN R D V D D 0 .1 m F 0 .1 m F 1 0 m F A V D D O E 5 7 1 6 1 4 5 V /3 V 0 .1 m F 1 7 1 5 3 C D S C L K 1 /V S M P C D S C L K 2 1 4 O F F S E T V IN G D V S S C M L D 7 (M S B ) V IN B D 6 R E F T D 5 R E F B D 4 A V S S D 3 A V D D D 2 S L O A D D 1 D 0 (L S B ) S C L K S D A T A H T 8 2 V 2 4 (S H A M o d e ) 1 .0 m F 0 .1 m F 2 1 0 .1 m F 2 0 0 .1 m F 1 0 m F 1 9 1 8 0 .1 m F 0 .1 m F 1 7 5 V 1 6 1 5 2 8 S e r ia l In p u ts D D 0 .1 m F R e d In p u t G re e n In p u t B lu e In p u t 2 7 2 6 2 5 2 4 2 3 R e d In p u t G re e n In p u t B lu e In p u t 0 .1 m F V D D 0 .1 m F 2 5 H T 8 2 V 2 4 (C D S M o d e ) C lo c k In p u ts V D D D C L e v e l 0 .1 m F 2 2 2 1 0 .1 m F 2 0 1 9 1 8 1 7 1 6 1 5 0 .1 m F 1 0 m F 0 .1 m F 0 .1 m F 5 V S e r ia l In p u ts For the 3-channel SHA mode, all of the above considerations also apply for this configuration, except that the analog input signals are directly connected to the HT82V24 without the use of coupling capacitors. The OFFSET pin should be grounded if the inputs to the HT82V24 are to be referenced to ground, or a DC offset voltage should be applied to the OFFSET pin in the case where a coarse offset needs to be removed from the inputs. The analog input signals must already be dc-biased between 0V and 2V, if OFFSET is connected to ground. Rev. 1.00 13 September 7, 2005 HT82V24 Package Information 20-pin SOP (300mil) Outline Dimensions 1 1 2 0 A B 1 1 0 C C ' G H D E Symbol Rev. 1.00 a F Dimensions in mil Min. Nom. Max. A 394 ¾ 419 B 290 ¾ 300 C 14 ¾ 20 C¢ 490 ¾ 510 D 92 ¾ 104 E ¾ 50 ¾ F 4 ¾ ¾ G 32 ¾ 38 H 4 ¾ 12 a 0° ¾ 10° 14 September 7, 2005 HT82V24 20-pin SSOP (209mil) Outline Dimensions 1 1 2 0 A B 1 1 0 C C ' G H D E Symbol Rev. 1.00 a F Dimensions in mil Min. Nom. Max. A 291 ¾ 323 B 196 ¾ 220 C 9 ¾ 15 C¢ 271 ¾ 295 D 65 ¾ 73 E ¾ 25.59 ¾ F 4 ¾ 10 G 26 ¾ 34 H 4 ¾ 8 a 0° ¾ 8° 15 September 7, 2005 HT82V24 28-pin SOP (300mil) Outline Dimensions 2 8 1 5 A B 1 1 4 C C ' G H D E Symbol Rev. 1.00 a F Dimensions in mil Min. Nom. Max. A 394 ¾ 419 B 290 ¾ 300 C 14 ¾ 20 C¢ 697 ¾ 713 D 92 ¾ 104 E ¾ 50 ¾ F 4 ¾ ¾ G 32 ¾ 38 H 4 ¾ 12 a 0° ¾ 10° 16 September 7, 2005 HT82V24 28-pin SSOP (209mil) Outline Dimensions 1 5 2 8 A B 1 4 1 C C ' G H D E Symbol Rev. 1.00 a F Dimensions in mil Min. Nom. Max. A 291 ¾ 323 B 196 ¾ 220 C 9 ¾ 15 C¢ 396 ¾ 407 D 65 ¾ 73 E ¾ 25.59 ¾ F 4 ¾ 10 G 26 ¾ 34 H 4 ¾ 8 a 0° ¾ 8° 17 September 7, 2005 HT82V24 Product Tape and Reel Specifications Reel Dimensions D T 2 A C B T 1 SOP 20W Symbol Description Dimensions in mm A Reel Outer Diameter 330±1 B Reel Inner Diameter 62±1.5 C Spindle Hole Diameter 13+0.5 -0.2 D Key Slit Width 2±0.5 T1 Space Between Flange 24.8+0.3 -0.2 T2 Reel Thickness 30.2±0.2 SSOP 20N (209mil) Symbol Description Dimensions in mm A Reel Outer Diameter 330±1 B Reel Inner Diameter 62±1.5 C Spindle Hole Diameter 13+0.5 -0.2 D Key Slit Width 2±0.5 T1 Space Between Flange 16.8+0.3 -0.2 T2 Reel Thickness 22.2±0.2 Rev. 1.00 18 September 7, 2005 HT82V24 SOP 28W (300mil) Symbol Description Dimensions in mm A Reel Outer Diameter B Reel Inner Diameter 62±1.5 C Spindle Hole Diameter 13+0.5 -0.2 D Key Slit Width 330±1 2±0.5 T1 Space Between Flange 24.8+0.3 -0.2 T2 Reel Thickness 30.2±0.2 Carrier Tape Dimensions P 0 D P 1 t E F W C D 1 B 0 P K 0 A 0 SOP 20W Symbol Description Dimensions in mm W Carrier Tape Width 24+0.3 -0.1 P Cavity Pitch 12±0.1 E Perforation Position 1.75±0.1 F Cavity to Perforation (Width Direction) 11.5±0.1 D Perforation Diameter 1.5+0.1 D1 Cavity Hole Diameter 1.5+0.25 P0 Perforation Pitch 4±0.1 P1 Cavity to Perforation (Length Direction) 2±0.1 A0 Cavity Length 10.8±0.1 B0 Cavity Width 13.3±0.1 K0 Cavity Depth 3.2±0.1 t Carrier Tape Thickness 0.3±0.05 C Cover Tape Width Rev. 1.00 21.3 19 September 7, 2005 HT82V24 SSOP 20N (209mil) Symbol Description Dimensions in mm W Carrier Tape Width 16+0.3 -0.1 P Cavity Pitch 12±0.1 E Perforation Position 1.75±0.1 F Cavity to Perforation (Width Direction) 7.5±0.1 D Perforation Diameter 1.5+0.1 D1 Cavity Hole Diameter 1.5+0.25 P0 Perforation Pitch 4±0.1 P1 Cavity to Perforation (Length Direction) 2±0.1 A0 Cavity Length 7.1±0.1 B0 Cavity Width 7.2±0.1 K0 Cavity Depth 2±0.1 t Carrier Tape Thickness C Cover Tape Width 0.3±0.05 13.3 SOP 28W (300mil) Symbol Description Dimensions in mm W Carrier Tape Width 24±0.3 P Cavity Pitch 12±0.1 E Perforation Position 1.75±0.1 F Cavity to Perforation (Width Direction) 11.5±0.1 D Perforation Diameter 1.5+0.1 D1 Cavity Hole Diameter 1.5+0.25 P0 Perforation Pitch 4±0.1 P1 Cavity to Perforation (Length Direction) 2±0.1 A0 Cavity Length 10.85±0.1 B0 Cavity Width 18.34±0.1 K0 Cavity Depth 2.97±0.1 t Carrier Tape Thickness 0.35±0.01 C Cover Tape Width Rev. 1.00 21.3 20 September 7, 2005 HT82V24 Holtek Semiconductor Inc. (Headquarters) No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan Tel: 886-3-563-1999 Fax: 886-3-563-1189 http://www.holtek.com.tw Holtek Semiconductor Inc. (Taipei Sales Office) 4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan Tel: 886-2-2655-7070 Fax: 886-2-2655-7373 Fax: 886-2-2655-7383 (International sales hotline) Holtek Semiconductor Inc. (Shanghai Sales Office) 7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China 200233 Tel: 021-6485-5560 Fax: 021-6485-0313 http://www.holtek.com.cn Holtek Semiconductor Inc. (Shenzhen Sales Office) 43F, SEG Plaza, Shen Nan Zhong Road, Shenzhen, China 518031 Tel: 0755-8346-5589 Fax: 0755-8346-5590 ISDN: 0755-8346-5591 Holtek Semiconductor Inc. (Beijing Sales Office) Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031 Tel: 010-6641-0030, 6641-7751, 6641-7752 Fax: 010-6641-0125 Holmate Semiconductor, Inc. (North America Sales Office) 46712 Fremont Blvd., Fremont, CA 94538 Tel: 510-252-9880 Fax: 510-252-9885 http://www.holmate.com Copyright Ó 2005 by HOLTEK SEMICONDUCTOR INC. The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek¢s products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw. Rev. 1.00 21 September 7, 2005