Data Sheet Advanced Analog Circuits LOW POWER QUAD OPERATIONAL AMPLIFIERS General Description Features The AZ324 consists of four independent, high gain and internally frequency compensated operational amplifiers. It is specifically designed to operate from a single power supply. Operation from split power supply is also possible and the low power supply current drain is independent of the magnitude of the power supply voltages. · · · · · · AZ324 Internally frequency compensated Large voltage gain Low input bias current Low input offset voltage Large output voltage swing Wide power supply voltage range: Single supply 3V to 18V or dual supplies ± 1.5V to ± 9V Low supply current drain: 500µA Compatible with industry standard 324 · · Applications DIP-14 Battery Charger Cordless Telephone Switching Power Supply · · · SOIC-14 Figure 1. Package Types of AZ324 Pin Configuration M Package/P Package SOIC-14/DIP-14 OUTPUT 1 1 14 OUTPUT 4 INPUT 1- 2 13 INPUT 4- INPUT 1+ 3 12 INPUT 4+ VCC 4 11 GND INPUT 2+ 5 10 INPUT 3+ INPUT 2- 6 9 INPUT 3- OUTPUT 2 7 8 OUTPUT 3 Top View Figure 2: Pin Configuration of AZ324 Issue Date: Jan. 2003 1 Rev. 1.0 Data Sheet Advanced Analog Circuits LOW POWER QUAD OPERATIONAL AMPLIFIERS AZ324 Functional Block Diagram 6uA 4uA 100uA Q5 Q6 Q2 - Q3 Cc Q7 Q4 Q1 Rsc INPUTS + OUTPUT Q13 Q11 Q10 Q8 Q9 Q12 50uA Figure 3. Functional Block Diagram of AZ324 (Each Amplifier) Ordering Information Package SOIC-14 DIP-14 Issue Date: Jan. 2003 Temperature Range -40oC~85oC 2 Part Number Packing Type AZ324M Tube/Reel AZ324P Tube Rev. 1.0 Data Sheet Advanced Analog Circuits LOW POWER QUAD OPERATIONAL AMPLIFIERS AZ324 Absolute Maximum Ratings (Note 1) (Operation temperature range applies unless otherwise specified.) Parameter Symbol Value Unit Power Supply Voltage VCC 20 V Differential Input Voltage VID 20 V Input Voltage VIC -0.3 to 20 V 50 mA Input Current (VIN<-0.3V) (Note 2) Output Short Circuit to Ground (One Amplifier) VCC ≤ 12V and TA = 25oC (Note 3) Continuous DIP 1130 SOIC 800 mW Power Dissipation PD Operating Temperature Range TOP -40 to 85 oC Storage Temperature Range TSTG -65 to 150 o C o C Lead Temperature (Soldering, 10 Seconds) 260 ESD (Machine Mode) 150 V Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operation Ratings" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability. Note 2: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3V (at 25oC) Note 3: Short circuits from the output to VCC can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40mA independent of the magnitude of VCC. At values of supply voltage in excess of +12V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers. Issue Date: Jan. 2003 3 Rev. 1.0 Data Sheet Advanced Analog Circuits LOW POWER QUAD OPERATIONAL AMPLIFIERS AZ324 Electrical Characteristics Operating Conditions: VCC=+5V, GND=0V, TA=25 oC unless otherwise specified. Parameter Typ. Max. VO: 1.4V, RS: 0Ω, VCC: from 5V to 15V 2 5 mV IBIAS IIN+ or IIN-, VCM=0V 20 200 nA Input Offset Current IIO IIN+ or IIN-, VCM=0V 5 50 nA Input Common Mode Voltage Range (Note 5) VIR VCC=15V VCC-1.5 V Supply Current ICC RL= ∞, Over full tem- VCC=15V perature range on all VCC=5V OP Amps Input Offset Voltage Input Bias Current (Note 4) Large Signal Voltage Gain Symbol Test Conditions VIO GV Min. 0 1 2 0.5 1.2 Unit mA VCC=15V, RL≥ 2ΚΩ, VO=1V to 11V 85 100 dB Common Mode Rejection Ratio CMRR DC, VCM=0V to (VCC-1.5)V 70 90 dB Power Supply Rejection Ratio PSRR VCC=5V to 15V 70 90 dB -120 dB Channel Separation (Note 6) Source Output Current Sink Short Circuit to Ground Output Voltage Swing CS f=1KHz to 20KHz (Input Referred) ISOURCE V+=1V, V- =0V, VCC=15V, VO=2V 20 45 mA V- =1V, V+=0V, VCC=15V, VO=2V 10 15 mA V- =1V, V+=0V, VCC=15V, VO=200mV 12 50 uA ISINK ISC VOH VOL VCC=15V 45 RL=2KΩ, VCC=15V 12 RL=10KΩ, VCC=15V 12.5 VCC=5V, RL=10KΩ 60 V 13.5 5 mA 20 mV Note 4: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines. Note 5: The input common-mode voltage of either input signal voltage should not be allowed to go negatively by more than 0.3V (at 25oC). The upper end of the common-mode voltage range is VCC - 1.5V (at 25oC), but either or both inputs can go to +18V without damages, independent of the magnitude of the VCC. Note 6: Due to proximity of external components, insure that coupling is not originating via stray capacitors between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies. Issue Date: Jan. 2003 4 Rev. 1.0 Data Sheet Advanced Analog Circuits LOW POWER QUAD OPERATIONAL AMPLIFIERS AZ324 Typical Characteristics NEGATIVE 5 4 POSITIVE 3 2 1 0 2 4 25 IB - INPUT CURRENT (nADC) 6 0 ID - SUPPLY CURRENT DRAIN (mADC) 30 7 6 VCC=15V 20 15 10 5 0 -40 8 0 20 40 60 80 100 TA - TEMPERATURE (oC) Figure 4. Input Voltage Range Figure 5. Input Current 4.0 120 120 3.5 VCC 3.0 mA A ID 2.5 2.0 1.5 o 1.0 o TA = 0 C TO 85 C 0.5 0.0 0 2 4 6 8 10 12 14 16 18 110 100 RL=2KΩ RL=20KΩ 90 80 70 60 20 0 VCC - POWER SUPPLY VOLTAGE (V) o TA: -40 C TO 85 C VCC:10V TO 15VDC 80 70 8 10 12 14 16 18 20 VCC =15V 2 RL = 2KΩ 1 0 3 60 R 10M 0.1uF 2 VCC VIN - INPUT 40 VO 30 VCC/2 VIN 10 0 1HZ 10HZ 100HZ 1kHZ 10kHZ 100kHZ 1MHZ 1 0 0 f - FREQUENCY (Hz) 10 20 30 40 50 t - TIME (uS) Figure 8. Open Loop Frequency Response Issue Date: Jan. 2003 VOLTAGE (V) 50 20 6 3 VOLTAGE (V) VOUT - OUTPUT 100 o 4 Figure 7. Voltage Gain 110 90 2 VCC - POWER SUPPLY VOLTAGE (V) Figure 6. Supply Current AVOL - VOLTAGE GAIN (dB) -20 VCC - POWER SUPPLY VOLTAGE (±VDC) AVOL - VOLTAGE GAIN (dB) ±VIN - INPUT VOLTAGE (±VDC) 8 Figure 9. Voltage Follower Pulse Response 5 Rev. 1.0 Data Sheet Advanced Analog Circuits LOW POWER QUAD OPERATIONAL AMPLIFIERS AZ324 Typical Characteristics (Continued) 600 TA = 25oC 500 VCC = 15V R 100K VIN VO - OUTPUT SWING (VP-P) VOUT - OUTPUT VOLTAGE (mV) 20 VOUT 550 50pF 450 400 350 300 250 0 10 20 30 40 5 10K 100K 1000K f - FREQUENCY (Hz) Figure 10. Voltage Follower Pulse Response (Small Signal) Figure 11. Large Signal Frequency Response 8 10 o 7 VO - OUTPUT VOLTAGE (VDC) VO - OUTPUT VOLTAGE REFERENCE TO VCC (VDC) VO R 2K 10 t - TIME (uS) VCC 6 VCC/2 Vo 5 IO 4 3 o INDEPENDENT OF VCC, TA = 25 C 2 1 1E-3 +7VDC VIN 0 1K 50 +15 VDC R 1K 15 0.01 0.1 1 10 TA = 25 C 1 V CC = 1 5 V 0.1 IO - OUTPUT SOURCE CURRENT (mADC) IO VCC/2 Vo 0.01 1E-3 100 VCC V CC = 5V 0.01 0.1 1 10 100 IO - OUTPUT SINK CURRENT (mADC) Figure 12. Output Characteristics Current Sourcing Figure 13. Output Characteristics Current Sinking 100 IO - OUTPUT CURRENT (mADC) 90 80 70 60 50 40 IO 30 20 10 0 -40 -20 0 20 40 60 80 TA - TEMPERATURE (oC) Figure 14. Current Limiting Issue Date: Jan. 2003 6 Rev. 1.0 Data Sheet Advanced Analog Circuits LOW POWER QUAD OPERATIONAL AMPLIFIERS AZ324 Typical Applications R1 Opto Isolator + VCC 1/4 AZ324 AC Line - SMPS Battery Pack GND R6 Current Sense R5 R4 R3 R7 VCC - R2 1/4 AZ324 + GND AZ431 R8 Figure 15. Battery Charger R1 910K R1 100K +V1 +V2 R2 100K R3 100K - R5 1/4 AZ324 100K - VO R3 91K VIN(+) VCC 1/4 AZ324 + VO RL R6 100K +V3 +V4 R2 100K + R4 100K Figure 16. DC Summing Amplifier Issue Date: Jan. 2003 Figure 17. Power Amplifier 7 Rev. 1.0 Data Sheet Advanced Analog Circuits LOW POWER QUAD OPERATIONAL AMPLIFIERS AZ324 Typical Applications (Continued) VCC + 2V - R2 1M R1 100K + 2V - R3 2K R1 2K C1 0.1uF R2 - CO 1/4 AZ324 - VO RB 6.2K + R3 51K 1/4 AZ324 I1 + R4 3K AC I2 RL 10K R4 51K VCC R5 51K 1mA AV=1+R2/R1 AV=11 (As shown) Figure 18. Fixed Current Sources R1 Figure 19. AC Coupled Non-Inverting Amplifier 1M C1 0.01uF 0.001uF R2 100K R1 16K 1/4 AZ324 + C2 0.01uF VO + R3 100K 1/4 AZ324 - R3 100k V0 R5 100K VCC 0 R4 100K f0 R4 100k fo=1KHz Q=1 AV=2 Figure 21. DC Coupled Low-Pass RC Active Filter Figure 20. Pulse Generator Issue Date: Jan. 2003 R2 16K VIN 8 Rev. 1.0 Data Sheet Advanced Analog Circuits LOW POWER QUAD OPERATIONAL AMPLIFIERS AZ324 Mechanical Dimensions 1.70±0.10 DIP-14 19.18±0.50 1.46±0.31 10° 0.7 10° 7.62±0.25 5° 4° 0.254 0.457 1.70±0.10 0.41MIN 3.37±0.44 4° φ3×0.15±0.05 0.28±0.07 10.00MAX 2.54 6.60±0.50 0.13MIN R1.0 Issue Date: Jan. 2003 9 Rev. 1.0 Data Sheet Advanced Analog Circuits LOW POWER QUAD OPERATIONAL AMPLIFIERS AZ324 Mechanical Dimensions (Continued) SOIC-14 0.38±0.10×45° A 8° 8° +0.05 0.2 -0.10 0.70 7° 4° ±4° 8.65±0.10 9.5° 8° 1.27 3.90±0.10 0.22±0.03 7° 1.55±0.20 A 20:1 0.42±0.09 0.25 (0.20min) R0.20 R0.20 1.00 6.00±0.20 1.30 0.55±0.05 0.25 ±2° 3° φ2.0 Depth 0.06~0.10 Issue Date: Jan. 2003 10 Rev. 1.0 Advanced Analog Circuits http://www.aacmicro.com USA: 1510 Montague Expressway, San Jose, CA 95131, USA Tel: 408-433-9888,Fax: 408-432-9888 China: 8th Floor, Zone B, 900 Yi Shan Road,Shanghai 200233, China Tel: 86-21-6495-9539, Fax: 86-21-6485-9673 Taiwan: 8F, No.50, Lane10, Kee Hu Road, Nei Hu, TaiPei 114, Taiwan Tel: 886-2-2657-8811, Fax: 886-2-2657-9090 IMPORTANT NOTICE Advanced Analog Circuits Corporation reserves the right to make changes to its products or specifications at any time, without notice, to improve design or performance and to supply the best possible product. Advanced Analog Circuits does not assume any responsibility for use of any circuitry described other than the circuitry embodied in Advanced Analog Circuits' products. The company makes no representation that circuitry described herein is free from patent infringement or other rights of Advanced Analog Circuits Corporation.