ETC AZ324

Data Sheet
Advanced Analog Circuits
LOW POWER QUAD OPERATIONAL AMPLIFIERS
General Description
Features
The AZ324 consists of four independent, high gain and
internally frequency compensated operational amplifiers. It is specifically designed to operate from a single
power supply. Operation from split power supply is
also possible and the low power supply current drain is
independent of the magnitude of the power supply
voltages.
·
·
·
·
·
·
AZ324
Internally frequency compensated
Large voltage gain
Low input bias current
Low input offset voltage
Large output voltage swing
Wide power supply voltage range:
Single supply 3V to 18V
or dual supplies ± 1.5V to ± 9V
Low supply current drain: 500µA
Compatible with industry standard 324
·
·
Applications
DIP-14
Battery Charger
Cordless Telephone
Switching Power Supply
·
·
·
SOIC-14
Figure 1. Package Types of AZ324
Pin Configuration
M Package/P Package
SOIC-14/DIP-14
OUTPUT 1
1
14
OUTPUT 4
INPUT 1-
2
13
INPUT 4-
INPUT 1+
3
12
INPUT 4+
VCC
4
11
GND
INPUT 2+
5
10
INPUT 3+
INPUT 2-
6
9
INPUT 3-
OUTPUT 2
7
8
OUTPUT 3
Top View
Figure 2: Pin Configuration of AZ324
Issue Date: Jan. 2003
1
Rev. 1.0
Data Sheet
Advanced Analog Circuits
LOW POWER QUAD OPERATIONAL AMPLIFIERS
AZ324
Functional Block Diagram
6uA
4uA
100uA
Q5
Q6
Q2
-
Q3
Cc
Q7
Q4
Q1
Rsc
INPUTS
+
OUTPUT
Q13
Q11
Q10
Q8
Q9
Q12
50uA
Figure 3. Functional Block Diagram of AZ324
(Each Amplifier)
Ordering Information
Package
SOIC-14
DIP-14
Issue Date: Jan. 2003
Temperature Range
-40oC~85oC
2
Part Number
Packing Type
AZ324M
Tube/Reel
AZ324P
Tube
Rev. 1.0
Data Sheet
Advanced Analog Circuits
LOW POWER QUAD OPERATIONAL AMPLIFIERS
AZ324
Absolute Maximum Ratings (Note 1)
(Operation temperature range applies unless otherwise specified.)
Parameter
Symbol
Value
Unit
Power Supply Voltage
VCC
20
V
Differential Input Voltage
VID
20
V
Input Voltage
VIC
-0.3 to 20
V
50
mA
Input Current (VIN<-0.3V) (Note 2)
Output Short Circuit to Ground
(One Amplifier)
VCC ≤ 12V and TA = 25oC (Note 3)
Continuous
DIP
1130
SOIC
800
mW
Power Dissipation
PD
Operating Temperature Range
TOP
-40 to 85
oC
Storage Temperature Range
TSTG
-65 to 150
o
C
o
C
Lead Temperature (Soldering, 10 Seconds)
260
ESD (Machine Mode)
150
V
Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the
device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond
those indicated under "Recommended Operation Ratings" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.
Note 2: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to
the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode
clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This
transistor action can cause the output voltages of the op amps to go to the VCC voltage level (or to ground for a
large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output
states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3V (at
25oC)
Note 3: Short circuits from the output to VCC can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40mA independent of the magnitude
of VCC. At values of supply voltage in excess of +12V, continuous short-circuits can exceed the power dissipation
ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.
Issue Date: Jan. 2003
3
Rev. 1.0
Data Sheet
Advanced Analog Circuits
LOW POWER QUAD OPERATIONAL AMPLIFIERS
AZ324
Electrical Characteristics
Operating Conditions: VCC=+5V, GND=0V, TA=25 oC unless otherwise specified.
Parameter
Typ.
Max.
VO: 1.4V, RS: 0Ω, VCC: from 5V to 15V
2
5
mV
IBIAS
IIN+ or IIN-, VCM=0V
20
200
nA
Input Offset Current
IIO
IIN+ or IIN-, VCM=0V
5
50
nA
Input Common
Mode Voltage Range
(Note 5)
VIR
VCC=15V
VCC-1.5
V
Supply Current
ICC
RL= ∞, Over full tem- VCC=15V
perature range on all
VCC=5V
OP Amps
Input Offset Voltage
Input Bias Current
(Note 4)
Large Signal
Voltage Gain
Symbol
Test Conditions
VIO
GV
Min.
0
1
2
0.5
1.2
Unit
mA
VCC=15V, RL≥ 2ΚΩ, VO=1V to 11V
85
100
dB
Common Mode
Rejection Ratio
CMRR
DC, VCM=0V to (VCC-1.5)V
70
90
dB
Power Supply
Rejection Ratio
PSRR
VCC=5V to 15V
70
90
dB
-120
dB
Channel Separation
(Note 6)
Source
Output
Current
Sink
Short Circuit
to Ground
Output Voltage
Swing
CS
f=1KHz to 20KHz (Input Referred)
ISOURCE
V+=1V, V- =0V, VCC=15V, VO=2V
20
45
mA
V- =1V, V+=0V, VCC=15V, VO=2V
10
15
mA
V- =1V, V+=0V, VCC=15V, VO=200mV
12
50
uA
ISINK
ISC
VOH
VOL
VCC=15V
45
RL=2KΩ, VCC=15V
12
RL=10KΩ, VCC=15V
12.5
VCC=5V, RL=10KΩ
60
V
13.5
5
mA
20
mV
Note 4: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially
constant, independent of the state of the output so no loading change exists on the input lines.
Note 5: The input common-mode voltage of either input signal voltage should not be allowed to go negatively by
more than 0.3V (at 25oC). The upper end of the common-mode voltage range is VCC - 1.5V (at 25oC), but either or
both inputs can go to +18V without damages, independent of the magnitude of the VCC.
Note 6: Due to proximity of external components, insure that coupling is not originating via stray capacitors
between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.
Issue Date: Jan. 2003
4
Rev. 1.0
Data Sheet
Advanced Analog Circuits
LOW POWER QUAD OPERATIONAL AMPLIFIERS
AZ324
Typical Characteristics
NEGATIVE
5
4
POSITIVE
3
2
1
0
2
4
25
IB - INPUT CURRENT (nADC)
6
0
ID - SUPPLY CURRENT DRAIN (mADC)
30
7
6
VCC=15V
20
15
10
5
0
-40
8
0
20
40
60
80
100
TA - TEMPERATURE (oC)
Figure 4. Input Voltage Range
Figure 5. Input Current
4.0
120
120
3.5
VCC
3.0
mA
A
ID
2.5
2.0
1.5
o
1.0
o
TA = 0 C TO 85 C
0.5
0.0
0
2
4
6
8
10
12
14
16
18
110
100
RL=2KΩ
RL=20KΩ
90
80
70
60
20
0
VCC - POWER SUPPLY VOLTAGE (V)
o
TA: -40 C TO 85 C VCC:10V TO 15VDC
80
70
8
10
12
14
16
18
20
VCC =15V
2
RL = 2KΩ
1
0
3
60
R 10M
0.1uF
2
VCC
VIN - INPUT
40
VO
30
VCC/2
VIN
10
0
1HZ
10HZ
100HZ
1kHZ
10kHZ
100kHZ
1MHZ
1
0
0
f - FREQUENCY (Hz)
10
20
30
40
50
t - TIME (uS)
Figure 8. Open Loop Frequency Response
Issue Date: Jan. 2003
VOLTAGE (V)
50
20
6
3
VOLTAGE (V)
VOUT - OUTPUT
100
o
4
Figure 7. Voltage Gain
110
90
2
VCC - POWER SUPPLY VOLTAGE (V)
Figure 6. Supply Current
AVOL - VOLTAGE GAIN (dB)
-20
VCC - POWER SUPPLY VOLTAGE (±VDC)
AVOL - VOLTAGE GAIN (dB)
±VIN - INPUT VOLTAGE (±VDC)
8
Figure 9. Voltage Follower Pulse Response
5
Rev. 1.0
Data Sheet
Advanced Analog Circuits
LOW POWER QUAD OPERATIONAL AMPLIFIERS
AZ324
Typical Characteristics (Continued)
600
TA = 25oC
500
VCC = 15V
R 100K
VIN
VO - OUTPUT SWING (VP-P)
VOUT - OUTPUT VOLTAGE (mV)
20
VOUT
550
50pF
450
400
350
300
250
0
10
20
30
40
5
10K
100K
1000K
f - FREQUENCY (Hz)
Figure 10. Voltage Follower Pulse Response
(Small Signal)
Figure 11. Large Signal Frequency Response
8
10
o
7
VO - OUTPUT VOLTAGE (VDC)
VO - OUTPUT VOLTAGE
REFERENCE TO VCC (VDC)
VO
R
2K
10
t - TIME (uS)
VCC
6
VCC/2
Vo
5
IO
4
3
o
INDEPENDENT OF VCC, TA = 25 C
2
1
1E-3
+7VDC
VIN
0
1K
50
+15
VDC
R 1K
15
0.01
0.1
1
10
TA = 25 C
1
V CC = 1 5 V
0.1
IO - OUTPUT SOURCE CURRENT (mADC)
IO
VCC/2
Vo
0.01
1E-3
100
VCC
V CC = 5V
0.01
0.1
1
10
100
IO - OUTPUT SINK CURRENT (mADC)
Figure 12. Output Characteristics Current Sourcing
Figure 13. Output Characteristics Current Sinking
100
IO - OUTPUT CURRENT (mADC)
90
80
70
60
50
40
IO
30
20
10
0
-40
-20
0
20
40
60
80
TA - TEMPERATURE (oC)
Figure 14. Current Limiting
Issue Date: Jan. 2003
6
Rev. 1.0
Data Sheet
Advanced Analog Circuits
LOW POWER QUAD OPERATIONAL AMPLIFIERS
AZ324
Typical Applications
R1
Opto
Isolator
+
VCC
1/4 AZ324
AC
Line
-
SMPS
Battery
Pack
GND
R6
Current
Sense
R5
R4
R3
R7
VCC
-
R2
1/4 AZ324
+
GND
AZ431
R8
Figure 15. Battery Charger
R1 910K
R1 100K
+V1
+V2
R2 100K
R3 100K
-
R5
1/4 AZ324
100K
-
VO
R3 91K
VIN(+)
VCC
1/4 AZ324
+
VO
RL
R6 100K
+V3
+V4
R2 100K
+
R4 100K
Figure 16. DC Summing Amplifier
Issue Date: Jan. 2003
Figure 17. Power Amplifier
7
Rev. 1.0
Data Sheet
Advanced Analog Circuits
LOW POWER QUAD OPERATIONAL AMPLIFIERS
AZ324
Typical Applications (Continued)
VCC
+
2V
-
R2 1M
R1 100K
+
2V
-
R3
2K
R1
2K
C1
0.1uF
R2
-
CO
1/4 AZ324
-
VO
RB
6.2K
+
R3
51K
1/4 AZ324
I1
+
R4
3K
AC
I2
RL
10K
R4 51K
VCC
R5
51K
1mA
AV=1+R2/R1
AV=11 (As shown)
Figure 18. Fixed Current Sources
R1
Figure 19. AC Coupled Non-Inverting Amplifier
1M
C1 0.01uF
0.001uF
R2 100K
R1 16K
1/4 AZ324
+
C2
0.01uF
VO
+
R3 100K
1/4 AZ324
-
R3
100k
V0
R5 100K
VCC
0
R4
100K
f0
R4
100k
fo=1KHz
Q=1
AV=2
Figure 21. DC Coupled Low-Pass RC Active Filter
Figure 20. Pulse Generator
Issue Date: Jan. 2003
R2 16K
VIN
8
Rev. 1.0
Data Sheet
Advanced Analog Circuits
LOW POWER QUAD OPERATIONAL AMPLIFIERS
AZ324
Mechanical Dimensions
1.70±0.10
DIP-14
19.18±0.50
1.46±0.31
10°
0.7
10°
7.62±0.25
5°
4°
0.254
0.457
1.70±0.10
0.41MIN
3.37±0.44
4°
φ3×0.15±0.05
0.28±0.07
10.00MAX
2.54
6.60±0.50
0.13MIN
R1.0
Issue Date: Jan. 2003
9
Rev. 1.0
Data Sheet
Advanced Analog Circuits
LOW POWER QUAD OPERATIONAL AMPLIFIERS
AZ324
Mechanical Dimensions (Continued)
SOIC-14
0.38±0.10×45°
A
8°
8°
+0.05
0.2 -0.10
0.70
7°
4°
±4°
8.65±0.10
9.5°
8°
1.27
3.90±0.10
0.22±0.03
7°
1.55±0.20
A
20:1
0.42±0.09
0.25 (0.20min)
R0.20
R0.20
1.00
6.00±0.20
1.30
0.55±0.05
0.25
±2°
3°
φ2.0
Depth 0.06~0.10
Issue Date: Jan. 2003
10
Rev. 1.0
Advanced Analog Circuits
http://www.aacmicro.com
USA: 1510 Montague Expressway, San Jose, CA 95131, USA
Tel: 408-433-9888,Fax: 408-432-9888
China: 8th Floor, Zone B, 900 Yi Shan Road,Shanghai 200233, China
Tel: 86-21-6495-9539, Fax: 86-21-6485-9673
Taiwan: 8F, No.50, Lane10, Kee Hu Road, Nei Hu, TaiPei 114, Taiwan
Tel: 886-2-2657-8811, Fax: 886-2-2657-9090
IMPORTANT NOTICE
Advanced Analog Circuits Corporation reserves the right to make changes to its products or specifications at any time, without
notice, to improve design or performance and to supply the best possible product. Advanced Analog Circuits does not assume any
responsibility for use of any circuitry described other than the circuitry embodied in Advanced Analog Circuits' products. The
company makes no representation that circuitry described herein is free from patent infringement or other rights of Advanced Analog Circuits Corporation.