LM158-LM258-LM358 LM158A-LM258A-LM358A Low Power Dual Operational Amplifiers ■ Internally frequency compensated ■ Large DC voltage gain: 100dB ■ Wide bandwidth (unity gain): 1.1mHz (temperature compensated) ■ Very low supply current/op (500µA) essentially independent of supply voltage ■ Low input bias current: 20nA (temperature compensated) ■ Low input offset voltage: 2mV ■ Low input offset current: 2nA ■ Input common-mode voltage range includes ground ■ Differential input voltage range equal to the power supply voltage ■ Large output voltage swing 0V to (Vcc - 1.5V) Description These circuits consist of two independent, highgain, internally frequency-compensated which were designed specifically to operate from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage. Application areas include transducer amplifiers, DC gain blocks and all the conventional op-amp circuits which now can be more easily implemented in single power supply systems. For example, these circuits can be directly supplied with the standard +5V which is used in logic systems and will easily provide the required interface electronics without requiring any additional power supply. In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage. July 2005 N DIP-8 (Plastic Package) D&S SO-8 & miniSO-8 (Plastic Micropackage) P TSSOP8 (Thin Shrink Small Outline Package) Pin Connections (top view) 1 8 2 - 3 + 4 7 - 6 + 5 1 - Output 1 2 - Inverting input 3 - Non-inverting input 4 - VCC 5 - Non-inverting input 2 6 - Inverting input 2 7 - Output 2 8 - VCC + Rev 3 1/16 www.st.com 16 LM158-LM258-LM358-LM158A-LM258A-LM358A Order Codes Part Number LM158N LM158D LM158DT LM258AN LM258AD LM258ADT Temperature Range -55°C, +125°C LM258APT LM258AST LM258N LM258D LM258DT -40°C, +105°C LM258PT LM358N LM358AN LM358D LM358DT LM358AD LM358ADT LM358PT LM358APT LM358ST LM358AST 2/16 Package Packaging Marking DIP-8 Tube LM158N SO-8 Tube or Tape & Reel 158 DIP-8 Tube LM258A SO-8 Tube or Tape & Reel 258A Tape & Reel 258A Tape & Reel Tube K408 LM258N SO-8 Tube or Tape & Reel 258 TSSOP-8 (Thin Shrink Outline Package) Tape & Reel 258 DIP-8 Tube LM358N LM358AN SO-8 Tube or Tape & Reel TSSOP-8 (Thin Shrink Outline Package) miniSO-8 DIP-8 358 358A 0°C, +70°C TSSOP-8 (Thin Shrink Outline Package) Tape & Reel miniSO-8 Tape & Reel 358 358A K405 K404 LM158-LM258-LM358-LM158A-LM258A-LM358A 1 Absolute Maximum Ratings Absolute Maximum Ratings Table 1. Key parameters and their absolute maximum ratings Symbol VCC Parameter LM158,A LM258,A LM358,A Unit Supply voltage +/-16 or 32 V Vi Input Voltage -0.3 to +32 V Vid Differential Input Voltage +32 V Ptot Power Dissipation (1) 500 mW Output Short-circuit Duration (2) Iin Input Current (3) Toper Operating Free-air Temperature Range Tstg Storage Temperature Range Tj Rthja ESD Infinite 50 -55 to +125 -40 to +105 mA 0 to +70 °C -65 to +150 °C Maximum Junction Temperature 150 °C Thermal Resistance Junction to Ambient(4) SO8 TSSOP8 DIP8 miniSO8 125 120 85 190 °C/W HBM: Human Body Model(5) 300 V MM: Machine Model(6) 200 V CDM: Charged Device Model 1.5 kV 1. Power dissipation must be considered to ensure maximum junction temperature (Tj) is not exceeded. 2. Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current is approximately 40mA independent of the magnitude of VCC. Destructive dissipation can result from simultaneous short-circuit on all amplifiers. 3. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. this transistor action can cause the output voltages of the Op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration than an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V. 4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuit on all amplifiers 5. Human body model, 100pF discharged through a 1.5kΩ resistor into pin of device. 6. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor < 5Ω), into pin to pin of device. 3/16 Typical Application Schematic 2 LM158-LM258-LM358-LM158A-LM258A-LM358A Typical Application Schematic Figure 1. Schematic diagram (1/2 LM158) V CC 6µA 4µA 100µA Q5 Q6 CC Inverting input Q2 Q3 Q1 Q7 Q4 R SC Q11 Non-inverting input Output Q13 Q10 Q8 Q12 Q9 50µA GND 4/16 LM158-LM258-LM358-LM158A-LM258A-LM358A 3 Electrical Characteristics Electrical Characteristics Table 2. Symbol Electrical characteristics for VCC + = +5V, VCC -= Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified) Parameter LM158A-LM258A LM358A Min. Vio Input Offset Voltage - note (1) Tamb = +25°C LM158, LM258 LM158A Tmin ≤ T amb ≤ T max LM158, LM258 Typ. Max. 1 3 LM158-LM258 LM358 Min. Typ. Max. 2 7 5 2 4 Unit mV 9 7 Iio Input Offset Current Tamb = +25°C Tmin ≤ T amb ≤ T max 2 10 30 2 30 40 nA Iib Input Bias Current - note (2) Tamb = +25°C Tmin ≤ T amb ≤ T max 20 50 100 20 150 200 nA Large Signal Voltage Gain Avd VCC = +15V, RL = 2kΩ, Vo = 1.4V to 11.4V Tamb = +25°C Tmin ≤ T amb ≤ T max 50 25 100 50 25 100 65 65 100 65 65 100 V/mV Supply Voltage Rejection Ratio (Rs ≤ 10kΩ) SVR ICC VCC+ = 5V to 30V Tamb = +25°C Tmin ≤ T amb ≤ T max Supply Current, all Amp, no load Tmin ≤ T amb ≤ T max VCC = +5V Tmin ≤ T amb ≤ T max V CC = +30V 0.7 1.2 2 0.7 dB 1.2 2 mA VCC+ 1.5 V Input Common Mode Voltage Range VCC = +30V - note (3) Tamb = +25°C Tmin ≤ T amb ≤ T max 0 0 CMR Common Mode Rejection Ratio (Rs ≤ 10kΩ) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 70 60 85 Isource Output Current Source VCC = +15V, Vo = +2V, V id = +1V 20 40 Output Sink Current (Vid = -1V) VCC = +15V, Vo = +2V VCC = +15V, Vo = +0.2V 10 12 20 50 Vicm Isink VCC+ 1.5 VCC+ -2 60 0 0 VCC+ -2 70 60 85 20 40 10 12 20 50 dB 60 mA mA µA 5/16 Electrical Characteristics Table 2. Symbol LM158-LM258-LM358-LM158A-LM258A-LM358A Electrical characteristics for VCC + = +5V, VCC -= Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified) Parameter LM158A-LM258A LM358A Min. VOPP VOH Output Voltage Swing (RL = 2kΩ) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 0 0 High Level Output Voltage (VCC+ = 30V) Tamb = +25°CRL = 2kΩ Tmin ≤ T amb ≤ T max Tamb = +25°CRL = 10kΩ Tmin ≤ T amb ≤ T max 26 26 27 27 Typ. Max. VCC+ 1.5 VCC+ -2 27 LM158-LM258 LM358 Min. VCC+ -2 27 Low Level Output Voltage (RL = 10kΩ) Tamb = +25°C Tmin ≤ T amb ≤ T max SR Slew Rate VCC = 15V, V i = 0.5 to 3V, RL = 2kΩ, CL = 100pF, unity Gain 0.3 0.6 0.3 0.6 Gain Bandwidth Product VCC = 30V, f =100kHz,V in = 10mV, R L = 2kΩ, CL = 100pF 0.7 1.1 0.7 1.1 GBP THD Total Harmonic Distortion f = 1kHz, Av = 20dB, R L = 2kΩ, Vo = 2V pp, CL = 100pF, VO = 2Vpp 20 20 V 28 VOL 5 Max. VCC+ 1.5 0 0 26 26 27 27 28 Typ. Unit 5 20 20 mV V/µs MHz % 0.02 0.02 Equivalent Input Noise Voltage f = 1kHz, R s = 100Ω, VCC = 30V 55 55 DV io Input Offset Voltage Drift 7 15 7 30 µV/ °C DIIio Input Offset Current Drift 10 200 10 300 pA/ °C Channel Separation - note (4) 1kHz ≤ f ≤ 20kHZ 120 en Vo1 /Vo2 nV -----------Hz 120 dB 1. Vo = 1.4V, Rs = 0Ω, 5V < VCC+ < 30V, 0 < Vic < VCC+ - 1.5V 2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines. 3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is VCC+ - 1.5V, but either or both inputs can go to +32V without damage. 4. Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies. 6/16 LM158-LM258-LM358-LM158A-LM258A-LM358A Figure 2. Open loop frequency response OPEN LOOP FREQUENCY RESPONSE (NOTE 3) 140 Figure 3. Large signal frequency response LARGE SIGNAL FREQUENCY RESPONSE 20 100 VCC - VI VCC/2 80 VO + VCC = 30V & -55°C Tamb 60 100k W 10M W 0.1mF OUTPUT SWING (Vpp) 120 VOLTAGE GAIN (dB) Electrical Characteristics +125°C 40 20 VCC = +10 to + 15V & -55°C Tamb +125°C 0 1k W 15 10 100 1k 10k 100k 1M 10 5 10M 1k 10k Voltage follower pulse response Figure 5. OUTPUT VOLTAGE (mV) OUTPUT VOLTAGE (V) 2 1 0 INPUT VOLTAGE (V) Voltage follower pulse response 500 RL 2 k W VCC = +15V 3 2 + 450 eO el - 50pF 400 Input 350 Output 300 Tamb = +25°C VCC = 30 V 1 0 10 20 30 250 40 0 1 2 TIME (ms) Figure 7. OUTPUT VOLTAGE (V) VI = 0 V VCC = +30 V 50 VCC = +15 V 40 30 VCC = +5 V 20 -55 -35 5 25 45 65 7 8 1 v cc /2 85 105 TEMPERATURE (°C) 125 v cc - 0.1 IO VO + Tamb = +25°C 0.01 -15 6 VCC = +5V VCC = +15V VCC = +30V 10 0 5 OUTPUT CHARACTERISTICS 10 60 4 Output characteristics INPUT CURRENT (Note 1) 90 70 3 TIME (ms) Input current 80 1M VOLTAGE FOLLOWER PULSSE RESPONSE (SMALL SIGNAL) 4 3 100k FREQUENCY (Hz) VOLAGE FOLLOWER PULSE RESPONSE INPUT CURRENT (mA) 2k W + +7V FREQUENCY (Hz) Figure 6. VO VI 0 1.0 Figure 4. +15V - 0,001 0,01 0,1 1 10 100 OUTPUT SINK CURRENT (mA) 7/16 Electrical Characteristics Output characteristics Figure 9. Current limiting CURRENT LIMITING (Note 1) OUTPUT CHARACTERISTICS 8 90 OUTPUT CURRENT (mA) V CC 7 6 TO VCC+ (V) OUTPUT VOLTAGE REFERENCED Figure 8. LM158-LM258-LM358-LM158A-LM258A-LM358A + V CC /2 5 VO IO - 4 3 2 Independent of V CC T amb = +25°C - 80 60 + 50 40 30 20 10 1 0 0,001 0,01 0,1 IO 70 1 10 -55 -35 100 OUTPUT SOURCE CURRENT (mA) Figure 10. Input voltage range -15 5 25 45 160 VOLTAGE GAIN (dB) INPUT VOLTAGE (V) Négative Positive 0 5 10 R L = 20k W 120 R L = 2k W 80 40 0 15 10 Figure 12. Input voltage range 30 40 Figure 13. Supply current 160 SUPPLY CURRENT 4 R L = 20k W VCC 120 SUPPLY CURRENT (mA) VOLTAGE GAIN (dB) 20 POSITIVE SUPPLY VOLTAGE (V) POWER SUPPLY VOLTAGE (±V) R L = 2k W 80 40 0 10 20 30 POSITIVE SUPPLY VOLTAGE (V) 8/16 125 Figure 11. Positive supply voltage INPUT VOLTAGE RANGE 5 85 105 TEMPERATURE (°C) 15 10 65 ID mA 3 - 2 + Tamb = 0°C to +125°C 1 Tamb = -55°C 0 10 20 POSITIVE SUPPLY VOLTAGE (V) 30 LM158-LM258-LM358-LM158A-LM258A-LM358A INPUT CURRENT (nA) 100 75 50 25 Tamb= +25°C 0 10 20 30 POSITIVE SUPPLY VOLTAGE (V) POWER SUPPLY REJECTION RATIO (dB) Figure 16. Power supply rejection ratio 115 110 SVR 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 TEMPERATURE (°C) GAIN BANDWIDTH PRODUCT (MHz) Figure 15. Gain bandwidth product 1.5 1.35 1.2 1.05 0.9 0.75 0.6 VCC = 15V 0.45 0.3 0.15 0 -55-35-15 5 25 45 65 85 105 125 TEMPERATURE (°C) Figure 17. Common mode rejection ratio COMMON MODE REJECTION RATIO (dB) Figure 14. Input current Electrical Characteristics 115 110 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 TEMPERATURE (°C) 9/16 Typical Applications 4 LM158-LM258-LM358-LM158A-LM258A-LM358A Typical Applications (single supply voltage) Vcc = +5Vdc Figure 18. AC coupled inverting amplifier Rf 100k W R1 10kW 10k W 2VPP 0 eo RB 6.2kW R3 100kW eO 1/2 LM158 Co 1/2 LM158 eI ~ R2 VCC 100k W A V = 1 + R2 R1 (As shown A V = 101) Rf R1 (as shown A V = -10) +5V RL 10k W R2 1M W e O R1 10k W (V) CI AV= - Figure 19. Non-inverting DC amplifier C1 10mF 0 Figure 20. AC coupled non-inverting amplifier R1 100kW Co 1/2 LM158 100kW eI ~ 2VPP 0 eo e2 100k W RL 10k W e3 100kW RB 6.2kW R3 1M W 1/2 LM158 eO 100kW R4 100kW e4 VCC C2 10mF 100kW A = 1 + R2 V R1 (as shown A V = 11) C1 0.1mF CI Figure 21. DC summing amplifier e1 R2 1MW e I (mV) R5 100kW 100kW eo = e1 + e 2 - e3 - e 4 where (e1 + e 2) ≥ (e3 + e 4) to keep eo ≥ 0V Figure 22. High input Z, DC differential amplifier Figure 23. High input Z adjustable gain DC instrumentation amplifier R1 100k W R4 100kW R2 100kW 1/2 LM158 e1 R1 100kW 1/2 LM158 R3 100kW +V1 +V2 R2 2k W 1/2 LM158 R5 100k W Vo e2 R2 if R1 = R5 and R3 = R4 = R6 = R7 e o = [ 1 + 2R1 ----------- ] ( (e2 + e 1) R2 As shown eo = 101 (e2 + e 1) As shown eo = 101 (e2 + e1) 10/16 R4 100k W 1/2 LM158 Gain adjust 1/2 LM158 if R1 = R5 and R3 = R4 = R6 = R7 eo = [1 + 2R1 ----------- ] ( (e 2 + e1) R3 100k W R6 100k W R7 100k W eO LM158-LM258-LM358-LM158A-LM258A-LM358A Figure 24. Using symmetrical amplifiers to reduce input current I eI IB I IB 1/2 LM158 Typical Applications Figure 25. Low drift peak detector IB eo 2N 929 IB 1mF ZI IB 3MW C eI 0.001mF IB IB 1/2 LM158 Input current compensation 1.5MW R 1MW eo Zo 2I B 2N 929 2IB 1/2 LM158 1/2 LM158 0.001mF IB 3R 3MW IB 1/2 LM158 Input current compensation Figure 26. Active band-pass filter R1 100kW C1 330pF R2 100kW +V1 1/2 LM158 R5 470kW R4 10MW 1/2 LM158 C2 R3 100kW 330 pF R6 470kW Vo 1/2 LM158 R7 100kW VCC R8 100kW C3 10mF 11/16 Package Mechanical Data 5 LM158-LM258-LM358-LM158A-LM258A-LM358A Package Mechanical Data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.. 5.1 DIP8 Package Plastic DIP-8 MECHANICAL DATA mm. inch DIM. MIN. A TYP MAX. MIN. 3.3 0.7 B 1.39 1.65 0.055 B1 0.91 1.04 0.036 b1 MAX. 0.130 a1 b TYP. 0.028 0.5 0.38 0.041 0.020 0.5 D 0.065 0.015 0.020 9.8 0.386 E 8.8 0.346 e 2.54 0.100 e3 7.62 0.300 e4 7.62 0.300 F 7.1 0.280 I 4.8 0.189 L Z 3.3 0.44 0.130 1.6 0.017 0.063 P001F 12/16 LM158-LM258-LM358-LM158A-LM258A-LM358A 5.2 Package Mechanical Data SO-8 Package SO-8 MECHANICAL DATA DIM. mm. MIN. MAX. MIN. A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.04 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D 4.80 5.00 0.189 0.197 E 3.80 4.00 0.150 e TYP inch 1.27 TYP. MAX. 0.157 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k ddd 8˚ (max.) 0.1 0.04 0016023/C 13/16 Package Mechanical Data 5.3 14/16 MiniSO-8 Package LM158-LM258-LM358-LM158A-LM258A-LM358A LM158-LM258-LM358-LM158A-LM258A-LM358A 5.4 Package Mechanical Data TSSOP8 Package TSSOP8 MECHANICAL DATA mm. inch DIM. MIN. TYP A MAX. MIN. TYP. 1.2 A1 0.05 A2 0.80 b MAX. 0.047 0.15 0.002 1.05 0.031 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 D 2.90 3.00 3.10 0.114 0.118 0.122 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.177 e 0.65 K 0˚ L 0.45 L1 1.00 0.60 1 0.006 0.039 0.041 0.0256 8˚ 0˚ 0.75 0.018 8˚ 0.024 0.030 0.039 0079397/D 15/16 LM158-LM258-LM358-LM158A-LM258A-LM358A R e v is io n H is to r y 6 Revision History Date Revision Changes July 2003 1 First Release Jan. 2005 2 Rthja and Tj parameters added in AMR Table 1 on page 3 July 2005 3 ESD protection inserted in Table 1 on page 3 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 16/16