STMICROELECTRONICS LM258D

LM158-LM258-LM358
LM158A-LM258A-LM358A
Low Power Dual Operational Amplifiers
■
Internally frequency compensated
■
Large DC voltage gain: 100dB
■
Wide bandwidth (unity gain): 1.1mHz
(temperature compensated)
■
Very low supply current/op (500µA) essentially
independent of supply voltage
■
Low input bias current: 20nA
(temperature compensated)
■
Low input offset voltage: 2mV
■
Low input offset current: 2nA
■
Input common-mode voltage range includes
ground
■
Differential input voltage range equal to the
power supply voltage
■
Large output voltage swing 0V to (Vcc - 1.5V)
Description
These circuits consist of two independent, highgain, internally frequency-compensated which
were designed specifically to operate from a
single power supply over a wide range of voltages.
The low power supply drain is independent of the
magnitude of the power supply voltage.
Application areas include transducer amplifiers,
DC gain blocks and all the conventional op-amp
circuits which now can be more easily
implemented in single power supply systems. For
example, these circuits can be directly supplied
with the standard +5V which is used in logic
systems and will easily provide the required
interface electronics without requiring any
additional power supply.
In the linear mode the input common-mode
voltage range includes ground and the output
voltage can also swing to ground, even though
operated from only a single power supply voltage.
July 2005
N
DIP-8
(Plastic Package)
D&S
SO-8 & miniSO-8
(Plastic Micropackage)
P
TSSOP8
(Thin Shrink Small Outline Package)
Pin Connections (top view)
1
8
2
-
3
+
4
7
-
6
+
5
1 - Output 1
2 - Inverting input
3 - Non-inverting input
4 - VCC 5 - Non-inverting input 2
6 - Inverting input 2
7 - Output 2
8 - VCC +
Rev 3
1/16
www.st.com
16
LM158-LM258-LM358-LM158A-LM258A-LM358A
Order Codes
Part Number
LM158N
LM158D
LM158DT
LM258AN
LM258AD
LM258ADT
Temperature
Range
-55°C, +125°C
LM258APT
LM258AST
LM258N
LM258D
LM258DT
-40°C, +105°C
LM258PT
LM358N
LM358AN
LM358D
LM358DT
LM358AD
LM358ADT
LM358PT
LM358APT
LM358ST
LM358AST
2/16
Package
Packaging
Marking
DIP-8
Tube
LM158N
SO-8
Tube or Tape & Reel
158
DIP-8
Tube
LM258A
SO-8
Tube or Tape & Reel
258A
Tape & Reel
258A
Tape & Reel
Tube
K408
LM258N
SO-8
Tube or Tape & Reel
258
TSSOP-8
(Thin Shrink Outline Package)
Tape & Reel
258
DIP-8
Tube
LM358N
LM358AN
SO-8
Tube or Tape & Reel
TSSOP-8
(Thin Shrink Outline Package)
miniSO-8
DIP-8
358
358A
0°C, +70°C
TSSOP-8
(Thin Shrink Outline Package)
Tape & Reel
miniSO-8
Tape & Reel
358
358A
K405
K404
LM158-LM258-LM358-LM158A-LM258A-LM358A
1
Absolute Maximum Ratings
Absolute Maximum Ratings
Table 1.
Key parameters and their absolute maximum ratings
Symbol
VCC
Parameter
LM158,A
LM258,A
LM358,A
Unit
Supply voltage
+/-16 or 32
V
Vi
Input Voltage
-0.3 to +32
V
Vid
Differential Input Voltage
+32
V
Ptot
Power Dissipation (1)
500
mW
Output Short-circuit Duration (2)
Iin
Input Current (3)
Toper
Operating Free-air Temperature Range
Tstg
Storage Temperature Range
Tj
Rthja
ESD
Infinite
50
-55 to +125 -40 to +105
mA
0 to +70
°C
-65 to +150
°C
Maximum Junction Temperature
150
°C
Thermal Resistance Junction to Ambient(4)
SO8
TSSOP8
DIP8
miniSO8
125
120
85
190
°C/W
HBM: Human Body Model(5)
300
V
MM: Machine Model(6)
200
V
CDM: Charged Device Model
1.5
kV
1. Power dissipation must be considered to ensure maximum junction temperature (Tj) is not exceeded.
2. Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current
is approximately 40mA independent
of the magnitude of VCC. Destructive dissipation can result from simultaneous short-circuit on all amplifiers.
3. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the
collector-base junction of the input PNP
transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action,
there is also NPN parasitic action on
the IC chip. this transistor action can cause the output voltages of the Op-amps to go to the VCC voltage level
(or to ground for a large overdrive)
for the time duration than an input is driven negative.
This is not destructive and normal output will set up again for input voltage higher than -0.3V.
4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuit
on all amplifiers
5. Human body model, 100pF discharged through a 1.5kΩ resistor into pin of device.
6. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with
no external series resistor (internal resistor < 5Ω), into pin to pin of device.
3/16
Typical Application Schematic
2
LM158-LM258-LM358-LM158A-LM258A-LM358A
Typical Application Schematic
Figure 1.
Schematic diagram (1/2 LM158)
V CC
6µA
4µA
100µA
Q5
Q6
CC
Inverting
input
Q2
Q3
Q1
Q7
Q4
R SC
Q11
Non-inverting
input
Output
Q13
Q10
Q8
Q12
Q9
50µA
GND
4/16
LM158-LM258-LM358-LM158A-LM258A-LM358A
3
Electrical Characteristics
Electrical Characteristics
Table 2.
Symbol
Electrical characteristics for VCC + = +5V, VCC -= Ground, Vo = 1.4V, Tamb = +25°C (unless
otherwise specified)
Parameter
LM158A-LM258A
LM358A
Min.
Vio
Input Offset Voltage - note (1) Tamb = +25°C
LM158, LM258
LM158A
Tmin ≤ T amb ≤ T max
LM158, LM258
Typ.
Max.
1
3
LM158-LM258
LM358
Min.
Typ.
Max.
2
7
5
2
4
Unit
mV
9
7
Iio
Input Offset Current
Tamb = +25°C
Tmin ≤ T amb ≤ T max
2
10
30
2
30
40
nA
Iib
Input Bias Current - note (2)
Tamb = +25°C
Tmin ≤ T amb ≤ T max
20
50
100
20
150
200
nA
Large Signal Voltage Gain
Avd
VCC = +15V, RL = 2kΩ, Vo = 1.4V to 11.4V
Tamb = +25°C
Tmin ≤ T amb ≤ T max
50
25
100
50
25
100
65
65
100
65
65
100
V/mV
Supply Voltage Rejection Ratio (Rs ≤ 10kΩ)
SVR
ICC
VCC+ = 5V to 30V
Tamb = +25°C
Tmin ≤ T amb ≤ T max
Supply Current, all Amp, no load
Tmin ≤ T amb ≤ T max
VCC = +5V
Tmin ≤ T amb ≤ T max
V CC = +30V
0.7
1.2
2
0.7
dB
1.2
2
mA
VCC+ 1.5
V
Input Common Mode Voltage Range
VCC = +30V - note (3)
Tamb = +25°C
Tmin ≤ T amb ≤ T max
0
0
CMR
Common Mode Rejection Ratio (Rs ≤ 10kΩ)
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
70
60
85
Isource
Output Current Source
VCC = +15V, Vo = +2V, V id = +1V
20
40
Output Sink Current (Vid = -1V)
VCC = +15V, Vo = +2V
VCC = +15V, Vo = +0.2V
10
12
20
50
Vicm
Isink
VCC+ 1.5
VCC+ -2
60
0
0
VCC+ -2
70
60
85
20
40
10
12
20
50
dB
60
mA
mA
µA
5/16
Electrical Characteristics
Table 2.
Symbol
LM158-LM258-LM358-LM158A-LM258A-LM358A
Electrical characteristics for VCC + = +5V, VCC -= Ground, Vo = 1.4V, Tamb = +25°C (unless
otherwise specified)
Parameter
LM158A-LM258A
LM358A
Min.
VOPP
VOH
Output Voltage Swing (RL = 2kΩ)
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
0
0
High Level Output Voltage (VCC+ = 30V)
Tamb = +25°CRL = 2kΩ
Tmin ≤ T amb ≤ T max
Tamb = +25°CRL = 10kΩ
Tmin ≤ T amb ≤ T max
26
26
27
27
Typ.
Max.
VCC+ 1.5
VCC+ -2
27
LM158-LM258
LM358
Min.
VCC+ -2
27
Low Level Output Voltage (RL = 10kΩ)
Tamb = +25°C
Tmin ≤ T amb ≤ T max
SR
Slew Rate
VCC = 15V, V i = 0.5 to 3V, RL = 2kΩ,
CL = 100pF, unity Gain
0.3
0.6
0.3
0.6
Gain Bandwidth Product
VCC = 30V, f =100kHz,V in = 10mV, R L = 2kΩ,
CL = 100pF
0.7
1.1
0.7
1.1
GBP
THD
Total Harmonic Distortion
f = 1kHz, Av = 20dB, R L = 2kΩ, Vo = 2V pp,
CL = 100pF, VO = 2Vpp
20
20
V
28
VOL
5
Max.
VCC+ 1.5
0
0
26
26
27
27
28
Typ.
Unit
5
20
20
mV
V/µs
MHz
%
0.02
0.02
Equivalent Input Noise Voltage
f = 1kHz, R s = 100Ω, VCC = 30V
55
55
DV io
Input Offset Voltage Drift
7
15
7
30
µV/
°C
DIIio
Input Offset Current Drift
10
200
10
300
pA/
°C
Channel Separation - note (4) 1kHz ≤ f ≤
20kHZ
120
en
Vo1 /Vo2
nV
-----------Hz
120
dB
1. Vo = 1.4V, Rs = 0Ω, 5V < VCC+ < 30V, 0 < Vic < VCC+ - 1.5V
2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output
so no loading change exists on the input lines.
3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The
upper end of the common-mode voltage range is VCC+ - 1.5V, but either or both inputs can go to +32V without damage.
4. Due to the proximity of external components insure that coupling is not originating via stray capacitance between these
external parts. This typically can be detected as this type of capacitance increases at higher frequencies.
6/16
LM158-LM258-LM358-LM158A-LM258A-LM358A
Figure 2.
Open loop frequency response
OPEN LOOP FREQUENCY RESPONSE (NOTE 3)
140
Figure 3.
Large signal frequency response
LARGE SIGNAL FREQUENCY RESPONSE
20
100
VCC
-
VI
VCC/2
80
VO
+
VCC = 30V &
-55°C Tamb
60
100k W
10M W
0.1mF
OUTPUT SWING (Vpp)
120
VOLTAGE GAIN (dB)
Electrical Characteristics
+125°C
40
20
VCC = +10 to + 15V &
-55°C Tamb +125°C
0
1k W
15
10
100
1k
10k
100k
1M
10
5
10M
1k
10k
Voltage follower pulse response
Figure 5.
OUTPUT VOLTAGE (mV)
OUTPUT
VOLTAGE (V)
2
1
0
INPUT
VOLTAGE (V)
Voltage follower pulse response
500
RL 2 k W
VCC = +15V
3
2
+
450
eO
el
-
50pF
400
Input
350
Output
300
Tamb = +25°C
VCC = 30 V
1
0
10
20
30
250
40
0
1
2
TIME (ms)
Figure 7.
OUTPUT VOLTAGE (V)
VI = 0 V
VCC = +30 V
50
VCC = +15 V
40
30
VCC = +5 V
20
-55 -35
5
25
45
65
7
8
1
v cc /2
85 105
TEMPERATURE (°C)
125
v cc
-
0.1
IO
VO
+
Tamb = +25°C
0.01
-15
6
VCC = +5V
VCC = +15V
VCC = +30V
10
0
5
OUTPUT CHARACTERISTICS
10
60
4
Output characteristics
INPUT CURRENT (Note 1)
90
70
3
TIME (ms)
Input current
80
1M
VOLTAGE FOLLOWER PULSSE RESPONSE
(SMALL SIGNAL)
4
3
100k
FREQUENCY (Hz)
VOLAGE FOLLOWER PULSE RESPONSE
INPUT CURRENT (mA)
2k W
+
+7V
FREQUENCY (Hz)
Figure 6.
VO
VI
0
1.0
Figure 4.
+15V
-
0,001
0,01
0,1
1
10
100
OUTPUT SINK CURRENT (mA)
7/16
Electrical Characteristics
Output characteristics
Figure 9.
Current limiting
CURRENT LIMITING (Note 1)
OUTPUT CHARACTERISTICS
8
90
OUTPUT CURRENT (mA)
V CC
7
6
TO VCC+ (V)
OUTPUT VOLTAGE REFERENCED
Figure 8.
LM158-LM258-LM358-LM158A-LM258A-LM358A
+
V CC /2
5
VO
IO
-
4
3
2
Independent of V CC
T amb = +25°C
-
80
60
+
50
40
30
20
10
1
0
0,001 0,01
0,1
IO
70
1
10
-55 -35
100
OUTPUT SOURCE CURRENT (mA)
Figure 10. Input voltage range
-15
5
25
45
160
VOLTAGE GAIN (dB)
INPUT VOLTAGE (V)
Négative
Positive
0
5
10
R L = 20k W
120
R L = 2k W
80
40
0
15
10
Figure 12. Input voltage range
30
40
Figure 13. Supply current
160
SUPPLY CURRENT
4
R L = 20k W
VCC
120
SUPPLY CURRENT (mA)
VOLTAGE GAIN (dB)
20
POSITIVE SUPPLY VOLTAGE (V)
POWER SUPPLY VOLTAGE (±V)
R L = 2k W
80
40
0
10
20
30
POSITIVE SUPPLY VOLTAGE (V)
8/16
125
Figure 11. Positive supply voltage
INPUT VOLTAGE RANGE
5
85 105
TEMPERATURE (°C)
15
10
65
ID
mA
3
-
2
+
Tamb = 0°C to +125°C
1
Tamb = -55°C
0
10
20
POSITIVE SUPPLY VOLTAGE (V)
30
LM158-LM258-LM358-LM158A-LM258A-LM358A
INPUT CURRENT (nA)
100
75
50
25
Tamb= +25°C
0
10
20
30
POSITIVE SUPPLY VOLTAGE (V)
POWER SUPPLY REJECTION RATIO (dB)
Figure 16. Power supply rejection ratio
115
110
SVR
105
100
95
90
85
80
75
70
65
60-55-35-15 5 25 45 65 85 105 125
TEMPERATURE (°C)
GAIN BANDWIDTH PRODUCT (MHz)
Figure 15. Gain bandwidth product
1.5
1.35
1.2
1.05
0.9
0.75
0.6
VCC =
15V
0.45
0.3
0.15
0
-55-35-15 5 25 45 65 85 105 125
TEMPERATURE (°C)
Figure 17. Common mode rejection ratio
COMMON MODE REJECTION RATIO (dB)
Figure 14. Input current
Electrical Characteristics
115
110
105
100
95
90
85
80
75
70
65
60-55-35-15 5 25 45 65 85 105 125
TEMPERATURE (°C)
9/16
Typical Applications
4
LM158-LM258-LM358-LM158A-LM258A-LM358A
Typical Applications
(single supply voltage) Vcc = +5Vdc
Figure 18. AC coupled inverting amplifier
Rf
100k W
R1
10kW
10k W
2VPP
0
eo
RB
6.2kW
R3
100kW
eO
1/2
LM158
Co
1/2
LM158
eI ~
R2
VCC 100k W
A V = 1 + R2
R1
(As shown A V = 101)
Rf
R1
(as shown A V = -10)
+5V
RL
10k W
R2
1M W
e
O
R1
10k W
(V)
CI
AV= -
Figure 19. Non-inverting DC amplifier
C1
10mF
0
Figure 20. AC coupled non-inverting amplifier
R1
100kW
Co
1/2
LM158
100kW
eI ~
2VPP
0
eo
e2
100k W
RL
10k W
e3
100kW
RB
6.2kW
R3
1M W
1/2
LM158
eO
100kW
R4
100kW
e4
VCC
C2
10mF
100kW
A = 1 + R2
V
R1
(as shown A V = 11)
C1
0.1mF
CI
Figure 21. DC summing amplifier
e1
R2
1MW
e I (mV)
R5
100kW
100kW
eo = e1 + e 2 - e3 - e 4
where (e1 + e 2) ≥ (e3 + e 4)
to keep eo ≥ 0V
Figure 22. High input Z, DC differential amplifier Figure 23. High input Z adjustable gain DC
instrumentation amplifier
R1
100k W
R4
100kW
R2
100kW
1/2
LM158
e1
R1
100kW
1/2
LM158
R3
100kW
+V1
+V2
R2
2k W
1/2
LM158
R5
100k W
Vo
e2
R2
if R1 = R5 and
R3 = R4 = R6 = R7
e o = [ 1 + 2R1
----------- ] ( (e2 + e 1)
R2
As shown eo = 101 (e2 + e 1)
As shown eo = 101 (e2 + e1)
10/16
R4
100k W
1/2
LM158
Gain adjust
1/2
LM158
if R1 = R5 and R3 = R4 = R6 = R7
eo = [1 + 2R1
----------- ] ( (e 2 + e1)
R3
100k W
R6
100k W
R7
100k W
eO
LM158-LM258-LM358-LM158A-LM258A-LM358A
Figure 24. Using symmetrical amplifiers to
reduce input current
I
eI
IB
I
IB
1/2
LM158
Typical Applications
Figure 25. Low drift peak detector
IB
eo
2N 929
IB
1mF
ZI
IB
3MW
C
eI
0.001mF
IB
IB
1/2
LM158
Input current compensation
1.5MW
R
1MW
eo
Zo
2I B
2N 929
2IB
1/2
LM158
1/2
LM158
0.001mF
IB
3R
3MW
IB
1/2
LM158
Input current
compensation
Figure 26. Active band-pass filter
R1
100kW
C1
330pF
R2
100kW
+V1
1/2
LM158
R5
470kW
R4
10MW
1/2
LM158
C2
R3
100kW
330 pF
R6
470kW
Vo
1/2
LM158
R7
100kW
VCC
R8
100kW
C3
10mF
11/16
Package Mechanical Data
5
LM158-LM258-LM358-LM158A-LM258A-LM358A
Package Mechanical Data
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages.
These packages have a Lead-free second level interconnect. The category of second level
interconnect is marked on the package and on the inner box label, in compliance with JEDEC
Standard JESD97. The maximum ratings related to soldering conditions are also marked on
the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at:
www.st.com..
5.1
DIP8 Package
Plastic DIP-8 MECHANICAL DATA
mm.
inch
DIM.
MIN.
A
TYP
MAX.
MIN.
3.3
0.7
B
1.39
1.65
0.055
B1
0.91
1.04
0.036
b1
MAX.
0.130
a1
b
TYP.
0.028
0.5
0.38
0.041
0.020
0.5
D
0.065
0.015
0.020
9.8
0.386
E
8.8
0.346
e
2.54
0.100
e3
7.62
0.300
e4
7.62
0.300
F
7.1
0.280
I
4.8
0.189
L
Z
3.3
0.44
0.130
1.6
0.017
0.063
P001F
12/16
LM158-LM258-LM358-LM158A-LM258A-LM358A
5.2
Package Mechanical Data
SO-8 Package
SO-8 MECHANICAL DATA
DIM.
mm.
MIN.
MAX.
MIN.
A
1.35
1.75
0.053
0.069
A1
0.10
0.25
0.04
0.010
A2
1.10
1.65
0.043
0.065
B
0.33
0.51
0.013
0.020
C
0.19
0.25
0.007
0.010
D
4.80
5.00
0.189
0.197
E
3.80
4.00
0.150
e
TYP
inch
1.27
TYP.
MAX.
0.157
0.050
H
5.80
6.20
0.228
0.244
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
ddd
8˚ (max.)
0.1
0.04
0016023/C
13/16
Package Mechanical Data
5.3
14/16
MiniSO-8 Package
LM158-LM258-LM358-LM158A-LM258A-LM358A
LM158-LM258-LM358-LM158A-LM258A-LM358A
5.4
Package Mechanical Data
TSSOP8 Package
TSSOP8 MECHANICAL DATA
mm.
inch
DIM.
MIN.
TYP
A
MAX.
MIN.
TYP.
1.2
A1
0.05
A2
0.80
b
MAX.
0.047
0.15
0.002
1.05
0.031
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.008
D
2.90
3.00
3.10
0.114
0.118
0.122
E
6.20
6.40
6.60
0.244
0.252
0.260
E1
4.30
4.40
4.50
0.169
0.173
0.177
e
0.65
K
0˚
L
0.45
L1
1.00
0.60
1
0.006
0.039
0.041
0.0256
8˚
0˚
0.75
0.018
8˚
0.024
0.030
0.039
0079397/D
15/16
LM158-LM258-LM358-LM158A-LM258A-LM358A
R e v is io n H is to r y
6
Revision History
Date
Revision
Changes
July 2003
1
First Release
Jan. 2005
2
Rthja and Tj parameters added in AMR Table 1 on page 3
July 2005
3
ESD protection inserted in Table 1 on page 3
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
16/16