ETC NA1TR8

nanoNET TRX
Transceiver (NA1TR8)
Datasheet
Version 2.09
NA-03-0111-0239-2.09
Document Information
nanoNET TRX Transceiver (NA1TR8) Datasheet
Document Information
Document Title:
nanoNET TRX Transceiver (NA1TR8) Datasheet
Document Version:
2.09
Published (yyyy-mm-dd):
2007-12-20
Current Printing:
2007-12-20, 4:22 pm
Document ID:
NA-03-0111-0239-2.09
Document Status:
Released
Disclaimer
Nanotron Technologies GmbH believes the information contained herein is correct and accurate at the time of release. Nanotron
Technologies GmbH reserves the right to make changes without further notice to the product to improve reliability, function or
design. Nanotron Technologies GmbH does not assume any liability or responsibility arising out of this product, as well as any
application or circuits described herein, neither does it convey any license under its patent rights.
As far as possible, significant changes to product specifications and functionality will be provided in product specific Errata
sheets, or in new versions of this document. Customers are encouraged to check the Nanotron website for the most recent
updates on products.
Trademarks
nanoNET© is a registered trademark of Nanotron Technologies GmbH. All other trademarks, registered trademarks, and product
names are the sole property of their respective owners.
This document and the information contained herein is the subject of copyright and intellectual property rights under international
convention. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any
form by any means, electronic, mechanical or optical, in whole or in part, without the prior written permission of Nanotron
Technologies GmbH.
Copyright © 2007 Nanotron Technologies GmbH.
Life Support Policy
These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can
reasonably be expected to result in personal injury. Nanotron Technologies GmbH customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Nanotron Technologies GmbH for any damages
resulting from such improper use or sale.
Electromagnetic Interference / Compatibility
Nearly every electronic device is susceptible to electromagnetic interference (EMI) if inadequately shielded, designed, or otherwise configured for electromagnetic compatibility.
To avoid electromagnetic interference and/or compatibility conflicts, do not use this device in any facility where posted notices
instruct you to do so. In aircraft, use of any radio frequency devices must be in accordance with applicable regulations. Hospitals
or health care facilities may be using equipment that is sensitive to external RF energy.
With medical devices, maintain a minimum separation of 15 cm (6 inches) between pacemakers and wireless devices and some
wireless radios may interfere with some hearing aids. If other personal medical devices are being used in the vicinity of wireless
devices, ensure that the device has been adequately shielded from RF energy. In a domestic environment this product may
cause radio interference in which case the user may be required to take adequate measures.
CAUTION! Electrostatic Sensitive Device. Precaution should be used when handling the device in order to prevent permanent damage.
Page ii NA-03-0111-0239-2.09
© 2007 Nanotron Technologies GmbH.
Table of Contents
nanoNET TRX Transceiver (NA1TR8) Datasheet
Table of Contents
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
1 Chip Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1
1.2
1.3
Quick Reference Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Block Diagram – Simplified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5 Nominal Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6 Pin Connections (MLF44 7X7 mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
7 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.1
8.2
8.3
8.4
8.5
8.6
General DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmitter (TX) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receiver (RX) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital Interface Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Management and Sleep/Wake-Up Circuitry Parameters . . . . . . . . . . . . . . . . .
Interface to Digital Controller Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11
12
13
14
14
15
9 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
Switch Time from TX to RX (from Ack to Data mode). . . . . . . . . . . . . . . . . . . . . . . . .
Switch Time from TX to RX (from Data to Ack mode). . . . . . . . . . . . . . . . . . . . . . . . .
Switch Time from RX to TX (from Ack to Data mode). . . . . . . . . . . . . . . . . . . . . . . . .
Switch Time from RX to TX (from Data to Ack mode). . . . . . . . . . . . . . . . . . . . . . . . .
Turn-On Time TX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Turn-On Time RX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16 MHz Crystal Start-Up Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LO Frequency Calibration Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI Bus Read and Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17
17
17
18
18
19
19
19
19
10 Output Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
11 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
12 Tape and Reel Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
12.1
12.2
Reel Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Tape Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
13 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
A1 Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
A1.1
A1.2
Recommended Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Recommended PCB Layout for RF Part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
© 2007 Nanotron Technologies GmbH.
NA-03-0111-0239-2.09 Page iii
Table of Contents
nanoNET TRX Transceiver (NA1TR8) Datasheet
A1.3
Recommended PCB Layout for IF Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A2 Reference Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A2.1
Reference Design Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A3 Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
About Nanotron Technologies GmbH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Page iv NA-03-0111-0239-2.09
© 2007 Nanotron Technologies GmbH.
List of Tables
nanoNET TRX Transceiver (NA1TR8) Datasheet
List of Tables
Table 1: Quick reference data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2: Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3: nanoNET TRX Transceiver (NA1TR8) pin description. . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 4: General DC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 5: Transmitter (TX) parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 6: Receiver (RX) parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 7: Digital sensor/actuator interface parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 8: Power management and sleep/wake-up circuitry parameters . . . . . . . . . . . . . . . . . . . 14
Table 9: Interface to digital controller parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 6: SPI timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 10: Package dimensions labels (unless specified, dimensions are in millimeters) . . . . . 23
Table 11: Reference design bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
List of Figures
Figure 1:
nanoNET TRX (NA1TR8) block diagram - simplified . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 2:
Example application showing recommended circuitry . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 3:
nanoNET TRX Transceiver block diagram (simplified) . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 4:
nanoNET TRX (MLF44) pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 5:
Switch time from TX to RX (from Ack to Data mode) . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 6:
Switch time from TX to RX (from Data to Ack mode) . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 7:
Switch time from RX to TX (from Ack to Data mode) . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 8:
Switch time from RX to TX (from Data to Ack mode) . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 9:
Turn-on time TX: time = tTxTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 10:
Turn-on time RX: time = tRxTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 11:
SPI bus write timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 12:
SPI bus read timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 13:
nanoNET TRX output power (pout[dBm] by register value) . . . . . . . . . . . . . . . . . . 21
Figure 14:
Total current consumption (IDDA[mA] by register value) . . . . . . . . . . . . . . . . . . . . 21
Figure 15:
Total current consumption (IDDA[mA] by output power [dBm]) . . . . . . . . . . . . . . . 22
Figure 16:
MLF44 7x7 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 17:
Reel dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 18:
Tape dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 19:
Example application showing recommended circuitry . . . . . . . . . . . . . . . . . . . . . . 27
Figure 20:
Recommended PCB layout for RF part: schematic 1 of 1 . . . . . . . . . . . . . . . . . . . 28
Figure 21:
RF part: PCB board overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 22:
RF part: names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 23:
RF part: top layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 24:
RF part: layer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 25:
RF part: layer 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
© 2007 Nanotron Technologies GmbH.
NA-03-0111-0239-2.09 Page v
List of Tables
nanoNET TRX Transceiver (NA1TR8) Datasheet
Figure 26:
RF part: bottom layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 27:
Recommended PCB layout for IF part: schematic 1 of 1 . . . . . . . . . . . . . . . . . . . . 31
Figure 28:
IF part: PCB board overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 29:
IF part: names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 30:
IF part: top layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 31:
IF part: layer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 32:
IF part: layer 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 33:
IF part: bottom layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 34:
Reference design: schematic 1 of 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 35:
Reference design: schematic 2 of 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 36:
Reference design: schematic 3 of 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 37:
Reference design: top layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 38:
Reference design: layer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 39:
Reference design: layer 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 40:
Reference design: bottom layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 41:
Reference design: top layer names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 42:
Reference design: bottom layer names (Inverted) . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 43:
Reference design: layers, standard structure (example) . . . . . . . . . . . . . . . . . . . . 38
Page vi NA-03-0111-0239-2.09
© 2007 Nanotron Technologies GmbH.
Chip Summary
nanoNET TRX Transceiver (NA1TR8) Datasheet
1
1
Chip Summary
The nanoNET chip is a low-power, highly integrated mixed signal chip utilizing Nanotron’s unique wireless Chirp Spread Spectrum (CSS) communication technology.
This innovative modulation technique permits the development of chips
that have extremely low power consumption, operate over a wide range of
temperatures, and perform effortlessly in robust wireless networks operating in the 2.45 GHz ISM band.
This chip offers an ideal solution for battery powered applications that require a reliable and extremely long operating lifetime, such as several
years.
For communication over the air, CSS uses Upchirps and Downchirps with a symbol duration of Tsymbol = 1
µs and an effective bandwidth of Bchirp = 64 MHz.
A wide variety of systems and applications can be developed with this novel technology, with the additional
advantage of being able to select from data rates of either 500 kbps, 1 Mbps, or 2 Mbps.
Conveniently, only a minimal number of external components are required to build a fully operational bi-directional communication node.
Target Applications
Industries that can benefit from nanoNET's robust, reliable communication include, but are not limited to:
+
Active RFID
+
Home Automation
+
Industrial Control and Monitoring
+
Meter and Sensor Reading
Key Features1
+
Provides a single chip solution for a 2.45 GHz
ISM band RF transceiver
+
Carrier to Interference is C/I = -3…0 dB
@ C = -82 dBm
+
Allows unregulated 2.4 V ... 3.6 V supply
voltage
+
Processing gain is 17 dB
+
+
Includes an integrated SPI (slave mode only)
Current consumption is 35 mA (RX),
78 mA (TX) @ 8 dBm
+
Includes an integrated microcontroller management function
+
Standby current with active RTC is 1.5 µA
+
Allows an operating temperature range of
between -40° C to +85° C
+
Includes an integrated 4 channel digital I/O
+
Includes an integrated MAC controller
+
Provides a 32.768 kHz clock for microcontrollers
+
Includes a programmable clock output at digital output
+
Provides a maximum data rate of 2 Mbps
+
Provides a maximum range for LOS (without
interferers) at 900 m outdoors and 60 m
indoors (with optimal conditions)
+
Uses an effective chirp bandwidth of
64 MHz
+
Receiver sensitivity is -92 dBm @ 1 Mbps
1. At nominal conditions, except otherwise specified. (See Nominal Conditions on page 7.)
© 2007 Nanotron Technologies GmbH.
NA-03-0111-0239-2.09 Page 1
1
Chip Summary
nanoNET TRX Transceiver (NA1TR8) Datasheet
1.1 Quick Reference Data
Table 1: Quick reference data
Parameter
Value
Unit
Maximum supply voltage
3.6
V
Minimum supply voltage
2.4
V
Maximum output power
8
dBm
Maximum data rate
2
Mbps
Typical receiver sensitivity at nominal conditionsa
-92
dBm
Typical receiver sensitivity @ 2 Mbps
-86
dBm
In transmit mode @ -15 dBm output power & nominal conditionsa
58
mA
In transmit mode @ -5 dBm output power & nominal conditionsa
64
mA
In receive mode & nominal conditionsa
35
mA
In standby mode with active RTCb
1.5
µA
-40 to +85
oC
Typical power supply voltage VDDA (analog block)
3
V
Typical power supply voltage VDDD (digital block)
3
V
Chirp
–
2400
MHz
2441.750
MHz
2483.5
MHz
Typical supply current
Operating temperature range
Typical Operating Voltages
Modulation method
Operating frequency range
Minimum
Typical
Maximum
a. See Nominal Conditions on page 7.
b. Under nominal conditions. See Nominal Conditions on page 7.
Page 2 NA-03-0111-0239-2.09
© 2007 Nanotron Technologies GmbH.
Chip Summary
nanoNET TRX Transceiver (NA1TR8) Datasheet
1
1.2 Block Diagram – Simplified
VDDA
Xtal2A
Xtal2B
Xtal1A
Xtal1B
DilO1
DilO2
DilO3
DilO4
VSSD
PowerUp
Reset
VDDD
VDDCap
TxA
µCVccExt
TxB
µCReset
TX
µCIrq
RX
Digital
Analog
SpiClk
SpiSsn
TxRx
SpiRxD
RxA
SpiTxD
RxB
IfOutP
IfOutN
IfInP1
IfInN1
IfInP2
IfInN2
AGCCap
VSSA
VSSD
Complementary Dispersive
Delay Line DS1804C
(CDDL)
Figure 1: nanoNET TRX (NA1TR8) block diagram - simplified
© 2007 Nanotron Technologies GmbH.
NA-03-0111-0239-2.09 Page 3
1
Chip Summary
nanoNET TRX Transceiver (NA1TR8) Datasheet
1.3 Sample Application
The following application is an example of the nanoNET TRX Transceiver used with a temperature measurement and control device.
Shaded area is recommended
circuitry
Bandpass Filter
Balun
VCC
44
IfOutN
VSSA
RxB
RxA
VSSA
TxB
TxA
VSSA
VSSA
IfOutP
34
Port A
30
5
29
6
28
nanoNET TRX (NA1TR8)
7
27
8
26
9
25
10
24
11
23
14
15
16
17
18
19
20
21
VDDA
IfInN1
IfInP1
VSSA
CDDL
1804
IfInP2
IfInN2
AFCCap
AGCCap
VSSD
PowerUpReset
µCVccExt
22
VDDD
13
VSSD
VDDD
12
DilO4
SpiSsn
VDDDCap
35
4
DilO3
µCReset
36
31
DilO2
µCIrq
37
3
DilO1
VSSD
38
32
SpiRxD
TxRx
39
Port B
Xtal1B
40
2
SpiClk
Xtal1A
41
33
SpiTxD
Xtal2A
42
Port C
Xtal2B
43
1
VSSD
VDDA
VDDA
VDDA
VDDA
VCC
+
VCC
Actuator
Microcontroller
Temperature
Control Unit
Note: Pin 20 (DilO4)
32.768 kHz clock operating
after reset/power up.
+
-
Temperature
Sensor
Figure 2: Example application showing recommended circuitry
Note: A full description of the sample application and PCB layout is provided in Appendix 1: Sample Application on page 27.
Page 4 NA-03-0111-0239-2.09
© 2007 Nanotron Technologies GmbH.
General Description
nanoNET TRX Transceiver (NA1TR8) Datasheet
2
2
General Description
The nanoNET IC is a extremely low power, highly
integrated mixed signal chip utilizing Chirp Spread
Spectrum (CSS), a novel wireless communication
technology developed by Nanotron Technologies.
Fully Integrated Chip
The nanoNET chip is a fully integrated transceiver
consisting of:
+
a complete analog receiver (from antenna input
to the demodulated digital data output).
+
a complete transmitter (from digital data input to
RF power amplifier output which can be directly
connected to the antenna input) with additional
support for an external power transistor. An
external transistor or amplifier can boost transmission power from, for example, +8 dBm to
+20 dBm (6.3 mW to 100 mW respectively).
+
a programmable digital controller communicating with an external microcontroller via a serial
peripheral interface (SPI). This controller incorporates a baseband controller and a Medium
Access Controller (MAC). The baseband controller performs the processing of data (framing,
error correction, en/decryption, and so on) while
the MAC controller applies CSMA/CA, TDMA or
hybrid-access schemes for medium access.
About Chirp Spread Spectrum
Using CSS, this chip produces Upchirps and
Downchirps with a symbol duration of Tsymbol = 1µs
and an effective frequency bandwidth of Bchirp = 64
MHz. CSS enables the development of different
systems where application software can select
physical data rates of 500 kbps, 1 Mbps, or 2 Mbps.
Upchirp
Downchirp
This IC is designed in such a way that only a minimum number of external elements are required to
develop a fully operational bi-directional wireless
communication node. Even very slow microcontrollers can work together with this high speed transceiver, due to its use of FIFOs (First In, First Out).
The nanoNET chip provides two buffers (a 1024 bit
receive buffer and a 1024 bit transmit buffer) dedicated to storing the payload of either received packets or ready to be transmitted data packets. These
buffers can be accessed independently of each
other – the receive buffer can receive data from the
antenna while the transmit buffer can simultaneously be filled with data for the next packet transmission.
© 2007 Nanotron Technologies GmbH.
Programmable Digital Support Block
A programmable support block is provided, which
consists of a real time clock, wake up circuitry,
power management, low battery voltage measurement, and several adjustment and calibration functions for the analog part of the transceiver.
The digital IO pin number 4 (DilO4) on the chip provides a 32.768 kHz clock for use by an external
microcontroller on chip startup. It can be switched
off after power up if not needed or it can be programmed to operate in another frequency (32.768
kHz or from 125 kHz to 16 MHz). Furthermore, the
three other digital IO pins (DilO1, DilO2, DilO3) provided by the chip can also be programmed to operate in a frequency in the same range as DilO4.
Moreover, all important functions of this block can
be setup and controlled by an application software.
A Receive Signal Strength Indicator (RSSI) is also
provided, which can be supported and controlled by
the application. This RSSI value is required when
CSMA is implemented and can be used, for example, to indicate when the air interface is free or busy.
The bit processing methods of the nanoNET chip
include:
+
Scrambling
+
CRC (Cyclic Redundancy Check) generation
and checking (CRC types include: ISO/
IEC3309, CCITT X.25, X.75, ETS 300 125 / IEC
60870-5-1 / CCITT-32)
+
128 bit encryption/decryption (stream cipher
with support of one time pads)
+
FEC (forward error correction) block coded
Scrambling, encryption/decryption, and FEC can be
enabled by the application, while the CRC type is
selectable.
Transmission power can be programmed by the
application and can be reduced in steps (from maximum +8 dBm) in a range of Gain ≥ 35 dB. This
means that the transmission power can vary from 27 dBm to +8 dBm without any additional external
power amplifier or attenuator.
Receiver Sensitivity
The sensitivity of the nanoNET TRX Transceiver is
defined by the raw data mode (data not coded or
encrypted in anyway) where BER = 0.001. Sensitivity is Psensitivity = -92 dBm or better. For an isotropic
antenna, link budget is equal to
Alink_budget = 100 dB.
NA-03-0111-0239-2.09 Page 5
3
3
Block Diagram
nanoNET TRX Transceiver (NA1TR8) Datasheet
Block Diagram
RxB
RxA
TxRx
TxB
TxA
Antenna
(optional impedance matching circuits)
TX RX
LNA
DPA
SMIX
PGC
Analog
IQ Modulator
IfOutP
Digitally
Controlled
Oscillator
I
IfOutN
IfInP1
Q
TX
FDCO+
LPF
TX
FDCO-
LPF
IfInN1
RX
FDCO+
RX
FDCO-
IfInP2
IfInN2
FDCO
CDV
VDDA
POMD
AGCCap
32.768
kHz
RX
Threshold
AGC
Xtal2B
Xtal1A
LPF
α1
α2
α3
α4
RC
Oscillator
POMD
10:1
Divider
FDCO/10
LPF
DAC
DAC
Xtal2A
Complementary Dispersive
Delay Line DS1804C
(CDDL)
VGA
16
MHz
Xtal1B
VSSA
COMP
DilO1
DilO2
Radio Control Register
and Radio Calibration
DilO3
COMP
Bit Detector
DilO4
VSSD
MAC State
Machine
Digital
RTC
Wake Up
Timer
VDDD
Digital Bit Processing
(CRC, Scrambling, FEC, Encryption, Decryption)
Power
Management
PowerUp
Reset
VSSD
FIFO
VDDCap
Microcontroller
Management
µCVccExt
µCReset
Microcontroller
Interface
µCIrq
SpiClk
SpiSsn
SpiRxD
SpiTxD
Figure 3: nanoNET TRX Transceiver block diagram (simplified)
Page 6 NA-03-0111-0239-2.09
© 2007 Nanotron Technologies GmbH.
Absolute Maximum Ratings
nanoNET TRX Transceiver (NA1TR8) Datasheet
4
4
Absolute Maximum Ratings
Table 2: Absolute maximum ratings
Valuea
Parameter
Maximum received power
-20
Units
Item
dBm
5.1
Temperatures
5.2
Operating temperature
(operating ambient temperature range)
+85
°C
5.3
Operating junction temperature
(operating junction temperature range in
TX mode)
+95
°C
5.4
Operating junction temperature
(operating junction temperature range in
RX mode)
+90
°C
5.5
Storage temperature
(storage temperature range)
+125
°C
5.6
Reflow solder temperature (lead-free package)
+242
°C
5.7
Total power dissipation
450
mW
5.8
Supply voltage (VDDA, VDDD)
3.6
V
5.9
a. It is critical that the ratings provided in Absolute Maximum Ratings be carefully observed. Stress exceeding
one or more of these limiting values may cause permanent damage to the device.
5
Nominal Conditions
Nominal conditions are as specified below, except
otherwise specified:
+
Reference design (for measurement purposes
only) has been used. See Reference Design on
page 33.
+
Tjunct = 30° C
+
VSSA = VSSD = GND
+
VDDA = VDDD = 3.0 V
+
Transmission/reception @ 1 Mbps and up/down
chirp mode.
+
Raw data mode: no CRC, no FEC, no encryption, no bit scrambling.
+
BER = 0.001 during receive period.
+
RF output power during transmit phase = 6.3
mW (+8 dBm) EIRP measured during continuous transmission.
+
All RF ports are matched according to this specification.
© 2007 Nanotron Technologies GmbH.
+
For range measurement, two identical nanoNET
systems equipped with antennae representing
1.6 dBi gain have been used. Antennae with
vertical E-polarization and omnidirectional horizontal radiation pattern have been used.
+
Outdoor (open space) range measurement was
performed on flat terrain, without vegetation
higher than 0.2 m above ground, and without
visible obstacles and other objects that could
reasonably influence measurement results.
Antennae for both nanoNET systems have been
located 1.5 m above ground.
+
Indoor range measurement was performed
inside typical European office building where
both nanoNET systems were located on the
same floor.
+
All RF powers (TX output power, RX sensitivity,
etc.) are measured on the IC terminals (pins)
under impedance matched conditions.
NA-03-0111-0239-2.09 Page 7
6
nanoNET TRX Transceiver (NA1TR8) Datasheet
VSSA
TxA
TxB
VSSA
RxA
RxB
VSSA
IfOutN
IfOutP
Pin 1 Identification
VSSA
Pin Connections (MLF44 7X7 mm)
VDDA
6
Pin Connections (MLF44 7X7 mm)
44
43
42
41
40
39
38
37
36
35
34
VDDA
1
33 VDDA
Xtal2B
2
32 IfInN1
Xtal2A
3
Xtal1A
4
Xtal1B
5
TxRx
6
VSSD
7
µClrq
8
µCReset
9
31 IfInP1
NA1TR8
30 VSSA
29 IfInP2
AT46205-1
28 IfInN2
nanoNET TRX (NA1TR8)
A41T6886
27 AFCCap
26 AGCCap
452 DVX
25 VSSD
SpiSsn 10
24 PowerUpReset
VDDDCap 11
17
18
19
20
21
22
DiIO3
DiIO4
VSSD
VDDD
SpiTxD
16
DiIO2
VSSD
15
DiIO1
14
SpiRxD
13
SpiClk
12
VDDD
23 µCVccExt
Figure 4: nanoNET TRX (MLF44) pin connections
Note: The pinning of the nanoNET TRX Transceiver described in this datasheet includes a 44 pin
package. See Package Dimensions on page 23.
7
Pin Description
Table 3: nanoNET TRX Transceiver (NA1TR8) pin description
Pin
Name
Type
Description
1
VDDA
–
2
Xtal2B
Input
Input for 32.768 kHz quartz oscillator.
3
Xtal2A
Input
Input for 32.768 kHz quartz oscillator.
4
Xtal1A
Input
Input for 16 MHz reference quartz oscillator.
5
Xtal1B
Input
Input for 16 MHz reference quartz oscillator.
Power supply for analog part.
External power amplifier control pin. Allows the use of an external amplifier. When activated by the register RfTxExtPampEnOutEn, this pin goes to low during TX mode. During nontransmit cycles, it has high-impedance. When not activated, it
always has high-impedance.
6
TxRx
Output
7
VSSD
–
8
µCIrq
Output
Interrupt request to external microprocessor.
9
µCReset
Output
Reset for external microprocessor.
Page 8 NA-03-0111-0239-2.09
Ground (digital).
© 2007 Nanotron Technologies GmbH.
Pin Description
nanoNET TRX Transceiver (NA1TR8) Datasheet
7
Table 3: nanoNET TRX Transceiver (NA1TR8) pin description
Pin
Name
Type
Description
10
SpiSsn
Input
Serial Peripheral Interface Slave Select (low active) is externally
asserted before the microcontroller (master) can exchange data
with the nanoNET TRX IC. Must be low before data transactions
and must stay low for the duration of the transaction.
11
VDDDCap
–
VDDD blocking capacitor pad used for blocking the internal digital
power supply by at least one 100nF capacitor connected to
VSSD.
12
VDDD
–
Power supply for digital part.
13
VSSD
–
Ground (digital).
14
SpiTxD
Output
15
SpiClk
Input
Serial Peripheral Interface Clock is generated by the microcontroller (master) and synchronizes data movement in and out of
the device through the SpiRxD and SpiTxD respectively.
16
SpiRxD
Input
Serial Peripheral Interface Receive Data (MOSI).
17
DiIO1
Input/
Output
Digital Input or Output (programmable), line 1.
18
DiIO2
Input/
Output
Digital Input or Output (programmable), line 2.
19
DiIO3
Input/
Output
Digital Input or Output (programmable), line 3.
20
DiIO4
Input/
Output
21
VSSD
–
Ground (digital).
22
VDDD
–
Power supply for digital part.
23
µCVccExt
Output
24
Power
UpReset
Input
Power up reset line.
25
VSSD
Input
Ground (digital).
26
AGCCap
–
Capacitor for AGC.
27
AFCCap
–
Capacitor for AFC.
28
IfInN2
Input
IF Input (channel 2, down-chirp) - connected to port B of Complementary Dispersive Delay Line (CDDL), line N.
29
IfInP2
Input
IF Input (channel 2, down-chirp) - connected to port B of Complementary Dispersive Delay Line (CDDL), line P.
30
VSSA
–
Serial Peripheral Interface Transmit Data (MISO).
Digital Input or Output (programmable), line 4.
© 2007 Nanotron Technologies GmbH.
Note: 32.768 kHz clock operating on this pin after reset/power
up.
Power supply for external microprocessor
Ground (analog).
NA-03-0111-0239-2.09 Page 9
7
Pin Description
nanoNET TRX Transceiver (NA1TR8) Datasheet
Table 3: nanoNET TRX Transceiver (NA1TR8) pin description
Pin
Name
Type
Description
31
IfInP1
Input
IF Input (channel 1, up-chirp) - connected to port C of Complementary Dispersive Delay Line (CDDL), line P.
32
IfInN1
Input
IF Input (channel 1, up-chirp) - connected to port C of Complementary Dispersive Delay Line (CDDL), line N.
33
VDDA
–
34
IfOutP
Output
IF Output - connected to port A of Complementary Dispersive
Delay Line (CDDL), line P.
35
IfOutN
Output
IF Output - connected to port A of Complementary Dispersive
Delay Line (CDDL), line N.
36
VSSA
–
37
RxB
Input
Receiver input.
38
RxA
Input
Receiver input.
39
VSSA
–
40
TxB
Output
Transmitter output.
41
TxA
Output
Transmitter output.
42
VSSA
–
Ground (analog).
43
VSSA
–
Ground (analog).
44
VDDA
–
Power supply for analog part.
Page 10 NA-03-0111-0239-2.09
Power supply for analog part.
Ground (analog).
Ground (analog).
© 2007 Nanotron Technologies GmbH.
8
Electrical Specifications
nanoNET TRX Transceiver (NA1TR8) Datasheet
8
Electrical Specifications
8.1 General DC Parameters
Table 4: General DC parameters
Parameter
Min
Typical
Max
Unit
Operating frequency range
2400
2441.750
2483.5
MHz
2.4
3.0
3.6
V
–
Chirp
–
–
-40
+25
+85
°C
Power down (Internal Real Time Clock
Active)
–
1.5
4
µA
Power up
–
150
200
µA
Standby
–
2.4
2.6
mA
Ready
–
9.6
10.5
mA
RX (up/down)
–
35
–
mA
TX (Pout = +8 dBm)
–
82
–
mA
VDDA supply voltage
2.4
3
3.6
V
VDDD supply voltage
2.4
3
3.6
V
VIL (low level input voltage)b
-0.3
–
0.8
V
VIH (high level input voltage)b
2.0
–
VDDD + 0.3
V
VOL (low level output voltage)
–
–
0.4
V
VOH (high level output voltage)
2.4
–
–
V
IOH (high output current)
-2
–
–
mA
IOL (low output current)
2
–
–
mA
Supply voltage range VDDA ≅ VDDD
Modulation method
Operating temperature range
Supply currenta
Supply Voltage
a. Under nominal conditions, except otherwise specified.
b. Given only for Vdd = 3.0 to 3.6
© 2007 Nanotron Technologies GmbH.
NA-03-0111-0239-2.09 Page 11
8
Electrical Specifications
nanoNET TRX Transceiver (NA1TR8) Datasheet
8.2 Transmitter (TX) Parameters
Under nominal conditions unless specified. See Nominal Conditions on page 7.
Table 5: Transmitter (TX) parameters
Parameter
Min
Typical
Max
Unit
6
8
–
dBm
Dynamic for output power control
–
39
–
dB
Number of steps for output power
control
–
19
–
–
Load impedance
–
150
–
Ω
Type of load
–
Balanced
–
Transmitter spurious emissionsb
(1 GHz ... 12.5 GHz)
–
–
-80
dBm/Hz
Transmitter carrier suppression
–
-20
–
dBc
Carrier frequency
–
2441.750
–
MHz
-0.5
± 0.275
+0.5
MHz
–
244.175
–
MHz
Quartz operating frequency
–
16
–
MHz
Recommended accuracy
–
± 50
–
ppm
Maximum equivalent serial
resistance of the quartz resonator
–
–
50
Ω
Load capacitance of quartz
resonator
–
27
–
pF
Transmitter nominal output powera
Transmitter output power controlled in steps
Carrier frequency accuracy
Chirp sample frequency
Reference quartz oscillator
a. The transmitter output power is the average power related to the peak envelope power of the chirp waveform. (Due to shape of the waveform envelope, the measured average power of the chirp is about 1dB
smaller than the peak envelope power.)
b. The maximum transmitter output power has to be adjusted to ≤ 8 dBm to secure from overdrive.
Page 12 NA-03-0111-0239-2.09
© 2007 Nanotron Technologies GmbH.
8
Electrical Specifications
nanoNET TRX Transceiver (NA1TR8) Datasheet
8.3 Receiver (RX) Parameters
Under nominal conditions unless specified. See Nominal Conditions on page 7.
Note: The measurement results provided in this table were reached by using CDDL. For information on the
CDDL, refer to the Complementary Dispersive Delay Line Datasheet.
Table 6: Receiver (RX) parameters
Parameter
Min
Typ
Max
Unit
Receiver sensitivity @ 1 Mbps
–
-92
–
dBm
Receiver sensitivity @ 2 Mbps
–
-86
–
dBm
Input impedance @ 2.44 GHza
–
7–j56
–
Ω
Type of input
–
Balanced
–
–
Center frequency
–
2441.75
–
MHz
persive delay line (CDDL)a
–
64
–
dB
LO frequency
–
2691.75
–
MHz
-0.5
± 0.275
0.5
MHz
LO rejection noise PRX-LO
@ LNA input pin
–
–
-40
dBm
Programmable frequency stepb
–
± 500
–
kHz
IF frequency (center)
–
250
–
MHz
IF frequency bandwidth (-3 dB)a
(determined by CDDL)
90
–
–
MHz
IF output impedance (balanced)
@ 250 MHza
–
100
–
Ω
Type of IF output
–
Balanced
–
–
Impedance of IF input 1 (balanced)
@ 250 MHza
–
1.6
–
kΩ
Impedance of IF input 2 (balanced)
@ 250 MHza
–
1.6
–
kΩ
Type of IF1, IF2 input
–
Balanced
–
–
Maximum received power
–
–
-20
dBm
Gain from receiver input up to input to dis-
LO frequency accuracy
a. Simulated results.
b. The minimum change frequency of the LO.
© 2007 Nanotron Technologies GmbH.
NA-03-0111-0239-2.09 Page 13
8
Electrical Specifications
nanoNET TRX Transceiver (NA1TR8) Datasheet
8.4 Digital Interface Parameters
Under nominal conditions unless specified. See Nominal Conditions on page 7.
Table 7: Digital sensor/actuator interface parameters
Parameter
Value
Unit
Number of independent digital
interfacesa
4
Number
Width of each interface
1
bit
Programmable
–
In/Out
(bi-directional, open-drain with pull-up)
–
Direction
Type
a. At Pin number 4 (DilO4), 32.768 kHz clock operating after reset/power up.
8.5 Power Management and Sleep/Wake-Up Circuitry Parameters
Under nominal conditions unless specified. See Nominal Conditions on page 7.
Table 8: Power management and sleep/wake-up circuitry parameters
Description
Min
Typical
Max
Unit
Quartz operating frequency
–
32.768
–
kHz
Recommended accuracy
–
± 50
–
ppm
Load capacitance of quartz
resonator
–
12.50
–
pF
Maximum equivalent serial
resistance of quartz resonator
–
–
50
kΩ
RTC register length
–
48
–
bit
Epoch date
–
01.01.1970
–
Date
2.4
2.7
3.6
V
Real Time Clock (RTC)
Battery monitor
Battery monitor voltage
Basic dynamic performance (Note: Values in this section are simulation results only)
Switch time from TX to RX
(from Ack to Data mode)
–
24
–
µs
Switch time from TX to RX
(from Data to Ack mode)
–
8
–
µs
Switch time from RX to TX
(from Ack to Data mode)
–
24
–
µs
Switch time from RX to TX
(from Data to Ack mode)
–
8
–
µs
Page 14 NA-03-0111-0239-2.09
© 2007 Nanotron Technologies GmbH.
Electrical Specifications
nanoNET TRX Transceiver (NA1TR8) Datasheet
8
Table 8: Power management and sleep/wake-up circuitry parameters
Description
Min
Typical
Max
Unit
Turn-on time TX
(user command received via SPI and
begin of packet transmission)
–
24
–
µs
Turn-on time RX
(user command received via SPI and
begin of packet reception)
–
6
–
µs
1.5
–
5
ms
–
.2
–
ms
Startup Time for 16 MHz XTAL until stable frequency generation
Calibration time
8.6 Interface to Digital Controller Parameters
Under nominal conditions unless specified. See Nominal Conditions on page 7.
Table 9: Interface to digital controller parameters
Symbol
Description
µCVccExt
High current output /
high impendance
Voltage @ 10mA load
µCReset
Min
Typical
Max
Unit
Notes
Maximum
current output =
10mA /
high impedance
mode
VDD - 100
VDD - 20
VDD
mV
Push-pull, tristate
–
–
–
V
See footnotea
µCIRQ
Push-pull
–
–
–
V
See footnotea .
SpiRxD
SpiClk,
SpiSSn
Input
–
–
–
V
See footnotea
SpiTxD
Open-drain or
push-pull
–
–
–
V
See footnotea
a. Vcc = 2.4V : VOH = 2.0V, VIH = 1.7V, VOL = 0.2V, VIL = 0.7V,
Vcc = 3.0..3.6V : VOH = 2.4V, VIH = 1.7..2.0V, VOL = 0.2V, VIL = 0.8V
Note: Level translator is required for 5V logic level microcontroller.
© 2007 Nanotron Technologies GmbH.
NA-03-0111-0239-2.09 Page 15
8
Electrical Specifications
nanoNET TRX Transceiver (NA1TR8) Datasheet
Intentionally Left Blank
Page 16 NA-03-0111-0239-2.09
© 2007 Nanotron Technologies GmbH.
Timing Diagrams
nanoNET TRX Transceiver (NA1TR8) Datasheet
9
9
Timing Diagrams
Time values in the following diagrams are based on the values as shown in Power Management and Sleep/
Wake-Up Circuitry Parameters on page 14.
9.1 Switch Time from TX to RX (from Ack to Data mode)
The switch time from TX to RX (from Ack to Data mode), tTxRxAckData, is 24 µs.
Tx A/B
...
Ack Packet
..
Rx A/B
tTxRxAckData
Data Packet
Figure 5: Switch time from TX to RX (from Ack to Data mode)
9.2 Switch Time from TX to RX (from Data to Ack mode)
The switch time from TX to RX (from Data to Ack mode), tTxRxDataAck, is 8 µs.
Tx A/B
...
Data Packet
..
Rx A/B
tTxRxDataAck
Ack Packet
Figure 6: Switch time from TX to RX (from Data to Ack mode)
9.3 Switch Time from RX to TX (from Ack to Data mode)
The switch time from RX to TX (from Ack to Data mode), tRxTxAckData, is 24 µs.
Rx A/B
...
Ack Packet
..
Tx A/B
tRxTxAckData
Data Packet
Figure 7: Switch time from RX to TX (from Ack to Data mode)
© 2007 Nanotron Technologies GmbH.
NA-03-0111-0239-2.09 Page 17
9
Timing Diagrams
nanoNET TRX Transceiver (NA1TR8) Datasheet
9.4 Switch Time from RX to TX (from Data to Ack mode)
The switch time from RX to TX (from Data to Ack mode), tRxTxDataAck, is 8 µs.
Rx A/B
...
Data Packet
..
Tx A/B
tRxTxDataAcl
Ack Packet
Figure 8: Switch time from RX to TX (from Data to Ack mode)
9.5 Turn-On Time TX
The Turn-on time for TX, tTxTO, from the reception via SPI of a user command to the beginning of packet
transmission is 24 µs.
...
Tx A/B
SpiClk
SpiRxD
...
Csn
Command requesting
packet transmission
tTxTO
Packet transmission
Figure 9: Turn-on time TX: time = tTxTO
Page 18 NA-03-0111-0239-2.09
© 2007 Nanotron Technologies GmbH.
Timing Diagrams
nanoNET TRX Transceiver (NA1TR8) Datasheet
9
9.6 Turn-On Time RX
The Turn-on time for RX, tRxTO, from the reception via SPI of a user command to the beginning of packet
reception is 6 µs.
SpiClk
SpiRxD
...
Csn
...
Rx A/B
Command requesting
packet reception
tRxTO
Packet reception
Figure 10: Turn-on time RX: time = tRxTO
9.7 16 MHz Crystal Start-Up Time
The start-up time for the quartz oscillator until it reaches a stable frequency generation is within a range of
1.5 to 5 ms. See Power Management and Sleep/Wake-Up Circuitry Parameters on page 14.
9.8 LO Frequency Calibration Time
The time for the Local Oscillator frequency calibration, is approximately 2 ms. See Power Management and
Sleep/Wake-Up Circuitry Parameters on page 14.
9.9 SPI Bus Read and Write Timing
The following timing diagrams shows the read and write timing of the SPI bus. For more details, see
nanoNET TRX Serial Peripheral Interface Specifications.
tLC
tHC
...
SpiClk
tHRxD
tSRxD
Bit 0
SpiRxD
...
tHS
tSS
SpiSsn
Bit N
...
Figure 11: SPI bus write timing
© 2007 Nanotron Technologies GmbH.
NA-03-0111-0239-2.09 Page 19
9
Timing Diagrams
nanoNET TRX Transceiver (NA1TR8) Datasheet
...
...
SpiClk
tHTxD / tPTxDZ
tPDTxD
...
SpiTxD
Bit 0
...
Bit N
tHS
SpiSsn
...
...
Figure 12: SPI bus read timing
The following table shows the SPI timing values.
Table 6: SPI timing values
Parameter
Min
Max
fmax
–
16 MHz
tLC
22 ns
–
Low time SpiClk
tHC
22 ns
–
High time SpiClk
tSS
10 ns
–
SpiSsn Setup
tHS
5 ns
-
SpiSsn Hold
tSRxD
10 ns
–
SpiRxD Setup
tHRxD
5 ns
–
SpiRxD Hold
tPDTxD
–
18 ns
tHTxD
2 ns
–
tPTxDZ
-
18 ns
Page 20 NA-03-0111-0239-2.09
Comment
SpiClk
SpiTxD Propagation Delay Drive
SpiTxD Hold
SpiTxD Propagation Delay High Impedance
© 2007 Nanotron Technologies GmbH.
Output Power Control
nanoNET TRX Transceiver (NA1TR8) Datasheet
10
10
Output Power Control
The output power of the nanoNET TRX Transceiver can be set typically in a range of between
-27 dBm to + 8 dBm. The following graphs show the range of possibilities. Nominal conditions except power
supply voltage and RF output power.
Figure 13: nanoNET TRX output power (pout[dBm] by register value)
Figure 14: Total current consumption (IDDA[mA] by register value)
© 2007 Nanotron Technologies GmbH.
NA-03-0111-0239-2.09 Page 21
10
Output Power Control
nanoNET TRX Transceiver (NA1TR8) Datasheet
Figure 15: Total current consumption (IDDA[mA] by output power [dBm])
Page 22 NA-03-0111-0239-2.09
© 2007 Nanotron Technologies GmbH.
Package Dimensions
nanoNET TRX Transceiver (NA1TR8) Datasheet
11
11
Package Dimensions
The following shows the dimensions of MLF44 44 Pin 7x7 lead-free package.
Q
P
M
Seating Plane
N
A
B
H
D
E
C
G
First Angle
Projections
Figure 16: MLF44 7x7 package dimensions
Table 10: Package dimensions labels (unless specified, dimensions are in millimeters)
Common Dimensions
Label
Minimum
A
Nominal
Maximum
7.00
B
4.55
4.70
4.85
C
4.55
4.70
4.85
D
C/2
E
7.00
G
0.18
H
0.23
0.30
0.50
M
0.80
0.9
1.00
N
–
0.65
0.80
P
0.00
0.02
0.05
Q
© 2007 Nanotron Technologies GmbH.
0.25
NA-03-0111-0239-2.09 Page 23
12
Tape and Reel Information
12
Tape and Reel Information
nanoNET TRX Transceiver (NA1TR8) Datasheet
An embossed tape and reel is used to facilitate automatic pick and place equipment feed requirements. The
tape is used as the shipping container for the nanoNET TRX Transceiver (NA1TR8) and requires a minimum of handling. The antistatic/conductive tape provides a secure cavity for the product when sealed with
the peel-back cover tape.
12.1 Reel Dimensions
Reel Diameter
Units Per Reel
Reel and Hub Size1
13”
2,500
13/4
1. Reel and hub size = 13 inch reel with 4 inch hub.
Includes flange distortion at
outer edge:19.4 (0.764)
Access hole at slot location:
40 (1.575) min.
1.5 (0.59) min.
el
Lab
Measured at hub:
16.4 (0.646) nom.
Hub
diameter
330
(13.00)
Arbor hole diameter:
13.0 (.512)
20.2 (0.795) min
Measured at hub:
22.4 (0.882) max.
Example Label
Tape slot in core for tape start:
2.5 (0.098) min. width
10 (0.394) min. depth
Note: Dimensions are in millimeters (inches are in brackets for reference purposes only).
Figure 17: Reel dimensions
12.2 Tape Dimensions
Package Type
Number of
Leads
Nominal
Package Size
Carrier Tape
Width
Carrier Tape
Pitch
Leader/Trailer
Length1
QFN (MLFP)
44
7 x 7 x 0.9 mm
16 mm
12 mm
EIA
1. The device loading orientation is in compliance with EIA-481.
Carrier pitch
12 mm
Tape width
16 mm
nominal
User direction of feed
Figure 18: Tape dimensions
Page 24 NA-03-0111-0239-2.09
© 2007 Nanotron Technologies GmbH.
Ordering Information
nanoNET TRX Transceiver (NA1TR8) Datasheet
13
13
Ordering Information
To order the product described in this datasheet, use the following information.
Part Number
NA0108B
Package Type
MLF 44 7x7 mm
Tape and reel
Package Quantity
RoHS Compliant1
16 x 12 type
2,500 pieces per tape
Yes. A certificate of
RoHS compliance is
available from Nanotron
Technologies on
request.
1. The RoHS directive is “The Restriction of Hazardous Substances in Electrical and Electronic Equipment
(ROHS) Directive (2002/95/EC)”. The Directive aims to protect human health and the environment by
restricting the use of certain hazardous substances in new equipment; and it complements the WEEE
Directive.
© 2007 Nanotron Technologies GmbH.
NA-03-0111-0239-2.09 Page 25
13
Ordering Information
nanoNET TRX Transceiver (NA1TR8) Datasheet
Intentionally Left Blank
Page 26 NA-03-0111-0239-2.09
© 2007 Nanotron Technologies GmbH.
Sample Application
nanoNET TRX Transceiver (NA1TR8) Datasheet
A1
A1 Sample Application
A1.1 Recommended Circuitry
The following application is an example of the nanoNET TRX Transceiver used with a temperature measurement and control device.
Shaded area is recommended
circuitry
Bandpass Filter
Balun
VCC
44
IfOutP
IfOutN
VSSA
RxB
RxA
VSSA
TxB
TxA
VSSA
VSSA
5
Port A
29
6
28
nanoNET TRX (NA1TR8)
7
27
8
26
9
25
10
24
11
23
13
14
15
16
17
18
19
20
21
VDDA
IfInN1
IfInP1
VSSA
CDDL
1804
IfInP2
IfInN2
AFCCap
AGCCap
VSSD
PowerUpReset
µCVccExt
22
VDDD
VDDD
12
VSSD
VDDDCap
34
30
DilO4
SpiSsn
35
4
DilO3
µCReset
36
31
DilO2
µCIrq
37
3
DilO1
VSSD
38
32
SpiRxD
TxRx
39
Port B
Xtal1B
40
2
SpiClk
Xtal1A
41
33
SpiTxD
Xtal2A
42
Port C
Xtal2B
43
1
VSSD
VDDA
VDDA
VDDA
VDDA
VCC
+
VCC
Actuator
Microcontroller
Temperature
Control Unit
Note: Pin 20 (DilO4)
32.768 kHz clock operating
after reset/power up.
+
-
Temperature
Sensor
Figure 19: Example application showing recommended circuitry
© 2007 Nanotron Technologies GmbH.
NA-03-0111-0239-2.09 Page 27
A1
Sample Application
nanoNET TRX Transceiver (NA1TR8) Datasheet
A1.2 Recommended PCB Layout for RF Part
Figure 20: Recommended PCB layout for RF part: schematic 1 of 1
Page 28 NA-03-0111-0239-2.09
© 2007 Nanotron Technologies GmbH.
Sample Application
nanoNET TRX Transceiver (NA1TR8) Datasheet
A1
Top layer
Layer 3
GND
GND
Top layer
Layer 3
VCC
VCC
Figure 21: RF part: PCB board overview
Figure 22: RF part: names
© 2007 Nanotron Technologies GmbH.
NA-03-0111-0239-2.09 Page 29
A1
Sample Application
nanoNET TRX Transceiver (NA1TR8) Datasheet
Antenna pads
GND
GND
VCC
VCC
Figure 23: RF part: top layer
GND
Figure 24: RF part: layer 2
GND
GND
VCC
Figure 25: RF part: layer 3
Page 30 NA-03-0111-0239-2.09
Figure 26: RF part: bottom layer
© 2007 Nanotron Technologies GmbH.
Sample Application
nanoNET TRX Transceiver (NA1TR8) Datasheet
A1
A1.3 Recommended PCB Layout for IF Part
Figure 27: Recommended PCB layout for IF part: schematic 1 of 1
The following describes the layout requirements for the IF part:
+
VSSA pin is connected to the ground plan under the chip.
+
Short connection between chip and CDDL, with minimal width of wires and minimal pad areas
for minimal influence of PCB parasitics (do not implement 50 Ω microstrip).
+
Equal lengths of traces for better CMRR.
+
External coil (L1 = 47 nH) placed directly between the input pads of CDDL (PORT A).
+
Use 4 layer PCB (top layer = layer 1, GND = inner layer 2, GND = inner layer 3, and bottom
layer = layer 4).
VCC
Top layer
Pin 1
Differential output from
CDDL (Port C)
GND
Layer 3
CDDL
(on top layer)
Differential IF output
Differential input to
CDDL (Port A)
Approx.
5mm
Differential output of
CDDL (Port B)
nanoNET chip
Figure 28: IF part: PCB board overview
© 2007 Nanotron Technologies GmbH.
NA-03-0111-0239-2.09 Page 31
A1
Sample Application
nanoNET TRX Transceiver (NA1TR8) Datasheet
Figure 29: IF part: names
GND
VCC
Figure 30: IF part: top layer
GND
Figure 31: IF part: layer 2
GND
Figure 32: IF part: layer 3
Page 32 NA-03-0111-0239-2.09
GND
Figure 33: IF part: bottom layer
© 2007 Nanotron Technologies GmbH.
Reference Design
nanoNET TRX Transceiver (NA1TR8) Datasheet
A2
A2 Reference Design
Figure 34: Reference design: schematic 1 of 3
© 2007 Nanotron Technologies GmbH.
NA-03-0111-0239-2.09 Page 33
A2
Reference Design
nanoNET TRX Transceiver (NA1TR8) Datasheet
Figure 35: Reference design: schematic 2 of 3
Page 34 NA-03-0111-0239-2.09
© 2007 Nanotron Technologies GmbH.
Reference Design
nanoNET TRX Transceiver (NA1TR8) Datasheet
A2
Figure 36: Reference design: schematic 3 of 3
© 2007 Nanotron Technologies GmbH.
NA-03-0111-0239-2.09 Page 35
A2
Reference Design
nanoNET TRX Transceiver (NA1TR8) Datasheet
Figure 37: Reference design: top layer
Figure 38: Reference design: layer 2
Figure 39: Reference design: layer 3
Page 36 NA-03-0111-0239-2.09
© 2007 Nanotron Technologies GmbH.
Reference Design
nanoNET TRX Transceiver (NA1TR8) Datasheet
A2
Figure 40: Reference design: bottom layer
Figure 41: Reference design: top layer names
Figure 42: Reference design: bottom layer names (Inverted)
© 2007 Nanotron Technologies GmbH.
NA-03-0111-0239-2.09 Page 37
A2
Reference Design
nanoNET TRX Transceiver (NA1TR8) Datasheet
Figure 43: Reference design: layers, standard structure (example)
Page 38 NA-03-0111-0239-2.09
© 2007 Nanotron Technologies GmbH.
Reference Design
nanoNET TRX Transceiver (NA1TR8) Datasheet
A2
A2.1 Reference Design Bill of Materials
Table 11: Reference design bill of materials
Part
Description
Resistors
Capacitors
Inductors
Manufacturer
Distributor
Label
Value
Qty
Package
Company
Product
Number
Company
Order
Number
R1
100k
1
0402
PHYCOMP
2322 705
70104
Farnell
195-273
R2, R4
10k
2
0402
MEGGITT
CRG0402J1
0K-10
Farnell
389-8659
RA1
2k2
1
4R_ARRAY
PHYCOMP
ARV341
-2K2-5
Farnell
325-7447
RA2
1M
1
4R_ARRAY
PHYCOMP
ARV341
-1M-5
Farnell
325-7605
RA3
100k
1
4R_ARRAY
PHYCOMP
ARV341100K-5
Farnell
325-7540
RA4
220R
1
4R_ARRAY
PHYCOMP
ARV341
-220R-5
Farnell
325-7381
C15, C16
4.7pF
2
0402
PHYCOMP
2238 869
15478
Farnell
301-9147
C21, C22
5.6pF
2
0402
Epcos
B37923K50
50C660
C11
10pF
1
0402
AVX
CM05CG10
0D50AH
Farnell
578-058
(abgek.)
C20
15pF
1
0402
Mira
8210/150
C8, C9
22pF
2
0402
Farnell
301-9184
C10, C13
27pF
2
0402
Mira
8210/270
C1, C7,
C18
100pF
3
0402
PHYCOMP
2238 869
15101
Farnell
301-9226
C12
470pF
1
0402
PHYCOMP
2238 587
15618
Farnell
301-9366
C2, C6
1nF
2
0402
PHYCOMP
2238 787
15636
Farnell
301-9380
C3
10nF
1
0402
PHYCOMP
2238 587
15623
Farnell
301-9275
C4, C5
C14, C17
C19, C23
C24, C26
C27, C28
100nF
10
0402
PHYCOMP
2238 787
19849
Farnell
301-9482
C25
10uF/10V
1
3216
AVX
TAJA106K0
10R
Farnell
197-130
L1
4.7nH
1
0402
Würth
744784047
Würth
744784047
L2, L5
2.7nH
2
0402
Würth
744784027
Würth
744784027
L3
6.8nH
1
0402
Würth
744765068
Würth
744765068
L4
5.6nH
1
0402
Würth
744784056
Würth
744784056
© 2007 Nanotron Technologies GmbH.
PHYCOMP
2238 869
15229
NA-03-0111-0239-2.09 Page 39
A2
Reference Design
nanoNET TRX Transceiver (NA1TR8) Datasheet
Table 11: Reference design bill of materials
Part
Manufacturer
Distributor
Label
Value
Qty
Package
Company
Product
Number
Company
Order
Number
L6
47nH
1
0402
Würth
74478447
Würth
74478447
L7
742 792 69
1
0603
Würth
74279269
Würth
74279269
Balun
BAL1
50R:150R
1
BAL0805
Würth
748420245
Würth
748420245
Band pass filter
BP1
748351124
1
WE-BPF1008
Würth
748351124
Würth
748351124
SMD antenna
ANT1
WE-ANT20245
1
WE_ANT20245
Würth
7488920245
Würth
7488920245
CDDL
DDL1
CDDL_1804
1
13.3 X 6.5
Nanotron
DS1804C
Nanotron
DS1804C
Quartz
Q1, Q3
32.768kHz
2
31SMX
SMI
“31M32712.5pF,20p
pm”
DEQTRON
31M327
12.5pF,
20ppm
Q2
16.0MHz
1
32SMX
SMI
“32 M 16032 ,-40
..+85°”
DEQTRON
32 M 160
-32,
-40 ..+85°
Surface mount
shield:
27x27x5.08
SHIELD1
SHIELD_BMIS
_103
1
BMIS-103
Laird
Technologies
BMIS-103
Laird
Technologies
BMIS-103
surface mount
coin cell
holder: 20mm
BAT1
BAT_CLIP20
1
BAT_CLIP20
Keystone
1061
Farnell
302-9773
nanoNET
transceiver
IC1
NA1TR8
1
VFQFPN7X7
Nanotron
NA1TR8
Nanotron
NA0108B
8-bit
microcontroller
IC2
ATMEGA16L
1
MLF44
ATMEL
Atmega
16L-8MI
MSC
Atmega
16L-8MI
Connectors
X1
SMA-f
1
JOHNSON
_JACK_GND_2
VITELEC
142-0701
-851
RS
Components
363-4690
X2
06X1
1
CON_TMS
_06X1_L_HEA
SAMTEC
TMS-106
-03-G-S_RA
SAMTEC
TMS-10601-G-S_RA
X3
CON_DF17
_40P_HEA
1
CON_DF17
_40P_R05
_HEA
HIROSE
DF17A(2.0)
-40DP
-0.5V(50)
MSC
DF17A(2.0)
-40DP
-0.5V(50)
X4
05X1
1
CON_TMS
_05X1_L_HEA
SAMTEC
TMS-105
-03-G-S_RA
SAMTEC
TMS-105
-01-G-S_RA
X5
04X1
1
CON_TMS
_04X1_L_HEA
SAMTEC
TMS-104
-03-G-S_RA
SAMTEC
TMS-104
-01-G-S_RA
X6
02X1
1
CON_TMS
_02X1_L_HEA
SAMTEC
TMS-102
-03-G-S_RA
SAMTEC
TMS-10201-G-S_RA
Description
Page 40 NA-03-0111-0239-2.09
© 2007 Nanotron Technologies GmbH.
Abbreviations
nanoNET TRX Transceiver (NA1TR8) Datasheet
A3
A3 Abbreviations
µA
µC
µCIrq
µCReset
µCVcc
µCVccExt
µF
µH
µs
Ω
AC
Ack
ADC
ADD
AFC
AGC
ASIC
B
B
BA
BALUN
BCH
BER
BOM
bps
C
C
°C
CCITT
CDDL
C/I
Clk
CRC
CMMR
CMOS
CS
CSMA
CSMA/CA
CSS
CSS Mode
DAC
Data
dB
dBi
DBO-CSS
dBm
dBr
DC
DiIO
DPA
DPD
DUT
Eb
EIRP
ESD
FCD
FCM
FDMA
FEC
FET
FHSS
FIFO
FS
GBWP
GHz
GND
HBM
I
IC
IEC
IF
I/O
IOH
IOL
IRQ
IQ
Microampere (unit of electrical current)
Microcontroller
External microprocessor interrupt request
External microprocessor reset
External microprocessor battery supply voltage
External microprocessor power supply voltage
Microfarad (unit of electrical capacitance)
MicroHenry (unit of electrical resistance)
Microseconds (unit of time)
Ohm (unit of electrical resistance)
Alternating Current
Acknowledgement packet type
Analogue to Digital Converter
Actor/sensor
Automatic Frequency Control
Automatic Gain Control
Application Specific-IC
Battery
Frequency bandwidth
Balun (See BALUN)
Balun Unbalanced
Bose-Chaudhuri-Hochquenghem
Bit Error Rate
Bill of Materials
Bits per second (unit of data throughput)
Capacitor
Power of signal carrier
Celsius (unit of temperature)
Comité Consultatif International Téléphonique et
Télégraphique
Complementary Dispersive Delay Line
Carrier to Interference Ratio
Clock
Cyclic Redundancy Check
Common Mode Rejection Ratio
Complementary Metal Oxide Semiconductor
Chip Select
Carrier Sense Multiple Access
Carrier Sense Multiple Access/Collision Avoidance
Chirp Spread Spectrum
Chirp Spread Spectrum Mode
Digital to Analog Converter
Data packet type
Decibel (ratio between two values, such as signal
power, voltage, or current levels in logarithmic scale)
Gain referenced to isotropic antennae
Differentially Bi-Orthogonal Chirp Spread
Spectrum
dB referenced to one milliwatt
(10-3W = 1mW)
Decibels relative to reference level
Direct Current
Digital Input/Output
Differential Power Amplifier
Differential Peak Detector
Device Under Test
Energy of bit
Effective Isotropic Radiated Power
Electrostatic Discharge
Folded Chirp Detector
Folded Chirp Mixer
Frequency Division Multiplex Access
Forward Error Correction
Field Effect Transistor
Frequency Hopping Spread Spectrum
First In First Out
Full Scale
Gain Bandwidth Product
Gigahertz (unit of frequency)
Ground
Human Body Model
Inline
Integrated Circuit
International Electrotechnical Commission
Intermediate Frequency
Input/Output
Output current high
Output current low
Interrupt request
In-phase, Quadrature
© 2007 Nanotron Technologies GmbH.
ISM
ISO
kΩ
kHz
kpbs
L
LNA
LO
LPF
LSB
ΜΩ
mA
Mbaud
Mbps
MAC
MHz
MISO
MIX
MLF
MOD
MOSI
MUX
mW
NC
nF
nH
No
ns
OEM
OSC
OP
OTA
PA
PAE
PAMP
PDK
PEP
pF
PFD
PLL
Pout
ppm
PCB
PGA
PGC
POMD
PSRR
PTAT
Q
QFN
R
RF
RFID
ROM
RSSI
RTC
RX
S
SAR
SAW
SDS-TWR
SLNA
SMIX
SNR
SPI
SpiClk
SpiSsn
SpiRxD
SpiTxD
SRAM
SSB
t
T
TBD
TDMA
Tjunct
THD
TRL
TRX
TTL
TX
INTERNAL
Industrial Scientific Medical
International Organization for Standardization
KiloOhms (unit of electrical resistance)
KiloHertz (unit of frequency)
Kilobits per second (unit of data throughput)
Inductance
Low Noise Amplifier
Local Oscillator
Low Pass Filter
Least Significant Bit
MegaOhms (unit of electrical resistance)
Milliampere (unit of electrical current)
Megabauds
Megabits per second (unit of data throughput)
Medium Access Control
MegaHertz (unit of frequency)
Master In, Slave Out
Mixer
Micro Lead Frame Package
Modulator
Master Out Slave In
Multiplexer
milliwatt (unit of power)
Not Connected
Nanofarad (unit of electrical capacitance)
NanoHenry (unit of electrical inductance)
Power spectral density of thermal noises
Nanosecond (unit of time)
Original Equipment Manufacturer
Oscillator
Operational Amplifier
Operational Transconductance Amplifier
Power Amplifier
Power Added Efficiency
Power amplifier
Process Development Kit
Peak Envelope Power
Picofarad (unit of electrical capacitance)
Phase Frequency Detector
Phase Locked Loop
Power Out
parts per million
Printed Circuit Board
Programmable Gain Amplifier
Power Gain Control
Peak Over Mean Detector
Power Supply Rejection Ratio
Proportional to Absolute Temperature
Quadrature
Quad Flat No-lead
Resistor
Radio Frequency
Radio Frequency IDentification
Read Only Memory
Radio Signal Strength Indicator
Real Time Clock
Receiver
Switch/button
Successive Approximation Register
Surface Acoustic Wave
Symmetrical Double Sided Two Way Ranging
Symmetric Low Noise Amplifier
Symmetric Mixer
Signal to Noise Ratio
Serial Peripheral Interface
Serial peripheral interface Clock
Serial peripheral interface Slave select
Serial peripheral interface Receive Data
Serial peripheral interface Transmit Data
Static RAM
Single Side Band
Time constant
Duration time of the chirp waveform
To Be Determined
Time Division Multiple Access
Temperature of junction
Total Harmonic Distortion
Transmission Line
Transceiver
Transistor-Transistor Logic
Transmitter
NA-03-0111-0239-2.09 Page 41
A3
V
VIH
VIL
VOH
VOL
VCA
VCC
VCO
VDDA
Abbreviations
nanoNET TRX Transceiver (NA1TR8) Datasheet
Volts (unit of electrical potential)
Input voltage for High level
Input voltage for Low level
Output voltage for High level
Output voltage for Low level
Voltage Controlled Amplifier
Battery supply voltage
Voltage Controlled Oscillator
Power supply for analog part
VDDD
VFQFPN
VGA
VSSA
VSSD
VSWR
XTAL
XCO
Power supply for digital part
Very thin Fine pitch Quad Flat Pack Nolead Package
Variable Gain Amplifier
Analog ground
Digital ground
Voltage Standing Wave Ratio
Crystal
Xtal (crystal) Controlled Oscillator
T
Tj
TC
Vpp
VD
VDS
VGS
VT
VTO
a
b
d
eo
εr
εreff
G
µo
µo
m
w
D
S
Period
Junction Temperature
Temperature coefficient, e.g. TK(IDSS)
Peak-to-Peak Voltage
Diffusion voltage
Drain-Source voltage
Gate-Source voltage
Thermal voltage, VT=kT/q
Threshold voltage, Turn-on voltage
Angle
Current gain
Partial derivative
Dielectric constant of a vacuum
Dielectric constant relative to a vacuum
Effective relative dielectric constant
Reflection coefficient
Permeability of a vacuum
Permeability relative to a vacuum
Charge carrier mobility
Angular frequency
Difference
Sum
Special Symbols
CDS
CGD
CGS
Cr
D
EG
fT
G
GaAs
Ge
gm
H
IDSS
Drain-source capacitance
Gate-drain capacitance
Gate-source capacitance
Feedback capacitance
Drain
Energy gap
Transit frequency
Gate, Gradient
Gallium-Arsenide
Germanium
Short-circuit forward transconductance
Hybrid parameter
Drain current with VGS=0
k
Boltzmann constant, 1.38·10-23J/K or stability
factor
Electron charge, 1.602·10-19As
Differential drain-source-resistance
Root Mean Square
Thermal resistance in K/W
Source
Scattering parameters
Silicon
q
rDS
RMS
Rth
S
Sij
Si
Page 42 NA-03-0111-0239-2.09
INTERNAL
© 2007 Nanotron Technologies GmbH.
Revision History
nanoNET TRX Transceiver (NA1TR8) Datasheet
Revision History
Version
Date
1.00
2003-10-11
Initial Release from internal document.
1.01
2003-12-16
Updated images, chip designations on page 19, 20.
1.02
2004-01-28
Bill of Materials table updated and package dimensions added.
1.03
2004-03-15
New template added, BOM updated, Example Application updated.
1.04
2004-04-08
Example application diagram updated, BOM updated, minor textual changes. Title
changed to Datasheet.
2.00
2004-08-09
Pinning has changed from 48 pins to 44 pins. The Pin diagram and descriptions
have been changed accordingly. Layout suggestion of CDDL connection added.
Current consumption for TX changed to 78 mA. Other minor changes.
2.01
2004-09-10
Datasheet updated to latest data. Minor textual changes. Document sign-off table
added.
2.02
2004-09-17
Example application updated. BOM table updated.
2.03
2004-11-05
Block diagram updated.
2.04
205-03-25
Parameters in this version for NA2TR1 chip. Nominal Conditions section added.
General description updated. Modifications made to block diagram. Naming of Pin
2 and 3 corrected. Content of Absolute Maximum Ratings table modified. All
parameters checked and reviewed. Example Application diagrams improved and
updated. Both Bill of Materials tables modified. New section 10 added. Document
status table added. Document status added.
2.05
2005-04-07
Chip values updated for NA1TR8.
New feature: Programmable clock output at digital output.
2.06
2005-07-15
Description/Changes
Template updated; Nominal conditions clarified (last point added); block diagram
modified; term quartz oscillator used throughout; 32.768 kHz used throughout;
VDDD, VDDA supply voltage typical added; Item 8.2.3 changed; timing diagrams
added; output power graphs added; example application simplified and BOM
deleted; new schematics and layout for recommended PCB layout for RF and IF
part; RoHs directive data added; tape and reel information added; ordering information added; reference design appendix added.
Note: The typical value for Item 8.1.10 supply current TX (Pout = +8 dBm) has
been updated from 78 mA to 82 mA.
2005-07-15
Item 7.11 updated - description of pin clarified; clock signal provided by chip clarified; error corrected in SPI bus read timing diagram (SpiTxD);
2.07
2005-10-21
Minor textual changes; clarification of clock signal that can be provided by the chip
(i.e., 32.768 kHz or from 125 kHz to 16 MHz); description of pin 11 VDDDCAP
clarified; SpiTxD changed to SpiRxD in both Turn-on time RX and TX figures; error
in SPI bus read timing figure fixed; Pin TxRx purpose clarified and elaborated;
company address updated.
2.08
2007-02-20
Minor textual changes.
2.09
2007-12-20
Template changes; addition of chip summary section.
2.06
© 2007 Nanotron Technologies GmbH.
NA-03-0111-0239-2.09 Page 43
About Nanotron Technologies GmbH
nanoNET TRX Transceiver (NA1TR8) Datasheet
About Nanotron Technologies GmbH
Nanotron Technologies GmbH develops world-class wireless products for demanding applications based on its patented Chirp Spread Spectrum – an innovation that guarantees high robustness, optimal use of the available bandwidth, and low energy consumption. Since the beginning
of 2005, Nanotron's Chirp technology has been a part of the IEEE 802.15.4a draft standard for
wireless PANs which require extremely robust communication and low power consumption.
ICs and RF modules include the nanoNET TRX, the nanoLOC TRX, and ready-to-use or custom
wireless solutions. These include, but are not limited to, industrial monitoring and control applications, medical applications (Active RFID), security applications, and Real Time Location Systems
(RTLS). nanoNET is certified in Europe, United States, and Japan and supplied to customers
worldwide.
Headquartered in Berlin, Germany, Nanotron Technologies GmbH was founded in 1991 and is
an active member of IEEE, the ZigBee alliance, and ISA-SP100.
Further Information:
For more information about this product and other products from Nanotron Technologies, contact
a sales representative at the following address:
Nanotron Technologies GmbH
Alt-Moabit 60
10555 Berlin, Germany
Phone: +49 30 399 954 - 0
Fax: +49 30 399 954 - 188
Email: [email protected]
Internet: www.nanotron.com
Page 44 NA-03-0111-0239-2.09
© 2007 Nanotron Technologies GmbH.