nanoNET TRX Transceiver (NA1TR8) Datasheet Version 2.09 NA-03-0111-0239-2.09 Document Information nanoNET TRX Transceiver (NA1TR8) Datasheet Document Information Document Title: nanoNET TRX Transceiver (NA1TR8) Datasheet Document Version: 2.09 Published (yyyy-mm-dd): 2007-12-20 Current Printing: 2007-12-20, 4:22 pm Document ID: NA-03-0111-0239-2.09 Document Status: Released Disclaimer Nanotron Technologies GmbH believes the information contained herein is correct and accurate at the time of release. Nanotron Technologies GmbH reserves the right to make changes without further notice to the product to improve reliability, function or design. Nanotron Technologies GmbH does not assume any liability or responsibility arising out of this product, as well as any application or circuits described herein, neither does it convey any license under its patent rights. As far as possible, significant changes to product specifications and functionality will be provided in product specific Errata sheets, or in new versions of this document. Customers are encouraged to check the Nanotron website for the most recent updates on products. Trademarks nanoNET© is a registered trademark of Nanotron Technologies GmbH. All other trademarks, registered trademarks, and product names are the sole property of their respective owners. This document and the information contained herein is the subject of copyright and intellectual property rights under international convention. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form by any means, electronic, mechanical or optical, in whole or in part, without the prior written permission of Nanotron Technologies GmbH. Copyright © 2007 Nanotron Technologies GmbH. Life Support Policy These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Nanotron Technologies GmbH customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Nanotron Technologies GmbH for any damages resulting from such improper use or sale. Electromagnetic Interference / Compatibility Nearly every electronic device is susceptible to electromagnetic interference (EMI) if inadequately shielded, designed, or otherwise configured for electromagnetic compatibility. To avoid electromagnetic interference and/or compatibility conflicts, do not use this device in any facility where posted notices instruct you to do so. In aircraft, use of any radio frequency devices must be in accordance with applicable regulations. Hospitals or health care facilities may be using equipment that is sensitive to external RF energy. With medical devices, maintain a minimum separation of 15 cm (6 inches) between pacemakers and wireless devices and some wireless radios may interfere with some hearing aids. If other personal medical devices are being used in the vicinity of wireless devices, ensure that the device has been adequately shielded from RF energy. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures. CAUTION! Electrostatic Sensitive Device. Precaution should be used when handling the device in order to prevent permanent damage. Page ii NA-03-0111-0239-2.09 © 2007 Nanotron Technologies GmbH. Table of Contents nanoNET TRX Transceiver (NA1TR8) Datasheet Table of Contents List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 1 Chip Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 1.2 1.3 Quick Reference Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Block Diagram – Simplified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 Nominal Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6 Pin Connections (MLF44 7X7 mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 7 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 8 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 8.1 8.2 8.3 8.4 8.5 8.6 General DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmitter (TX) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receiver (RX) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Digital Interface Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Management and Sleep/Wake-Up Circuitry Parameters . . . . . . . . . . . . . . . . . Interface to Digital Controller Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 12 13 14 14 15 9 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 Switch Time from TX to RX (from Ack to Data mode). . . . . . . . . . . . . . . . . . . . . . . . . Switch Time from TX to RX (from Data to Ack mode). . . . . . . . . . . . . . . . . . . . . . . . . Switch Time from RX to TX (from Ack to Data mode). . . . . . . . . . . . . . . . . . . . . . . . . Switch Time from RX to TX (from Data to Ack mode). . . . . . . . . . . . . . . . . . . . . . . . . Turn-On Time TX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Turn-On Time RX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 MHz Crystal Start-Up Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LO Frequency Calibration Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Bus Read and Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 17 17 18 18 19 19 19 19 10 Output Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 11 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 12 Tape and Reel Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 12.1 12.2 Reel Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Tape Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 13 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 A1 Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 A1.1 A1.2 Recommended Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Recommended PCB Layout for RF Part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 © 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page iii Table of Contents nanoNET TRX Transceiver (NA1TR8) Datasheet A1.3 Recommended PCB Layout for IF Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 A2 Reference Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 A2.1 Reference Design Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 A3 Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 About Nanotron Technologies GmbH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Page iv NA-03-0111-0239-2.09 © 2007 Nanotron Technologies GmbH. List of Tables nanoNET TRX Transceiver (NA1TR8) Datasheet List of Tables Table 1: Quick reference data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Table 2: Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 3: nanoNET TRX Transceiver (NA1TR8) pin description. . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 4: General DC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 5: Transmitter (TX) parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 6: Receiver (RX) parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 7: Digital sensor/actuator interface parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 8: Power management and sleep/wake-up circuitry parameters . . . . . . . . . . . . . . . . . . . 14 Table 9: Interface to digital controller parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 6: SPI timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 10: Package dimensions labels (unless specified, dimensions are in millimeters) . . . . . 23 Table 11: Reference design bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 List of Figures Figure 1: nanoNET TRX (NA1TR8) block diagram - simplified . . . . . . . . . . . . . . . . . . . . . . . . . 3 Figure 2: Example application showing recommended circuitry . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 3: nanoNET TRX Transceiver block diagram (simplified) . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 4: nanoNET TRX (MLF44) pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 5: Switch time from TX to RX (from Ack to Data mode) . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 6: Switch time from TX to RX (from Data to Ack mode) . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 7: Switch time from RX to TX (from Ack to Data mode) . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 8: Switch time from RX to TX (from Data to Ack mode) . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 9: Turn-on time TX: time = tTxTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 10: Turn-on time RX: time = tRxTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 11: SPI bus write timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 12: SPI bus read timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 13: nanoNET TRX output power (pout[dBm] by register value) . . . . . . . . . . . . . . . . . . 21 Figure 14: Total current consumption (IDDA[mA] by register value) . . . . . . . . . . . . . . . . . . . . 21 Figure 15: Total current consumption (IDDA[mA] by output power [dBm]) . . . . . . . . . . . . . . . 22 Figure 16: MLF44 7x7 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 17: Reel dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 18: Tape dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 19: Example application showing recommended circuitry . . . . . . . . . . . . . . . . . . . . . . 27 Figure 20: Recommended PCB layout for RF part: schematic 1 of 1 . . . . . . . . . . . . . . . . . . . 28 Figure 21: RF part: PCB board overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 22: RF part: names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 23: RF part: top layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 24: RF part: layer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 25: RF part: layer 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 © 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page v List of Tables nanoNET TRX Transceiver (NA1TR8) Datasheet Figure 26: RF part: bottom layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 27: Recommended PCB layout for IF part: schematic 1 of 1 . . . . . . . . . . . . . . . . . . . . 31 Figure 28: IF part: PCB board overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 29: IF part: names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 30: IF part: top layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 31: IF part: layer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 32: IF part: layer 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 33: IF part: bottom layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 34: Reference design: schematic 1 of 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 35: Reference design: schematic 2 of 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 36: Reference design: schematic 3 of 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 37: Reference design: top layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 38: Reference design: layer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 39: Reference design: layer 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 40: Reference design: bottom layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 41: Reference design: top layer names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 42: Reference design: bottom layer names (Inverted) . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 43: Reference design: layers, standard structure (example) . . . . . . . . . . . . . . . . . . . . 38 Page vi NA-03-0111-0239-2.09 © 2007 Nanotron Technologies GmbH. Chip Summary nanoNET TRX Transceiver (NA1TR8) Datasheet 1 1 Chip Summary The nanoNET chip is a low-power, highly integrated mixed signal chip utilizing Nanotron’s unique wireless Chirp Spread Spectrum (CSS) communication technology. This innovative modulation technique permits the development of chips that have extremely low power consumption, operate over a wide range of temperatures, and perform effortlessly in robust wireless networks operating in the 2.45 GHz ISM band. This chip offers an ideal solution for battery powered applications that require a reliable and extremely long operating lifetime, such as several years. For communication over the air, CSS uses Upchirps and Downchirps with a symbol duration of Tsymbol = 1 µs and an effective bandwidth of Bchirp = 64 MHz. A wide variety of systems and applications can be developed with this novel technology, with the additional advantage of being able to select from data rates of either 500 kbps, 1 Mbps, or 2 Mbps. Conveniently, only a minimal number of external components are required to build a fully operational bi-directional communication node. Target Applications Industries that can benefit from nanoNET's robust, reliable communication include, but are not limited to: + Active RFID + Home Automation + Industrial Control and Monitoring + Meter and Sensor Reading Key Features1 + Provides a single chip solution for a 2.45 GHz ISM band RF transceiver + Carrier to Interference is C/I = -3…0 dB @ C = -82 dBm + Allows unregulated 2.4 V ... 3.6 V supply voltage + Processing gain is 17 dB + + Includes an integrated SPI (slave mode only) Current consumption is 35 mA (RX), 78 mA (TX) @ 8 dBm + Includes an integrated microcontroller management function + Standby current with active RTC is 1.5 µA + Allows an operating temperature range of between -40° C to +85° C + Includes an integrated 4 channel digital I/O + Includes an integrated MAC controller + Provides a 32.768 kHz clock for microcontrollers + Includes a programmable clock output at digital output + Provides a maximum data rate of 2 Mbps + Provides a maximum range for LOS (without interferers) at 900 m outdoors and 60 m indoors (with optimal conditions) + Uses an effective chirp bandwidth of 64 MHz + Receiver sensitivity is -92 dBm @ 1 Mbps 1. At nominal conditions, except otherwise specified. (See Nominal Conditions on page 7.) © 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 1 1 Chip Summary nanoNET TRX Transceiver (NA1TR8) Datasheet 1.1 Quick Reference Data Table 1: Quick reference data Parameter Value Unit Maximum supply voltage 3.6 V Minimum supply voltage 2.4 V Maximum output power 8 dBm Maximum data rate 2 Mbps Typical receiver sensitivity at nominal conditionsa -92 dBm Typical receiver sensitivity @ 2 Mbps -86 dBm In transmit mode @ -15 dBm output power & nominal conditionsa 58 mA In transmit mode @ -5 dBm output power & nominal conditionsa 64 mA In receive mode & nominal conditionsa 35 mA In standby mode with active RTCb 1.5 µA -40 to +85 oC Typical power supply voltage VDDA (analog block) 3 V Typical power supply voltage VDDD (digital block) 3 V Chirp – 2400 MHz 2441.750 MHz 2483.5 MHz Typical supply current Operating temperature range Typical Operating Voltages Modulation method Operating frequency range Minimum Typical Maximum a. See Nominal Conditions on page 7. b. Under nominal conditions. See Nominal Conditions on page 7. Page 2 NA-03-0111-0239-2.09 © 2007 Nanotron Technologies GmbH. Chip Summary nanoNET TRX Transceiver (NA1TR8) Datasheet 1 1.2 Block Diagram – Simplified VDDA Xtal2A Xtal2B Xtal1A Xtal1B DilO1 DilO2 DilO3 DilO4 VSSD PowerUp Reset VDDD VDDCap TxA µCVccExt TxB µCReset TX µCIrq RX Digital Analog SpiClk SpiSsn TxRx SpiRxD RxA SpiTxD RxB IfOutP IfOutN IfInP1 IfInN1 IfInP2 IfInN2 AGCCap VSSA VSSD Complementary Dispersive Delay Line DS1804C (CDDL) Figure 1: nanoNET TRX (NA1TR8) block diagram - simplified © 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 3 1 Chip Summary nanoNET TRX Transceiver (NA1TR8) Datasheet 1.3 Sample Application The following application is an example of the nanoNET TRX Transceiver used with a temperature measurement and control device. Shaded area is recommended circuitry Bandpass Filter Balun VCC 44 IfOutN VSSA RxB RxA VSSA TxB TxA VSSA VSSA IfOutP 34 Port A 30 5 29 6 28 nanoNET TRX (NA1TR8) 7 27 8 26 9 25 10 24 11 23 14 15 16 17 18 19 20 21 VDDA IfInN1 IfInP1 VSSA CDDL 1804 IfInP2 IfInN2 AFCCap AGCCap VSSD PowerUpReset µCVccExt 22 VDDD 13 VSSD VDDD 12 DilO4 SpiSsn VDDDCap 35 4 DilO3 µCReset 36 31 DilO2 µCIrq 37 3 DilO1 VSSD 38 32 SpiRxD TxRx 39 Port B Xtal1B 40 2 SpiClk Xtal1A 41 33 SpiTxD Xtal2A 42 Port C Xtal2B 43 1 VSSD VDDA VDDA VDDA VDDA VCC + VCC Actuator Microcontroller Temperature Control Unit Note: Pin 20 (DilO4) 32.768 kHz clock operating after reset/power up. + - Temperature Sensor Figure 2: Example application showing recommended circuitry Note: A full description of the sample application and PCB layout is provided in Appendix 1: Sample Application on page 27. Page 4 NA-03-0111-0239-2.09 © 2007 Nanotron Technologies GmbH. General Description nanoNET TRX Transceiver (NA1TR8) Datasheet 2 2 General Description The nanoNET IC is a extremely low power, highly integrated mixed signal chip utilizing Chirp Spread Spectrum (CSS), a novel wireless communication technology developed by Nanotron Technologies. Fully Integrated Chip The nanoNET chip is a fully integrated transceiver consisting of: + a complete analog receiver (from antenna input to the demodulated digital data output). + a complete transmitter (from digital data input to RF power amplifier output which can be directly connected to the antenna input) with additional support for an external power transistor. An external transistor or amplifier can boost transmission power from, for example, +8 dBm to +20 dBm (6.3 mW to 100 mW respectively). + a programmable digital controller communicating with an external microcontroller via a serial peripheral interface (SPI). This controller incorporates a baseband controller and a Medium Access Controller (MAC). The baseband controller performs the processing of data (framing, error correction, en/decryption, and so on) while the MAC controller applies CSMA/CA, TDMA or hybrid-access schemes for medium access. About Chirp Spread Spectrum Using CSS, this chip produces Upchirps and Downchirps with a symbol duration of Tsymbol = 1µs and an effective frequency bandwidth of Bchirp = 64 MHz. CSS enables the development of different systems where application software can select physical data rates of 500 kbps, 1 Mbps, or 2 Mbps. Upchirp Downchirp This IC is designed in such a way that only a minimum number of external elements are required to develop a fully operational bi-directional wireless communication node. Even very slow microcontrollers can work together with this high speed transceiver, due to its use of FIFOs (First In, First Out). The nanoNET chip provides two buffers (a 1024 bit receive buffer and a 1024 bit transmit buffer) dedicated to storing the payload of either received packets or ready to be transmitted data packets. These buffers can be accessed independently of each other – the receive buffer can receive data from the antenna while the transmit buffer can simultaneously be filled with data for the next packet transmission. © 2007 Nanotron Technologies GmbH. Programmable Digital Support Block A programmable support block is provided, which consists of a real time clock, wake up circuitry, power management, low battery voltage measurement, and several adjustment and calibration functions for the analog part of the transceiver. The digital IO pin number 4 (DilO4) on the chip provides a 32.768 kHz clock for use by an external microcontroller on chip startup. It can be switched off after power up if not needed or it can be programmed to operate in another frequency (32.768 kHz or from 125 kHz to 16 MHz). Furthermore, the three other digital IO pins (DilO1, DilO2, DilO3) provided by the chip can also be programmed to operate in a frequency in the same range as DilO4. Moreover, all important functions of this block can be setup and controlled by an application software. A Receive Signal Strength Indicator (RSSI) is also provided, which can be supported and controlled by the application. This RSSI value is required when CSMA is implemented and can be used, for example, to indicate when the air interface is free or busy. The bit processing methods of the nanoNET chip include: + Scrambling + CRC (Cyclic Redundancy Check) generation and checking (CRC types include: ISO/ IEC3309, CCITT X.25, X.75, ETS 300 125 / IEC 60870-5-1 / CCITT-32) + 128 bit encryption/decryption (stream cipher with support of one time pads) + FEC (forward error correction) block coded Scrambling, encryption/decryption, and FEC can be enabled by the application, while the CRC type is selectable. Transmission power can be programmed by the application and can be reduced in steps (from maximum +8 dBm) in a range of Gain ≥ 35 dB. This means that the transmission power can vary from 27 dBm to +8 dBm without any additional external power amplifier or attenuator. Receiver Sensitivity The sensitivity of the nanoNET TRX Transceiver is defined by the raw data mode (data not coded or encrypted in anyway) where BER = 0.001. Sensitivity is Psensitivity = -92 dBm or better. For an isotropic antenna, link budget is equal to Alink_budget = 100 dB. NA-03-0111-0239-2.09 Page 5 3 3 Block Diagram nanoNET TRX Transceiver (NA1TR8) Datasheet Block Diagram RxB RxA TxRx TxB TxA Antenna (optional impedance matching circuits) TX RX LNA DPA SMIX PGC Analog IQ Modulator IfOutP Digitally Controlled Oscillator I IfOutN IfInP1 Q TX FDCO+ LPF TX FDCO- LPF IfInN1 RX FDCO+ RX FDCO- IfInP2 IfInN2 FDCO CDV VDDA POMD AGCCap 32.768 kHz RX Threshold AGC Xtal2B Xtal1A LPF α1 α2 α3 α4 RC Oscillator POMD 10:1 Divider FDCO/10 LPF DAC DAC Xtal2A Complementary Dispersive Delay Line DS1804C (CDDL) VGA 16 MHz Xtal1B VSSA COMP DilO1 DilO2 Radio Control Register and Radio Calibration DilO3 COMP Bit Detector DilO4 VSSD MAC State Machine Digital RTC Wake Up Timer VDDD Digital Bit Processing (CRC, Scrambling, FEC, Encryption, Decryption) Power Management PowerUp Reset VSSD FIFO VDDCap Microcontroller Management µCVccExt µCReset Microcontroller Interface µCIrq SpiClk SpiSsn SpiRxD SpiTxD Figure 3: nanoNET TRX Transceiver block diagram (simplified) Page 6 NA-03-0111-0239-2.09 © 2007 Nanotron Technologies GmbH. Absolute Maximum Ratings nanoNET TRX Transceiver (NA1TR8) Datasheet 4 4 Absolute Maximum Ratings Table 2: Absolute maximum ratings Valuea Parameter Maximum received power -20 Units Item dBm 5.1 Temperatures 5.2 Operating temperature (operating ambient temperature range) +85 °C 5.3 Operating junction temperature (operating junction temperature range in TX mode) +95 °C 5.4 Operating junction temperature (operating junction temperature range in RX mode) +90 °C 5.5 Storage temperature (storage temperature range) +125 °C 5.6 Reflow solder temperature (lead-free package) +242 °C 5.7 Total power dissipation 450 mW 5.8 Supply voltage (VDDA, VDDD) 3.6 V 5.9 a. It is critical that the ratings provided in Absolute Maximum Ratings be carefully observed. Stress exceeding one or more of these limiting values may cause permanent damage to the device. 5 Nominal Conditions Nominal conditions are as specified below, except otherwise specified: + Reference design (for measurement purposes only) has been used. See Reference Design on page 33. + Tjunct = 30° C + VSSA = VSSD = GND + VDDA = VDDD = 3.0 V + Transmission/reception @ 1 Mbps and up/down chirp mode. + Raw data mode: no CRC, no FEC, no encryption, no bit scrambling. + BER = 0.001 during receive period. + RF output power during transmit phase = 6.3 mW (+8 dBm) EIRP measured during continuous transmission. + All RF ports are matched according to this specification. © 2007 Nanotron Technologies GmbH. + For range measurement, two identical nanoNET systems equipped with antennae representing 1.6 dBi gain have been used. Antennae with vertical E-polarization and omnidirectional horizontal radiation pattern have been used. + Outdoor (open space) range measurement was performed on flat terrain, without vegetation higher than 0.2 m above ground, and without visible obstacles and other objects that could reasonably influence measurement results. Antennae for both nanoNET systems have been located 1.5 m above ground. + Indoor range measurement was performed inside typical European office building where both nanoNET systems were located on the same floor. + All RF powers (TX output power, RX sensitivity, etc.) are measured on the IC terminals (pins) under impedance matched conditions. NA-03-0111-0239-2.09 Page 7 6 nanoNET TRX Transceiver (NA1TR8) Datasheet VSSA TxA TxB VSSA RxA RxB VSSA IfOutN IfOutP Pin 1 Identification VSSA Pin Connections (MLF44 7X7 mm) VDDA 6 Pin Connections (MLF44 7X7 mm) 44 43 42 41 40 39 38 37 36 35 34 VDDA 1 33 VDDA Xtal2B 2 32 IfInN1 Xtal2A 3 Xtal1A 4 Xtal1B 5 TxRx 6 VSSD 7 µClrq 8 µCReset 9 31 IfInP1 NA1TR8 30 VSSA 29 IfInP2 AT46205-1 28 IfInN2 nanoNET TRX (NA1TR8) A41T6886 27 AFCCap 26 AGCCap 452 DVX 25 VSSD SpiSsn 10 24 PowerUpReset VDDDCap 11 17 18 19 20 21 22 DiIO3 DiIO4 VSSD VDDD SpiTxD 16 DiIO2 VSSD 15 DiIO1 14 SpiRxD 13 SpiClk 12 VDDD 23 µCVccExt Figure 4: nanoNET TRX (MLF44) pin connections Note: The pinning of the nanoNET TRX Transceiver described in this datasheet includes a 44 pin package. See Package Dimensions on page 23. 7 Pin Description Table 3: nanoNET TRX Transceiver (NA1TR8) pin description Pin Name Type Description 1 VDDA – 2 Xtal2B Input Input for 32.768 kHz quartz oscillator. 3 Xtal2A Input Input for 32.768 kHz quartz oscillator. 4 Xtal1A Input Input for 16 MHz reference quartz oscillator. 5 Xtal1B Input Input for 16 MHz reference quartz oscillator. Power supply for analog part. External power amplifier control pin. Allows the use of an external amplifier. When activated by the register RfTxExtPampEnOutEn, this pin goes to low during TX mode. During nontransmit cycles, it has high-impedance. When not activated, it always has high-impedance. 6 TxRx Output 7 VSSD – 8 µCIrq Output Interrupt request to external microprocessor. 9 µCReset Output Reset for external microprocessor. Page 8 NA-03-0111-0239-2.09 Ground (digital). © 2007 Nanotron Technologies GmbH. Pin Description nanoNET TRX Transceiver (NA1TR8) Datasheet 7 Table 3: nanoNET TRX Transceiver (NA1TR8) pin description Pin Name Type Description 10 SpiSsn Input Serial Peripheral Interface Slave Select (low active) is externally asserted before the microcontroller (master) can exchange data with the nanoNET TRX IC. Must be low before data transactions and must stay low for the duration of the transaction. 11 VDDDCap – VDDD blocking capacitor pad used for blocking the internal digital power supply by at least one 100nF capacitor connected to VSSD. 12 VDDD – Power supply for digital part. 13 VSSD – Ground (digital). 14 SpiTxD Output 15 SpiClk Input Serial Peripheral Interface Clock is generated by the microcontroller (master) and synchronizes data movement in and out of the device through the SpiRxD and SpiTxD respectively. 16 SpiRxD Input Serial Peripheral Interface Receive Data (MOSI). 17 DiIO1 Input/ Output Digital Input or Output (programmable), line 1. 18 DiIO2 Input/ Output Digital Input or Output (programmable), line 2. 19 DiIO3 Input/ Output Digital Input or Output (programmable), line 3. 20 DiIO4 Input/ Output 21 VSSD – Ground (digital). 22 VDDD – Power supply for digital part. 23 µCVccExt Output 24 Power UpReset Input Power up reset line. 25 VSSD Input Ground (digital). 26 AGCCap – Capacitor for AGC. 27 AFCCap – Capacitor for AFC. 28 IfInN2 Input IF Input (channel 2, down-chirp) - connected to port B of Complementary Dispersive Delay Line (CDDL), line N. 29 IfInP2 Input IF Input (channel 2, down-chirp) - connected to port B of Complementary Dispersive Delay Line (CDDL), line P. 30 VSSA – Serial Peripheral Interface Transmit Data (MISO). Digital Input or Output (programmable), line 4. © 2007 Nanotron Technologies GmbH. Note: 32.768 kHz clock operating on this pin after reset/power up. Power supply for external microprocessor Ground (analog). NA-03-0111-0239-2.09 Page 9 7 Pin Description nanoNET TRX Transceiver (NA1TR8) Datasheet Table 3: nanoNET TRX Transceiver (NA1TR8) pin description Pin Name Type Description 31 IfInP1 Input IF Input (channel 1, up-chirp) - connected to port C of Complementary Dispersive Delay Line (CDDL), line P. 32 IfInN1 Input IF Input (channel 1, up-chirp) - connected to port C of Complementary Dispersive Delay Line (CDDL), line N. 33 VDDA – 34 IfOutP Output IF Output - connected to port A of Complementary Dispersive Delay Line (CDDL), line P. 35 IfOutN Output IF Output - connected to port A of Complementary Dispersive Delay Line (CDDL), line N. 36 VSSA – 37 RxB Input Receiver input. 38 RxA Input Receiver input. 39 VSSA – 40 TxB Output Transmitter output. 41 TxA Output Transmitter output. 42 VSSA – Ground (analog). 43 VSSA – Ground (analog). 44 VDDA – Power supply for analog part. Page 10 NA-03-0111-0239-2.09 Power supply for analog part. Ground (analog). Ground (analog). © 2007 Nanotron Technologies GmbH. 8 Electrical Specifications nanoNET TRX Transceiver (NA1TR8) Datasheet 8 Electrical Specifications 8.1 General DC Parameters Table 4: General DC parameters Parameter Min Typical Max Unit Operating frequency range 2400 2441.750 2483.5 MHz 2.4 3.0 3.6 V – Chirp – – -40 +25 +85 °C Power down (Internal Real Time Clock Active) – 1.5 4 µA Power up – 150 200 µA Standby – 2.4 2.6 mA Ready – 9.6 10.5 mA RX (up/down) – 35 – mA TX (Pout = +8 dBm) – 82 – mA VDDA supply voltage 2.4 3 3.6 V VDDD supply voltage 2.4 3 3.6 V VIL (low level input voltage)b -0.3 – 0.8 V VIH (high level input voltage)b 2.0 – VDDD + 0.3 V VOL (low level output voltage) – – 0.4 V VOH (high level output voltage) 2.4 – – V IOH (high output current) -2 – – mA IOL (low output current) 2 – – mA Supply voltage range VDDA ≅ VDDD Modulation method Operating temperature range Supply currenta Supply Voltage a. Under nominal conditions, except otherwise specified. b. Given only for Vdd = 3.0 to 3.6 © 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 11 8 Electrical Specifications nanoNET TRX Transceiver (NA1TR8) Datasheet 8.2 Transmitter (TX) Parameters Under nominal conditions unless specified. See Nominal Conditions on page 7. Table 5: Transmitter (TX) parameters Parameter Min Typical Max Unit 6 8 – dBm Dynamic for output power control – 39 – dB Number of steps for output power control – 19 – – Load impedance – 150 – Ω Type of load – Balanced – Transmitter spurious emissionsb (1 GHz ... 12.5 GHz) – – -80 dBm/Hz Transmitter carrier suppression – -20 – dBc Carrier frequency – 2441.750 – MHz -0.5 ± 0.275 +0.5 MHz – 244.175 – MHz Quartz operating frequency – 16 – MHz Recommended accuracy – ± 50 – ppm Maximum equivalent serial resistance of the quartz resonator – – 50 Ω Load capacitance of quartz resonator – 27 – pF Transmitter nominal output powera Transmitter output power controlled in steps Carrier frequency accuracy Chirp sample frequency Reference quartz oscillator a. The transmitter output power is the average power related to the peak envelope power of the chirp waveform. (Due to shape of the waveform envelope, the measured average power of the chirp is about 1dB smaller than the peak envelope power.) b. The maximum transmitter output power has to be adjusted to ≤ 8 dBm to secure from overdrive. Page 12 NA-03-0111-0239-2.09 © 2007 Nanotron Technologies GmbH. 8 Electrical Specifications nanoNET TRX Transceiver (NA1TR8) Datasheet 8.3 Receiver (RX) Parameters Under nominal conditions unless specified. See Nominal Conditions on page 7. Note: The measurement results provided in this table were reached by using CDDL. For information on the CDDL, refer to the Complementary Dispersive Delay Line Datasheet. Table 6: Receiver (RX) parameters Parameter Min Typ Max Unit Receiver sensitivity @ 1 Mbps – -92 – dBm Receiver sensitivity @ 2 Mbps – -86 – dBm Input impedance @ 2.44 GHza – 7–j56 – Ω Type of input – Balanced – – Center frequency – 2441.75 – MHz persive delay line (CDDL)a – 64 – dB LO frequency – 2691.75 – MHz -0.5 ± 0.275 0.5 MHz LO rejection noise PRX-LO @ LNA input pin – – -40 dBm Programmable frequency stepb – ± 500 – kHz IF frequency (center) – 250 – MHz IF frequency bandwidth (-3 dB)a (determined by CDDL) 90 – – MHz IF output impedance (balanced) @ 250 MHza – 100 – Ω Type of IF output – Balanced – – Impedance of IF input 1 (balanced) @ 250 MHza – 1.6 – kΩ Impedance of IF input 2 (balanced) @ 250 MHza – 1.6 – kΩ Type of IF1, IF2 input – Balanced – – Maximum received power – – -20 dBm Gain from receiver input up to input to dis- LO frequency accuracy a. Simulated results. b. The minimum change frequency of the LO. © 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 13 8 Electrical Specifications nanoNET TRX Transceiver (NA1TR8) Datasheet 8.4 Digital Interface Parameters Under nominal conditions unless specified. See Nominal Conditions on page 7. Table 7: Digital sensor/actuator interface parameters Parameter Value Unit Number of independent digital interfacesa 4 Number Width of each interface 1 bit Programmable – In/Out (bi-directional, open-drain with pull-up) – Direction Type a. At Pin number 4 (DilO4), 32.768 kHz clock operating after reset/power up. 8.5 Power Management and Sleep/Wake-Up Circuitry Parameters Under nominal conditions unless specified. See Nominal Conditions on page 7. Table 8: Power management and sleep/wake-up circuitry parameters Description Min Typical Max Unit Quartz operating frequency – 32.768 – kHz Recommended accuracy – ± 50 – ppm Load capacitance of quartz resonator – 12.50 – pF Maximum equivalent serial resistance of quartz resonator – – 50 kΩ RTC register length – 48 – bit Epoch date – 01.01.1970 – Date 2.4 2.7 3.6 V Real Time Clock (RTC) Battery monitor Battery monitor voltage Basic dynamic performance (Note: Values in this section are simulation results only) Switch time from TX to RX (from Ack to Data mode) – 24 – µs Switch time from TX to RX (from Data to Ack mode) – 8 – µs Switch time from RX to TX (from Ack to Data mode) – 24 – µs Switch time from RX to TX (from Data to Ack mode) – 8 – µs Page 14 NA-03-0111-0239-2.09 © 2007 Nanotron Technologies GmbH. Electrical Specifications nanoNET TRX Transceiver (NA1TR8) Datasheet 8 Table 8: Power management and sleep/wake-up circuitry parameters Description Min Typical Max Unit Turn-on time TX (user command received via SPI and begin of packet transmission) – 24 – µs Turn-on time RX (user command received via SPI and begin of packet reception) – 6 – µs 1.5 – 5 ms – .2 – ms Startup Time for 16 MHz XTAL until stable frequency generation Calibration time 8.6 Interface to Digital Controller Parameters Under nominal conditions unless specified. See Nominal Conditions on page 7. Table 9: Interface to digital controller parameters Symbol Description µCVccExt High current output / high impendance Voltage @ 10mA load µCReset Min Typical Max Unit Notes Maximum current output = 10mA / high impedance mode VDD - 100 VDD - 20 VDD mV Push-pull, tristate – – – V See footnotea µCIRQ Push-pull – – – V See footnotea . SpiRxD SpiClk, SpiSSn Input – – – V See footnotea SpiTxD Open-drain or push-pull – – – V See footnotea a. Vcc = 2.4V : VOH = 2.0V, VIH = 1.7V, VOL = 0.2V, VIL = 0.7V, Vcc = 3.0..3.6V : VOH = 2.4V, VIH = 1.7..2.0V, VOL = 0.2V, VIL = 0.8V Note: Level translator is required for 5V logic level microcontroller. © 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 15 8 Electrical Specifications nanoNET TRX Transceiver (NA1TR8) Datasheet Intentionally Left Blank Page 16 NA-03-0111-0239-2.09 © 2007 Nanotron Technologies GmbH. Timing Diagrams nanoNET TRX Transceiver (NA1TR8) Datasheet 9 9 Timing Diagrams Time values in the following diagrams are based on the values as shown in Power Management and Sleep/ Wake-Up Circuitry Parameters on page 14. 9.1 Switch Time from TX to RX (from Ack to Data mode) The switch time from TX to RX (from Ack to Data mode), tTxRxAckData, is 24 µs. Tx A/B ... Ack Packet .. Rx A/B tTxRxAckData Data Packet Figure 5: Switch time from TX to RX (from Ack to Data mode) 9.2 Switch Time from TX to RX (from Data to Ack mode) The switch time from TX to RX (from Data to Ack mode), tTxRxDataAck, is 8 µs. Tx A/B ... Data Packet .. Rx A/B tTxRxDataAck Ack Packet Figure 6: Switch time from TX to RX (from Data to Ack mode) 9.3 Switch Time from RX to TX (from Ack to Data mode) The switch time from RX to TX (from Ack to Data mode), tRxTxAckData, is 24 µs. Rx A/B ... Ack Packet .. Tx A/B tRxTxAckData Data Packet Figure 7: Switch time from RX to TX (from Ack to Data mode) © 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 17 9 Timing Diagrams nanoNET TRX Transceiver (NA1TR8) Datasheet 9.4 Switch Time from RX to TX (from Data to Ack mode) The switch time from RX to TX (from Data to Ack mode), tRxTxDataAck, is 8 µs. Rx A/B ... Data Packet .. Tx A/B tRxTxDataAcl Ack Packet Figure 8: Switch time from RX to TX (from Data to Ack mode) 9.5 Turn-On Time TX The Turn-on time for TX, tTxTO, from the reception via SPI of a user command to the beginning of packet transmission is 24 µs. ... Tx A/B SpiClk SpiRxD ... Csn Command requesting packet transmission tTxTO Packet transmission Figure 9: Turn-on time TX: time = tTxTO Page 18 NA-03-0111-0239-2.09 © 2007 Nanotron Technologies GmbH. Timing Diagrams nanoNET TRX Transceiver (NA1TR8) Datasheet 9 9.6 Turn-On Time RX The Turn-on time for RX, tRxTO, from the reception via SPI of a user command to the beginning of packet reception is 6 µs. SpiClk SpiRxD ... Csn ... Rx A/B Command requesting packet reception tRxTO Packet reception Figure 10: Turn-on time RX: time = tRxTO 9.7 16 MHz Crystal Start-Up Time The start-up time for the quartz oscillator until it reaches a stable frequency generation is within a range of 1.5 to 5 ms. See Power Management and Sleep/Wake-Up Circuitry Parameters on page 14. 9.8 LO Frequency Calibration Time The time for the Local Oscillator frequency calibration, is approximately 2 ms. See Power Management and Sleep/Wake-Up Circuitry Parameters on page 14. 9.9 SPI Bus Read and Write Timing The following timing diagrams shows the read and write timing of the SPI bus. For more details, see nanoNET TRX Serial Peripheral Interface Specifications. tLC tHC ... SpiClk tHRxD tSRxD Bit 0 SpiRxD ... tHS tSS SpiSsn Bit N ... Figure 11: SPI bus write timing © 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 19 9 Timing Diagrams nanoNET TRX Transceiver (NA1TR8) Datasheet ... ... SpiClk tHTxD / tPTxDZ tPDTxD ... SpiTxD Bit 0 ... Bit N tHS SpiSsn ... ... Figure 12: SPI bus read timing The following table shows the SPI timing values. Table 6: SPI timing values Parameter Min Max fmax – 16 MHz tLC 22 ns – Low time SpiClk tHC 22 ns – High time SpiClk tSS 10 ns – SpiSsn Setup tHS 5 ns - SpiSsn Hold tSRxD 10 ns – SpiRxD Setup tHRxD 5 ns – SpiRxD Hold tPDTxD – 18 ns tHTxD 2 ns – tPTxDZ - 18 ns Page 20 NA-03-0111-0239-2.09 Comment SpiClk SpiTxD Propagation Delay Drive SpiTxD Hold SpiTxD Propagation Delay High Impedance © 2007 Nanotron Technologies GmbH. Output Power Control nanoNET TRX Transceiver (NA1TR8) Datasheet 10 10 Output Power Control The output power of the nanoNET TRX Transceiver can be set typically in a range of between -27 dBm to + 8 dBm. The following graphs show the range of possibilities. Nominal conditions except power supply voltage and RF output power. Figure 13: nanoNET TRX output power (pout[dBm] by register value) Figure 14: Total current consumption (IDDA[mA] by register value) © 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 21 10 Output Power Control nanoNET TRX Transceiver (NA1TR8) Datasheet Figure 15: Total current consumption (IDDA[mA] by output power [dBm]) Page 22 NA-03-0111-0239-2.09 © 2007 Nanotron Technologies GmbH. Package Dimensions nanoNET TRX Transceiver (NA1TR8) Datasheet 11 11 Package Dimensions The following shows the dimensions of MLF44 44 Pin 7x7 lead-free package. Q P M Seating Plane N A B H D E C G First Angle Projections Figure 16: MLF44 7x7 package dimensions Table 10: Package dimensions labels (unless specified, dimensions are in millimeters) Common Dimensions Label Minimum A Nominal Maximum 7.00 B 4.55 4.70 4.85 C 4.55 4.70 4.85 D C/2 E 7.00 G 0.18 H 0.23 0.30 0.50 M 0.80 0.9 1.00 N – 0.65 0.80 P 0.00 0.02 0.05 Q © 2007 Nanotron Technologies GmbH. 0.25 NA-03-0111-0239-2.09 Page 23 12 Tape and Reel Information 12 Tape and Reel Information nanoNET TRX Transceiver (NA1TR8) Datasheet An embossed tape and reel is used to facilitate automatic pick and place equipment feed requirements. The tape is used as the shipping container for the nanoNET TRX Transceiver (NA1TR8) and requires a minimum of handling. The antistatic/conductive tape provides a secure cavity for the product when sealed with the peel-back cover tape. 12.1 Reel Dimensions Reel Diameter Units Per Reel Reel and Hub Size1 13” 2,500 13/4 1. Reel and hub size = 13 inch reel with 4 inch hub. Includes flange distortion at outer edge:19.4 (0.764) Access hole at slot location: 40 (1.575) min. 1.5 (0.59) min. el Lab Measured at hub: 16.4 (0.646) nom. Hub diameter 330 (13.00) Arbor hole diameter: 13.0 (.512) 20.2 (0.795) min Measured at hub: 22.4 (0.882) max. Example Label Tape slot in core for tape start: 2.5 (0.098) min. width 10 (0.394) min. depth Note: Dimensions are in millimeters (inches are in brackets for reference purposes only). Figure 17: Reel dimensions 12.2 Tape Dimensions Package Type Number of Leads Nominal Package Size Carrier Tape Width Carrier Tape Pitch Leader/Trailer Length1 QFN (MLFP) 44 7 x 7 x 0.9 mm 16 mm 12 mm EIA 1. The device loading orientation is in compliance with EIA-481. Carrier pitch 12 mm Tape width 16 mm nominal User direction of feed Figure 18: Tape dimensions Page 24 NA-03-0111-0239-2.09 © 2007 Nanotron Technologies GmbH. Ordering Information nanoNET TRX Transceiver (NA1TR8) Datasheet 13 13 Ordering Information To order the product described in this datasheet, use the following information. Part Number NA0108B Package Type MLF 44 7x7 mm Tape and reel Package Quantity RoHS Compliant1 16 x 12 type 2,500 pieces per tape Yes. A certificate of RoHS compliance is available from Nanotron Technologies on request. 1. The RoHS directive is “The Restriction of Hazardous Substances in Electrical and Electronic Equipment (ROHS) Directive (2002/95/EC)”. The Directive aims to protect human health and the environment by restricting the use of certain hazardous substances in new equipment; and it complements the WEEE Directive. © 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 25 13 Ordering Information nanoNET TRX Transceiver (NA1TR8) Datasheet Intentionally Left Blank Page 26 NA-03-0111-0239-2.09 © 2007 Nanotron Technologies GmbH. Sample Application nanoNET TRX Transceiver (NA1TR8) Datasheet A1 A1 Sample Application A1.1 Recommended Circuitry The following application is an example of the nanoNET TRX Transceiver used with a temperature measurement and control device. Shaded area is recommended circuitry Bandpass Filter Balun VCC 44 IfOutP IfOutN VSSA RxB RxA VSSA TxB TxA VSSA VSSA 5 Port A 29 6 28 nanoNET TRX (NA1TR8) 7 27 8 26 9 25 10 24 11 23 13 14 15 16 17 18 19 20 21 VDDA IfInN1 IfInP1 VSSA CDDL 1804 IfInP2 IfInN2 AFCCap AGCCap VSSD PowerUpReset µCVccExt 22 VDDD VDDD 12 VSSD VDDDCap 34 30 DilO4 SpiSsn 35 4 DilO3 µCReset 36 31 DilO2 µCIrq 37 3 DilO1 VSSD 38 32 SpiRxD TxRx 39 Port B Xtal1B 40 2 SpiClk Xtal1A 41 33 SpiTxD Xtal2A 42 Port C Xtal2B 43 1 VSSD VDDA VDDA VDDA VDDA VCC + VCC Actuator Microcontroller Temperature Control Unit Note: Pin 20 (DilO4) 32.768 kHz clock operating after reset/power up. + - Temperature Sensor Figure 19: Example application showing recommended circuitry © 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 27 A1 Sample Application nanoNET TRX Transceiver (NA1TR8) Datasheet A1.2 Recommended PCB Layout for RF Part Figure 20: Recommended PCB layout for RF part: schematic 1 of 1 Page 28 NA-03-0111-0239-2.09 © 2007 Nanotron Technologies GmbH. Sample Application nanoNET TRX Transceiver (NA1TR8) Datasheet A1 Top layer Layer 3 GND GND Top layer Layer 3 VCC VCC Figure 21: RF part: PCB board overview Figure 22: RF part: names © 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 29 A1 Sample Application nanoNET TRX Transceiver (NA1TR8) Datasheet Antenna pads GND GND VCC VCC Figure 23: RF part: top layer GND Figure 24: RF part: layer 2 GND GND VCC Figure 25: RF part: layer 3 Page 30 NA-03-0111-0239-2.09 Figure 26: RF part: bottom layer © 2007 Nanotron Technologies GmbH. Sample Application nanoNET TRX Transceiver (NA1TR8) Datasheet A1 A1.3 Recommended PCB Layout for IF Part Figure 27: Recommended PCB layout for IF part: schematic 1 of 1 The following describes the layout requirements for the IF part: + VSSA pin is connected to the ground plan under the chip. + Short connection between chip and CDDL, with minimal width of wires and minimal pad areas for minimal influence of PCB parasitics (do not implement 50 Ω microstrip). + Equal lengths of traces for better CMRR. + External coil (L1 = 47 nH) placed directly between the input pads of CDDL (PORT A). + Use 4 layer PCB (top layer = layer 1, GND = inner layer 2, GND = inner layer 3, and bottom layer = layer 4). VCC Top layer Pin 1 Differential output from CDDL (Port C) GND Layer 3 CDDL (on top layer) Differential IF output Differential input to CDDL (Port A) Approx. 5mm Differential output of CDDL (Port B) nanoNET chip Figure 28: IF part: PCB board overview © 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 31 A1 Sample Application nanoNET TRX Transceiver (NA1TR8) Datasheet Figure 29: IF part: names GND VCC Figure 30: IF part: top layer GND Figure 31: IF part: layer 2 GND Figure 32: IF part: layer 3 Page 32 NA-03-0111-0239-2.09 GND Figure 33: IF part: bottom layer © 2007 Nanotron Technologies GmbH. Reference Design nanoNET TRX Transceiver (NA1TR8) Datasheet A2 A2 Reference Design Figure 34: Reference design: schematic 1 of 3 © 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 33 A2 Reference Design nanoNET TRX Transceiver (NA1TR8) Datasheet Figure 35: Reference design: schematic 2 of 3 Page 34 NA-03-0111-0239-2.09 © 2007 Nanotron Technologies GmbH. Reference Design nanoNET TRX Transceiver (NA1TR8) Datasheet A2 Figure 36: Reference design: schematic 3 of 3 © 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 35 A2 Reference Design nanoNET TRX Transceiver (NA1TR8) Datasheet Figure 37: Reference design: top layer Figure 38: Reference design: layer 2 Figure 39: Reference design: layer 3 Page 36 NA-03-0111-0239-2.09 © 2007 Nanotron Technologies GmbH. Reference Design nanoNET TRX Transceiver (NA1TR8) Datasheet A2 Figure 40: Reference design: bottom layer Figure 41: Reference design: top layer names Figure 42: Reference design: bottom layer names (Inverted) © 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 37 A2 Reference Design nanoNET TRX Transceiver (NA1TR8) Datasheet Figure 43: Reference design: layers, standard structure (example) Page 38 NA-03-0111-0239-2.09 © 2007 Nanotron Technologies GmbH. Reference Design nanoNET TRX Transceiver (NA1TR8) Datasheet A2 A2.1 Reference Design Bill of Materials Table 11: Reference design bill of materials Part Description Resistors Capacitors Inductors Manufacturer Distributor Label Value Qty Package Company Product Number Company Order Number R1 100k 1 0402 PHYCOMP 2322 705 70104 Farnell 195-273 R2, R4 10k 2 0402 MEGGITT CRG0402J1 0K-10 Farnell 389-8659 RA1 2k2 1 4R_ARRAY PHYCOMP ARV341 -2K2-5 Farnell 325-7447 RA2 1M 1 4R_ARRAY PHYCOMP ARV341 -1M-5 Farnell 325-7605 RA3 100k 1 4R_ARRAY PHYCOMP ARV341100K-5 Farnell 325-7540 RA4 220R 1 4R_ARRAY PHYCOMP ARV341 -220R-5 Farnell 325-7381 C15, C16 4.7pF 2 0402 PHYCOMP 2238 869 15478 Farnell 301-9147 C21, C22 5.6pF 2 0402 Epcos B37923K50 50C660 C11 10pF 1 0402 AVX CM05CG10 0D50AH Farnell 578-058 (abgek.) C20 15pF 1 0402 Mira 8210/150 C8, C9 22pF 2 0402 Farnell 301-9184 C10, C13 27pF 2 0402 Mira 8210/270 C1, C7, C18 100pF 3 0402 PHYCOMP 2238 869 15101 Farnell 301-9226 C12 470pF 1 0402 PHYCOMP 2238 587 15618 Farnell 301-9366 C2, C6 1nF 2 0402 PHYCOMP 2238 787 15636 Farnell 301-9380 C3 10nF 1 0402 PHYCOMP 2238 587 15623 Farnell 301-9275 C4, C5 C14, C17 C19, C23 C24, C26 C27, C28 100nF 10 0402 PHYCOMP 2238 787 19849 Farnell 301-9482 C25 10uF/10V 1 3216 AVX TAJA106K0 10R Farnell 197-130 L1 4.7nH 1 0402 Würth 744784047 Würth 744784047 L2, L5 2.7nH 2 0402 Würth 744784027 Würth 744784027 L3 6.8nH 1 0402 Würth 744765068 Würth 744765068 L4 5.6nH 1 0402 Würth 744784056 Würth 744784056 © 2007 Nanotron Technologies GmbH. PHYCOMP 2238 869 15229 NA-03-0111-0239-2.09 Page 39 A2 Reference Design nanoNET TRX Transceiver (NA1TR8) Datasheet Table 11: Reference design bill of materials Part Manufacturer Distributor Label Value Qty Package Company Product Number Company Order Number L6 47nH 1 0402 Würth 74478447 Würth 74478447 L7 742 792 69 1 0603 Würth 74279269 Würth 74279269 Balun BAL1 50R:150R 1 BAL0805 Würth 748420245 Würth 748420245 Band pass filter BP1 748351124 1 WE-BPF1008 Würth 748351124 Würth 748351124 SMD antenna ANT1 WE-ANT20245 1 WE_ANT20245 Würth 7488920245 Würth 7488920245 CDDL DDL1 CDDL_1804 1 13.3 X 6.5 Nanotron DS1804C Nanotron DS1804C Quartz Q1, Q3 32.768kHz 2 31SMX SMI “31M32712.5pF,20p pm” DEQTRON 31M327 12.5pF, 20ppm Q2 16.0MHz 1 32SMX SMI “32 M 16032 ,-40 ..+85°” DEQTRON 32 M 160 -32, -40 ..+85° Surface mount shield: 27x27x5.08 SHIELD1 SHIELD_BMIS _103 1 BMIS-103 Laird Technologies BMIS-103 Laird Technologies BMIS-103 surface mount coin cell holder: 20mm BAT1 BAT_CLIP20 1 BAT_CLIP20 Keystone 1061 Farnell 302-9773 nanoNET transceiver IC1 NA1TR8 1 VFQFPN7X7 Nanotron NA1TR8 Nanotron NA0108B 8-bit microcontroller IC2 ATMEGA16L 1 MLF44 ATMEL Atmega 16L-8MI MSC Atmega 16L-8MI Connectors X1 SMA-f 1 JOHNSON _JACK_GND_2 VITELEC 142-0701 -851 RS Components 363-4690 X2 06X1 1 CON_TMS _06X1_L_HEA SAMTEC TMS-106 -03-G-S_RA SAMTEC TMS-10601-G-S_RA X3 CON_DF17 _40P_HEA 1 CON_DF17 _40P_R05 _HEA HIROSE DF17A(2.0) -40DP -0.5V(50) MSC DF17A(2.0) -40DP -0.5V(50) X4 05X1 1 CON_TMS _05X1_L_HEA SAMTEC TMS-105 -03-G-S_RA SAMTEC TMS-105 -01-G-S_RA X5 04X1 1 CON_TMS _04X1_L_HEA SAMTEC TMS-104 -03-G-S_RA SAMTEC TMS-104 -01-G-S_RA X6 02X1 1 CON_TMS _02X1_L_HEA SAMTEC TMS-102 -03-G-S_RA SAMTEC TMS-10201-G-S_RA Description Page 40 NA-03-0111-0239-2.09 © 2007 Nanotron Technologies GmbH. Abbreviations nanoNET TRX Transceiver (NA1TR8) Datasheet A3 A3 Abbreviations µA µC µCIrq µCReset µCVcc µCVccExt µF µH µs Ω AC Ack ADC ADD AFC AGC ASIC B B BA BALUN BCH BER BOM bps C C °C CCITT CDDL C/I Clk CRC CMMR CMOS CS CSMA CSMA/CA CSS CSS Mode DAC Data dB dBi DBO-CSS dBm dBr DC DiIO DPA DPD DUT Eb EIRP ESD FCD FCM FDMA FEC FET FHSS FIFO FS GBWP GHz GND HBM I IC IEC IF I/O IOH IOL IRQ IQ Microampere (unit of electrical current) Microcontroller External microprocessor interrupt request External microprocessor reset External microprocessor battery supply voltage External microprocessor power supply voltage Microfarad (unit of electrical capacitance) MicroHenry (unit of electrical resistance) Microseconds (unit of time) Ohm (unit of electrical resistance) Alternating Current Acknowledgement packet type Analogue to Digital Converter Actor/sensor Automatic Frequency Control Automatic Gain Control Application Specific-IC Battery Frequency bandwidth Balun (See BALUN) Balun Unbalanced Bose-Chaudhuri-Hochquenghem Bit Error Rate Bill of Materials Bits per second (unit of data throughput) Capacitor Power of signal carrier Celsius (unit of temperature) Comité Consultatif International Téléphonique et Télégraphique Complementary Dispersive Delay Line Carrier to Interference Ratio Clock Cyclic Redundancy Check Common Mode Rejection Ratio Complementary Metal Oxide Semiconductor Chip Select Carrier Sense Multiple Access Carrier Sense Multiple Access/Collision Avoidance Chirp Spread Spectrum Chirp Spread Spectrum Mode Digital to Analog Converter Data packet type Decibel (ratio between two values, such as signal power, voltage, or current levels in logarithmic scale) Gain referenced to isotropic antennae Differentially Bi-Orthogonal Chirp Spread Spectrum dB referenced to one milliwatt (10-3W = 1mW) Decibels relative to reference level Direct Current Digital Input/Output Differential Power Amplifier Differential Peak Detector Device Under Test Energy of bit Effective Isotropic Radiated Power Electrostatic Discharge Folded Chirp Detector Folded Chirp Mixer Frequency Division Multiplex Access Forward Error Correction Field Effect Transistor Frequency Hopping Spread Spectrum First In First Out Full Scale Gain Bandwidth Product Gigahertz (unit of frequency) Ground Human Body Model Inline Integrated Circuit International Electrotechnical Commission Intermediate Frequency Input/Output Output current high Output current low Interrupt request In-phase, Quadrature © 2007 Nanotron Technologies GmbH. ISM ISO kΩ kHz kpbs L LNA LO LPF LSB ΜΩ mA Mbaud Mbps MAC MHz MISO MIX MLF MOD MOSI MUX mW NC nF nH No ns OEM OSC OP OTA PA PAE PAMP PDK PEP pF PFD PLL Pout ppm PCB PGA PGC POMD PSRR PTAT Q QFN R RF RFID ROM RSSI RTC RX S SAR SAW SDS-TWR SLNA SMIX SNR SPI SpiClk SpiSsn SpiRxD SpiTxD SRAM SSB t T TBD TDMA Tjunct THD TRL TRX TTL TX INTERNAL Industrial Scientific Medical International Organization for Standardization KiloOhms (unit of electrical resistance) KiloHertz (unit of frequency) Kilobits per second (unit of data throughput) Inductance Low Noise Amplifier Local Oscillator Low Pass Filter Least Significant Bit MegaOhms (unit of electrical resistance) Milliampere (unit of electrical current) Megabauds Megabits per second (unit of data throughput) Medium Access Control MegaHertz (unit of frequency) Master In, Slave Out Mixer Micro Lead Frame Package Modulator Master Out Slave In Multiplexer milliwatt (unit of power) Not Connected Nanofarad (unit of electrical capacitance) NanoHenry (unit of electrical inductance) Power spectral density of thermal noises Nanosecond (unit of time) Original Equipment Manufacturer Oscillator Operational Amplifier Operational Transconductance Amplifier Power Amplifier Power Added Efficiency Power amplifier Process Development Kit Peak Envelope Power Picofarad (unit of electrical capacitance) Phase Frequency Detector Phase Locked Loop Power Out parts per million Printed Circuit Board Programmable Gain Amplifier Power Gain Control Peak Over Mean Detector Power Supply Rejection Ratio Proportional to Absolute Temperature Quadrature Quad Flat No-lead Resistor Radio Frequency Radio Frequency IDentification Read Only Memory Radio Signal Strength Indicator Real Time Clock Receiver Switch/button Successive Approximation Register Surface Acoustic Wave Symmetrical Double Sided Two Way Ranging Symmetric Low Noise Amplifier Symmetric Mixer Signal to Noise Ratio Serial Peripheral Interface Serial peripheral interface Clock Serial peripheral interface Slave select Serial peripheral interface Receive Data Serial peripheral interface Transmit Data Static RAM Single Side Band Time constant Duration time of the chirp waveform To Be Determined Time Division Multiple Access Temperature of junction Total Harmonic Distortion Transmission Line Transceiver Transistor-Transistor Logic Transmitter NA-03-0111-0239-2.09 Page 41 A3 V VIH VIL VOH VOL VCA VCC VCO VDDA Abbreviations nanoNET TRX Transceiver (NA1TR8) Datasheet Volts (unit of electrical potential) Input voltage for High level Input voltage for Low level Output voltage for High level Output voltage for Low level Voltage Controlled Amplifier Battery supply voltage Voltage Controlled Oscillator Power supply for analog part VDDD VFQFPN VGA VSSA VSSD VSWR XTAL XCO Power supply for digital part Very thin Fine pitch Quad Flat Pack Nolead Package Variable Gain Amplifier Analog ground Digital ground Voltage Standing Wave Ratio Crystal Xtal (crystal) Controlled Oscillator T Tj TC Vpp VD VDS VGS VT VTO a b d eo εr εreff G µo µo m w D S Period Junction Temperature Temperature coefficient, e.g. TK(IDSS) Peak-to-Peak Voltage Diffusion voltage Drain-Source voltage Gate-Source voltage Thermal voltage, VT=kT/q Threshold voltage, Turn-on voltage Angle Current gain Partial derivative Dielectric constant of a vacuum Dielectric constant relative to a vacuum Effective relative dielectric constant Reflection coefficient Permeability of a vacuum Permeability relative to a vacuum Charge carrier mobility Angular frequency Difference Sum Special Symbols CDS CGD CGS Cr D EG fT G GaAs Ge gm H IDSS Drain-source capacitance Gate-drain capacitance Gate-source capacitance Feedback capacitance Drain Energy gap Transit frequency Gate, Gradient Gallium-Arsenide Germanium Short-circuit forward transconductance Hybrid parameter Drain current with VGS=0 k Boltzmann constant, 1.38·10-23J/K or stability factor Electron charge, 1.602·10-19As Differential drain-source-resistance Root Mean Square Thermal resistance in K/W Source Scattering parameters Silicon q rDS RMS Rth S Sij Si Page 42 NA-03-0111-0239-2.09 INTERNAL © 2007 Nanotron Technologies GmbH. Revision History nanoNET TRX Transceiver (NA1TR8) Datasheet Revision History Version Date 1.00 2003-10-11 Initial Release from internal document. 1.01 2003-12-16 Updated images, chip designations on page 19, 20. 1.02 2004-01-28 Bill of Materials table updated and package dimensions added. 1.03 2004-03-15 New template added, BOM updated, Example Application updated. 1.04 2004-04-08 Example application diagram updated, BOM updated, minor textual changes. Title changed to Datasheet. 2.00 2004-08-09 Pinning has changed from 48 pins to 44 pins. The Pin diagram and descriptions have been changed accordingly. Layout suggestion of CDDL connection added. Current consumption for TX changed to 78 mA. Other minor changes. 2.01 2004-09-10 Datasheet updated to latest data. Minor textual changes. Document sign-off table added. 2.02 2004-09-17 Example application updated. BOM table updated. 2.03 2004-11-05 Block diagram updated. 2.04 205-03-25 Parameters in this version for NA2TR1 chip. Nominal Conditions section added. General description updated. Modifications made to block diagram. Naming of Pin 2 and 3 corrected. Content of Absolute Maximum Ratings table modified. All parameters checked and reviewed. Example Application diagrams improved and updated. Both Bill of Materials tables modified. New section 10 added. Document status table added. Document status added. 2.05 2005-04-07 Chip values updated for NA1TR8. New feature: Programmable clock output at digital output. 2.06 2005-07-15 Description/Changes Template updated; Nominal conditions clarified (last point added); block diagram modified; term quartz oscillator used throughout; 32.768 kHz used throughout; VDDD, VDDA supply voltage typical added; Item 8.2.3 changed; timing diagrams added; output power graphs added; example application simplified and BOM deleted; new schematics and layout for recommended PCB layout for RF and IF part; RoHs directive data added; tape and reel information added; ordering information added; reference design appendix added. Note: The typical value for Item 8.1.10 supply current TX (Pout = +8 dBm) has been updated from 78 mA to 82 mA. 2005-07-15 Item 7.11 updated - description of pin clarified; clock signal provided by chip clarified; error corrected in SPI bus read timing diagram (SpiTxD); 2.07 2005-10-21 Minor textual changes; clarification of clock signal that can be provided by the chip (i.e., 32.768 kHz or from 125 kHz to 16 MHz); description of pin 11 VDDDCAP clarified; SpiTxD changed to SpiRxD in both Turn-on time RX and TX figures; error in SPI bus read timing figure fixed; Pin TxRx purpose clarified and elaborated; company address updated. 2.08 2007-02-20 Minor textual changes. 2.09 2007-12-20 Template changes; addition of chip summary section. 2.06 © 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 43 About Nanotron Technologies GmbH nanoNET TRX Transceiver (NA1TR8) Datasheet About Nanotron Technologies GmbH Nanotron Technologies GmbH develops world-class wireless products for demanding applications based on its patented Chirp Spread Spectrum – an innovation that guarantees high robustness, optimal use of the available bandwidth, and low energy consumption. Since the beginning of 2005, Nanotron's Chirp technology has been a part of the IEEE 802.15.4a draft standard for wireless PANs which require extremely robust communication and low power consumption. ICs and RF modules include the nanoNET TRX, the nanoLOC TRX, and ready-to-use or custom wireless solutions. These include, but are not limited to, industrial monitoring and control applications, medical applications (Active RFID), security applications, and Real Time Location Systems (RTLS). nanoNET is certified in Europe, United States, and Japan and supplied to customers worldwide. Headquartered in Berlin, Germany, Nanotron Technologies GmbH was founded in 1991 and is an active member of IEEE, the ZigBee alliance, and ISA-SP100. Further Information: For more information about this product and other products from Nanotron Technologies, contact a sales representative at the following address: Nanotron Technologies GmbH Alt-Moabit 60 10555 Berlin, Germany Phone: +49 30 399 954 - 0 Fax: +49 30 399 954 - 188 Email: [email protected] Internet: www.nanotron.com Page 44 NA-03-0111-0239-2.09 © 2007 Nanotron Technologies GmbH.