Intel® PXA250 and PXA210 Applications Processors Electrical, Mechanical, and Thermal Specification Datasheet Product Features High Performance Processor — Intel® XScale™ Microarchitecture — 32 KB Instruction Cache — 32 KB Data Cache — 2 KB “mini” Data Cache — Extensive Data Buffering Intel® Media Processing Technology — Enhanced 16-bit Multiply — 40-bit Accumulator Flexible Clocking — CPU clock from 66 to 300 MHz — Flexible memory clock ratios — Frequency change modes Rich Serial Peripheral Set — AC97 Audio Port — I2S Audio Port — USB Client Controller — High Speed UART — Second UART with flow control — FIR and SIR infrared comm ports Low Power — Less than 500 mW Typical Internal Dissipation — Supply Voltage may be Reduced to 0.85 V — Low Power/Sleep Modes High Performance Memory Controller — Four Banks of SDRAM - up to 100 MHz — Five Static Chip Selects — Support for PCMCIA or Compact Flash — Companion Chip interface Additional Peripherals for system connectivity — Multimedia Card Controller (MMC) — SSP Controller — I2C Controller — Two Pulse Width Modulators (PWMs) — All peripheral pins double as GPIOs. Hardware debug features Hardware Performance Monitoring features Order Number: 278524-001 February, 2002 Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The Intel® PXA250 and PXA210 Applications Processors may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECs, or MPEG enabled platforms may require licenses from various entities, including Intel Corporation. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com. Copyright © Intel Corporation, 2002 *Other names and brands may be claimed as the property of others. 2 Datasheet Electrical, Mechanical, and Thermal Specification — PXA250 and PXA210 Contents 1.0 About this Document.............................................................................................7 2.0 Functional Overview .............................................................................................. 7 3.0 Package Information.............................................................................................. 8 3.1 3.2 4.0 Electrical Specifications ......................................................................................29 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 Datasheet Package Introduction..................................................................................... 8 3.1.1 Functional Signal Definitions ............................................................ 9 3.1.1.1 PXA250 Signal Pin Descriptions ...................................... 9 3.1.1.2 PXA210 Signal Pin Descriptions .................................... 19 Package Power Ratings ..............................................................................29 Absolute Maximum Ratings.........................................................................29 Operating Conditions...................................................................................30 Targeted DC Specifications.........................................................................31 Targeted AC Specifications.........................................................................32 Oscillator Electrical Specifications...............................................................33 4.5.1 32.768 kHz Oscillator Specifications ..............................................33 4.5.2 3.6864 MHz Oscillator Specifications .............................................34 Reset and Power AC Timing Specifications ................................................35 4.6.1 Power On Timing............................................................................35 4.6.2 Hardware Reset Timing..................................................................36 4.6.3 Watchdog Reset Timing ................................................................. 37 4.6.4 GPIO Reset Timing ........................................................................37 4.6.5 Sleep Mode Timing ........................................................................38 Memory Bus and PCMCIA AC Specifications ............................................. 39 Peripheral Module AC Specifications .......................................................... 42 4.8.1 LCD Module AC Timing..................................................................43 4.8.2 SSP Module AC Timing..................................................................43 4.8.3 Boundary Scan Test Signal Timings .............................................. 44 AC Test Conditions .....................................................................................45 3 PXA250 and PXA210 — Electrical, Mechanical, and Thermal Specification Figures 1 2 3 4 5 6 7 8 9 10 Applications Processor Block Diagram ................................................................. 8 PXA250 Applications Processor ......................................................................... 16 PXA210 Applications Processor ......................................................................... 26 Power-On Reset Timing ...................................................................................... 36 Hardware Reset Timing ...................................................................................... 37 GPIO Reset Timing ............................................................................................. 37 Sleep Mode Timing ............................................................................................. 38 LCD AC Timing Definitions ................................................................................. 43 SSP AC Timing Definitions ................................................................................. 44 AC Test Load ...................................................................................................... 45 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Related Documentation......................................................................................... 7 Pin and Signal Descriptions for the PXA250 Applications Processor ................... 9 PXA250 256-Lead 17x17mm mBGA Pinout — Ballpad Number Order.............. 17 Pin and Signal Descriptions for the PXA210 Applications Processor ................. 19 PXA210 225-Lead 13x13mm TPBGA Pinout — Ballpad Number Order ............ 27 JA and Maximum Power Ratings........................................................................ 29 Absolute Maximum Ratings ................................................................................ 29 Voltage, Temperature, and Frequency Electrical Specifications......................... 30 Standard Input, Output, and I/O Pin DC Operating Conditions........................... 31 Standard Input, Output, and I/O Pin AC Operating Conditions ........................... 32 32.768 kHz Oscillator Specifications ................................................................... 33 3.6864 MHz Oscillator Specifications.................................................................. 34 Power-On Timing Specifications ......................................................................... 36 Hardware Reset Timing Specifications ............................................................... 37 GPIO Reset Timing Specifications...................................................................... 38 Sleep Mode Timing Specifications ...................................................................... 39 SRAM / ROM / Flash / Synchronous Fast Flash AC Specifications.................... 39 Variable Latency I/O Interface AC Specifications ............................................... 40 Card Interface (PCMCIA or Compact Flash) AC Specifications ......................... 41 Synchronous Memory Interface AC Specifications1............................................ 42 LCD AC Timing Specifications ............................................................................ 43 SSP AC Timing Specifications ............................................................................ 44 Boundary Scan Test Signal Timing..................................................................... 44 Tables 4 Datasheet Electrical, Mechanical, and Thermal Specification — PXA250 and PXA210 Revision History Date Datasheet Revision Description 7/6/01 0.5 First Release 2/8/02 -001 First public release of the EMTS 5 PXA250 and PXA210 — Electrical, Mechanical, and Thermal Specification 6 Datasheet Electrical, Mechanical, and Thermal Specification — PXA250 and PXA210 1.0 About this Document This is the Electrical, Mechanical, and Thermal Specification datasheet for the Intel® PXA250 and PXA210 applications processors. This datasheet contains a functional overview, mechanical data, package signal locations, targeted electrical specifications (simulated), and bus functional waveforms. Detailed functional descriptions other than parametric performance is published in the Intel® PXA250 and PXA210 Applications Processors Developer's Manual. Refer to Table 1, “Related Documentation” for a list of documents that support the PXA250 and PXA210 applications processors. Table 1. Related Documentation Document Title 2.0 Order / Contact Intel® PXA250 and PXA210 Applications Processors Developer's Manual Intel Order # 278522 Intel® XScaleTM Microarchitecture for the PXA250 and PXA210 Applications Processors Developer's Manual Intel Order # 278525 Intel® PXA250 and PXA210 Applications Processors Design Guide Intel Order # 278523 Functional Overview The PXA250 and PXA210 applications processors provide high integration, high performance and low power consumption for portable handheld and handset devices. These applications processors incorporate Intel’s XScaleTM Microarchitecture based on the ARM* V5TE architecture. Refer to the Intel® XScaleTM Microarchitecture for the Intel® PXA250 and PXA210 Applications Processors Developer's Manual for implementation details, extensions, and options implemented by Intel’s XScaleTM Microarchitecture. The applications processor’s memory interface supports a variety of memory types that allow flexibility in design requirements. Hooks for connection to two companion chips permit glueless connection to external devices. An integrated LCD display controller provides support for displays, and permits 1, 2 and 4 bit grayscale and 8 or 16 bit color pixels. A 256-byte palette RAM provides flexibility in color mapping. A rich set of serial devices as well as general system resources provide enough compute and connectivity capability for many applications. For details on the programming model and theory of operation of each of these units, refer to the Intel® PXA250 and PXA210 Applications Processors Developer's Manual. For the applications processor’s block diagram refer to Figure 1, “Applications Processor Block Diagram” on page 8. Datasheet 7 PXA250 and PXA210 — Electrical, Mechanical, and Thermal Specification Figure 1. Applications Processor Block Diagram RTC Color or Grayscale LCD Controller OS Timer PWM(2) Memory Controller Int Contr. Clocks & Pwr Man. 2 I S I2 C AC97 System Bus DMA Controller And Bridge Variable Latency I/O Control ASIC Socket 0 PCMCIA & CF Control XCVR Socket 1 UART1 UART2 Megacell Core Slow IrDA Dynamic Memory Control Fast IrDA SSP USB Client MMC 3.0 Package Information 3.1 Package Introduction 3.6864 32.768 MHz KHz Osc Osc Static Memory Control SDRAM/ SMROM 4 banks ROM/ Flash/ SRAM 4 Banks The applications processor is offered in two packages; • The PXA250 applications processor, 256-pin mBGA (refer to Figure 2, “PXA250 Applications Processor” on page 16) • The PXA210 applications processor, 225-pin TPBGA package (refer to Figure 3, “PXA210 Applications Processor” on page 26) 8 Datasheet Electrical, Mechanical, and Thermal Specification — PXA250 and PXA210 3.1.1 Functional Signal Definitions 3.1.1.1 PXA250 Signal Pin Descriptions Signal definitions for the PXA250 applications processor are described in Table 2, “Pin and Signal Descriptions for the PXA250 Applications Processor” on page 9. The physical characteristics of the PXA250 applications processor are shown in Figure 2, “PXA250 Applications Processor” on page 16. The pinout for the PXA250 applications processor is described in Table 3, “PXA250 256Lead 17x17mm mBGA Pinout — Ballpad Number Order” on page 17. Table 2. Pin and Signal Descriptions for the PXA250 Applications Processor (Sheet 1 of 7) Name Type Description Memory Controller Pins Memory address bus. This bus signals the address requested for memory accesses. MA[25:0] OCZ MD[15:0] ICOCZ Memory data bus. D[15:0] are used for 16-bit data mode. MD[31:16] ICOCZ Memory data bus. D[31:16]: These data bits are used for the PXA250 applications processor 32-bit memories and are not pinned out for the PXA210 applications processor, 16-bit package option. nOE OCZ Memory output enable. This signal should be connected to the output enables of memory devices to control their data bus drivers. nWE OCZ Memory write enable. Connect this signal should to the write enables of memory devices. nSDCS[3:0] OCZ SDRAM CS for banks 0 through 3. Connect these signals to the chip select (CS) pins for SDRAM. nSDCS0 is three-stateable nSDCS1-3 are not DQM[3:0] OCZ SDRAM DQM for data bytes 0 through 3. Connect these signals to the data output mask enables (DQM) for SDRAM. nSDRAS OCZ SDRAM RAS. Connect this signal should to the row address strobe (RAS) pins for all banks of SDRAM. nSDCAS OCZ SDRAM CAS. Connect this signal should to the column address strobe (CAS) pins for all banks of SDRAM. SDCKE[0] OC SDRAM and/or Synchronous Static Memory clock enable. Connect SDCKE[0] to the CKE pins of SMROM and SDRAM-timing Synchronous Flash. The memory controller provides control register bits for deassertion of each SDCKE pin. SDRAM and/or Synchronous Static Memory clock enable. SDCKE[1] OC Connect SDCKE[1] to the SDRAM clock enable pins. It is de-asserted (held low) during sleep. SDCKE[1] is always deasserted upon reset. The memory controller provides control register bits for deassertion of each SDCKE pin. Datasheet 9 PXA250 and PXA210 — Electrical, Mechanical, and Thermal Specification Table 2. Pin and Signal Descriptions for the PXA250 Applications Processor (Sheet 2 of 7) Name SDCLK[2:0] Type OCZ Description SDRAM and/or Synchronous Static Memory clocks. Connect SDCLK[0] to the clock (CLK) pins of SMROM and SDRAM-timing Synchronous Flash. SDCLK[1] and SDCLK[2] should be connected to the clock pins of SDRAM in bank pairs 0/1 and 2/3, respectively. They are driven by either the internal memory controller clock, or the internal memory controller clock divided by 2. At reset, all clock pins are free running at the divide by 2 clock speed and may be turned off via free running control register bits in the memory controller. The memory controller also provides control register bits for clock division and deassertion of each SDCLK pin. SDCLK[0] control register assertion bit defaults to on if the boot-time static memory bank 0 is configured for SMROM or SDRAM-timing Synchronous Flash. SDCLK[2:1] control register assertion bits are always deasserted upon reset. 0 and 2 are not three-stateable, SDCLK1 is three-stateable nCS[5]/ GPIO[33] ICOCZ Static chip selects. These signals are chip selects for static memory devices such as ROM and Flash. They are individually programmable in the memory configuration registers. nCS[5:3] may be used with variable data latency variable latency I/O devices. See Note [1] nCS[4]/ GPIO[80] nCS[3]/ GPIO[79] nCS[2]/ GPIO[78] nCS[1]/ GPIO[15] nCS[0] ICOCZ Static chip select 4. ICOCZ Static chip select 3. ICOCZ Static chip select 2. ICOCZ Static chip select 1. ICOCZ Static chip select 0. This is the boot memory chip select. nCS[0] is a dedicated pin. RD/nWR OCZ RDY/ GPIO[18] ICOCZ Read/Write for static interface. Intended for use as a steering signal for buffering logic Variable Latency I/O Ready pin (input) See Note [1] PCMCIA/CF Control Pins nPOE/ GPIO[48] nPWE/ GPIO[49] nPIOW/ GPIO[51] nPIOR/ GPIO[50] nPCE[2:1]/ GPIO[53, 52] 10 ICOCZ PCMCIA Output Enable. This PCMCIA signal is an output and performs reads from memory and attribute space. See Note [1] ICOCZ PCMCIA Write Enable. This signal is an output and performs writes to memory and attribute space. See Note [1] ICOCZ PCMCIA I/O Write. This signal is an output and performs write transactions to the PCMCIA I/O space. See Note [1] ICOCZ PCMCIA I/O Read. This signal is an output and performs read transactions from the PCMCIA I/O space. See Note [1] ICOCZ PCMCIA Card Enable. These signals are outputs and select a PCMCIA card. Bit one enables the high byte lane and bit zero enables the low byte lane. See Note [1] Datasheet Electrical, Mechanical, and Thermal Specification — PXA250 and PXA210 Table 2. Pin and Signal Descriptions for the PXA250 Applications Processor (Sheet 3 of 7) Name nIOIS16/ GPIO[57] nPWAIT/ GPIO[56] nPSKTSEL/ GPIO[54] nPREG/ GPIO[55] Type ICOCZ Description I/O Select 16. This signal is an input and is an acknowledge from the PCMCIA card that the current address is a valid 16 bit wide I/O address. See Note [1] ICOCZ PCMCIA Wait. This signal is an input and is driven low by the PCMCIA card to extend the length of the transfers to/from applications processor. See Note [1] ICOCZ ICOCZ PCMCIA Socket Select. This signal is an output and is used by external steering logic to route control, address and data signals to one of the two PCMCIA sockets. When PSKTSEL is low, socket zero is selected. When PSKTSEL is high, socket one is selected. This signal has the same timing as an address. See Note [1] PCMCIA Register Select. This signal is an output and indicates that, on a memory transaction, the target address is attribute space. This signal has the same timing as address. See Note [1] LCD Controller Pins L_DD(15:0)/ GPIO[73:58] ICOCZ LCD Controller display data See Note [1] L_FCLK/ GPIO[74] ICOCZ LCD Frame clock See Note [1] L_LCLK/ GPIO[75] ICOCZ LCD Line clock See Note [1] L_PCLK/ GPIO[76] L_BIAS/ GPIO[77] ICOCZ ICOCZ LCD pixel clock See Note [1] AC Bias Drive See Note [1] Full Function UART Pins FFRXD/ GPIO[34] FFTXD/ GPIO[39] FFCTS/ GPIO[35] FFDCD/ GPIO[36] FFDSR/ GPIO[37] FFRI/ GPIO[38] FFDTR/ GPIO[40] FFRTS/ GPIO[41] Datasheet ICOCZ ICOCZ ICOCZ ICOCZ ICOCZ ICOCZ ICOCZ ICOCZ Full Function UART Receive pin See Note [1] Full Function UART Transmit pin See Note [1] Full Function UART Clear-to-Send pin See Note [1] Full Function UART Data-Carrier-Detect Pin See Note [1] Full Function UART Data-Set-Ready Pin: See Note [1] Full Function UART Ring Indicator Pin See Note [1] Full Function UART Data-Terminal-Ready pin See Note [1] Full Function UART Ready-to-Send pin See Note [1] 11 PXA250 and PXA210 — Electrical, Mechanical, and Thermal Specification Table 2. Pin and Signal Descriptions for the PXA250 Applications Processor (Sheet 4 of 7) Name Type Description Bluetooth UART Pins BTRXD/ GPIO[42] ICOCZ Bluetooth UART Receive pin See Note [1] BTTXD/ GPIO[43] ICOCZ Bluetooth UART Transmit pin See Note [1] BTCTS/ GPIO[44] ICOCZ Bluetooth UART Clear-to-Send pin See Note [1] BTRTS/ GPIO[45] ICOCZ Bluetooth UART Data-Terminal-Ready pin See Note [1] MMC Controller Pins MMCMD ICOCZ Multimedia Card Command pin (I/O) MMDAT ICOCZ Multimedia Card Data Pin (I/O) ICOCZ Synchronous Serial Port Clock (output) See Note [1] SSP Pins SSPSCLK/ GPIO[23] SSPSFRM/ GPIO[24] SSPTXD/ GPIO[25] SSPRXD/ GPIO[26] SSPEXTCLK/ GPIO[27] ICOCZ ICOCZ ICOCZ Synchronous serial port Frame Signal (output) See Note [1] Synchronous serial port transmit (output) See Note [1] Synchronous serial port receive (input) See Note [1] ICOCZ Synchronous Serial port external clock (input) See Note [1] USB_P IAOA USB Client port positive Pin of differential pair. USB_N IAOA USB Client port negative Pin of differential pair. USB Client Pins AC97 Controller Pins BITCLK/ GPIO[28] SDATA_IN0/ GPIO[29] SDATA_IN1/ GPIO[32] SDATA_OUT/ GPIO[30] SYNC/ GPIO[31] nACRESET 12 ICOCZ ICOCZ ICOCZ ICOCZ ICOCZ OC AC97 Audio Port bit clock (output) See Note [1] AC97 Audio Port data in (input) See Note [1] AC97 Audio Port data in (input) See Note [1] AC97 Audio Port data out (output) See Note [1] AC97 Audio Port sync signal (output) See Note [1] AC97 Audio Port reset signal (output) This pin is a dedicated output. Datasheet Electrical, Mechanical, and Thermal Specification — PXA250 and PXA210 Table 2. Pin and Signal Descriptions for the PXA250 Applications Processor (Sheet 5 of 7) Name Type Description Standard UART and ICP Pins IRRXD/ GPIO[46] IRTXD/ GPIO[47] ICOCZ ICOCZ IrDA Receive signal (input). See Note [1] IrDA Transmit signal (output). This pin is the transmit pin for both the SIR and FIR functions. See Note [1] I2C Controller Pins I2C clock (Bidirectional) SCL ICOCZ SDA ICOCZ This signal is bidirectional. When it is driving, it functions as an open collector device and requires a pull up resistor. As an input, it expects standard CMOS levels. I2C Data signal (bidirectional). Bidirectional signal. When it is driving, it functions as an open collector device and requires a pull up resistor. As an input, it expects standard CMOS levels. PWM Pins PWM[1:0]/ GPIO[17,16] Pulse Width Modulation channels 0 and 1 (outputs) ICOCZ See Note [1] Dedicated GPIO Pins GPIO[1:0] ICOCZ General Purpose I/O. These two pins are contained in both the PXA250 and PXA210 Applications Processors. They are preconfigured at a hard reset (nRESET) as wakeup sources for both rising and falling edge detects. These GPIOs do not have alternate functions and are intended to be used as the main external sleep wakeup stimulus. GPIO[14:2]) ICOCZ General Purpose I/O: These pins are not included in the PXA210 Applications Processor. See Note [1] Crystal Pins PXTAL IA PEXTAL OA TXTAL IA TEXTAL Datasheet OA Input connection for 3.6864 Mhz crystal Output connection for 3.6846 Mhz crystal Input connection for external oscillator Input connection for 32.768 Khz crystal Output connection for 32.768 Khz crystal Input connection for external oscillator 13 PXA250 and PXA210 — Electrical, Mechanical, and Thermal Specification Table 2. Pin and Signal Descriptions for the PXA250 Applications Processor (Sheet 6 of 7) Name Type Description Miscellaneous Pins Boot programming select pins. These pins are sampled to indicate the type of boot device present per the following table; BOOT_SEL[2:0] BOOT_SEL [2:0] PWR_EN IC OCZ Description 000 001 Asynchronous 32-bit ROM Asynchronous 16-bit ROM 010 Reserved 011 100 Reserved One 32-bit SMROM 101 One 16 bit SMROM 110 111 Two 16 bit SMROMs (32 bit bus) Reserved Power Enable. Active high output. PWR_EN enables the external power supply. Negating it signals the power supply that the system is going into sleep mode and that the VDD power supply should be removed. Battery Fault. Active low input. nBATT_FAUL T IC Signals the applications processor that the main power source is going away (battery is low or is removed from the system.) The assertion of nBATT_FAULT causes the applications processor to enter Sleep Mode. The device will not recognize a wakeup event while this signal is asserted. VDD Fault. Active low input. nVDD_FAULT IC Signals the applications processor that the main power source is going out of regulation (i.e. shorted card is inserted). nVDD_FAULT causes the device to enter Sleep Mode. nVDD_FAULT is ignored after a wakeup event until the power supply timer completes (approximately 10 ms). Hard reset. Active low input. nRESET IC nRESET_OUT OC nRESET is a level sensitive input which starts the processor from a known address. A LOW level causes the current instruction to terminate abnormally, and all on-chip states to be reset. When nRESET is driven HIGH, the processor restarts from address 0. nRESET must remain LOW until the power supply is stable and the internal 3.6864 MHz oscillator has come up to speed. While nRESET is LOW the processor performs idle cycles. Reset Out. Active low output. This signal is asserted when nRESET is asserted and deasserts after nRESET is negated but before the first instruction fetch. nRESET_OUT is also asserted for “soft” reset events (sleep, watchdog reset, GPIO reset) JTAG Pins nTRST IC JTAG Test interface reset. If JTAG is used, then you must drive nTRST from low to high either before or at the same time as nRESET If JTAG is not used, then tie nTRST to either nRESET or low. 14 TDI IC JTAG test interface data input. Note this pin has an internal pullup resistor. TDO OCZ TMS IC JTAG test interface mode select. Note this pin has an internal pullup resistor. TCK IC JTAG test interface reference Clock. TCK is the reference clock for all transfers on the JTAG test interface. Note this pin has an internal pulldown resistor. TEST IC Test Mode. You must ground this pin. This pin is for manufacturing purposes only. JTAG test interface data output. Note this pin does NOT have an internal pullup resistor. Datasheet Electrical, Mechanical, and Thermal Specification — PXA250 and PXA210 Table 2. Pin and Signal Descriptions for the PXA250 Applications Processor (Sheet 7 of 7) Name TESTCLK Type IC Description Test Clock. This pin should be used for test purposes only. An end user should ground this pin. Power and Ground Pins VCC SUP Positive supply for the applications processor internal Logic. Connect this supply to the low voltage (.85 - 1.3v) supply on the PCB. VSS SUP Ground supply for the applications processor internal logic. Connect these pins to the common ground plane on the PCB. PLL_VCC SUP Positive supply for the PLLs and Oscillators. It is recommended that you connect this pin to the common low voltage supply. PLL_VSS SUP Ground signal for PLLs. VCCQ SUP Positive supply for all CMOS I/O, except memory bus and PCMCIA pins. Connect these pins to the common 3.3 volt supply on the PCB. VSSQ SUP Ground supply for all CMOS I/O except memory bus and PCMCIA pins. Connect these pins to the common ground plane on the PCB. VCCN SUP Positive supply for memory bus and PCMCIA pins. Connect these pins to the common 3.3 volt supply on the PCB. VSSN SUP Ground supply for memory bus and PCMCIA pins. Connect these pins to the common ground plane on the PCB. BATT_VCC SUP Backup battery connection. Connect this pin to the backup battery supply. If a backup battery is not required, then this pin may be connected to the common 3.3 volt supply on the PCB. NOTE: 1. GPIO Reset Operation: Configured as GPIO inputs by default after any reset. The input buffers for these pins are disabled to prevent current drain. Datasheet 15 PXA250 and PXA210 — Electrical, Mechanical, and Thermal Specification Figure 2. PXA250 Applications Processor 16 Datasheet Electrical, Mechanical, and Thermal Specification — PXA250 and PXA210 Table 3. PXA250 256-Lead 17x17mm mBGA Pinout — Ballpad Number Order (Sheet 1 of 3) Ball # Datasheet Signal Ball # Signal Ball # Signal A1 VCCN C10 VCCQ F3 nSDCAS A2 L_DD[13]/GPIO[71] C11 VSSQ F4 VCCN A3 L_DD[12]/GPIO[70] C12 USB_P F5 SDCLK[1] A4 L_DD[11]/GPIO[69] C13 VCCQ F6 VSSQ A5 L_DD[9]/GPIO[67] C14 VSSQ F7 GPIO[10] A6 L_DD[7]/GPIO[65] C15 IRTXD/GPIO[47] F8 FRTS/GPIO[41] A7 GPIO[11] C16 VSS F9 SSPSCLK/GPIO[23] A8 L_BIAS/GPIO[77] D1 SDCLK[2] F10 FFDTR/GPIO[40] A9 SSPRXD/GPIO[26] D2 SDCLK[0] F11 VCC A10 SDATA_OUT/GPIO[30] D3 RDnWR F12 GPIO[9] A11 SDA D4 VCCN F13 BOOT_SEL[2] A12 FFDCD/GPIO[36] D5 L_DD[10]/GPIO[68] F14 GPIO[8] A13 FFRXD/GPIO[34] D6 L_DD[5]/GPIO[63] F15 VSSQ A14 FFCTS/GPIO[35] D7 L_DD[1]/GPIO[59] F16 VSSQ A15 BTCTS/GPIO[44] D8 L_LCLK/GPIO[75] G1 MA[0] A16 SDATA_IN1/GPIO[32] D9 SSPTXD/GPIO[25] G2 VSSN B1 DQM[1] D10 nACRESET G3 nSDCS[2] B2 DQM[2] D11 SCL G4 nWE B3 L_DD[15]/GPIO[73] D12 PWM[1]/GPIO[17] G5 nOE B4 GPIO[14] D13 BTTXD/GPIO[43] G6 nSDCS[1] B5 GPIO[13] D14 MMCMD G7 VCC B6 GPIO[12] D15 VCCQ G8 VSSQ B7 L_DD[3]/GPIO[61] D16 VSSQ G9 VCC B8 L_PCLK/GPIO[76] E1 nSDRAS G10 VSSQ B9 SSPEXTCLK/GPIO[27] E2 VSSN G11 TESTCLK B10 FFRI/GPIO[38] E3 SDCKE[1] G12 TEST B11 FFDSR/GPIO[37] E4 SDCKE[0] G13 BOOT_SEL[1] B12 USB_N E5 L_DD[6]/GPIO[64] G14 VCCQ B13 BTRXD/GPIO[42] E6 L_DD[4]/GPIO[62] G15 GPIO[7] B14 BTRTS/GPIO[45] E7 L_DD[[0]/GPIO[58] G16 BOOT_SEL[0] B15 IRRXD/GPIO[46] E8 L_FCLK/GPIO[74] H1 MA[2] B16 MMDAT E9 SSPSFRM/GPIO[24] H2 MA[1] C1 RDY/GPIO[18] E10 SDATA_IN0/GPIO[29] H3 MD[16] C2 VSSN E11 SYNC/GPIO[31] H4 VCCN C3 L_DD[14]/GPIO[72] E12 PWM[0]/GPIO[16] H5 MD[17] C4 VSSQ E13 FFTXD/GPIO[39] H6 MA[3] C5 L_DD[8]/GPIO[66] E14 VCCQ H7 VSSQ 17 PXA250 and PXA210 — Electrical, Mechanical, and Thermal Specification Table 3. PXA250 256-Lead 17x17mm mBGA Pinout — Ballpad Number Order (Sheet 2 of 3) Ball # 18 Signal Ball # Signal Ball # Signal C6 VCCQ E15 VSSQ H8 VSS C7 L_DD[2]/GPIO[60] E16 VSSQ H9 VSS C8 VSSQ F1 nSDCS[0] H10 VCC C9 BITCLK/GPIO[28] F2 nSDCS[3] H11 nTRST H12 TCK L9 VCC P6 MD[24] H13 TMS L10 GPIO[0] P7 MD26] H14 GPIO[6] L11 PWR_EN P8 MD[27] H15 TDI L12 GPIO[1] P9 nCS[2]/GPIO[78] H16 TDO L13 GPIO[2] P10 MD[29] J1 MA[7] L14 VSSQ P11 MD[12] J2 VSSN L15 TEXTAL P12 MD[31] J3 MA[6] L16 TXTAL P13 nPOE/GPIO[48] J4 MD[18] M1 MA[14] P14 nPCE[1]/GPIO[52] J5 MA[5] M2 MD[21] P15 VSSN J6 MA[4] M3 MA[15] P16 nPSKTSEL/GPIO[54] J7 VCC M4 VCCN R1 MA[18] J8 VSS M5 MD[1] R2 VSSN J9 VSS M6 MD[6] R3 MA[20] J10 VSSQ M7 MD[7] R4 VSSN J11 GPIO[5] M8 DQM[0] R5 MA[22] J12 GPIO[4] M9 MD[8] R6 VSSN J13 nRESET M10 MD[15] R7 MD[25] J14 VSSQ M11 BATT_VCC R8 VSSN J15 PLL_VCC M12 GPIO[22] R9 MD[10] J16 PLL_VSS M13 nPREG/GPIO[55] R10 VSSN K1 MA[8] M14 VCCN R11 MD[30] K2 MA[9] M15 VSSN R12 VSSN K3 MD[19] M16 nIOIS16/GPIO[57] R13 nCS[4]/GPIO[80] K4 VCCN N1 MD[22] R14 VSSN K5 MA[10] N2 VSSN R15 nPIOW/GPIO[51] K6 MA[11] N3 MA[16] R16 K7 VSSQ N4 MD[0] T1 K8 VCC N5 VCCN T2 VCCN K9 VSSQ N6 MD[4] T3 MD[23] K10 VCC N7 VCCN T4 MA[21] K11 nRESET_OUT N8 nCS[0] T5 MA[24] K12 nBATT_FAULT N9 VCCN T6 MD[3] K13 nVDD_FAULT N10 MD[13] T7 MD[5] nPCE[2]/GPIO[53] VSS Datasheet Electrical, Mechanical, and Thermal Specification — PXA250 and PXA210 Table 3. PXA250 256-Lead 17x17mm mBGA Pinout — Ballpad Number Order (Sheet 3 of 3) Ball # Ball # Signal Ball # Signal K14 GPIO[3] N11 VCCN T8 nCS[1]/GPIO[15] K15 PXTAL N12 DREQ[0]/GPIO[20] T9 nCS[3]/GPIO[79] K16 3.1.1.2 Signal PEXTAL N13 VCCN T10 MD[9] L1 MA[12] N14 DREQ[1]/GPIO[19] T11 MD[11] L2 VSSN N15 GPIO[21] T12 MD[14] L3 MA[13] N16 nPWAIT/GPIO[56] T13 nCS[5]/GPIO[33] L4 MD[20] P1 MA[17] T14 nPWE/GPIO[49] L5 MD[2] P2 MA[19] T15 nPIOR/GPIO[50] L6 VCC P3 VCCN T16 VCCN L7 DQM[3] P4 MA[25] L8 MD[28] P5 MA[23] PXA210 Signal Pin Descriptions Signal definitions for the PXA210 applications processor are described in Table 4. The physical characteristics of the PXA210 applications processor are shown in Figure 3, “PXA210 Applications Processor” on page 26. The pinout for the PXA210 applications processor is described in Table 5, “PXA210 225-Lead 13x13mm TPBGA Pinout — Ballpad Number Order” on page 27. Table 4. Pin and Signal Descriptions for the PXA210 Applications Processor (Sheet 1 of 7) Pin Name Type Signal Descriptions Memory Controller Pins Datasheet MA[25:0] OCZ Memory address bus. (output) Signals the address requested for memory accesses. MD[15:0] ICOCZ Memory data bus. (input/output) Lower 16 bits of the data bus. nOE OCZ Memory output enable. (output) Connect to the output enables of memory devices to control data bus drivers. nWE OCZ Memory write enable. (output) Connect to the write enables of memory devices. nSDCS[1:0] OCZ SDRAM CS for banks 1 and 0. (output) Connect to the chip select (CS) pins for SDRAM. For the PXA210 applications processor nSDCS0 can be Hi-Z, nSDCS1 cannot. DQM[1:0] OCZ SDRAM DQM for data bytes 1 and 0. (output) Connect to the data output mask enables (DQM) for SDRAM. nSDRAS OCZ SDRAM RAS. (output) Connect to the row address strobe (RAS) pins for all banks of SDRAM. nSDCAS OCZ SDRAM CAS. (output) Connect to the column address strobe (CAS) pins for all banks of SDRAM. SDCKE[0] OC SDRAM and/or Synchronous Static Memory clock enable. (output) Connect to the CKE pins of SMROM and SDRAM-timing Synchronous Flash. The memory controller provides control register bits for deassertion. 19 PXA250 and PXA210 — Electrical, Mechanical, and Thermal Specification Table 4. Pin and Signal Descriptions for the PXA210 Applications Processor (Sheet 2 of 7) Pin Name Type SDCKE[1] OC SDCLK[0] OC SDCLK[1] OCZ nCS[5]/ GPIO[33] ICOCZ nCS[4]/ GPIO[80] nCS[3]/ GPIO[79] nCS[2]/ GPIO[78] nCS[1]/ GPIO[15] nPWE/ Signal Descriptions SDRAM and/or Synchronous Static Memory clock enable. (output) Connect to the clock enable pins of SDRAM. It is deasserted during sleep. SDCKE[1] is always deasserted upon reset. The memory controller provides control register bits for deassertion. SDRAM and/or Synchronous Static Memory clocks. (output) Connect to the clock (CLK) pins of SMROM and SDRAM-timing Synchronous Flash. Connect SDCLK[1] to the clock pins of SDRAM in bank pairs 0/1. It is driven by either the internal memory controller clock or the internal memory controller clock divided by 2. At reset, all clock pins are free running at the divide by 2 clock speed and may be turned off via free running control register bits in the memory controller. The memory controller also provides control register bits for clock division and deassertion of each SDCLK pin. SDCLK[0] control register assertion bit defaults to on if the boot-time static memory bank 0 is configured for SMROM or SDRAMtiming Synchronous Flash. SDCLK[1] control register assertion bit is always deasserted on reset. SDCLK[1] can be Hi-Z, SDCLK[0] cannot. ICOCZ ICOCZ Static chip selects. (output) Chip selects to static memory devices such as ROM and Flash. Individually programmable in the memory configuration registers. nCS[5:3] can be used with variable latency I/O devices. ICOCZ ICOCZ ICOCZ VLIO write enable (output). Used as the write enable signal for Variable Latency I/O. nCS[0] ICOCZ Static chip select 0. (output) Chip select for the boot memory. nCS[0] is a dedicated pin. RD/nWR OCZ Read/Write for static interface. (output) Signals that the current transaction is a read or write. ICOCZ Variable Latency I/O Ready pin. (input) Notifies the memory controller when an external bus device is ready to transfer data. GPIO[49] RDY/ GPIO[18] L_DD[8]/ GPIO[66] L_DD[15]/ GPIO[73] ICOCZ ICOCZ LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. Memory Controller alternate bus master request. (input) Allows an external device to request the system bus from the Memory Controller. LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. Memory Controller grant. (output) Notifies an external device that it has been granted the system bus. LCD Controller Pins L_DD(7:0)/ GPIO[65:58] L_DD[8]/ GPIO[66] 20 ICOCZ ICOCZ LCD display data. (outputs) Transfers pixel information from the LCD Controller to the external LCD panel. LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. Memory Controller alternate bus master request. (input) Allows an external device to request the system bus from the Memory Controller. Datasheet Electrical, Mechanical, and Thermal Specification — PXA250 and PXA210 Table 4. Pin and Signal Descriptions for the PXA210 Applications Processor (Sheet 3 of 7) Pin Name L_DD[9]/ GPIO[67] L_DD[10]/ GPIO[68] L_DD[11]/ GPIO[69] L_DD[12]/ GPIO[70] L_DD[13]/ GPIO[71] L_DD[14]/ GPIO[72] L_DD[15]/ GPIO[73] L_FCLK/ GPIO[74] L_LCLK/ GPIO[75] L_PCLK/ GPIO[76] L_BIAS/ GPIO[77] Type Signal Descriptions ICOCZ LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. ICOCZ LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. ICOCZ LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. MMC chip select 0. (output) Chip select 0 for the MMC Controller. MMC chip select 1. (output) Chip select 1 for the MMC Controller. MMC clock. (output) Clock for the MMC Controller. ICOCZ LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. RTC clock. (output) Real time clock 1 Hz tick. ICOCZ LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. ICOCZ LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. 3.6864 MHz clock. (output) Output from 3.6864 MHz oscillator. 32 kHz clock. (output) Output from the 32 kHz oscillator. ICOCZ LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. Memory Controller grant. (output) Notifies an external device it has been granted the system bus. ICOCZ LCD frame clock. (output) Indicates the start of a new frame. Also referred to as Vsync. ICOCZ LCD line clock. (output) Indicates the start of a new line. Also referred to as Hsync. ICOCZ LCD pixel clock. (output) Clocks valid pixel data into the LCD’s line shift buffer. ICOCZ AC bias drive. (output) Notifies the panel to change the polarity for some passive LCD panel. For TFT panels, this signal indicates valid pixel data. Full Function UART Pins FFRXD/ GPIO[34] ICOCZ FFTXD/ GPIO[39] ICOCZ Full Function UART Receive. (input) MMC chip select 0. (output) Chip select 0 for the MMC Controller. Full Function UART Transmit. (output) MMC chip select 1. (output) Chip select 1 for the MMC Controller. Bluetooth UART Pins BTRXD/ ICOCZ Bluetooth UART Receive. (input) BTTXD/ GPIO[43] ICOCZ Bluetooth UART Transmit. (output) BTCTS/ GPIO[44] ICOCZ Bluetooth UART Clear-to-Send. (input) ICOCZ Bluetooth UART Data-Terminal-Ready. (output) GPIO[42] BTRTS/ GPIO[45] Datasheet 21 PXA250 and PXA210 — Electrical, Mechanical, and Thermal Specification Table 4. Pin and Signal Descriptions for the PXA210 Applications Processor (Sheet 4 of 7) Pin Name Type Signal Descriptions Standard UART and ICP Pins IRRXD/ GPIO[46] IRTXD/ GPIO[47] ICOCZ ICOCZ IrDA receive signal. (input) Receive pin for the FIR function. Standard UART receive. (input) IrDA transmit signal. (output) Transmit pin for the Standard UART, SIR and FIR functions. Standard UART transmit. (output) MMC Controller Pins MMCMD ICOCZ Multimedia Card Command. (bidirectional) MMDAT ICOCZ Multimedia Card Data. (bidirectional) GPIO[53] ICOCZ MMC clock. (output) Clock signal for the MMC Controller. L_DD[9]/ GPIO[67] ICOCZ LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. L_DD[10]/ GPIO[68] ICOCZ LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. MMC chip select 1. (output) Chip select 1 for the MMC Controller. L_DD[11]/ GPIO[69] ICOCZ LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. MMC clock. (output) Clock for the MMC Controller. FFRXD/ GPIO[34] FFTXD/ GPIO[39] MMC chip select 0. (output) Chip select 0 for the MMC Controller. ICOCZ ICOCZ Full Function UART Receive. (input) MMC chip select 0. (output) Chip select 0 for the MMC Controller. Full Function UART Transmit. (output) MMC chip select 1. (output) Chip select 1 for the MMC Controller. SSP Pins SSPSCLK/ ICOCZ Synchronous Serial Port Clock. (output) ICOCZ Synchronous Serial Port Frame. (output) ICOCZ Synchronous Serial Port Transmit. (output) ICOCZ Synchronous Serial Port Receive. (input) ICOCZ Synchronous Serial Port External Clock. (input) USB_P IAOAZ USB Client Positive. (bidirectional) USB_N IAOAZ USB Client Negative pin. (bidirectional) GPIO[23] SSPSFRM/ GPIO[24] SSPTXD/ GPIO[25] SSPRXD/ GPIO[26] SSPEXTCLK/ GPIO[27] USB Client Pins 22 Datasheet Electrical, Mechanical, and Thermal Specification — PXA250 and PXA210 Table 4. Pin and Signal Descriptions for the PXA210 Applications Processor (Sheet 5 of 7) Pin Name Type Signal Descriptions 2 AC97 Controller and I S Controller Pins AC97 Audio Port bit clock. (input) AC97 clock is generated by Codec 0 and fed into the PXA210 applications processor and Codec 1. BITCLK/ GPIO[28] ICOCZ AC97 Audio Port bit clock. (output) AC97 clock is generated by the PXA210 applications processor. I2S bit clock. (input) I2S clock is generated externally and fed into PXA210 applications processor. I2S bit clock. (output) I2S clock is generated by the PXA210 applications processor. SDATA_IN0/ GPIO[29] SDATA_IN1/ GPIO[32] SDATA_OUT/ GPIO[30] SYNC/ GPIO[31] nACRESET ICOCZ ICOCZ ICOCZ ICOCZ AC97 Audio Port data in. (input) Input line for Codec 0. I2S data in. (input) Input line for the I2S Controller. AC97 Audio Port data in. (input) Input line for Codec 1. I2S system clock. (output) System clock from I2S Controller. AC97 Audio Port data out. (output) Output from the PXA210 to Codecs 0 and 1. I2S data out. (output) Output line for the I2S Controller. AC97 Audio Port sync signal. (output) Frame sync signal for the AC97 Controller. I2S sync. (output) Frame sync signal for the I2S Controller. OC AC97 Audio Port reset signal. (output) I2C Controller Pins SCL ICOCZ I2C clock. (bidirectional) SDA ICOCZ I2C data. (bidirectional). ICOCZ Pulse Width Modulation channels 0 and 1. (outputs) GPIO[1:0] ICOCZ General Purpose I/O. Wakeup sources on both rising and falling edges on nRESET. GPIO[57:48] ICOCZ General Purpose I/O. Wakeup sources on both rising and falling edges on nRESET. PWM Pins PWM[1:0]/ GPIO[17:16] GPIO Pins Crystal and Clock Pins PXTAL IA 3.6864 Mhz crystal input. PEXTAL OA 3.6864 Mhz crystal output. TXTAL IA 32.768 khz crystal input. TEXTAL OA 32.768 khz crystal output. L_DD[12]/ GPIO[70] ICOCZ LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. ICOCZ LCD display data. (output) Transfers the pixel information from the LCD Controller to the external LCD panel. L_DD[13]/ GPIO[71] L_DD[14]/ GPIO[72] Datasheet RTC clock. (output) Real time clock 1 Hz tick. 3.6864 MHz clock. (output) Output from 3.6864 MHz oscillator. ICOCZ LCD display data. (output) Transfers pixel information from the LCD Controller to the external LCD panel. 32 kHz clock. (output) Output from the 32 kHz oscillator. 23 PXA250 and PXA210 — Electrical, Mechanical, and Thermal Specification Table 4. Pin and Signal Descriptions for the PXA210 Applications Processor (Sheet 6 of 7) Pin Name Type Signal Descriptions Miscellaneous Pins BOOT_SEL IC Boot select pins. (input) Indicates type of boot device. PWR_EN OC Power Enable for the power supply. (output) When negated, it signals the power supply to remove power because the system is entering Sleep Mode. nBATT_FAULT IC Main Battery Fault. (input) Signals that main battery is low or removed. Assertion causes the PXA210 applications processor to enter Sleep Mode or force an Imprecise Data Exception, which cannot be masked. The PXA210 applications processor will not recognize a wakeup event while this signal is asserted. IC VDD Fault. (input) Signals that the main power source is going out of regulation. nVDD_FAULT causes the PXA210 applications processor to enter Sleep Mode or force an Imprecise Data Exception, which cannot be masked. nVDD_FAULT is ignored after a wakeup event until the power supply timer completes (approximately 10 ms). nRESET IC Hard reset. (input) Level sensitive input used to start the processor from a known address. Assertion causes the current instruction to terminate abnormally and causes a reset. When nRESET is driven high, the processor starts execution from address 0. nRESET must remain low until the power supply is stable and the internal 3.6864 MHz oscillator has stabilized. nRESET_OUT OC Reset Out. (output) Asserted when nRESET is asserted and deasserts after nRESET is deasserted but before the first instruction fetch. nRESET_OUT is also asserted for “soft” reset events: sleep, watchdog reset, or GPIO reset. [2:0] nVDD_FAULT JTAG and Test Pins nTRST IC JTAG Test Interface Reset. Resets the JTAG/Debug port. If JTAG/Debug is used, drive nTRST from low to high either before or at the same time as nRESET. If JTAG is not used, nTRST must be either tied to nRESET or tied low. Intel recommends that a JTAG/Debug port be added to all systems for debug and download. See Chapter 9 in the “Intel® PXA250 and PXA210 Applications Processor Design Guide” for details. TDI IC JTAG test data input. (input) Data from the JTAG controller is sent to the PXA210 using this pin. This pin has an internal pull-up resistor. TDO OCZ JTAG test data output. (output) Data from the PXA210 applications processor is returned to the JTAG controller using this pin. TMS IC JTAG test mode select. (input) Selects the test mode required from the JTAG controller. This pin has an internal pull-up resistor. TCK IC JTAG test clock. (input) Clock for all transfers on the JTAG test interface. TEST IC Test Mode. (input) Reserved. Must be grounded. TESTCLK IC Test Clock. (input) Reserved. Must be grounded. Power and Ground Pins 24 VCC SUP Positive supply for internal logic. Must be connected to the low voltage (.85 1.3v) supply on the PCB. VSS SUP Ground supply for internal logic. Must be connected to the common ground plane on the PCB. PLL_VCC SUP Positive supply for PLLs and oscillators. Must be connected to a separate quiet supply plane on the PCB but may be connected to the common low voltage supply. PLL_VSS SUP Ground signal for PLLs. VCCQ SUP Positive supply for all CMOS I/O except memory bus. Must be connected to the common 3.3 V supply on the PCB. Datasheet Electrical, Mechanical, and Thermal Specification — PXA250 and PXA210 Table 4. Pin and Signal Descriptions for the PXA210 Applications Processor (Sheet 7 of 7) Pin Name Datasheet Type Signal Descriptions VSSQ SUP Ground supply for all CMOS I/O except memory bus. Must be connected to the common ground plane on the PCB. VCCN SUP Positive supply for memory bus. Must be connected to the common 3.3 V or 2.5 V supply on the PCB. VSSN SUP Ground supply for memory bus and some GPIO pins. Must be connected to the common ground plane on the PCB. BATT_VCC SUP Backup battery supply. Connect to the backup battery supply. If a backup battery is not required then this pin may be connected to the common 3.3 V supply on the PCB. 25 PXA250 and PXA210 — Electrical, Mechanical, and Thermal Specification Figure 3. PXA210 Applications Processor 26 Datasheet Electrical, Mechanical, and Thermal Specification — PXA250 and PXA210 Table 5. PXA210 225-Lead 13x13mm TPBGA Pinout — Ballpad Number Order (Sheet 1 of 3) Ball # Datasheet Signal Ball # Signal Ball # Signal A1 DQM[1] C12 BTTXD/GPIO[43] F8 SSPRXD/GPIO[26] A2 L_DD[14]/GPIO[72] C13 VSSQ F9 VCC A3 L_DD[10]/GPIO[68] C14 VSS F10 FFTXD/GPIO[39] A4 VSSQ C15 VCCQ F11 VCC A5 L_DD[6]/GPIO[64] D1 VCC F12 VSSQ A6 L_DD[2]/GPIO[60] D2 VSSQ F13 TESTCLK A7 L_LCLK/GPIO[75] D3 SDCLK[1] F14 BOOT_SEL[0] A8 SSPSCLK/GPIO[23] D4 L_DD[15]/GPIO[73] F15 TEST A9 SSPEXTCLK/GPIO[27] D5 VCC G1 MA[0] A10 nACRESET D6 L_DD[5]/GPIO[63] G2 nOE A11 PWM[1]/GPIO[17] D7 L_DD[0]/GPIO[58] G3 nWE A12 VSSQ D8 SSPSFRM/GPIO[24] G4 VCCN A13 FFRXD/GPIO[34] D9 A14 BTCTS/GPIO[44] D10 SDATA_OUT/GPIO[30] G5 VSSN SCL G6 RDnWR A15 IRRXD/GPIO[46] D11 SDATA_IN1/GPIO[32] G7 VSS B1 RDY/GPIO[18] D12 BOOT_SEL[1] G8 VSS B2 VSSN D13 VSSQ G9 B3 L_DD[13]/GPIO[71] D14 VSSQ G10 BTRXD/GPIO[42] B4 L_DD[9]/GPIO[67] D15 VSSQ G11 nTRST B5 VSSQ E1 nSDCAS G12 TDI B6 L_DD[3]/GPIO[61] E2 VCCN G13 TCK B7 L_PCLK/GPIO[76] E3 VSSN G14 TMS B8 VSSQ E4 SDCLK[0] G15 TDO VSS B9 BITCLK/GPIO[28] E5 L_DD[11]/GPIO[69] H1 VCCN B10 SDA E6 L_DD[7]/GPIO[65] H2 VSSN B11 VSSQ E7 L_DD[1]/GPIO[59] H3 MA[2] B12 USB_N E8 SSPTXD/GPIO[25] H4 MA[1] B13 BTRTS/GPIO[45] E9 SYNC/GPIO[31] H5 VCC B14 IRTXD/GPIO[47] E10 VCCQ H6 VSSQ B15 MMDAT E11 MMCMD H7 VSS C1 SDCKE[1] E12 VCCQ H8 VSS C2 SDCKE[0] E13 VSSQ H9 VSS C3 VCCN E14 VSSQ H10 VSSQ C4 L_DD[12]/GPIO[70] E15 C5 VCCQ C6 C7 BOOT_SEL[2] H11 VCC F1 VSSN H12 VSSQ L_DD[4]/GPIO[62] F2 NSDCS[0] H13 VCC L_BIAS/GPIO[77] F3 NSDRAS H14 PLL_VCC 27 PXA250 and PXA210 — Electrical, Mechanical, and Thermal Specification Table 5. PXA210 225-Lead 13x13mm TPBGA Pinout — Ballpad Number Order (Sheet 2 of 3) Ball # 28 Signal Ball # Signal C8 VCCQ F4 NSDCS[1] C9 SDATA_IN0/GPIO[29] F5 VCC Ball # H15 Signal PLL_VSS J1 MA[5] C10 PWM[0]/GPIO[16] F6 L_DD[8]/GPIO[66] J2 MA[6] C11 USB_P F7 L_FCLK/GPIO[74] J3 VSSN J4 MA[4] L15 GPIO[0] P11 VCCN J5 MA[3] M1 MA[14] P12 MD[15] J6 VSSQ M2 MA[15] P13 VCCN J7 VSS M3 VCCN P14 GPIO[50] J8 VSS M4 MA[16] P15 VSSQ J9 VSS M5 VCCN R1 MA[19] J10 VSSQ M6 VSSN R2 MA[20] J11 nRESET M7 MD[3] R3 MA[21] J12 nRESET_OUT M8 MD[7] R4 MA[25] J13 PWR_EN M9 nCS[1]/GPIO[15] R5 MD[1] J14 nVDD_FAULT M10 MD[10] R6 VCCN J15 nBATT_FAULT M11 MD[13] R7 MD[5] K1 MA[8] M12 GPIO[48] R8 nCS[0] K2 MA[9] M13 GPIO[52] R9 nCS[3]/GPIO[79] K3 MA[10] M14 VSSN R10 MD[9] K4 MA[7] M15 GPIO[56] R11 VSSN K5 VCCN N1 VSSN R12 MD[14] K6 VCC N2 MA[18] R13 nCS[4]/GPIO[80] K7 VSSQ N3 VSS R14 nPWE/GPIO[49] K8 VCC N4 MA[22] R15 GPIO[51] K9 VSSQ N5 MA[24] K10 VCC N6 VCCN K11 GPIO[1] N7 VCC K12 TEXTAL N8 VSSN K13 TXTAL N9 DQM[0] K14 PEXTAL N10 VCCN K15 PXTAL N11 MD[12] L1 VSSN N12 VSSN L2 VCCN N13 nCS[5]/GPIO[33] L3 MA[12] N14 GPIO[53] L4 MA[13] N15 VCCN L5 MA[11] P1 MA[17] L6 VSSQ P2 VSSN L7 MD[2] P3 VCCN Datasheet Electrical, Mechanical, and Thermal Specification — PXA250 and PXA210 Table 5. PXA210 225-Lead 13x13mm TPBGA Pinout — Ballpad Number Order (Sheet 3 of 3) Ball # 3.2 Table 6. Signal Ball # Signal L8 MD[6] P4 MA[23] L9 VSSN P5 MD[0] L10 MD[11] P6 VSSN L11 BATT_VCC P7 MD[4] L12 GPIO[54] P8 VCCN L13 GPIO[55] P9 nCS[2]/GPIO[78] L14 GPIO[57] P10 MD[8] Ball # Signal Package Power Ratings JA and Maximum Power Ratings Processor Max Power JA PXA250 33 C /w 1.4W PXA210 44 C /w 888W 4.0 Electrical Specifications 4.1 Absolute Maximum Ratings This section provide the Absolute Maximum ratings for the applications processors. Do not exceed these parameters. If you do the part may be permanently damaged. Operation at Absolute Maximum Ratings is not guaranteed. Table 7. Absolute Maximum Ratings (Sheet 1 of 2) Symbol TS VSS_O VCC_O Min Max Units Storage Temperature -40 125 deg C Offset Voltage between any two VSS pins (VSS, VSSQ, VSSN) -0.3 0.3 V -0.3 0.3 V Offset Voltage between any of the following pins: VCCQ and VCCN VCC_HV Voltage Applied to High Voltage Supplies (VCCQ, VCCN, BATT_VCC) VSS-0.3 VSS+4.0 V VCC_LV Voltage Applied to Low Voltage Supplies (VCC, PLL_VCC) VSS-0.3 VSS+1.65 V Voltage Applied to non-Supply pins except XTAL pins VSS-0.3 max of VCCQ+0.3, VSS+4.0 V VIP Datasheet Description 29 PXA250 and PXA210 — Electrical, Mechanical, and Thermal Specification Table 7. Absolute Maximum Ratings (Sheet 2 of 2) Symbol 4.2 Description Min Max Units VSS-0.3 max of VCC+0.3, VSS+1.65 V VIP_X Voltage Applied to XTAL pins (PXTAL, PEXTAL, TXTAL, TEXTAL) VESD Maximum ESD stress voltage, Human Body Model; Any pin to any supply pin, either polarity, or Any pin to all nonsupply pins together, either polarity. Three stresses maximum. 2000 V IEOS Maximum DC Input Current (Electrical Overstress) for any non-supply pin 5 mA Operating Conditions This section shows voltage, frequency, and temperature specifications for the applications processor for four different ranges (shown in Table 8, “Voltage, Temperature, and Frequency Electrical Specifications”.) The temperature specification for each range is constant; the frequency range is dependent on the operation voltage. Note: Table 8. The parameters in Table 8 are preliminary and subject to change. Voltage, Temperature, and Frequency Electrical Specifications (Sheet 1 of 2) Symbol Description Min Typical Max Units tA Ambient Temperature - Extended Temp -40 - 85 °C tA Ambient Temperature - Nominal Temp 0 - 70 °C -0.3 0 0.3 V VVSS VSS, VSSN, VSSQ Voltage VVCCQ VCCQ Voltage 3.0 3.3 3.6 V VVCCN VCCN Voltage 2.375 2.5/3.3 3.6 V VBATT BATT_VCC Voltage 2.2 3.0 3.8 V 0.85 Low Voltage Range (PXA250 and PXA210) VVCC_L VCC, PLL_VCC Voltage, Low Range 0.765 0.935 V fTURBO_L Turbo Mode Frequency, Low Range 99.5 132.7 MHz fSDRAM_L External Synchronous Memory Frequency, Low Range 50 99.5 MHz 1.10 V Medium Voltage Range (PXA250 and PXA210) VVCC_M VCC, PLL_VCC Voltage, Mid Range 0.90 1.00 fTURBO_M Turbo Mode Frequency, Mid Range 99.5 199.1 MHz fSDRAM_M External Synchronous Memory Frequency, Mid Range 50 99.5 MHz High Voltage Range (PXA250) 30 VVCC_H VCC, PLL_VCC Voltage, High Range 0.99 1.21 V fTURBO_H Turbo Mode Frequency, High Range 99.5 1.10 298.7 MHz fSDRAM_H External Synchronous Memory Frequency, High Range 50 99.5 MHz Datasheet Electrical, Mechanical, and Thermal Specification — PXA250 and PXA210 Table 8. Voltage, Temperature, and Frequency Electrical Specifications (Sheet 2 of 2) Symbol Description Min Typical Max Units 1.30 1.43 V Peak Voltage Range (PXA250) 4.3 VVCC_P VCC, PLL_VCC Voltage, Peak Range 1.17 fTURBO_P Turbo Mode Frequency, Peak Range 99.5 398.2 MHz fSDRAM_P External Synchronous Memory Frequency, Peak Range 50 99.5 MHz Targeted DC Specifications The DC Characteristics for each pin include input sense levels and output drive levels and currents. These parameters can be used to determine maximum DC loading, and also to determine maximum transition times for a given load. The DC Operating Conditions for the High- and Low-Strength Input, Output, and I/O pins are shown in Table 9, “Standard Input, Output, and I/O Pin DC Operating Conditions”. All DC specification values are valid for the entire temperature range of the device. Table 9. Standard Input, Output, and I/O Pin DC Operating Conditions Symbol Description Min VIH Input High Voltage, all standard input and I/O pins VIL Input Low Voltage, all standard input and I/O pins IIN Input Leakage, all standard input and IO pins Typical Max Units 0.8*VCCQ VCCQ V VSS 0.2*VCCQ V 10 A Input DC Operating Conditions Output DC Operating Conditions Datasheet VOH Output High Voltage, all standard output and I/O pins VCCQ-0.6 VCCQ V VOL Output Low Voltage, all standard output and I/O pins VSS VSS+0.4 V IOH_H Output High Current, all standard, highstrength output and I/O pins (VO=VOH) -10 mA IOH_L Output High Current, all standard, lowstrength output and I/O pins (VO=VOH) -3 mA IOL_H Output Low Current, all standard, highstrength output and I/O pins (VO=VOH) 10 mA IOL_L Output Low Current, all standard, lowstrength output and I/O pins (VO=VOH) 3 mA 31 PXA250 and PXA210 — Electrical, Mechanical, and Thermal Specification 4.4 Targeted AC Specifications All the non-analog input, output, and I/O pins on the applications processor can be divided into one of two categories: 1. High Strength Input, Output, and I/O pins: • • • • • • • • • • nCS[5:1] (GP 33, 80, 79, 78, 15 respectively), nCS[0] MD[31:0], MA[25:0] DQM[3:0] nOE, nWE, nSDRAS, nSDCAS, nSDCS[3:0] SDCLK[2:0], SDCKE[1:0] RDnWR, RDY (GP[18]) nPWE, nPOE pins (GP[49:48]) MMCLK (GP[53]), MMCMD, MMDAT TDO nACRESET 2. Low Strength Input, Output, and I/O pins - all remaining non-supply pins A pin’s AC Characteristics include input and output capacitance. These determine loading for external drivers or other load analysis. The AC Characteristics also include a de-rating factor, which indicates how much faster or slower the AC timings get with different loads. The AC Operating Conditions for the high- and low-strength input, output, and I/O pins are shown in Table 10, “Standard Input, Output, and I/O Pin AC Operating Conditions”. All AC specification values are valid for entire temperature range of the device. Table 10. Standard Input, Output, and I/O Pin AC Operating Conditions Symbol Description CIN Input Capacitance, all standard input and IO pins Min Typical Max Units 10 pF 501 pF COUT_H Output Capacitance, all standard highstrength output and IO pins tdF_H Output de-rating, falling edge on all standard, high-strength output and I/O pins, from 50pF load. ns/pF tdR_H Output de-rating, rising edge on all standard, high-strength output and I/O pins, from 50pF load. ns/pF 251 NOTE: AC Specifications guaranteed for loads in this range. All testing is done at 50pF 32 Datasheet Electrical, Mechanical, and Thermal Specification — PXA250 and PXA210 4.5 Oscillator Electrical Specifications The applications processor contains two oscillators: a 32.768 kHz oscillator and a 3.6864 MHz oscillator. Each is for a specific crystal. When choosing a crystal, match the crystal parameters as closely as possible. 4.5.1 32.768 kHz Oscillator Specifications The 32.768 kHz Oscillator is connected between the TXTAL (amplifier input) and TEXTAL (amplified output). The 32.768 kHz specifications are shown in Table 11, “32.768 kHz Oscillator Specifications”. Table 11. 32.768 kHz Oscillator Specifications Symbol Description Min Typical Max Units Crystal Specifications - Typical is FOX NC38 FXT Crystal Frequency, TXTAL/TEXTAL 32.768 kHz 6827.81 H 3.455 fF LMT Motional Inductance, TXTAL/TEXTAL CMT Motional Capacitance, TXTAL/TEXTAL RMT Motional Resistance, TXTAL/TEXTAL COT Shunt Capacitance TXTAL to TEXTAL 1.6 pF CLT Load Capacitance TXTAL/TEXTAL 12.5 pF 6 16 35 k Amplifier Specifications VIH_X Input High Voltage, TXTAL 0.8*VCC VCC V VSS 0.2*VCC V 1 A 18 25 pF - 10 s VIL_X Input Low Voltage, TXTAL IIN_XT Input Leakage, TXTAL CIN_XT Input Capacitance, TXTAL/TEXTAL tS_XT Stabilization Time 2 Board Specifications RP_XT Parasitic Resistance, TXTAL/TEXTAL to any node CP_XT Parasitic Capacitance, TXTAL/TEXTAL, total 5 pF COP_XT Parasitic Shunt Capacitance, TXTAL to TEXTAL 0.4 pF 20 M To drive the 32.768 kHz crystal pins from an external source: • Drive the TEXTAL pin with a digital signal that has a low level near 0 volts and a high level near VCC. Do not exceed VCC or go below VSS by more than 100 mV. The minimum slew rate is 1 volt per 1 µs. The maximum current sourced by the external clock source when the clock is at its maximum positive voltage should be approximately 1 mA. • Float the TXTAL pin or drive it complementary to the TEXTAL pin, with the same voltage level, slew rate, and input current restrictions. Datasheet 33 PXA250 and PXA210 — Electrical, Mechanical, and Thermal Specification 4.5.2 3.6864 MHz Oscillator Specifications The 3.6864 MHz Oscillator is connected between the PXTAL (amplifier input) and PEXTAL (amplified output). The 3.6864 MHz specifications are shown in Table 12, “3.6864 MHz Oscillator Specifications”. Table 12. 3.6864 MHz Oscillator Specifications Symbol Description Min Typical Max Units Crystal Specifications - Typical is FOX HC49S FXP Crystal Frequency, PXTAL/PEXTAL 3.6864 MHz LMP Motional Inductance, PXTAL/PEXTAL 0.50593 H CMP Motional Capacitance, PXTAL/PEXTAL 3.68488 fF RMP Motional Resistance, PXTAL/PEXTAL COP Shunt Capacitance PXTAL to PEXTAL 1.7 pF CLP Load Capacitance PXTAL/PEXTAL 20 pF 50 99.3 200 W Amplifier Specifications VIH_X Input High Voltage, PXTAL 0.8*VCC VCC V VSS 0.2*VCC V VIL_X Input Low Voltage, PXTAL IIN_XP Input Leakage, PXTAL CIN_XP Input Capacitance, PXTAL/PEXTAL tS_XP Stabilization Time 40 17.8 10 A 50 pF 67.8 ms Board Specifications RP_XP Parasitic Resistance, PXTAL/PEXTAL to any node CP_XP Parasitic Capacitance, PXTAL/PEXTAL, total 5 pF COP_XP Parasitic Shunt Capacitance, PXTAL to PEXTAL 0.4 pF 20 M To drive the 3.6864 MHz crystal pins from an external source: • Drive the PEXTAL pin with a digital signal with a low level near 0 volts and a high level near VCC. Do not exceed VCC or go below VSS by more than 100 mV. The minimum slew rate is 1 volt / 100 ns. The maximum current sourced by the external clock source when the clock is at its maximum positive voltage should be approximately 1 mA. • Float the PXTAL pin or drive it complementary to the PXTAL pin, with the same voltage level, slew rate, and input current restrictions. If floated, some degree of noise susceptibility will be introduced in the system, and it is therefore not recommended. 34 Datasheet Electrical, Mechanical, and Thermal Specification — PXA250 and PXA210 4.6 Reset and Power AC Timing Specifications The applications processor asserts the nRESET_OUT pin in one of several different modes: • • • • • Power On Hardware Reset Watchdog Reset GPIO Reset Sleep Mode The following sections give the timing and specifications for the entry and exit of these modes. 4.6.1 Power On Timing The External Voltage Regulator and other power-on devices must provide the applications processor with a specific sequence of power and resets to ensure proper operation. This sequence is shown in Figure 4, “Power-On Reset Timing” on page 36, and detailed in Table 13, “Power-On Timing Specifications” on page 36. On the applications processor, it is important that the power supplies be powered-up in a certain order to avoid high current situations. The required order is: 1. BATT_VCC 2. VCCQ 3. VCCN 4. VCC and PLL_VCC The supply in step 3 may be powered at the same time as those in step 2, however, VCCN should not be powered before VCCQ. Datasheet 35 PXA250 and PXA210 — Electrical, Mechanical, and Thermal Specification Note: If Hardware Reset is entered during Sleep Mode, follow the proper power-supply stabilization times and nRESET timing requirements indicated in Table 13. Figure 4. Power-On Reset Timing tR_BA T T tR_VCCQ BATT_VCC t D_VCCQ tR_VCC VCCQ t D_VCC N N tR_VCC VCCN t D_VCC VCC tD_NTRST nTRST t D_JT JTAG PINS A G tD_NRESET nRESET t D_OUT Note: nBA nBATT_FAULT nRESET_OUT is is T T_FAULT and and nVDD_FAULT nVDD_FAULT must mustbe be high high before before nRESET_OUT deasserted or enters Sleep Mode deasserted orthe theCotulla PXA250 applications processor enters Sleep Mode. Table 13. Power-On Timing Specifications Max Units tR_BATT Symbol BATT_VCC Rise / Stabilization time 0.01 100 ms tR_VCCQ VCCQ, VCCN Rise / Stabilization time 0.01 100 ms VCC, PLL_VCC Rise / Stabilization time 0.01 10 ms tR_VCC tD_VCCQ tD_VCC tD_NTRST tD_JTAG tD_NRESET tD_OUT 4.6.2 Description Min Typical Delay between BATT_VCC at voltage and before VCCQ and VCCN applied 0 Delay from VCCQ, VCCN at voltage and before VCC, PLL_VCC applied 0 Delay between VCC, PLL_VCC stable and nTRST deasserted 50 ms 0.03 ms 50 ms Delay between nTRST deasserted and JTAG pins active, with nRESET asserted Delay between VCC, PLL_VCC stable and nRESET deasserted Delay between nRESET deasserted and nRESET_OUT deasserted 18.1 ms — ms 18.2 ms Hardware Reset Timing The timing sequences shown in Hardware Reset Timing for hardware reset assumes stable power supplies at the assertion of nRESET. If the power supplies are unstable, follow the timings indicated in Section 4.6.1, “Power On Timing” on page 35. 36 Datasheet Electrical, Mechanical, and Thermal Specification — PXA250 and PXA210 Figure 5. Hardware Reset Timing t DHW_NRESET nRESET tDHW_OUT nRESET_OUT tDHW_OUT_A Note: nBATT_FAULT nBATT_FAULTand andnVDD_FAULT nVDD_FAULTmust mustbe be high high before before nRESET is Note: is deasserted or the Cotulla willPXA250 enter Sleep Mode deasserted or the applications processor enters Sleep Mode. Table 14. Hardware Reset Timing Specifications Symbol Description tDHW_NRESET tDHW_OUT_A tDHW_OUT 4.6.3 Minimum assertion time of nRESET Delay between nRESET Asserted and nRESET_OUT Asserted Delay between nRESET deasserted and nRESET_OUT deasserted Min Typical Max 0.001 Units ms 0 0.001 ms 18.1 18.2 ms Watchdog Reset Timing Watchdog Reset is an internally generated reset and therefore has no external pin dependencies. The nRESETOUT pin is the only indicator of Watchdog Reset, and it stays asserted for tDHW_OUT. Refer to Figure 5, “Hardware Reset Timing” on page 37. 4.6.4 GPIO Reset Timing GPIO Reset is generated externally, and the source is reconfigured as a standard GPIO as soon as the reset propagates internally. The clocks module is not reset by GPIO Reset, so the timing varies based on the frequency of clock selected and if the Clocks and Power Manager is in the Frequency Change Sequence when GPIO Reset is asserted (see Section 4.5.1, “32.768 kHz Oscillator Specifications” on page 33.) Figure 6, “GPIO Reset Timing” on page 37 shows the possible timing of GPIO Reset. Figure 6. GPIO Reset Timing t A_GP[1] GP[1] nRESET_OUT t DHW_OUT t DHW_OUT_A Note: nBATT_FAULT and nVDD_FAULT must be high before nRESET is deasserted or the application processor will enter Sleep Mode Datasheet 37 PXA250 and PXA210 — Electrical, Mechanical, and Thermal Specification Table 15. GPIO Reset Timing Specifications Symbol Description Min Typical Max Units Minimum assert time of GP[1]1 in 3.6864MHz input clock cycles 4 - cycles tDHW_OUT_A Delay between GP[1] Asserted and nRESET_OUT Asserted in 3.6864MHz input clock cycles 6 8 cycles tDHW_OUT Delay between nRESET_OUT asserted and nRESET_OUT deasserted, Run or Turbo Mode2 5 28 s tDHW_OUT_F Delay between nRESET_OUT asserted and nRESET_OUT deasserted, during Frequency Change Sequence3 5 380 s tA_GP[1] NOTES: 1. GP[1] is not recognized as a reset source again until configured to do so in software. Software should check the state of GP[1] before configuring as a Reset to ensure no spurious reset is generated. 2. Time is 512*N Processor Clock Cycles plus up to 4 cycles of the 3.6864MHz input clock. 3. Time during the Frequency Change Sequence depends on the state of the PLL Lock Detector at the assertion of GPIO Reset. The Lock Detector has a maximum time of 350µs plus synchronization. 4.6.5 Sleep Mode Timing Sleep Mode is internally asserted, it and asserts the nRESET_OUT and PWR_EN signals. The sequence indicated in Figure 7, “Sleep Mode Timing” on page 38 and detailed in Figure 16, “Sleep Mode Timing Specifications” on page 39 is the required timing parameters for Sleep Mode. Figure 7. Sleep Mode Timing tA_GP[x] GP[x] PWR_EN tD_PWR_F t D_PWR_R tDSM_VCC VCC nVDD_FAULT nRESET_OUT tD_F A UL T t DSM_OUT Note: TT_FAULT must must be be high will not exit Sleep Mode Note: nBA nBATT_FAULT high or or Cotulla the PXA250 applications processor will not exit Sleep Mode. 38 Datasheet Electrical, Mechanical, and Thermal Specification — PXA250 and PXA210 Table 16. Sleep Mode Timing Specifications Symbol Min Typical Max Units tA_GP[x} Assert Time of GPIO Wake up Source (x=[15:0]) 91.6 tD_PWR_F Delay from nRESET_OUT asserted to PWR_EN deasserted 61 91.6 s tD_PWR_R Delay between GP[x] asserted to PWR_EN asserted 30.5 122.1 s tDSM_VCC Delay between PWR_EN asserted and VCC stable 10 ms tD_FAULT Delay between PWR_EN asserted and nVDD_FAULT deasserted 10 ms tDSM_OUT Delay between PWR_EN asserted and nRESET_OUT deasserted, OPDE Set 28.0 80 ms Delay between PWR_EN asserted and nRESET_OUT deasserted, OPDE Clear 10.35 10.5 ms tDSM_OUT_O 4.7 Description s Memory Bus and PCMCIA AC Specifications This section gives the timing information for these types of memory: • SRAM / ROM / Flash / Synchronous Fast Flash Asynchronous writes (Table 17, “SRAM / ROM / Flash / Synchronous Fast Flash AC Specifications” on page 39) • Variable Latency I/O (Table 18, “Variable Latency I/O Interface AC Specifications” on page 40) • Card Interface (PCMCIA or Compact Flash) (Table 19, “Card Interface (PCMCIA or Compact Flash) AC Specifications” on page 41) • Synchronous Memories (Table 20, “Synchronous Memory Interface AC Specifications1” on page 42) Table 17. SRAM / ROM / Flash / Synchronous Fast Flash AC Specifications (Sheet 1 of 2) MEMCLK Frequency (MHz) Symbol Description 99.5 118.0 132.7 147.5 165.9 Units, Notes tromAS MA(25:0) setup to nCS, nOE, nSDCAS (as nADV) asserted 10 8.5 7.5 6.8 6 ns, 1 tromAH MA(25:0) hold after nCS, nOE, nSDCAS (as nADV) deasserted 10 8.5 7.5 6.8 6 ns, 1 tromASW MA(25:0) setup to nWE asserted 30 25.5 22.5 20.4 18 ns, 3 tromAHW MA(25:0) hold after nWE deasserted 10 8.5 7.5 6.8 6 ns, 1 tromCES nCS setup to nWE asserted 20 17 15 13.6 12 ns, 2 tromCEH nCS hold after nWE deasserted 10 8.5 7.5 6.8 6 ns, 1 MD(31:0), DQM(3:0) write data setup to nWE asserted 10 8.5 7.5 6.8 6 ns, 1 tromDS Datasheet 39 PXA250 and PXA210 — Electrical, Mechanical, and Thermal Specification Table 17. SRAM / ROM / Flash / Synchronous Fast Flash AC Specifications (Sheet 2 of 2) MEMCLK Frequency (MHz) Symbol tromDSWH tromDH tromNWE Description Units, Notes 99.5 118.0 132.7 147.5 165.9 MD(31:0), DQM(3:0) write data setup to nWE deasserted 20 17 15 13.6 12 ns, 2 MD(31:0), DQM(3:0) write data hold after nWE deasserted 10 8.5 7.5 6.8 6 ns, 1 nWE high time between beats of write data 20 17 15 13.6 12 ns, 2 NOTES: 1. This number represents 1 MEMCLK period 2. This number represents 2 MEMCLK periods 3. This number represents 3 MEMCLK periods Table 18. Variable Latency I/O Interface AC Specifications MEMCLK Frequency (MHz) Symbol Description 99.5 118.0 132.7 147.5 165.9 Units, Notes tvlioAS MA(25:0) setup to nCS asserted 10 8.5 7.5 6.8 6 ns, 1 tvlioASRW MA(25:0) setup to nOE or nPWE asserted 10 8.5 7.5 6.8 6 ns, 1 MA(25:0) hold after nOE or nPWE deasserted 10 8.5 7.5 6.8 6 ns, 1 tvlioCES nCS setup to nOE or nPWE asserted 20 17 15 13.6 12 ns, 2 tvlioCEH nCS hold after nOE or nPWE deasserted 10 8.5 7.5 6.8 6 ns, 1 tvlioDSW MD(31:0), DQM(3:0) write data setup to nPWE asserted 10 8.5 7.5 6.8 6 ns, 1 tvlioDSWH MD(31:0), DQM(3:0) write data setup to nPWE deasserted 20 17 15 13.6 12 ns, 2 tvlioDHW MD(31:0), DQM(3:0) hold after nPWE deasserted 10 8.5 7.5 6.8 6 ns, 1 tvlioDHR MD(31:0) read data hold after nOE deasserted 0 0 0 0 0 ns tvlioRDYH RDY hold after nOE, nPWE deasserted 0 0 0 0 0 ns tvlioNPWE nPWE, nOE high time between beats of write or read data 20 17 15 13.6 12 ns, 2 tvlioAH NOTES: 1. This number represents 1 MEMCLK period 2. This number represents 2 MEMCLK periods 40 Datasheet Electrical, Mechanical, and Thermal Specification — PXA250 and PXA210 Table 19. Card Interface (PCMCIA or Compact Flash) AC Specifications MEMCLK Frequency (MHz) Symbol Description 99.5 118.0 132.7 147.5 165.9 Units, Notes tcardAS MA(25:0), nPREG, PSKTSEL, nPCE setup to nPWE, nPOE, nPIOW, or nPIOR asserted 20 17 15 13.6 12 ns, 1 tcardAH MA(25:0), nPREG, PSKTSEL, nPCE hold after nPWE, nPOE, nPIOW, or nPIOR deasserted 10 8.5 7.5 6.8 6 ns, 1 tcardDS MD(31:0) setup to nPWE, nPOE, nPIOW, or nPIOR asserted 10 8.5 7.5 6.8 6 ns, 1 tcardDH MD(31:0) hold after nPWE, nPOE, nPIOW, or nPIOR deasserted 10 8.5 7.5 6.8 6 ns, 1 nPWE, nPOE, nPIOW, or nPIOR command assertion 30 25.5 22.5 20.4 18 ns, 1 tcardCMD NOTE: These numbers are minimums. They can be much longer based on the programmable Card Interface timing registers. Datasheet 41 PXA250 and PXA210 — Electrical, Mechanical, and Thermal Specification Table 20. Synchronous Memory Interface AC Specifications1 Symbol Description MIN MAX Units, Notes 20 ns, 2 SDRAM / SMROM / SDRAM-Timing Synchronous Flash (Synchronous) tsynCLK SDCLK period 10 tsynCMD nSDCAS, nSDRAS, nWE, nSDCS assert time 1 sdclk tsynRCD nSDRAS to nSDCAS assert time 1 sdclk tsynCAS nSDCAS to nSDCAS assert time 2 sdclk tsynSDOS MA(25:0), MD(31:0), DQM(3:0), nSDCS(3:0), nSDRAS, nSDCAS, nWE, nOE, SDCKE(1:0), RDnWR output setup time to SDCLK(2:0) rise 3.8 ns, 3 tsynSDOH MA(25:0), MD(31:0), DQM(3:0), nSDCS(3:0), nSDRAS, nSDCAS, nWE, nOE, SDCKE(1:0), RDnWR output hold time from SDCLK(2:0) rise 3.6 ns, 3 tsynSDIS MD(31:0) read data input setup time from SDCLK(2:0) rise 0.5 ns tsynDIH MD(31:0) read data input hold time from SDCLK(2:0) rise 1.5 ns Fast Flash (Synchronous READS only) tffCLK tffAS SDCLK period 15 20 ns, 4 MA(25:0) setup to nSDCAS (as nADV) asserted 0.5 sdclk tffCES nCS setup to nSDCAS (as nADV) asserted 0.5 sdclk tffADV nSDCAS (as nADV) pulse width 1 sdclk nSDCAS (as nADV) deassertion to nOE assertion 3 sdclk nOE deassertion to nCS deassertion 4 sdclk tffOS tffCEH NOTES: 1. These numbers are for a maximum 99.5 MHz MEMCLK and 99.5 MHz output SDCLK. 2. SDCLK for SDRAM, SMROM, and SDRAM-timing Synchronous Flash can be at the slowest, divide-by-2 of the 99.5 MHz MEMCLK. It can be 99.5MHz at the fastest. 3. This number represents 1/2 SDCLK period. 4. SDCLK for Fast Flash can be at the slowest, divide-by-2 of the 99.5 MHz MEMCLK. It can be divide-by-2 of the 132.7 MHz MEMCLK at its fastest. 4.8 Peripheral Module AC Specifications This section describes the AC Specifications for these peripheral units: • LCD • SSP 42 Datasheet Electrical, Mechanical, and Thermal Specification — PXA250 and PXA210 4.8.1 LCD Module AC Timing Figure 8 describes the LCD timing parameters. The LCD pin timing specifications are referenced to the pixel clock (L_PCLK). Values for the parameters are given in Table 21. Figure 8. LCD AC Timing Definitions L_PCLK Tpclkdv L_LDD[7:0] (rise) Tpclkdv L_LDD[7:0] (fall) Tpclklv L_LCLK Tpclkbv L_BIAS Tpclkfv L_FCLK A4775-01 Table 21. LCD AC Timing Specifications Symbol Max Units Notes Tpclkdv L_PCLK rise/fall to L_LDD<7:0> driven valid Description Min 14 ns 1 Tpclklv L_PCLK fall to L_LCLK driven valid 14 ns 2 Tpclkfv L_PCLK fall to L_LFCLK driven valid 14 ns 2 Tpclkbv L_PCLK rise to L_BIAS driven valid 14 ns 2 NOTES: 1. You can program the LCD data pins to be driven on either the rising or falling edge of the pixel clock (L_PCLK). 2. These LCD signals can, at times, transition when L_PCLK is not clocking (between frames). At this time, they are clocked with the internal version of the pixel clock before it is driven out onto the L_PCLK pin. 4.8.2 SSP Module AC Timing Figure 9, “SSP AC Timing Definitions” on page 44 describes the SSP timing parameters. The SSP pin timing specifications are referenced to SCLK_C. Values for the parameters are given in Table 22, “SSP AC Timing Specifications” on page 44. Datasheet 43 PXA250 and PXA210 — Electrical, Mechanical, and Thermal Specification Figure 9. SSP AC Timing Definitions SCLK_C Tsfmv SFRM_C Tsfmv TXD_C Trxds Trxdh RXD_C A4774-01 Table 22. SSP AC Timing Specifications Symbol 4.8.3 Description Min Max Units 21 ns Tsfmv SCLK_C rise to SFRM_C driven valid Trxds RXD_C valid to SCLK_C fall (input setup) 11 ns Trxdh SCLK_C fall to RXD_C invalid (input hold) 0 ns Tsfmv SCLK_C rise to TXD_C valid 22 Notes ns Boundary Scan Test Signal Timings Boundary scan test signal timing is shown in Table 23, “Boundary Scan Test Signal Timing”. Table 23. Boundary Scan Test Signal Timing (Sheet 1 of 2) Symbol Min Max Units 33.33 MHz TBSF TCK Frequency 0.0 TBSCH TCK High Time 15.0 15.0 TBSCL TCK Low Time TBSCR TCK Rise Time TBSCF TCK Fall Time TBSIS1 Input Setup to TCK TDI, TMS TBSIH1 TBSIS2 Notes ns Measured at 1.5 V ns Measured at 1.5 V 5.0 ns 0.8 V to 2.0 V 5.0 ns 2.0 V to 0.8 V 4.0 ns Input Hold from TCK TDI, TMS 6.0 ns Input Setup to TCK nTRST 25.0 ns TBSIH2 Input Hold from TCK nTRST 3.0 ns TBSOV1 TDO Valid Delay 1.5 6.9 ns Relative to falling edge of TCK TOF1 TDO Float Delay 1.1 5.4 ns Relative to falling edge of TCK All Outputs (Non-Test) Valid Delay 1.5 6.9 ns Relative to falling edge of TCK TOV12 44 Parameter Datasheet Electrical, Mechanical, and Thermal Specification — PXA250 and PXA210 Table 23. Boundary Scan Test Signal Timing (Sheet 2 of 2) Symbol 4.9 Parameter Min Max Units 5.4 ns TOF2 All Outputs (Non-Test) Float Delay 1.1 TIS10 Input Setup to TCK All Inputs (Non-Test) 4.0 ns TIH8 Input Hold from TCK All Inputs (Non-Test) 6.0 ns Notes Relative to falling edge of TCK AC Test Conditions The AC specifications in Section 4.4, “Targeted AC Specifications” on page 32 are tested with a 50 pF load indicated in Figure 10. Figure 10. AC Test Load Output Ball CL = 50pF CL Datasheet 45