AGILENT HCPL-M452

Small Outline, 5 Lead, High
Speed Optocouplers
Technical Data
HCPL-M452
HCPL-M453
Features
Description
• Surface Mountable
• Very Small, Low Profile
JEDEC Registered
Package Outline
• Compatible with Infrared
Vapor Phase Reflow and
Wave Soldering Processes
• Very High Common Mode
Transient Immunity:
15000 V/µ s at VCM = 1500 V
Guaranteed (HCPL-M453)
• High Speed: 1 Mb/s
• TTL Compatible
• Guaranteed AC and DC
Performance over
Temperature: 0°C to 70°C
• Open Collector Output
• Recognized Under the
Component Program of
U.L. (File No. E55361) for
Dielectric Withstand Proof
Test Voltage of 3750 Vac, 1
Minute
• Lead Free Option
These small outline high CMR,
high speed, diode-transistor optocouplers are single channel
devices in a five lead miniature
footprint. They are electrically
equivalent to the following Agilent
optocouplers:
SO-5 Package
Standard DIP
SO-8 Package
HCPL-M452
HCPL-4502
HCPL-0452
HCPL-M453
HCPL-4503
HCPL-0453
(Note: These devices equivalent to 6N135/6N136 devices but without the base lead.)
The SO-5 JEDEC registered
(MO-155) package outline does
not require “through holes” in a
PCB. This package occupies
approximately one-fourth the
footprint area of the standard
dual-in-line package. The lead
profile is designed to be
compatible with standard
surface mount processes.
These diode-transistor
optocouplers use an insulating
layer between the light emitting
diode and an integrated photon
detector to provide electrical
insulation between input and
output. Separate connections for
the photodiode bias and output
transistor collector increase the
speed up to a hundred times
CAUTION: The small device geometries inherent to the design of this bipolar component increase the component's
susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken
in handling and assembly of this component to prevent damage and/or degradation which may be induced by
ESD.
2
over that of a conventional
photo-transistor coupler by
reducing the base-collector
capacitance.
The HCPL-M452 is designed for
high speed TTL/TTL applica-
tions. A standard 16 mA TTL
sink current through the input
LED will provide enough output
current for 1 TTL load and a
5.6 kΩ pull-up resistor. CTR of
the HCPL-M452 is 19%
minimum at IF = 16 mA.
The HCPL-M453 is an HCPLM452 with increased common
mode transient immunity of
15,000 V/µs minimum at
VCM = 1500 V guaranteed.
Schematic
Outline Drawing (JEDEC MO-155)
ICC
ANODE 1
4.4 ± 0.1
(0.173 ± 0.004)
MXXX
XXX
6
VCC
6
VCC
IF
+
ANODE
7.0 ± 0.2
(0.276 ± 0.008)
1
5 VOUT
VF
CATHODE 3
4
GND
CATHODE
–
IO
5
VO
3
SHIELD
0.4 ± 0.05
(0.016 ± 0.002)
3.6 ± 0.1*
(0.142 ± 0.004)
2.5 ± 0.1
(0.098 ± 0.004)
0.102 ± 0.102
(0.004 ± 0.004)
0.15 ± 0.025
(0.006 ± 0.001)
7° MAX.
1.27 BSC
(0.050)
0.71 MIN.
(0.028)
MAX. LEAD COPLANARITY
= 0.102 (0.004)
DIMENSIONS IN MILLIMETERS (INCHES)
* MAXIMUM MOLD FLASH ON EACH SIDE IS 0.15 mm (0.006)
NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.
Applications
• Line Receivers High common mode transient
immunity (>1000 V/µs) and
low input-output capacitance
(0.6 pF).
• High Speed Logic Ground
Isolation - TTL/TTL, TTL/
LTTL, TTL/CMOS, TTL/
LSTTL.
• Replace Slow Phototransistor Optocouplers
• Replace Pulse
Transformers - Save board
space and weight
• Analog Signal Ground
Isolation Integrated photon detector
provides improved linearity
over phototransistor type.
Land Pattern Recommendation
4.4
(0.17)
1.3
(0.05)
2.5
(0.10)
2.0
(0.080)
0.64
(0.025)
8.27
(0.325)
DIMENSIONS IN MILLIMETERS AND (INCHES)
4
GND
3
Absolute Maximum Ratings
(No Derating Required up to 85°C)
Storage Temperature ................................................. -55°C to +125°C
Operating Temperature ............................................. -55°C to +100°C
Average Input Current - IF ..................................................... 25 mA[1]
Peak Input Current - IF ........................................................... 50 mA[2]
(50% duty cycle, 1 ms pulse width)
Peak Transient Input Current - IF .............................................. 1.0 A
(≤1 µs pulse width, 300 pps)
Reverse Input Voltage - VR (Pin3-1) ............................................... 5 V
Input Power Dissipation ........................................................ 45 mW[3]
Average Output Current - IO (Pin 5) ........................................... 8 mA
Peak Output Current ................................................................. 16 mA
Output Voltage - VO (Pin 5-4) ........................................ -0.5 V to 20 V
Supply Voltage - VCC (Pin 6-4) ....................................... -0.5 V to 30 V
Output Power Dissipation .................................................... 100 mW[4]
Infrared and Vapor Phase Reflow Temperature .................. see below
Solder Reflow Thermal Profile
300
TEMPERATURE (°C)
PREHEATING RATE 3°C + 1°C/–0.5°C/SEC.
REFLOW HEATING RATE 2.5°C ± 0.5°C/SEC.
PEAK
TEMP.
245°C
PEAK
TEMP.
240°C
PEAK
TEMP.
230°C
200
2.5°C ± 0.5°C/SEC.
SOLDERING
TIME
200°C
30
SEC.
160°C
150°C
140°C
30
SEC.
3°C + 1°C/–0.5°C
100
PREHEATING TIME
150°C, 90 + 30 SEC.
50 SEC.
TIGHT
TYPICAL
LOOSE
ROOM
TEMPERATURE
0
0
50
100
150
200
TIME (SECONDS)
Recommended Pb-Free IR Profile
tp
Tp
TEMPERATURE
TL
Tsmax
TIME WITHIN 5 °C of ACTUAL
PEAK TEMPERATURE
20-40 SEC.
260 +0/-5 °C
217 °C
RAMP-UP
3 °C/SEC. MAX.
150 - 200 °C
RAMP-DOWN
6 °C/SEC. MAX.
Tsmin
ts
PREHEAT
60 to 180 SEC.
tL
60 to 150 SEC.
25
t 25 °C to PEAK
TIME
NOTES:
THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.
Tsmax = 200 °C, Tsmin = 150 °C
250
4
Insulation Related Specifications
Parameter
Min External Air Gap
(Clearance)
Min. External Tracking Path
(Creepage)
Min. Internal Plastic Gap
(Clearance)
Tracking Resistance
Isolation Group (per DIN VDE 0109)
Symbol
L(IO1)
Value
≥5
Units
mm
L(IO2)
≥5
mm
0.08
mm
175
IIIa
V
CTI
Conditions
Measured from input terminals
to output terminals
Measured from input terminals
to output terminals
Through insulation distance
conductor to conductor
DIN IEC 112/VDE 0303 Part 1
Material Group DIN VDE 0109
Electrical Specifications
Over recommended temperature (TA = 0°C to 70°C) unless otherwise specified. (See note 11.)
Parameter
Symbol Min. Typ.* Max. Units
Current
Transfer Ratio
CTR
Logic Low
Output
Voltage
VOL
Logic High
Output
Current
IOH
20
24
15
25
0.1
50
%
Test Conditions
TA = 25°C VO = 0.4 V
VO = 0.5 V
0.4
V
0.5
0.01
1
ICCL
50
200
Logic High
Supply
Current
ICCH
0.02
1
µA
TA = 25°C VO = VCC = 5.5 V
1.7
7
TA = 25°C VO = VCC = 15.0 V
IF = 0 mA
2
1.5
5
IO = 2.4 mA
50
Logic Low
Supply
Current
VCC = 4.5 V 1, 2,
IF = 16 mA
4
TA = 25°C IO = 3.0 mA
0.5
0.003
Fig. Note
V
IF = 16 mA, VO = Open,
VCC = 15 V
11
TA = 25°C IF = 0 mA, VO = Open,
VCC = 15.0 V
11
Input Forward
Voltage
VF
TA = 25°C
Input Reverse
Breakdown
Voltage
BVR
Temperature
Coefficient of
Forward
Voltage
∆VF/∆TA
-1.6
Input
Capacitance
CIN
60
Input-Output
Insulation
VISO
Resistance
(Input-Output)
RI-O
1012
Ω
VI-O = 500 VDC
6
Capacitance
(Input-Output)
CI-O
0.6
pF
f = 1 MHz
6
1.8
*All typicals at TA = 25°C.
3
IF = 16 mA
IR = 10 µA
5
mV/°C IF = 16 mA
pF
f = 1 MHz, VF = 0
VRMS RH ≤ 50%, t = 1 min., TA = 25°C
3750
6, 7
5
Switching Specifications
Over recommended temperature (TA = 0°C to 70°C) VCC = 5 V, IF = 16 mA unless otherwise specified.
Parameter
Symbol
Propagation
Delay Time
to Logic Low
at Output
tPHL
Propagation
Delay Time
to Logic High
at Output
tPLH
0.2
0.8
µs
0.6
0.8
5, 6,
RL = 1.9 kΩ 10
9
TA = 25°C
5, 6,
RL = 1.9 kΩ 10
9
11
IF = 0 mA
TA = 25°C
RL = 1.9 kΩ
8, 9
IF = 16 mA 11
TA = 25°C
RL = 1.9 kΩ
8, 9
1.0
Common
|CML|
Mode
Transient
Immunity at
Logic Low
Level Output
BW
HCPLM452
HCPLM453
1
15
HCPLM452
HCPLM453
15
kV/µs VCM = 10 Vp-p
30
VCM = 1500 Vp-p
1
VCM = 10 Vp-p
30
VCM = 1500 Vp-p
3
Fig. Note
TA = 25°C
1.0
Common
|CMH|
Mode
Transient
Immunity at
Logic High
Level Output
Bandwidth
Device Min. Typ.* Max. Units Test Conditions
MHz RL = 100 Ω, See Test Circuit 8, 9
10
All typicals at TA = 25°C.
Notes:
1. Derate linearly above 85°C free-air temperature at a rate of 0.5 mA/°C.
2. Derate linearly above 85°C free-air temperature at a rate of 1.0 mA/°C.
3. Derate linearly above 85°C free-air temperature at a rate of 1.1 mW/°C.
4. Derate linearly above 85°C free-air temperature at a rate of 2.3 mW/°C.
5. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, IO, to the forward LED input
current, IF, times 100.
6. Device considered a two terminal device: pins 1 and 3 shorted together, and pins 4, 5 and 6 shorted together.
7. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 4500 VRMS for 1 second
(leakage detection current limit, II-O ≤ 5 µA).
8. Common transient immunity in a Logic High level is the maximum tolerable (positive) dVCM/dt on the rising edge of the
common mode pulse, VCM, to assure that the output will remain in a Logic High state (i.e., VO > 2.0 V). Common mode
transient immunity in a Logic Low level is the maximum tolerable (negative) dVCM/dt on the falling edge of the common mode
pulse signal, VCM to assure that the output will remain in a Logic Low state (i.e., VO < 0.8 V).
9. The 1.9 kΩ load represents 1 TTL unit load of 1.6 mA and the 5.6 kΩ pull-up resistor.
10. The frequency at which the ac output voltage is 3 dB below its mid-frequency value.
11. Use of a 0.1 µF bypass capacitor connected between pins 4 and 6 is recommended.
35 mA
30 mA
25 mA
5
20 mA
15 mA
10 mA
IF = 5 mA
0
0
10
20
1.5
1000
1.0
0.5
NORMALIZED
I F = 16 mA
VO = 0.4 V
VCC = 5 V
TA = 25°C
0.1
0
1
VO – OUTPUT VOLTAGE – V
100
1.1
NORMALIZED
IF = 16 mA
VO = 0.4 V
VCC = 5 V
TA = 25°C
0.7
0.6
-60
-20
20
60
100
RL = 1.9 kΩ
1500
1000
tPLH
tPHL
500
0
-60
140
-20
20
60
100
TA – TEMPERATURE – °C
10+4
0.30
IF = 0
VO = VCC = 5.0 V
10+2
10+1
TA = 25°C, RL = 100 Ω, VCC = 5 V
0.10
10 0
10 -1
10 -2
0
+25
+50
+75
TA – TEMPERATURE – °C
Figure 7. Logic High Output
Current vs. Temperature.
+100
0
0
4
8
12
16
1.20
1.30
1.50
1.40
1.60
2.0
IF = 10 mA
IF = 16 mA
VCC = 5.0 V
TA = 25 °C
1.0
0.8
0.6
tPLH
0.4
tPHL
0.2
0.1
1
2
3
4
5
6 7 8 9 10
Figure 6. Propagation Delay Time
vs. Load Resistance.
0.20
-25
0.01
RL – LOAD RESISTANCE – kΩ
Figure 5. Propagation Delay vs.
Temperature.
∆IO
∆IF – SMALL SIGNAL CURRENT TRANSFER RATIO
Figure 4. Current Transfer Ratio vs.
Temperature.
-50
0.1
3.0
IF = 16 mA, VCC = 5.0 V
TA – TEMPERATURE – °C
10+3
1.0
Figure 3. Input Current vs. Forward
Voltage.
tP – PROPAGATION DELAY – µs
0.9
0.8
10
0.001
1.10
2000
1.0
IF
+
VF
–
VF – FORWARD VOLTAGE – VOLTS
Figure 2. Current Transfer Ratio vs.
Input Current.
tP – PROPAGATION DELAY – ns
NORMALIZED CURRENT TRANSFER RATIO
10
TA = 25°C
100
IF – INPUT CURRENT – mA
Figure 1. dc and Pulsed Transfer
Characteristics.
IOH – LOGIC HIGH OUTPUT CURRENT – nA
IF – FORWARD CURRENT – mA
40 mA
T = 25°C
10 VA = 5.0 V
CC
NORMALIZED CURRENT TRANSFER RATIO
IO – OUTPUT CURRENT – mA
6
25
IF – QUIESCENT INPUT CURRENT – mA
Figure 8. Small-Signal Current
Transfer Ratio vs. Quiescent Input
Current.
7
NORMALIZED RESPONSE –dB
0
TA = 25°C
IF = 16 mA
-5
RL = 100 Ω
RL = 220 Ω
RL = 470 Ω
RL = 1 kΩ
-10
-15
-20
-25
-30
0.01
1.0
0.1
10
f – FREQUENCY – MHz
1
+5 V
SET IF
RL
20 kΩ
AC INPUT
+5 V
6
5
VO
2N3063
0.1 µF
3
4
0.1 µF
500 Ω
100 Ω
1.5 V dc
0.25 Vp-p ac
Figure 9. Frequency Response.
PULSE
GEN.
ZO = 50 Ω
tr = 5 ns
IF
0
1.5 V
+5 V
1
6
RL
10% DUTY CYCLE
1/f 100 µs
5V
VO
IF
5
VO
0.1µF
1.5 V
3
IF MONITOR
VOL
4
CL = 15 pF
100 Ω
tPHL
tPLH
Figure 10. Switching Test Circuit.
IF
RCC (SEE NOTE 10)
tr, tf = 16 ns
VCM
10 V
90%
90%
10%
0V
tr
1
10%
6
RL
A
tf
5
VFF
VO
VO
3
4
VCM
VOL
SWITCH AT B: IF = 1.6 mA
VO
0.1µF
5V
SWITCH AT A: IF = 0 mA
VCC
220 Ω
B
+
–
PULSE GEN.
Figure 11. Test Circuit for Transient Immunity and Typical Waveforms.
www.agilent.com/semiconductors
For product information and a complete list of
distributors, please go to our web site.
For technical assistance call:
Americas/Canada: +1 (800) 235-0312 or
(916) 788-6763
Europe: +49 (0) 6441 92460
China: 10800 650 0017
Hong Kong: (+65) 6756 2394
India, Australia, New Zealand: (+65) 6755 1939
Japan: (+81 3) 3335-8152 (Domestic/International), or 0120-61-1280 (Domestic Only)
Korea: (+65) 6755 1989
Singapore, Malaysia, Vietnam, Thailand,
Philippines, Indonesia: (+65) 6755 2044
Taiwan: (+65) 6755 1843
Data subject to change.
Copyright © 2004 Agilent Technologies, Inc.
Obsoletes 5989-0792EN
December 28, 2004
5989-2117EN