Small Outline, 5 Lead, High Speed Optocouplers Technical Data HCPL-M452 HCPL-M453 Features Description • Surface Mountable • Very Small, Low Profile JEDEC Registered Package Outline • Compatible with Infrared Vapor Phase Reflow and Wave Soldering Processes • Very High Common Mode Transient Immunity: 15000 V/µ s at VCM = 1500 V Guaranteed (HCPL-M453) • High Speed: 1 Mb/s • TTL Compatible • Guaranteed AC and DC Performance over Temperature: 0°C to 70°C • Open Collector Output • Recognized Under the Component Program of U.L. (File No. E55361) for Dielectric Withstand Proof Test Voltage of 3750 Vac, 1 Minute • Lead Free Option These small outline high CMR, high speed, diode-transistor optocouplers are single channel devices in a five lead miniature footprint. They are electrically equivalent to the following Agilent optocouplers: SO-5 Package Standard DIP SO-8 Package HCPL-M452 HCPL-4502 HCPL-0452 HCPL-M453 HCPL-4503 HCPL-0453 (Note: These devices equivalent to 6N135/6N136 devices but without the base lead.) The SO-5 JEDEC registered (MO-155) package outline does not require “through holes” in a PCB. This package occupies approximately one-fourth the footprint area of the standard dual-in-line package. The lead profile is designed to be compatible with standard surface mount processes. These diode-transistor optocouplers use an insulating layer between the light emitting diode and an integrated photon detector to provide electrical insulation between input and output. Separate connections for the photodiode bias and output transistor collector increase the speed up to a hundred times CAUTION: The small device geometries inherent to the design of this bipolar component increase the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. 2 over that of a conventional photo-transistor coupler by reducing the base-collector capacitance. The HCPL-M452 is designed for high speed TTL/TTL applica- tions. A standard 16 mA TTL sink current through the input LED will provide enough output current for 1 TTL load and a 5.6 kΩ pull-up resistor. CTR of the HCPL-M452 is 19% minimum at IF = 16 mA. The HCPL-M453 is an HCPLM452 with increased common mode transient immunity of 15,000 V/µs minimum at VCM = 1500 V guaranteed. Schematic Outline Drawing (JEDEC MO-155) ICC ANODE 1 4.4 ± 0.1 (0.173 ± 0.004) MXXX XXX 6 VCC 6 VCC IF + ANODE 7.0 ± 0.2 (0.276 ± 0.008) 1 5 VOUT VF CATHODE 3 4 GND CATHODE – IO 5 VO 3 SHIELD 0.4 ± 0.05 (0.016 ± 0.002) 3.6 ± 0.1* (0.142 ± 0.004) 2.5 ± 0.1 (0.098 ± 0.004) 0.102 ± 0.102 (0.004 ± 0.004) 0.15 ± 0.025 (0.006 ± 0.001) 7° MAX. 1.27 BSC (0.050) 0.71 MIN. (0.028) MAX. LEAD COPLANARITY = 0.102 (0.004) DIMENSIONS IN MILLIMETERS (INCHES) * MAXIMUM MOLD FLASH ON EACH SIDE IS 0.15 mm (0.006) NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX. Applications • Line Receivers High common mode transient immunity (>1000 V/µs) and low input-output capacitance (0.6 pF). • High Speed Logic Ground Isolation - TTL/TTL, TTL/ LTTL, TTL/CMOS, TTL/ LSTTL. • Replace Slow Phototransistor Optocouplers • Replace Pulse Transformers - Save board space and weight • Analog Signal Ground Isolation Integrated photon detector provides improved linearity over phototransistor type. Land Pattern Recommendation 4.4 (0.17) 1.3 (0.05) 2.5 (0.10) 2.0 (0.080) 0.64 (0.025) 8.27 (0.325) DIMENSIONS IN MILLIMETERS AND (INCHES) 4 GND 3 Absolute Maximum Ratings (No Derating Required up to 85°C) Storage Temperature ................................................. -55°C to +125°C Operating Temperature ............................................. -55°C to +100°C Average Input Current - IF ..................................................... 25 mA[1] Peak Input Current - IF ........................................................... 50 mA[2] (50% duty cycle, 1 ms pulse width) Peak Transient Input Current - IF .............................................. 1.0 A (≤1 µs pulse width, 300 pps) Reverse Input Voltage - VR (Pin3-1) ............................................... 5 V Input Power Dissipation ........................................................ 45 mW[3] Average Output Current - IO (Pin 5) ........................................... 8 mA Peak Output Current ................................................................. 16 mA Output Voltage - VO (Pin 5-4) ........................................ -0.5 V to 20 V Supply Voltage - VCC (Pin 6-4) ....................................... -0.5 V to 30 V Output Power Dissipation .................................................... 100 mW[4] Infrared and Vapor Phase Reflow Temperature .................. see below Solder Reflow Thermal Profile 300 TEMPERATURE (°C) PREHEATING RATE 3°C + 1°C/–0.5°C/SEC. REFLOW HEATING RATE 2.5°C ± 0.5°C/SEC. PEAK TEMP. 245°C PEAK TEMP. 240°C PEAK TEMP. 230°C 200 2.5°C ± 0.5°C/SEC. SOLDERING TIME 200°C 30 SEC. 160°C 150°C 140°C 30 SEC. 3°C + 1°C/–0.5°C 100 PREHEATING TIME 150°C, 90 + 30 SEC. 50 SEC. TIGHT TYPICAL LOOSE ROOM TEMPERATURE 0 0 50 100 150 200 TIME (SECONDS) Recommended Pb-Free IR Profile tp Tp TEMPERATURE TL Tsmax TIME WITHIN 5 °C of ACTUAL PEAK TEMPERATURE 20-40 SEC. 260 +0/-5 °C 217 °C RAMP-UP 3 °C/SEC. MAX. 150 - 200 °C RAMP-DOWN 6 °C/SEC. MAX. Tsmin ts PREHEAT 60 to 180 SEC. tL 60 to 150 SEC. 25 t 25 °C to PEAK TIME NOTES: THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX. Tsmax = 200 °C, Tsmin = 150 °C 250 4 Insulation Related Specifications Parameter Min External Air Gap (Clearance) Min. External Tracking Path (Creepage) Min. Internal Plastic Gap (Clearance) Tracking Resistance Isolation Group (per DIN VDE 0109) Symbol L(IO1) Value ≥5 Units mm L(IO2) ≥5 mm 0.08 mm 175 IIIa V CTI Conditions Measured from input terminals to output terminals Measured from input terminals to output terminals Through insulation distance conductor to conductor DIN IEC 112/VDE 0303 Part 1 Material Group DIN VDE 0109 Electrical Specifications Over recommended temperature (TA = 0°C to 70°C) unless otherwise specified. (See note 11.) Parameter Symbol Min. Typ.* Max. Units Current Transfer Ratio CTR Logic Low Output Voltage VOL Logic High Output Current IOH 20 24 15 25 0.1 50 % Test Conditions TA = 25°C VO = 0.4 V VO = 0.5 V 0.4 V 0.5 0.01 1 ICCL 50 200 Logic High Supply Current ICCH 0.02 1 µA TA = 25°C VO = VCC = 5.5 V 1.7 7 TA = 25°C VO = VCC = 15.0 V IF = 0 mA 2 1.5 5 IO = 2.4 mA 50 Logic Low Supply Current VCC = 4.5 V 1, 2, IF = 16 mA 4 TA = 25°C IO = 3.0 mA 0.5 0.003 Fig. Note V IF = 16 mA, VO = Open, VCC = 15 V 11 TA = 25°C IF = 0 mA, VO = Open, VCC = 15.0 V 11 Input Forward Voltage VF TA = 25°C Input Reverse Breakdown Voltage BVR Temperature Coefficient of Forward Voltage ∆VF/∆TA -1.6 Input Capacitance CIN 60 Input-Output Insulation VISO Resistance (Input-Output) RI-O 1012 Ω VI-O = 500 VDC 6 Capacitance (Input-Output) CI-O 0.6 pF f = 1 MHz 6 1.8 *All typicals at TA = 25°C. 3 IF = 16 mA IR = 10 µA 5 mV/°C IF = 16 mA pF f = 1 MHz, VF = 0 VRMS RH ≤ 50%, t = 1 min., TA = 25°C 3750 6, 7 5 Switching Specifications Over recommended temperature (TA = 0°C to 70°C) VCC = 5 V, IF = 16 mA unless otherwise specified. Parameter Symbol Propagation Delay Time to Logic Low at Output tPHL Propagation Delay Time to Logic High at Output tPLH 0.2 0.8 µs 0.6 0.8 5, 6, RL = 1.9 kΩ 10 9 TA = 25°C 5, 6, RL = 1.9 kΩ 10 9 11 IF = 0 mA TA = 25°C RL = 1.9 kΩ 8, 9 IF = 16 mA 11 TA = 25°C RL = 1.9 kΩ 8, 9 1.0 Common |CML| Mode Transient Immunity at Logic Low Level Output BW HCPLM452 HCPLM453 1 15 HCPLM452 HCPLM453 15 kV/µs VCM = 10 Vp-p 30 VCM = 1500 Vp-p 1 VCM = 10 Vp-p 30 VCM = 1500 Vp-p 3 Fig. Note TA = 25°C 1.0 Common |CMH| Mode Transient Immunity at Logic High Level Output Bandwidth Device Min. Typ.* Max. Units Test Conditions MHz RL = 100 Ω, See Test Circuit 8, 9 10 All typicals at TA = 25°C. Notes: 1. Derate linearly above 85°C free-air temperature at a rate of 0.5 mA/°C. 2. Derate linearly above 85°C free-air temperature at a rate of 1.0 mA/°C. 3. Derate linearly above 85°C free-air temperature at a rate of 1.1 mW/°C. 4. Derate linearly above 85°C free-air temperature at a rate of 2.3 mW/°C. 5. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, IO, to the forward LED input current, IF, times 100. 6. Device considered a two terminal device: pins 1 and 3 shorted together, and pins 4, 5 and 6 shorted together. 7. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 4500 VRMS for 1 second (leakage detection current limit, II-O ≤ 5 µA). 8. Common transient immunity in a Logic High level is the maximum tolerable (positive) dVCM/dt on the rising edge of the common mode pulse, VCM, to assure that the output will remain in a Logic High state (i.e., VO > 2.0 V). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) dVCM/dt on the falling edge of the common mode pulse signal, VCM to assure that the output will remain in a Logic Low state (i.e., VO < 0.8 V). 9. The 1.9 kΩ load represents 1 TTL unit load of 1.6 mA and the 5.6 kΩ pull-up resistor. 10. The frequency at which the ac output voltage is 3 dB below its mid-frequency value. 11. Use of a 0.1 µF bypass capacitor connected between pins 4 and 6 is recommended. 35 mA 30 mA 25 mA 5 20 mA 15 mA 10 mA IF = 5 mA 0 0 10 20 1.5 1000 1.0 0.5 NORMALIZED I F = 16 mA VO = 0.4 V VCC = 5 V TA = 25°C 0.1 0 1 VO – OUTPUT VOLTAGE – V 100 1.1 NORMALIZED IF = 16 mA VO = 0.4 V VCC = 5 V TA = 25°C 0.7 0.6 -60 -20 20 60 100 RL = 1.9 kΩ 1500 1000 tPLH tPHL 500 0 -60 140 -20 20 60 100 TA – TEMPERATURE – °C 10+4 0.30 IF = 0 VO = VCC = 5.0 V 10+2 10+1 TA = 25°C, RL = 100 Ω, VCC = 5 V 0.10 10 0 10 -1 10 -2 0 +25 +50 +75 TA – TEMPERATURE – °C Figure 7. Logic High Output Current vs. Temperature. +100 0 0 4 8 12 16 1.20 1.30 1.50 1.40 1.60 2.0 IF = 10 mA IF = 16 mA VCC = 5.0 V TA = 25 °C 1.0 0.8 0.6 tPLH 0.4 tPHL 0.2 0.1 1 2 3 4 5 6 7 8 9 10 Figure 6. Propagation Delay Time vs. Load Resistance. 0.20 -25 0.01 RL – LOAD RESISTANCE – kΩ Figure 5. Propagation Delay vs. Temperature. ∆IO ∆IF – SMALL SIGNAL CURRENT TRANSFER RATIO Figure 4. Current Transfer Ratio vs. Temperature. -50 0.1 3.0 IF = 16 mA, VCC = 5.0 V TA – TEMPERATURE – °C 10+3 1.0 Figure 3. Input Current vs. Forward Voltage. tP – PROPAGATION DELAY – µs 0.9 0.8 10 0.001 1.10 2000 1.0 IF + VF – VF – FORWARD VOLTAGE – VOLTS Figure 2. Current Transfer Ratio vs. Input Current. tP – PROPAGATION DELAY – ns NORMALIZED CURRENT TRANSFER RATIO 10 TA = 25°C 100 IF – INPUT CURRENT – mA Figure 1. dc and Pulsed Transfer Characteristics. IOH – LOGIC HIGH OUTPUT CURRENT – nA IF – FORWARD CURRENT – mA 40 mA T = 25°C 10 VA = 5.0 V CC NORMALIZED CURRENT TRANSFER RATIO IO – OUTPUT CURRENT – mA 6 25 IF – QUIESCENT INPUT CURRENT – mA Figure 8. Small-Signal Current Transfer Ratio vs. Quiescent Input Current. 7 NORMALIZED RESPONSE –dB 0 TA = 25°C IF = 16 mA -5 RL = 100 Ω RL = 220 Ω RL = 470 Ω RL = 1 kΩ -10 -15 -20 -25 -30 0.01 1.0 0.1 10 f – FREQUENCY – MHz 1 +5 V SET IF RL 20 kΩ AC INPUT +5 V 6 5 VO 2N3063 0.1 µF 3 4 0.1 µF 500 Ω 100 Ω 1.5 V dc 0.25 Vp-p ac Figure 9. Frequency Response. PULSE GEN. ZO = 50 Ω tr = 5 ns IF 0 1.5 V +5 V 1 6 RL 10% DUTY CYCLE 1/f 100 µs 5V VO IF 5 VO 0.1µF 1.5 V 3 IF MONITOR VOL 4 CL = 15 pF 100 Ω tPHL tPLH Figure 10. Switching Test Circuit. IF RCC (SEE NOTE 10) tr, tf = 16 ns VCM 10 V 90% 90% 10% 0V tr 1 10% 6 RL A tf 5 VFF VO VO 3 4 VCM VOL SWITCH AT B: IF = 1.6 mA VO 0.1µF 5V SWITCH AT A: IF = 0 mA VCC 220 Ω B + – PULSE GEN. Figure 11. Test Circuit for Transient Immunity and Typical Waveforms. www.agilent.com/semiconductors For product information and a complete list of distributors, please go to our web site. For technical assistance call: Americas/Canada: +1 (800) 235-0312 or (916) 788-6763 Europe: +49 (0) 6441 92460 China: 10800 650 0017 Hong Kong: (+65) 6756 2394 India, Australia, New Zealand: (+65) 6755 1939 Japan: (+81 3) 3335-8152 (Domestic/International), or 0120-61-1280 (Domestic Only) Korea: (+65) 6755 1989 Singapore, Malaysia, Vietnam, Thailand, Philippines, Indonesia: (+65) 6755 2044 Taiwan: (+65) 6755 1843 Data subject to change. Copyright © 2004 Agilent Technologies, Inc. Obsoletes 5989-0792EN December 28, 2004 5989-2117EN