TI SN74CBT16213DGV

SN74CBT16213
24-BIT FET BUS-EXCHANGE SWITCH
SCDS026F – MAY 1995 – REVISED MAY 1998
D
D
D
DGG, DGV, OR DL PACKAGE
(TOP VIEW)
5-Ω Switch Connection Between Two Ports
TTL-Compatible Input Levels
Package Options Include Plastic Thin
Shrink Small-Outline (DGG), Thin Very
Small-Outline (DGV), and 300-mil Shrink
Small-Outline (DL) Packages
S0
1A1
1A2
2A1
2A2
3A1
3A2
GND
4A1
4A2
5A1
5A2
6A1
6A2
7A1
7A2
VCC
8A1
GND
8A2
9A1
9A2
10A1
10A2
11A1
11A2
12A1
12A2
description
The SN74CBT16213 provides 24 bits of
high-speed TTL-compatible bus switching or
exchanging. The low on-state resistance of the
switch allows connections to be made with
minimal propagation delay.
The device operates as a 24-bit bus switch or a
12-bit bus exchanger that provides data
exchanging between the four signal ports via the
data-select (S0–S2) terminals.
The SN74CBT16213 is characterized
operation from –40°C to 85°C.
for
1
56
2
55
3
54
4
53
5
52
6
51
7
50
8
49
9
48
10
47
11
46
12
45
13
44
14
43
15
42
16
41
17
40
18
39
19
38
20
37
21
36
22
35
23
34
24
33
25
32
26
31
27
30
28
29
S1
S2
1B1
1B2
2B1
2B2
3B1
GND
3B2
4B1
4B2
5B1
5B2
6B1
6B2
7B1
7B2
8B1
GND
8B2
9B1
9B2
10B1
10B2
11B1
11B2
12B1
12B2
FUNCTION TABLE
INPUTS
INPUTS/OUTPUTS
S0
FUNCTION
S2
S1
A1
A2
L
L
L
L
L
Z
Z
Disconnect
H
B1
Z
A1 port = B1 port
L
H
L
L
H
H
B2
Z
A1 port = B2 port
Z
B1
A2 port = B1 port
H
L
L
Z
B2
A2 port = B2 port
H
L
H
A2 and B2
A1 and B2
A1 port = A2 port = B2 port
H
H
L
B1
B2
A1 port = B1 port
A2 port = B2 port
H
H
H
B2
B1
A1 port = B2 port
A2 port = B1 port
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1998, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN74CBT16213
24-BIT FET BUS-EXCHANGE SWITCH
SCDS026F – MAY 1995 – REVISED MAY 1998
logic diagram (positive logic)
1A1
2
54
3
53
1B2
1A2
12A1
27
30
28
29
12A2
1
S0
56
S1
55
S2
2
1B1
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
12B1
12B2
SN74CBT16213
24-BIT FET BUS-EXCHANGE SWITCH
SCDS026F – MAY 1995 – REVISED MAY 1998
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Continuous channel current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Package thermal impedance, θJA (see Note 2): DGG package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81°C/ W
DGV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86°C/W
DL package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51.
recommended operating conditions (see Note 3)
MIN
MAX
5.5
VCC
VIH
Supply voltage
4
High-level control input voltage
2
VIL
TA
Low-level control input voltage
Operating free-air temperature
–40
UNIT
V
V
0.8
V
85
°C
NOTE 3: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
VIK
II
ICC
∆ICC§
Control inputs
Ci
Control inputs
Cio(OFF)
i (OFF)
B port
A port
A to B or
B to A
ron¶
TEST CONDITIONS
VCC = 4.5 V,
VCC = 0,
II = –18 mA
VI = 5.5 V
VCC = 5.5 V,
VCC = 5.5 V,
VI = 5.5 V or GND
IO = 0,
VCC = 5.5 V,
VI = 3 V or 0
One input at 3.4 V,
MIN
TYP‡
MAX
UNIT
–1.2
V
10
±1
VI = VCC or GND
Other inputs at VCC or GND
3
µA
2.5
mA
4.5
pF
8.5
VO = 3 V or 0
0,
S0 S1,
S0,
S1 or S2 = VCC
VCC = 4 V,
TYP at VCC = 4 V
VI = 2.4 V,
II = 15 mA
14
20
VI = 0
II = 64 mA
II = 30 mA
5
7
5
7
VI = 2.4 V,
II = 15 mA
8
15
VI = 2.4 V,
II = 15 mA
22
30
VI = 0
II = 64 mA
II = 30 mA
10
14
10
14
VCC = 4.5 V
VCC = 4 V,
TYP at VCC = 4 V
A1 to A2
VCC = 4.5 V
µA
pF
8
Ω
VI = 2.4 V,
II = 15 mA
16
22
‡ All typical values are at VCC = 5 V (unless otherwise noted), TA = 25°C.
§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
¶ Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by
the lower of the voltages of the two (A or B) terminals.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SN74CBT16213
24-BIT FET BUS-EXCHANGE SWITCH
SCDS026F – MAY 1995 – REVISED MAY 1998
switching characteristics over recommended operating free-air temperature range, CL = 50 pF
(unless otherwise noted) (see Figure 1)
VCC = 4 V
VCC = 5 V
0.5 V
MIN
MIN
"
FROM
(INPUT)
TO
(OUTPUT)
A or B
B or A
0.35
0.25
A1
A2
0.5
0.5
ten
tdis
S
A or B
12.4
3.2
11.1
ns
S
A or B
12.4
2.3
11.9
ns
ten
tdis
S0
A2 and B2
11.5
4
10.9
ns
S0
A2 and B2
12.8
5.7
12
PARAMETER
tpd†
MAX
UNIT
MAX
ns
ns
† The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when
driven by an ideal voltage source (zero output impedance).
PARAMETER MEASUREMENT INFORMATION
7V
S1
500 Ω
From Output
Under Test
Open
GND
CL = 50 pF
(see Note A)
500 Ω
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
7V
Open
Output
Control
(low-level
enabling)
LOAD CIRCUIT
3V
1.5 V
0V
tPZL
3V
Input
1.5 V
1.5 V
0V
tPLH
1.5 V
1.5 V
VOL
3.5 V
Output
Waveform 2
S1 at Open
(see Note B)
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
tPLZ
1.5 V
tPZH
VOH
Output
Output
Waveform 1
S1 at 7 V
(see Note B)
tPHL
1.5 V
VOL + 0.3 V
VOL
tPHZ
1.5 V
VOH
VOH – 0.3 V
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
Figure 1. Load Circuit and Voltage Waveforms
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1998, Texas Instruments Incorporated