SN74CBT16214 12-BIT 1-OF-3 FET MULTIPLEXER/DEMULTIPLEXER SCDS008L – MAY 1993 – REVISED NOVEMBER 2001 D D D DGG OR DL PACKAGE (TOP VIEW) Member of the Texas Instruments Widebus Family 5-Ω Switch Connection Between Two Ports TTL-Compatible Input Levels S0 1A 1B3 2A 2B3 3A 3B3 GND 4A 4B3 5A 5B3 6A 6B3 7A 7B3 VCC 8A GND 8B3 9A 9B3 10A 10B3 11A 11B3 12A 12B3 description The SN74CBT16214 provides 12 bits of high-speed TTL-compatible bus switching between three separate ports. The low on-state resistance of the switch allows connections to be made with minimal propagation delay. The device operates as a 12-bit bus-select switch via the data-select (S0–S2) terminals. 1 56 2 55 3 54 4 53 5 52 6 51 7 50 8 49 9 48 10 47 11 46 12 45 13 44 14 43 15 42 16 41 17 40 18 39 19 38 20 37 21 36 22 35 23 34 24 33 25 32 26 31 27 30 28 29 S1 S2 1B1 1B2 2B1 2B2 3B1 GND 3B2 4B1 4B2 5B1 5B2 6B1 6B2 7B1 7B2 8B1 GND 8B2 9B1 9B2 10B1 10B2 11B1 11B2 12B1 12B2 ORDERING INFORMATION TA –40°C to 85°C PACKAGE† ORDERABLE PART NUMBER Tube SN74CBT16214DL Tape and reel SN74CBT16214DLR SSOP – DL TOP-SIDE MARKING CBT16214 TSSOP – DGG Tape and reel SN74CBT16214DGGR CBT16214 † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus is a trademark of Texas Instruments. Copyright 2001, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SN74CBT16214 12-BIT 1-OF-3 FET MULTIPLEXER/DEMULTIPLEXER SCDS008L – MAY 1993 – REVISED NOVEMBER 2001 FUNCTION TABLE INPUTS S0 INPUT/OUTPUT A FUNCTION S2 S1 L L L Z Disconnect L L H B1 A port = B1 port L H L B2 A port = B2 port Disconnect L H H Z H L L Z Disconnect H L H B3 A port = B3 port H H L B1 A port = B1 port H H H B2 A port = B2 port logic diagram (positive logic) 54 2 1A 1B1 53 1B2 3 1B3 12A 27 30 12B1 29 12B2 28 12B3 1 S0 S1 56 55 S2 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN74CBT16214 12-BIT 1-OF-3 FET MULTIPLEXER/DEMULTIPLEXER SCDS008L – MAY 1993 – REVISED NOVEMBER 2001 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V Continuous channel current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA Package thermal impedance, θJA (see Note 2): DGG package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64°C DL package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. 2. The package thermal impedance is calculated in accordance with JESD 51-7. recommended operating conditions (see Note 3) MIN MAX 5.5 VCC VIH Supply voltage 4 High-level control input voltage 2 VIL TA Low-level control input voltage Operating free-air temperature –40 UNIT V V 0.8 V 85 °C NOTE 3: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER VIK II ICC ∆ICC§ Control inputs Ci Control inputs Cio(OFF) TEST CONDITIONS VCC = 4.5 V, VCC = 0, II = –18 mA VI = 5.5 V VCC = 5.5 V, VCC = 5.5 V, VI = 5.5 V or GND IO = 0, VCC = 5.5 V, VI = 3 V or 0 One input at 3.4 V, VO = 3 V or 0, VCC = 4 V, TYP at VCC = 4 V ron¶ VCC = 4.5 V MIN TYP‡ MAX UNIT –1.2 V 10 ±1 VI = VCC or GND Other inputs at VCC or GND µA 3 µA 2.5 mA 4 pF S0, S1, and S2 = GND 7.5 pF VI = 2.4 V, II = 15 mA 14 20 VI = 0 II = 64 mA II = 30 mA 4 7 4 7 Ω VI = 2.4 V, II = 15 mA 6 12 ‡ All typical values are at VCC = 5 V (unless otherwise noted), TA = 25°C. § This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND. ¶ Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SN74CBT16214 12-BIT 1-OF-3 FET MULTIPLEXER/DEMULTIPLEXER SCDS008L – MAY 1993 – REVISED NOVEMBER 2001 switching characteristics over recommended operating free-air temperature range, CL = 50 pF (unless otherwise noted) (see Figure 1) VCC = 4 V VCC = 5 V ± 0.5 V MIN MIN FROM (INPUT) TO (OUTPUT) tpd† A or B B or A 0.35 tpd ten S B or A 15.3 S A or B 16 PARAMETER MAX UNIT MAX 0.25 ns 5.5 13.9 ns 5.1 14.5 ns tdis S A or B 12.1 3.6 11.7 ns † The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance). PARAMETER MEASUREMENT INFORMATION 7V 500 Ω From Output Under Test S1 Open GND CL = 50 pF (see Note A) 500 Ω TEST S1 tpd tPLZ/tPZL tPHZ/tPZH Open 7V Open 3V Output Control LOAD CIRCUIT 1.5 V 1.5 V 0V tPLZ tPZL 3V Input 1.5 V 1.5 V 0V tPLH 1.5 V 3.5 V 1.5 V 1.5 V VOL Output Waveform 2 S1 at Open (see Note B) VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES VOL + 0.3 V VOL tPHZ tPZH tPHL VOH Output Output Waveform 1 S1 at 7 V (see Note B) 1.5 V VOH VOH – 0.3 V 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns. D. The outputs are measured one at a time with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 1. Load Circuit and Voltage Waveforms 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2001, Texas Instruments Incorporated