MP2227 24V, 3A, 1.3MHz Synchronous Step-Down Converter The Future of Analog IC Technology DESCRIPTION FEATURES The MP2227 is an internally compensated 1.3MHz fixed frequency PWM synchronous step-down regulator. MP2227 operates from a 3V to 24V input and generates an adjustable output voltage from 0.8V to 0.9xVIN at up to 3A load current. The MP2227 integrates a 160mΩ high-side switch and an 80mΩ synchronous rectifier for high efficiency without an external Schottky diode. With peak current mode control and internal compensation, it is stable with an output ceramic capacitor and a small inductor. Fault protection includes hiccup short-circuit protection, cycle-by-cycle current limiting and thermal shutdown. Other features include frequency synchronization and soft-start. The MP2227 is available in a small 3mm x 3mm 10-lead QFN package. 3A Output Current Input Supply Range: 3V to 24V 160mΩ high-side, 80mΩ low-side Internal Power MOSFET Switches All Ceramic Output Capacitor Design Up to 95% Efficiency 1.3MHz Fixed Switching Frequency Adjustable Output from 0.8V to 0.9xVIN Internal LDO for VCC supply 1MHz to 2MHz Frequency Synchronization POK Thermal Shutdown Cycle-by-Cycle Current Limiting Hiccup Short Circuit Protection 10-lead, 3mm x 3mm QFN Package APPLICATIONS µP/ASIC/DSP/FPGA Core and I/O Supplies Printers and LCD TVs Network and Telecom Equipment Point of Load Regulators For MPS green status, please visit MPS website under Quality Assurance. “MPS” and “The Future of Analog IC Technology” are Trademarks of Monolithic Power Systems, Inc. TYPICAL APPLICATION Efficiency VIN=12V, VOUT=5V 100 90 EFFICIENCY (%) 80 70 60 50 40 30 20 10 0 0.0 MP2227 Rev. 1.1 11/21/2011 0.5 1.0 1.5 2.0 2.5 LOAD CURRENT ( A ) www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2011 MPS. All Rights Reserved. 3.0 1 MP2227 – 24V, 3A, 1.3MHz SYNCHRONOUS STEP-DOWN CONVERTER ORDERING INFORMATION Part Number* Package Top Marking Free Air Temperature (TA) MP2227DQ QFN10(3mm x 3mm) 7U -40C to +85C * For Tape & Reel, add suffix –Z (e.g. MP2227DQ–Z). For RoHS Compliant packaging, add suffix –LF (e.g. MP2227DQ–LF–Z) PACKAGE REFERENCE TOP VIEW FB 1 10 EN/SYNC POK 2 9 VCC VIN 3 8 BST GND 4 7 SW GND 5 6 SW EXPOSED PAD ON BACKSIDE ABSOLUTE MAXIMUM RATINGS (1) VIN to GND ...................................-0.3V to +28V SW to GND ...........................-0.3V to VIN + 0.3V .............................-2.5V to VIN + 2.5V for < 50ns FB, EN/SYNC, VCC to GND...........-0.3V to +6.5V POK, SYNC_OUT to GND .............-0.3V to +6.5V BS to SW .....................................-0.3V to +6.5V (2) Continuous Power Dissipation (TA = +25°C) ………………………………………………....2.5W Junction Temperature ...............................150°C Lead Temperature ....................................260°C Storage Temperature............... -65°C to +150°C Recommended Operating Conditions (3) Thermal Resistance (4) θJA θJC QFN10 (3mm x 3mm) .............50 ...... 12 ... C/W Notes: 1) Exceeding these ratings may damage the device. 2) The maximum allowable power dissipation is a function of the maximum junction temperature TJ (MAX), the junction-toambient thermal resistance θJA, and the ambient temperature TA. The maximum allowable continuous power dissipation at any ambient temperature is calculated by PD (MAX) = (TJ (MAX)-TA)/θJA. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage. 3) The device is not guaranteed to function outside of its operating conditions. 4) Measured on JESD51-7, 4-layer PCB. Supply Voltage VIN ..............................3V to 24V Output Voltage VOUT ..................0.8V to 0.9 x VIN Max Operating Junct. Temp (TJ).............+125°C MP2227 Rev. 1.1 11/21/2011 www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2011 MPS. All Rights Reserved. 2 MP2227 – 24V, 3A, 1.3MHz SYNCHRONOUS STEP-DOWN CONVERTER ELECTRICAL CHARACTERISTICS (5) VIN=12V, TA = +25C, unless otherwise noted. Parameters Quiescent Supply Current Shutdown Current VCC Under Voltage Lockout Threshold VCC Under Voltage Lockout Hysteresis IN Under Voltage Lockout Threshold, Rising Edge IN Under Voltage Lockout Hysteresis Regulated FB Voltage FB Input Current EN High Threshold EN Low Threshold High-Side Switch On-Resistance Low-Side Switch On-Resistance SW Leakage Current BS Under Voltage Lockout Threshold High-Side Switch Current Limit Low-Side Switch Current Limit Oscillator Frequency Maximum Synch Frequency Minimum Synch Frequency Minimum On Time Maximum Duty Cycle POK Upper Trip Threshold POK Lower Trip Threshold POK Output Voltage Low POK Deglitch Timer SYNC_Input High Level SYNC_Input Low Level Thermal Shutdown Threshold Condition VEN = HIGH VFB = 0.85V, not switching VEN = 0V Rising Edge TA = +25°C -40°C ≤ TA ≤ +85°C VFB = 0.85V -40°C ≤ TA ≤ +85°C -40°C ≤ TA ≤ +85°C ISW = 300mA ISW = –300mA VEN = 0V; VIN = 12V VSW = 0V or 12V Min Typ Max 1 0.784 0.780 -50 1.6 mA 1 2.7 300 2.95 μA V mV 2.85 2.95 V 300 0.800 0.816 0.820 50 0.4 160 80 -1 Sourcing Sinking 1 FB respect to the nominal value FB respect to the nominal value ISINK = 5mA 1 1.8 4.5 2.5 1.3 2 1 50 90 10 -10 1.6 0.4 40 VCC = 5V, Source 5mA VCC = 5V, Sink 5mA Hysteresis = 20°C Units 4.6 0.4 150 mV V V nA V V mΩ mΩ μA V A A MHz MHz MHz ns % % % V μs V V °C Note: 5) Production test at +25°C. Specifications over the temperature range are guaranteed by design and characterization. MP2227 Rev. 1.1 11/21/2011 www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2011 MPS. All Rights Reserved. 3 MP2227 – 24V, 3A, 1.3MHz SYNCHRONOUS STEP-DOWN CONVERTER PIN FUNCTIONS Pin # Name 1 FB 2 POK 3 IN 4, 5 GND 6,7 SW 8 BST 9 VCC 10 EN/SYNC MP2227 Rev. 1.1 11/21/2011 Description Feedback. This is the input to the error amplifier. An external resistive divider connected between the output and GND is compared to the internal 0.8V reference to set the regulation voltage. Open Drain Power Good Output. “HIGH” output indicates VOUT is within ±10% window. “LOW” output indicates VOUT is out of ±10% window. POK is pulled down in shutdown. Input Supply. This supplies power to the high side switch. A decoupling capacitor to ground is required close to this pin to reduce switching spikes. Ground. Connect these pins with larger copper areas to the negative terminals of the input and output capacitors. Switch Node Connection to the Inductor. These pins connect to the internal high and lowside power MOSFET switches. All SW pins must be connected together externally. Bootstrap. A capacitor between this pin and SW provides a floating supply for the high-side gate driver. Bias Supply. Provide 5V to this pin when the input voltage is less than 5V. Otherwise it does not need external supply. This supplies power to both the internal control circuit and the gate drivers. A decoupling capacitor to ground is required close to this pin. Enable and Frequency Synchronization Input Pin. Forcing this pin below 0.4V shuts down the part. Forcing this pin above 1.6V turns on the part. Applying a 1MHz to 2MHz clock signal to this pin synchronizes the internal oscillator frequency to the external source. To enable the device, connect this pin to VIN through a 100kΩ resistor. When VIN is less than 5V and VCC is externally biased, this pin can also be connected to VCC through a 100kΩ resistor. www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2011 MPS. All Rights Reserved. 4 MP2227 – 24V, 3A, 1.3MHz SYNCHRONOUS STEP-DOWN CONVERTER TYPICAL PERFORMANCE CHARACTERISTICS VIN = 12V, VOUT = 1.8V, C1A = 22μF, C2A = C2B = 22μF, L = 1.5µH, TA = +25ºC, unless otherwise noted. MP2227 Rev. 1.1 11/21/2011 www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2011 MPS. All Rights Reserved. 5 MP2227 – 24V, 3A, 1.3MHz SYNCHRONOUS STEP-DOWN CONVERTER TYPICAL PERFORMANCE CHARACTERISTICS (continued) VIN = 12V, VOUT = 1.8V, C1A = 22μF, C2A = C2B = 22μF, L = 1.5µH, TA = +25ºC, unless otherwise noted. Steady State Power Ramp Up Power Ramp Down VSYS = 5V, VEN put to VIN, VOUT= 3.3V, IOUT = 3A VIN = 12V, VEN put to VIN, VOUT = 1.8V, IOUT = 2A VIN = 12V, VEN put to VIN, VOUT = 1.8V, IOUT = 2A VSYS 5V/div. VSW 10V/div. VSYS 10V/div. VSW 10V/div. VSYS 10V/div. VSW 10V/div. VOUT 2V/div. VOUT 1V/div. VOUT 1V/div. IL 2A/div. IL 2A/div. IL 2A/div. Steady State Enable Up Enable Down VIN = 26V, VEN put to VIN, VOUT = 3.3V, IOUT = 3A VIN = 12V, VEN = 0-3V, VOUT = 5V, IOUT = 3A, Resistor Load VIN = 12V, VEN = 3-0V, VOUT = 5V, IOUT = 3A, Resistor Load VSYS 20V/div. VSW 20V/div. VEN 2V/div. VEN 2V/div. VPG 5V/div. VPG 5V/div. VOUT 2V/div. VOUT 5V/div. VOUT 5V/div. IL 2A/div. IL 2A/div. IL 2A/div. Transient Response Short Circuit Short Circuit Recovery VIN = 18V, VIN,VOUT = 1.8V, IOUT = 3A VIN = 18V, VEN put to VIN, VOUT = 1.8V VIN = 18V, VEN put to VIN, VOUT = 1.8V VSYS 10V/div. VOUT 20V/div. IOUT 2A/div. MP2227 Rev. 1.1 11/21/2011 VOUT 1V/div. VOUT 1V/div. IL 2A/div. IL 2A/div. www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2011 MPS. All Rights Reserved. 6 MP2227 – 24V, 3A, 1.3MHz SYNCHRONOUS STEP-DOWN CONVERTER FUNCTIONAL BLOCK DIAGRAM Figure 1—Functional Block Diagram MP2227 Rev. 1.1 11/21/2011 www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2011 MPS. All Rights Reserved. 7 MP2227 – 24V, 3A, 1.3MHz SYNCHRONOUS STEP-DOWN CONVERTER TYPICAL APPLICATION MP2227 Rev. 1.1 11/21/2011 www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2011 MPS. All Rights Reserved. 8 MP2227 – 24V, 3A, 1.3MHz SYNCHRONOUS STEP-DOWN CONVERTER FUNCTIONAL DESCRIPTION PWM Control The MP2227 is a constant frequency peakcurrent-mode control PWM switching regulator. Refer to the functional block diagram. The high side N-Channel DMOS power switch turns on at the beginning of each clock cycle. The current in the inductor increases until the PWM current comparator trips to turn off the high side DMOS switch. The peak inductor current at which the current comparator shuts off the high side power switch is controlled by the COMP voltage at the output of feedback error amplifier. The transconductance from the COMP voltage to the output current is set at 11.25A/V. This current-mode control greatly simplifies the feedback compensation design by approximating the switching converter as a single-pole system. Only Type II compensation network is needed, which is integrated into the MP2227. The loop bandwidth is adjusted by changing the upper resistor value of the resistor divider at the FB pin. The internal compensation in the MP2227 simplifies the compensation design, minimizes external component counts, and keeps the flexibility of external compensation for optimal stability and transient response. Enable and Frequency (EN/SYNC PIN) Synchronization This is a dual function input pin. Forcing this pin below 0.4V for longer than 4us shuts down the part; forcing this pin above 1.6V for longer than 4µs turns on the part. Applying a 1MHz to 2MHz clock signal to this pin also synchronizes the internal oscillator frequency to the external clock. When the external clock is used, the part turns on after detecting the first few clocks regardless of duty cycles. If any ON or OFF period of the clock is longer than 4µs, the signal will be intercepted as an enable input and disables the synchronization. Soft-Start and Output Pre-Bias Startup When the soft-start period starts, an internal current source begins charging an internal softstart capacitor. During soft-start, the voltage on MP2227 Rev. 1.1 11/21/2011 the soft-start capacitor is connected to the noninverting input of the error amplifier. The softstart period lasts until the voltage on the softstart capacitor exceeds the reference voltage of 0.8V. At this point the reference voltage takes over at the non-inverting error amplifier input. The soft-start time is internally set at 120µs. If the output of the MP2227 is pre-biased to a certain voltage during startup, the IC will disable the switching of both high-side and low-side switches until the voltage on the internal softstart capacitor exceeds the sensed output voltage at the FB pin. Over Current Protection The MP2227 offers cycle-to-cycle current limiting for both high-side and low-side switches. The high-side current limit is relatively constant regardless of duty cycles. When the output is shorted to ground, causing the output voltage to drop below 70% of its nominal output, the IC is shut down momentarily and begins discharging the soft start capacitor. It will restart with a full soft-start when the soft- start capacitor is fully discharged. This hiccup process is repeated until the fault is removed. Bootstrap (BST PIN) The gate driver for the high-side N-channel DMOS power switch is supplied by a bootstrap capacitor connected between the BS and SW pins. When the low-side switch is on, the capacitor is charged through an internal boost diode. When the Low-side switch is off and the high-side switch turns on, the voltage on the bootstrap capacitor is boosted above the input voltage and the internal bootstrap diode prevents the capacitor from discharging. No external bootstrap diode is required for typical applications. For applications with low input VCC voltage or where output voltage is very close to input voltage, an external Schottky diode may be connected from the VCC to BS pins to charge the bootstrapped capacitor more strongly for increased gate drive voltage. When using the external bootstrap diode, a resistor at the regulator output or a minimal load current may be required as the bootstrapped capacitor www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2011 MPS. All Rights Reserved. 9 MP2227 – 24V, 3A, 1.3MHz SYNCHRONOUS STEP-DOWN CONVERTER always see the supply voltage even when the part is disabled. Input UVLO Both VCC and IN pins have input UVLO detection. Until both VCC and IN voltage under voltage lockout threshold, the parts remain in shutdown condition. There are also under voltage lockout hysesteres at both VCC and IN pins. MP2227 Rev. 1.1 11/21/2011 www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2011 MPS. All Rights Reserved. 10 MP2227 – 24V, 3A, 1.3MHz SYNCHRONOUS STEP-DOWN CONVERTER APPLICATION INFORMATION Setting the Output Voltage The external resistor divider sets the output voltage (see Typical Application Schematic). The feedback resistor R1 also sets the feedback loop bandwidth with the internal compensation capacitor (see Figure 1). The relation between R1 and feedback loop bandwidth (fC), output capacitance (CO) is as follows: R1(K ) 1.24 106 . fC (kHz) CO (F) The feedback loop bandwidth (fC) is no higher than 1/10th of switching frequency of MP2227. In the case of ceramic capacitor as CO, it’s usually set to be in the range of 50kHz and 150kHz for optimal transient performance and good phase margin. If electrolytic capacitor is used, the loop bandwidth is no higher than 1/4th of the ESR zero frequency (fESR). fESR is given by: fESR 1 For example, choose fC=70kHz with ceramic capacitor, CO=47uF, R1 is estimated to be 400KΩ. R2 is then given by: R1 VOUT 1 0.8V Table 1—Resistor Selection vs. Output Voltage Setting VOUT (V) R1 (kΩ) R2 (kΩ) 1.2 1.5 1.8 2.5 3.3 400 400 400 400 400 MP2227 Rev. 1.1 11/21/2011 806 453 316 187 127 A 0.47µH to 1µH inductor with DC current rating at least 25% higher than the maximum load current is recommended for most applications. For best efficiency, the inductor DC resistance shall be <10mΩ. See Table 2 for recommended inductors and manufacturers. For most designs, the inductance value can be derived from the following equation: L VOUT x(VIN VOUT ) VIN xIL xfOSC Where ∆IL is Inductor Ripple Current. Choose inductor ripple current approximately 30% of the maximum load current, 3A.The maximum inductor peak current is: IL(MAX) ILOAD IL 2 Under light load conditions, larger inductance is recommended for improved efficiency 2 RESR CO R2 Selecting the Inductor L (μH) COUT (ceramic) 0.47μH-1μH 0.47μH-1μH 0.47μH-1μH 0.47μH-1μH 0.47μH-1μH 47μF 47μF 47μF 47μF 47μF Input Capacitor Selection The input capacitor reduces the surge current drawn from the input and switching noise from the device. The input capacitor impedance at the switching frequency shall be less than input source impedance to prevent high frequency switching current passing to the input. Ceramic capacitors with X5R or X7R dielectrics are highly recommended because of their low ESR and small temperature coefficients. For most applications, a 47µF capacitor is sufficient. www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2011 MPS. All Rights Reserved. 11 MP2227 – 24V, 3A, 1.3MHz SYNCHRONOUS STEP-DOWN CONVERTER Table 2—Suggested Surface Mount Inductors Manufacturer Part Number Inductance (μH) Max DCR (mΩ) Current Rating (A) Dimensions L x W x H (mm3) 0.55 0.95 4.5 7.4 14 11 7×6.9×3 7×6.9×3 1 11 6.9 8.4×8.3×4 Wurth Electronics 744310055 744310095 TOKO B1015AS-1R0N Output Capacitor Selection PC Board Layout The output capacitor keeps output voltage ripple small and ensures regulation loop stable. The output capacitor impedance shall be low at the switching frequency. Ceramic capacitors with X5R or X7R dielectrics are recommended. If electrolytic capacitor is used, pay attention to output ripple voltage, extra heating, and the selection of feedback resistor R1 (refer to “Output Voltage Setting” section) due to large ESR of electrolytic capacitor. The output ripple ∆VOUT is approximately: The high current paths (GND, IN and SW) should be placed very close to the device with short, direct and wide traces. A 0.1μF-1μF ceramic is recommended for VCC supply. C5 must be placed as close as possible to “VCC” pin and “GND” pin. The external feedback resistors shall be placed next to the FB pin. Keep the switching node SW short and away from the feedback network. Please see EV2227EQ datasheet for detailed info. VOUT VOUT x(VIN VOUT ) 1 x(ESR ) VIN xfOSC xL 8xfOSC xC3 MP2227 Rev. 1.1 11/21/2011 www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2011 MPS. All Rights Reserved. 12 MP2227 – 24V, 3A, 1.3MHz SYNCHRONOUS STEP-DOWN CONVERTER PACKAGE INFORMATION QFN10 (3mm x 3mm) 2.90 3.10 0.30 0.50 PIN 1 ID MARKING 0.18 0.30 2.90 3.10 PIN 1 ID INDEX AREA 1.45 1.75 PIN 1 ID SEE DETAIL A 10 1 2.25 2.55 0.50 BSC 5 6 TOP VIEW BOTTOM VIEW PIN 1 ID OPTION A R0.20 TYP. PIN 1 ID OPTION B R0.20 TYP. 0.80 1.00 0.20 REF 0.00 0.05 SIDE VIEW DETAIL A NOTE: 2.90 0.70 1) ALL DIMENSIONS ARE IN MILLIMETERS. 2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH. 3) LEAD COPLANARITY SHALL BE 0.10 MILLIMETER MAX. 4) DRAWING CONFORMS TO JEDEC MO-229, VARIATION VEED-5. 5) DRAWING IS NOT TO SCALE. 1.70 0.25 2.50 0.50 RECOMMENDED LAND PATTERN NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications. MP2227 Rev. 1.1 11/21/2011 www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2011 MPS. All Rights Reserved. 13