PEAK DCA55T

Peak Atlas DCA
Semiconductor Component Analyser
Model DCA55
User Guide
© Peak Electronic Design Limited 2000/2007
In the interests of development, information in this guide is subject to change without notice - E&OE
electronic design ltd
Atlas DCA User Guide
October 2007 – Rev 7
Want to use it now?
We understand that you want to use your Atlas DCA right now. The
unit is ready to go and you should have little need to refer to this user
guide, but please make sure that you do at least take a look at the
notices on page 4!
Contents
Page
Introduction....................................................................................3
Important Considerations ...............................................................4
Analysing semiconductors .............................................................5
Diodes......................................................................................7
Diode Networks .......................................................................8
LEDs........................................................................................9
Bicolour LEDs .......................................................................10
Bipolar Junction Transistors (BJTs) ......................................11
Enhancement Mode MOSFETs .............................................18
Depletion Mode MOSFETs ...................................................19
Junction FETs (JFETs) ..........................................................20
Thyristors (SCRs) and Triacs.................................................21
Taking care of your Atlas DCA....................................................22
Battery replacement ...............................................................22
Self Tests ...............................................................................23
Appendix A - Technical Specifications........................................24
Appendix B - Warranty Information ............................................25
Appendix C - Disposal information .............................................26
Page 2
Atlas DCA User Guide
October 2007 – Rev 7
Introduction
The Peak Atlas DCA is an intelligent semiconductor analyser that offers great
features together with refreshing simplicity. The Atlas DCA brings a world of
component data to your fingertips.
Summary Features:
•
•
•
•
•
•
•
•
•
Automatic component type identification
Bipolar transistors
Darlington transistors
Enhancement Mode MOSFETs
Depletion Mode MOSFETs
Junction FETs
Low power sensitive Triacs
Low power sensitive Thyristors
Light Emitting Diodes
Bicolour LEDs
Diodes
Diode networks
Automatic pinout identification, just connect any way round.
Special feature identification such as diode protection and resistor
shunts.
Gain measurement for bipolar transistors.
Leakage current measurement for bipolar transistors.
Silicon and Germanium detection for bipolar transistors.
Gate threshold measurement for Enhancement Mode MOSFETs.
Semiconductor forward voltage measurement for diodes, LEDs and
transistor Base-Emitter junctions.
Automatic and manual power-off.
Page 3
Atlas DCA User Guide
October 2007 – Rev 7
Important Considerations
Please observe the following guidelines:
•
•
•
•
•
This instrument must NEVER be connected to powered
equipment/components or equipment/components with any
stored energy (e.g. charged capacitors). Failure to comply
with this warning may result in personal injury, damage to
the equipment under test, damage to the Atlas DCA and
invalidation of the manufacturer’s warranty.
The Atlas DCA is designed to analyse semiconductors that
are not in-circuit, otherwise complex circuit effects will
result in erroneous measurements.
Avoid rough treatment or hard knocks.
This unit is not waterproof.
Only use a good quality Alkaline battery.
Page 4
Atlas DCA User Guide
October 2007 – Rev 7
Analysing Components
The Atlas DCA is designed to analyse discrete,
unconnected, unpowered components. This
ensures that external connections don’t influence
the measured parameters. The three test probes can be
connected to the component any way round. If the component has
only two terminals, then any pair of the three test probes can be used.
Peak Atlas DCA
is analysing....
The Atlas DCA will start component
analysis when the on-test button is
pressed.
Depending on the component type, analysis may take a few seconds to
complete, after which, the results of the analysis are displayed. Information is
displayed a “page” at a time, each page can be displayed by briefly pressing the
scroll-off button.
The arrow symbol on the display indicates that more pages are available
to be viewed.
Although the Atlas DCA will switch itself off if left unattended, you
can manually switch the unit off by holding down the scroll-off
button for a couple of seconds.
Page 5
Atlas DCA User Guide
October 2007 – Rev 7
If the Atlas DCA cannot detect any
component between any of the test
probes, the following message will be
displayed:
No component
detected
If the component is not a supported
component type, a faulty component or
a component that is being tested incircuit, the analysis may result in the
following message being displayed:
Unknown/Faulty
component
Some components may be faulty due to
a shorted junction between a pair of the
probes. If this is the case, the following
message (or similar) will be displayed:
Short circuit on
Green Blue
If all three probes are shorted (or very
low resistance) then the following
message will be displayed:
Short circuit on
Red Green Blue
It is possible that the Atlas DCA may detect one or more diode
junctions or other component type within an unknown or faulty part.
This is because many semiconductors comprise of PN (diode)
junctions. Please refer to the section on diodes and diode networks for
more information.
Page 6
Atlas DCA User Guide
October 2007 – Rev 7
Diodes
The Atlas DCA will analyse almost any type of
diode. Any pair of the three test clips can be
connected to the diode, any way round. If the
unit detects a single diode, the following
message will be displayed:
Diode or diode
junction(s)
RED GREEN BLUE
Anod Cath
Forward voltage
Vf=0.67V
Test current
If=4.62mA
Pressing the scroll-off
button will then display the pinout for
the diode. In this example, the Anode of
the diode is connected to the Red test
clip and the Cathode is connected to the
Green test clip, additionally, the Blue
test clip is unconnected. The forward
voltage drop is then displayed, this gives
an indication of the diode technology. In
this example, it is likely that the diode is
a silicon diode. A germanium or
Schottky diode may yield a forward
voltage of about 0.25V. The current at
which the diode was tested is also
displayed.
Note that the Atlas DCA will detect only one diode even if two diodes
are connected in series when the third test clip is not connected to the
junction between the diodes. The forward voltage drop displayed
however will be the voltage across the whole series combination.
The Atlas DCA will determine that the diode(s) under test is an LED
if the measured forward voltage drop exceeds 1.50V. Please refer to
the section on LED analysis for more information.
Page 7
Atlas DCA User Guide
October 2007 – Rev 7
Diode Networks
The Atlas DCA will intelligently identify popular types of
three terminal diode networks. For three terminal devices
such as SOT-23 diode networks, the three test clips must all
be connected, any way round. The instrument will identify the type of diode
network and then display information regarding each detected diode in
sequence. The following types of diode networks are automatically recognised
by the Atlas DCA:
Both cathodes connected
Common cathode
together, such as the BAV70
device.
diode network
Common anode
diode network
Anodes of each diode are
connected together, the
BAW56W is an example.
Series
diode network
Here, each diode is connected
in series. An example is the
BAV99.
Following the component identification,
the details of each diode in the network
will be displayed.
Firstly, the pinout for the diode is
displayed, followed by the electrical
information, forward voltage drop and
the current at which the diode was
tested. The value of the test current
depends on the measured forward
voltage drop of the diode.
Pinout for D1...
RED GREEN BLUE
Cath Anod
Forward voltage
D1 Vf=0.64V
Following the display of all the details for the first diode, the details of the
second diode will then be displayed.
Page 8
Atlas DCA User Guide
October 2007 – Rev 7
LEDs
An LED is really just a another type of diode, however, the
Atlas DCA will determine that an LED or LED network has
been detected if the measured forward voltage drop is larger
than 1.5V. This also enables the Atlas DCA to intelligently
identify bicolour LEDs, both two-terminal and three-terminal varieties.
LED or diode
junction(s)
Like the diode analysis, the pinout, the
forward voltage drop and the associated
test current is displayed.
RED GREEN BLUE
Cath Anod
Here, the Cathode (-ve) LED terminal is
connected to the Green test clip and the
Anode (+ve) LED terminal is connected
to the Blue test clip.
Forward voltage
Vf=1.92V
Test current
If=3.28mA
In this example, a simple green LED
yields a forward voltage drop of 1.92V.
The test current is dependant on the
forward voltage drop of the LED, here
the test current is measured as 3.28mA.
Some blue LEDs (and their cousins, white LEDs) require high
forward voltages and may not be detected by the Atlas DCA.
Page 9
Atlas DCA User Guide
October 2007 – Rev 7
Bicolour LEDs
Bicolour LEDs are automatically identified. If your LED has 3
leads then ensure they are all connected, in any order.
A two terminal bicolour LED consists of two LED chips which
are connected in inverse parallel within the LED body. Three terminal bicolour
LEDs are made with either common anodes or common cathodes.
Two terminal
bicolour LED
Three terminal
bicolour LED
Here a two terminal LED
has been detected.
This message will be
displayed if the unit has
detected a three terminal
LED.
The details of each LED in the package
will then be displayed in a similar way
to the diode networks detailed earlier.
The pinout for the 1st LED is displayed.
Remember that this is the pinout for just
one of the two LEDs in the package.
Interestingly, the voltage drops for each
LED relate to the different colours
within the bicolour LED. It may
therefore be possible to determine which
lead is connected to each colour LED
within the device. Red LEDs often have
the lowest forward voltage drop,
followed by yellow LEDs, green LEDs
and finally, blue LEDs.
Page 10
Pinout for D1...
RED GREEN BLUE
Anod Cath
Forward voltage
D1 Vf=1.98V
Test current
D1 If=3.22mA
Atlas DCA User Guide
October 2007 – Rev 7
Bipolar Junction Transistors (BJTs)
Bipolar Junction Transistors are simply “conventional”
transistors, although variants of these do exist such as
Darlingtons, diode protected, resistor shunted types and
combinations of these types. All of these variations are
automatically identified by the Atlas DCA.
Bipolar Junction Transistors are
available in two main types, NPN and
PNP. In this example, the unit has
detected a Silicon PNP transistor.
PNP Germanium
Transistor
PNP Silicon
Transistor
The unit will determine that the
transistor is Germanium only if the baseemitter voltage drop is less than 0.4V
and is also PNP.
If the device is a Darlington transistor (two BJTs connected
together), the unit will
display
a
similar
NPN Darlington
message to this:
Transistor
Note that the Atlas DCA will determine that the transistor under test is
a Darlington type if the base-emitter voltage drop is greater than
1.00V for devices with a base-emitter shunt resistance of greater than
60kΩ or if the base-emitter voltage drop is greater than 0.80V for
devices with a base-emitter shunt resistance of less than 60kΩ. The
measured base-emitter voltage drop is displayed as detailed later in
this section.
Page 11
Atlas DCA User Guide
October 2007 – Rev 7
Pressing the scroll-off button will result in the transistor’s pinout being
displayed.
Here, the instrument has identified that
the Base is connected to the Red test
clip, the Collector is connected to the
Green test clip and the Emitter is
connected to the Blue test clip.
RED GREEN BLUE
Base Coll Emit
Transistor Special Features
Many modern transistors contain additional special features. If the Atlas DCA
has detected any special features, then the details of these features are
displayed next after pressing the scroll-off button. If there are no special
features detected then the next screen will be the transistor’s current gain.
Some transistors, particularly CRT
deflection transistors and many large
Darlingtons have a protection diode
inside their package connected between
the collector and emitter.
Diode protection
between C-E
The Philips BU505DF is a typical example of a diode protected bipolar
transistor. Remember that protection diodes are always internally connected
between the collector and the emitter so that they are
normally reverse biased.
For NPN transistors, the anode of the diode is connected to
the emitter of the transistor. For PNP transistors, the anode
of the diode is connected to the collector of the transistor.
Page 12
Atlas DCA User Guide
October 2007 – Rev 7
Additionally, many Darlingtons and a few non-Darlington transistors also have
a resistor shunt network between the base and emitter of the device.
The Atlas DCA can detect the resistor shunt if it has a
resistance of typically less than 60kΩ.
The popular Motorola TIP110 NPN Darlington
transistor contains internal resistors between the base
and emitter.
When the unit detects the presence of a
resistive shunt between the base and
emitter, the display will show:
Additionally, the Atlas DCA will warn
you that the accuracy of gain
measurement (HFE) has been affected by
the shunt resistor.
Resistor shunt
between B-E
HFE not accurate
due to B-E res
It is important to note that if a transistor does contain a base-emitter
shunt resistor network, any measurements of current gain (HFE) will be
very low at the test currents used by the Atlas DCA. This is due to the
resistors providing an additional path for the base current. The
readings for gain however can still be used for comparing transistors
of a similar type for the purposes of matching or gain band selecting.
The Atlas DCA will warn you if such a condition arises as illustrated
above.
Page 13
Atlas DCA User Guide
October 2007 – Rev 7
Faulty or Very Low Gain Transistors
Faulty transistors that exhibit very low gain
C
may cause the Atlas DCA to only identify one
or more diode junctions within the device. This B
is because NPN transistors consist of a
structure of junctions that behave like a
common anode diode network. PNP transistors
E
can appear to be common cathode diode
networks. The common junction represents the base terminal. This is normal
for situations where the current gain is
so low that it is immeasurable at the test
Common anode
currents used by the Atlas DCA.
diode network
Please note that the equivalent diode pattern may not be correctly
identified by the Atlas DCA if your transistor has additional diode(s)
in it’s package (such as a collector-emitter protection diode). This is
due to multiple pn junctions that cannot be uniquely analysed.
In some circumstances, the unit may not be able to deduce anything sensible
from the device at all, in which case you will see either of these messages:
Unknown/Faulty
component
No component
detected
Page 14
Atlas DCA User Guide
October 2007 – Rev 7
Current Gain (HFE)
The DC current gain (HFE) is displayed
after any special transistor features
have been displayed.
DC current gain is simply the ratio of
the collector current to the base current
for a particular operating condition.
The Atlas DCA measures HFE at a
collector current of 2.50mA and a
collector-emitter voltage of between
2V and 3V.
HFE = IC
IB
IB
IC=2.50mA
The gain of all transistors can vary considerably with collector current,
collector voltage and also temperature. The displayed value for gain therefore
may not represent the gain experienced
Current gain
at other collector currents and voltages.
This is particularly true for large
HFE=126
devices.
Test current
Ic=2.50mA
Darlington transistors can have very
high gain values and more variation of
gain will be evident as a result of this.
Additionally, it is quite normal for transistors of the same type to have a wide
range of gain values. For this reason, transistor circuits are often designed so
that their operation has little dependence on the absolute value of current gain.
The displayed value of gain is very useful however for comparing transistors of
a similar type for the purposes of gain matching or fault finding.
Page 15
Atlas DCA User Guide
October 2007 – Rev 7
Base-Emitter Voltage Drop
The DC characteristics of the base-emitter
junction are displayed, both the base-emitter
forward voltage drop and the base current
used for the measurement.
IB
VBE
B-E Voltage
Vbe=0.77V
The forward base-emitter voltage drop
can aid in the identification of silicon or
germanium devices. Germanium devices
Test current
can have base-emitter voltages as low as
Ib=4.52mA
0.2V, Silicon types exhibit readings of
about 0.7V and Darlington transistors
can exhibit readings of about 1.2V because of the multiple base-emitter
junctions being measured.
Note that the Atlas DCA does not perform the base-emitter tests at the
same base current as that used for the current gain measurement.
Page 16
Atlas DCA User Guide
October 2007 – Rev 7
Collector Leakage Current
The collector current that takes place
when no base current is flowing is
referred to as Leakage Current.
Most modern transistor exhibit
extremely low values of leakage
current, often less than 1µA, even for
very high collector-emitter voltages.
Leakage current
Ic=0.17mA
IB = 0
IC
Leakage
Older Germanium types however can
suffer from significant collector leakage
current, particular at high temperatures
(leakage current can be very temperature
dependant).
If your transistor is a Silicon type, you should expect to see a leakage current of
close to 0.00mA unless the transistor is faulty.
Page 17
Atlas DCA User Guide
October 2007 – Rev 7
Enhancement Mode MOSFETs
MOSFET stands for Metal Oxide Semiconductor Field Effect
Transistor. Like bipolar transistors, MOSFETs are available in
two main types, N-Channel and P-Channel. Most modern
MOSFETs are of the Enhancement Mode type, meaning that
the bias of the gate-source voltage is
always positive (For N-Channel types).
Enhancement mode
The other (rarer) type of MOSFET is the
N-Ch MOSFET
Depletion Mode type which is described
in a later section.
MOSFETs of all types are sometimes known as IGFETs, meaning Insulated
Gate Field Effect Transistor. This term describes a key feature of these
devices, an insulated gate region that results in negligible gate current for both
positive and negative gate-source voltages (up to the maximum allowed values
of course, typically ±20V).
The first screen to be displayed gives information on the type of MOSFET
detected. Pressing scroll-off will then
result in the pinout of the MOSFET being
RED GREEN BLUE
displayed. The gate, source and drain are
Gate Drn Srce
each identified.
An important feature of a MOSFET is the
gate-source threshold voltage, the gatesource voltage at which conduction
between the source and drain starts. The
gate threshold is displayed following the
pinout information.
Gate Threshold
Vgs=3.47V
Test current
Id=2.50mA
The Atlas DCA detects that drain-source conduction has started when it
reaches 2.50mA.
Page 18
Atlas DCA User Guide
October 2007 – Rev 7
Depletion Mode MOSFETs
The fairly rare Depletion Mode MOSFET is very similar to the
conventional Junction FET (JFET) except that the gate
terminal is insulated from the other two terminals. The input
resistance of these devices can typically be greater than
1000MΩ for negative and positive gate-source voltages.
Depletion mode
N-Ch MOSFET
Depletion
Mode
devices
are
characterised by the gate-source voltage
required to control the drain-source
current.
Modern Depletion Mode devices are generally only available in N-Channel
varieties and will conduct current between it’s drain and source terminals even
with a zero voltage applied across the gate and the source. The device can only
be turned completely off by taking it’s gate significantly more negative than
it’s source terminal, say –10V. It is this characteristic that makes them so
similar to conventional JFETs.
Pressing scroll-off will cause the
pinout screen to be displayed.
Page 19
RED GREEN BLUE
Drn Gate Srce
Atlas DCA User Guide
October 2007 – Rev 7
Junction FETs (JFETs)
Junction FETs are conventional Field Effect Transistors.
The voltage applied across the gate-source terminals controls
current between the drain and source terminals. N-Channel
JFETs require a negative voltage on their gate with respect to their source, the
more negative the voltage, the less current can flow between the drain and
source.
Unlike Depletion Mode MOSFETs,
JFETs have no insulation layer on the
gate. This means that although the input
resistance between the gate and source is
normally very high (greater than 100MΩ), the gate current can rise if the
semiconductor junction between the gate and source or between the gate and
drain become forward biased. This can happen if the gate voltage becomes
about 0.6V higher than either the drain or source terminals for N-Channel
devices or 0.6V lower than the drain or source for P-Channel devices.
P-Channel
Junction FET
Drain and Source
not identified
RED GREEN BLUE
Gate
The internal structure of JFETs is
essentially symmetrical about the gate
terminal, this means that the drain and
source terminals are indistinguishable by
the Atlas DCA. The JFET type and the
gate terminal are identified however.
Page 20
Atlas DCA User Guide
October 2007 – Rev 7
Thyristors (SCRs) and Triacs
Sensitive low power thyristors (Silicon Controlled
Rectifiers - SCRs) and triacs that require gate
currents and holding currents of less than 5mA
can be identified and analysed with the Atlas DCA.
Sensitive or low
power thyristor
Thyristor terminals are the anode,
cathode and the gate. The pinout of the
thyristor under test will be displayed on
the next press of the scroll-off button.
RED GREEN BLUE
Gate Anod Cath
Triac terminals are the MT1, MT2 (MT
standing for main terminal) and gate.
MT1 is the terminal with which gate
current is referenced.
Sensitive or low
power triac
RED GREEN BLUE
MT1 MT2 Gate
1. The unit determines that the device under test is a triac by checking
the gate trigger quadrants that the device will reliably operate in.
Thyristors operate in only one quadrant (positive gate current, positive
anode current). Triacs can typically operate in three or four quadrants,
hence their use in AC control applications.
2. The test currents used by the Atlas DCA are kept low (<5mA) to
eliminate the possibility of damage to a vast range of component
types. Some thyristors and triacs will not operate at low currents and
these types cannot be analysed with this instrument. Note also that if
only one trigger quadrant of a triac is detected then the unit will
conclude that it has found a thyristor. Please see the technical
specifications for more details.
Page 21
Atlas DCA User Guide
October 2007 – Rev 7
Care of your Atlas DCA
The Peak Atlas DCA should provide many years of service if used in
accordance with this user guide. Care should be taken not to expose your unit
to excessive heat, shock or moisture. Additionally, the battery should be
replaced at least every 12 months to reduce the risk of leak damage.
If a low battery warning message
appears, immediate replacement of the
battery is recommended as measured
parameters may be affected. The unit
may however continue to operate.
* Low Battery *
The battery can be replaced by carefully opening the Atlas DCA by removing
the three screws from the rear of the unit. Take care not to damage the
electronics.
The battery should only be replaced with a high quality battery identical to, or
equivalent to an Alkaline GP23A or MN21 12V (10mm diameter x 28mm
length). Replacement batteries are available directly from Peak Electronic
Design Limited and many good electronic/automotive outlets.
Page 22
Atlas DCA User Guide
October 2007 – Rev 7
Self Test Procedure
Each time the Atlas DCA is powered up, a self test procedure is performed. In
addition to a battery voltage test, the unit measures the performance of many
internal functions such as the voltage and current sources, amplifiers, analogue
to digital converters and test lead multiplexers. If any of these function
measurements fall outside tight performance limits, a message will be
displayed and the instrument will switch off automatically.
If the problem was caused by a
temporary condition on the test clips,
such as applying power to the test clips,
then simply re-starting the Atlas DCA
may clear the problem.
Self test failed
CODE: 5
If a persistent problem does arise, it is likely that damage has been caused by
an external event such as excessive power being applied to the test clips or a
large static discharge taking place. If the problem persists, please contact us for
further advice, quoting the displayed fault code.
If there is a low battery condition, the automatic self test procedure
will not be performed. For this reason, it is highly recommended that
the battery is replaced as soon as possible following a “Low Battery”
warning.
Page 23
Atlas DCA User Guide
October 2007 – Rev 7
Appendix A - Technical Specifications
All values are at 25°C unless otherwise specified.
Parameter
Min
Typ
Max
Peak test current into S/C
-5.5mA
5.5mA
Peak test voltage across O/C
-5.1V
5.1V
Transistor gain range (HFE)
4
65000
Transistor gain accuracy
±3% ±5 HFE
Transistor VCEO test voltage
2.0V
3.0V
Transistor VBE accuracy
-2%-20mV
+2%+20mV
VBE for Darlington
0.95V
1.00V
1.80V
VBE for Darlington (shunted)
0.75V
0.80V
1.80V
Acceptable transistor VBE
1.80V
Base-emitter shunt threshold
60kΩ
70kΩ
50kΩ
BJT collector test current
2.45mA
2.50mA
2.55mA
BJT acceptable leakage
0.7mA
MOSFET gate threshold range
0.1V
5.0V
MOSFET threshold accuracy
-2%-20mV
+2%+20mV
MOSFET drain test current
2.45mA
2.50mA
2.55mA
MOSFET gate resistance
8kΩ
Depletion drain test current
0.5mA
5.5mA
JFET drain-source test current
0.5mA
5.5mA
SCR/Triac gate test current
4.5mA
SCR/Triac load test current
5.0mA
Diode test current
5.0mA
Diode voltage accuracy
-2%-20mV
+2%+20mV
VF for LED identification
1.50V
4.00V
Short circuit threshold
10Ω
Battery type
MN21 / L1028 / GP23A 12V Alkaline
Battery voltage range
7.50V
12V
Battery warning threshold
8.25V
Dimensions (body)
103 x 70 x 20 mm
1.
2.
3.
4.
5.
6.
7.
8.
Note
1
1
2
2,8
2
8
3
4
6
5
5
7
Between any pair of test clips.
Collector current of 2.50mA. Gain accuracy valid for gains less than 2000.
Resistance across reverse biased base-emitter > 60kΩ.
Resistance across reverse biased base-emitter < 60kΩ.
Drain-source current of 2.50mA.
Collector-emitter voltage of 5.0V.
Thyristor quadrant I, Triac quadrants I and III.
BJT with no shunt resistors.
Please note, specifications subject to change.
Page 24
Atlas DCA User Guide
October 2007 – Rev 7
Appendix B – Warranty Information
Peak Satisfaction Guarantee
If for any reason you are not completely satisfied with the Peak Atlas DCA
within 14 days of purchase you may return the unit to your distributor. You
will receive a refund covering the full purchase price if the unit is returned in
perfect condition.
Peak Warranty
The warranty is valid for 12 months from date of purchase. This warranty
covers the cost of repair or replacement due to defects in materials and/or
manufacturing faults.
The warranty does not cover malfunction or defects caused by:
a) Operation outside the scope of the user guide.
b) Unauthorised access or modification of the unit (except for battery
replacement).
c) Accidental physical damage or abuse.
The customer’s statutory rights are not affected by any of the above.
All claims must be accompanied by a proof of purchase.
Page 25
Atlas DCA User Guide
October 2007 – Rev 7
Appendix C – Disposal Information
WEEE (Waste of Electrical and Electronic Equipment),
Recycling of Electrical and Electronic Products
United Kingdom
In 2006 the European Union introduced regulations (WEEE) for the collection
and recycling of all waste electrical and electronic equipment. It is no longer
permissible to simply throw away electrical and electronic equipment. Instead,
these products must enter the recycling process.
Each individual EU member state has implemented the WEEE regulations into
national law in slightly different ways. Please follow your national law when
you want to dispose of any electrical or electronic products.
More details can be obtained from your national WEEE recycling agency.
If in doubt, you may send your Peak Product to us for safe and environmentally
responsible disposal.
At Peak Electronic Design Ltd we are committed to continual product development and improvement.
The specifications of our products are therefore subject to change without notice.
© 2000-2007 Peak Electronic Design Limited - E&OE
West Road House, West Road, Buxton, Derbyshire, SK17 6HF, UK.
www.peakelec.co.uk Tel. +44 (0) 1298 70012 Fax. +44 (0) 1298 70046
Page 26