Technical Data Sheet

STM32F415xx
STM32F417xx
ARM Cortex-M4 32b MCU+FPU, 210DMIPS, up to 1MB Flash/192+4KB RAM,
crypto, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera
Datasheet - production data
Features
&"'!
®
®
• Core: ARM 32-bit Cortex -M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait state execution
from Flash memory, frequency up to 168 MHz,
memory protection unit, 210 DMIPS/
1.25 DMIPS/MHz (Dhrystone 2.1), and DSP
instructions
• Memories
– Up to 1 Mbyte of Flash memory
– Up to 192+4 Kbytes of SRAM including 64Kbyte of CCM (core coupled memory) data
RAM
– Flexible static memory controller
supporting Compact Flash, SRAM,
PSRAM, NOR and NAND memories
• LCD parallel interface, 8080/6800 modes
• Clock, reset and supply management
– 1.8 V to 3.6 V application supply and I/Os
– POR, PDR, PVD and BOR
– 4-to-26 MHz crystal oscillator
– Internal 16 MHz factory-trimmed RC (1%
accuracy)
– 32 kHz oscillator for RTC with calibration
– Internal 32 kHz RC with calibration
•
Low-power operation
– Sleep, Stop and Standby modes
– VBAT supply for RTC, 20×32 bit backup
registers + optional 4 KB backup SRAM
• 3×12-bit, 2.4 MSPS A/D converters: up to 24
channels and 7.2 MSPS in triple interleaved
mode
• 2×12-bit D/A converters
• General-purpose DMA: 16-stream DMA
controller with FIFOs and burst support
• Up to 17 timers: up to twelve 16-bit and two 32bit timers up to 168 MHz, each with up to 4
IC/OC/PWM or pulse counter and quadrature
(incremental) encoder input
• Debug mode
– Serial wire debug (SWD) & JTAG
interfaces
– Cortex-M4 Embedded Trace Macrocell™
March 2015
This is information on a product in full production.
LQFP64 (10 × 10 mm)
LQFP100 (14 × 14 mm)
LQFP144 (20 × 20 mm)
LQFP176 (24 × 24 mm)
WLCSP90
UFBGA176
(10 × 10 mm)
• Up to 140 I/O ports with interrupt capability
– Up to 136 fast I/Os up to 84 MHz
– Up to 138 5 V-tolerant I/Os
• Up to 15 communication interfaces
– Up to 3 × I2C interfaces (SMBus/PMBus)
– Up to 4 USARTs/2 UARTs (10.5 Mbit/s, ISO
7816 interface, LIN, IrDA, modem control)
– Up to 3 SPIs (42 Mbits/s), 2 with muxed
full-duplex I2S to achieve audio class
accuracy via internal audio PLL or external
clock
– 2 × CAN interfaces (2.0B Active)
– SDIO interface
• Advanced connectivity
– USB 2.0 full-speed device/host/OTG
controller with on-chip PHY
– USB 2.0 high-speed/full-speed
device/host/OTG controller with dedicated
DMA, on-chip full-speed PHY and ULPI
– 10/100 Ethernet MAC with dedicated DMA:
supports IEEE 1588v2 hardware, MII/RMII
• 8- to 14-bit parallel camera interface up to
54 Mbytes/s
• Cryptographic acceleration: hardware
acceleration for AES 128, 192, 256, Triple
DES, HASH (MD5, SHA-1), and HMAC
• True random number generator
• CRC calculation unit
• 96-bit unique ID
• RTC: subsecond accuracy, hardware calendar
Table 1. Device summary
Reference
Part number
STM32F415xx
STM32F415RG, STM32F415VG, STM32F415ZG,
STM32F415OG
STM32F417xx
STM32F417VG, STM32F417IG, STM32F417ZG,
STM32F417VE, STM32F417ZE, STM32F417IE
DocID022063 Rev 5
1/201
www.st.com
1
Contents
STM32F415xx, STM32F417xx
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2/201
2.1
Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1
ARM® Cortex®-M4 core with FPU and embedded Flash and SRAM . . 20
2.2.2
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . 20
2.2.3
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.4
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.5
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 21
2.2.6
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.7
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.8
DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.9
Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.10
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 23
2.2.11
External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.12
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.13
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.14
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.15
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.16
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.17
Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 30
2.2.18
Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . 30
2.2.19
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.20
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.21
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.22
Inter-integrated circuit interface (I²C) . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.23
Universal synchronous/asynchronous receiver transmitters (USART) . 34
2.2.24
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.25
Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.26
Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.27
Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . 36
2.2.28
Ethernet MAC interface with dedicated DMA and IEEE 1588 support . 36
2.2.29
Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Contents
2.2.30
Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . 37
2.2.31
Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . 37
2.2.32
Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.33
Cryptographic acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.34
Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.35
General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.36
Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.37
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.38
Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.39
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.40
Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.2
VCAP_1/VCAP_2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.3
Operating conditions at power-up / power-down (regulator ON) . . . . . . 82
5.3.4
Operating conditions at power-up / power-down (regulator OFF) . . . . . 82
5.3.5
Embedded reset and power control block characteristics . . . . . . . . . . . 83
5.3.6
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.7
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.8
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.9
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.10
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
DocID022063 Rev 5
3/201
Contents
6
7
STM32F415xx, STM32F417xx
5.3.11
PLL spread spectrum clock generation (SSCG) characteristics . . . . . 107
5.3.12
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.13
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3.14
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 113
5.3.15
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.16
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3.17
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.18
TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3.19
Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.3.20
CAN (controller area network) interface . . . . . . . . . . . . . . . . . . . . . . . 134
5.3.21
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.3.22
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.3.23
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.3.24
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.3.25
DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.3.26
FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.3.27
Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 162
5.3.28
SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 163
5.3.29
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.1
WLCSP90 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.2
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.3
LQPF100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.4
LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.5
UFBGA176+25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.6
LQFP176 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.7
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Appendix A Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
4/201
A.1
USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 186
A.2
USB OTG high speed (HS) interface solutions . . . . . . . . . . . . . . . . . . . . 188
A.3
Ethernet interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
DocID022063 Rev 5
STM32F415xx, STM32F417xx
8
Contents
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
DocID022063 Rev 5
5/201
List of tables
STM32F415xx, STM32F417xx
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
6/201
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
STM32F415xx and STM32F417xx: features and peripheral counts. . . . . . . . . . . . . . . . . . 14
Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 30
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
STM32F41xxx pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
STM32F41x register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 81
VCAP_1/VCAP_2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 82
Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 82
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 83
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled) or RAM . . . . . . . . . . . . . . . . . . . 85
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 89
Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 90
Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 90
Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 91
Typical current consumption in Run mode, code with data processing
running from Flash memory, regulator ON (ART accelerator enabled
except prefetch), VDD = 1.8 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
List of tables
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Characteristics of TIMx connected to the APB1 domain . . . . . . . . . . . . . . . . . . . . . . . . . 121
Characteristics of TIMx connected to the APB2 domain . . . . . . . . . . . . . . . . . . . . . . . . . 122
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
ULPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Ethernet DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Dynamic characteristics: Eternity MAC signals for SMI . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Dynamic characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . . 133
Dynamic characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . . 134
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
ADC accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 144
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 145
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 152
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Switching characteristics for PC Card/CF read and write cycles
in attribute/common space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Switching characteristics for PC Card/CF read and write cycles
in I/O space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 162
DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Dynamic characteristics: SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
WLCSP90 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
DocID022063 Rev 5
7/201
List of tables
STM32F415xx, STM32F417xx
Table 93.
LQPF100 – 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 94.
LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Table 95.
UFBGA176+25 - 201-ball, 10 × 10 × 0.65 mm pitch, ultra thin fine pitch
ball grid array mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Table 96.
UFBGA176+2 recommended PCB design rules (0.65 mm pitch BGA) . . . . . . . . . . . . . . 178
Table 97.
LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Table 98.
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Table 99.
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Table 100. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
8/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Compatible board design between STM32F10xx/STM32F41xxx for LQFP64 . . . . . . . . . . 16
Compatible board design STM32F10xx/STM32F2/STM32F41xxx
for LQFP100 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Compatible board design between STM32F10xx/STM32F2/STM32F41xxx
for LQFP144 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Compatible board design between STM32F2 and STM32F41xxx
for LQFP176 and BGA176 packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
STM32F41xxx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 25
PDR_ON and NRST control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Startup in regulator OFF mode: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . 29
Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . 29
STM32F41xxx LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
STM32F41xxx LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
STM32F41xxx LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
STM32F41xxx LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
STM32F41xxx UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
STM32F41xxx WLCSP90 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
STM32F41xxx memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator ON) or RAM, and peripherals OFF . . . . 87
Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator ON) or RAM, and peripherals ON . . . . . 87
Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF . . . 88
Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON . . . . 88
Typical VBAT current consumption (LSE and RTC ON/backup RAM OFF) . . . . . . . . . . . . 91
Typical VBAT current consumption (LSE and RTC ON/backup RAM ON) . . . . . . . . . . . . . 92
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
DocID022063 Rev 5
9/201
List of figures
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
10/201
STM32F415xx, STM32F417xx
SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
I2S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
I2S master timing diagram (Philips protocol)(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 130
ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 138
Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 138
12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 143
Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 145
Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 146
Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 147
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 151
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
PC Card/CompactFlash controller waveforms for common memory read access . . . . . . 154
PC Card/CompactFlash controller waveforms for common memory write access . . . . . . 155
PC Card/CompactFlash controller waveforms for attribute memory read
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
PC Card/CompactFlash controller waveforms for attribute memory write
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 157
PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . 158
NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 161
NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 161
DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch wafer level chip scale
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
WLCSP90 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 168
LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
LPQF64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 171
LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline . . . . . . . . . . . . . . 174
LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Figure 86.
Figure 87.
Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.
Figure 95.
Figure 96.
Figure 97.
Figure 98.
Figure 99.
List of figures
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
LQFP144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch
ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch
ball grid array recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
UFBGA176+25 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline . . . . . . . . . . . . . . 180
LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended footprint. . . . . . . . . 182
LQFP176 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
USB controller configured as peripheral-only and used
in Full speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 186
USB controller configured in dual mode and used in full speed mode . . . . . . . . . . . . . . . 187
USB controller configured as peripheral, host, or dual-mode
and used in high speed mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
MII mode using a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
RMII with a 50 MHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
RMII with a 25 MHz crystal and PHY with PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
DocID022063 Rev 5
11/201
Introduction
1
STM32F415xx, STM32F417xx
Introduction
This datasheet provides the description of the STM32F415xx and STM32F417xx lines of
microcontrollers. For more details on the whole STMicroelectronics STM32™ family, please
refer to Section 2.1: Full compatibility throughout the family.
The STM32F415xx and STM32F417xx datasheet should be read in conjunction with the
STM32F4xx reference manual which is available from the STMicroelectronics website
www.st.com.
For information on the Cortex®-M4 core, please refer to the Cortex®-M4 programming
manual (PM0214) available from www.st.com.
12/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
2
Description
Description
The STM32F415xx and STM32F417xx family is based on the high-performance ARM®
Cortex®-M4 32-bit RISC core operating at a frequency of up to 168 MHz. The Cortex-M4
core features a Floating point unit (FPU) single precision which supports all ARM singleprecision data-processing instructions and data types. It also implements a full set of DSP
instructions and a memory protection unit (MPU) which enhances application security.
The STM32F415xx and STM32F417xx family incorporates high-speed embedded
memories (Flash memory up to 1 Mbyte, up to 192 Kbytes of SRAM), up to 4 Kbytes of
backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two
APB buses, three AHB buses and a 32-bit multi-AHB bus matrix.
All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose
16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers.
a true random number generator (RNG), and a cryptographic acceleration cell. They also
feature standard and advanced communication interfaces.
•
Up to three I2Cs
•
Three SPIs, two I2Ss full duplex. To achieve audio class accuracy, the I2S peripherals
can be clocked via a dedicated internal audio PLL or via an external clock to allow
synchronization.
•
Four USARTs plus two UARTs
•
An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the
ULPI),
•
Two CANs
•
An SDIO/MMC interface
•
Ethernet and the camera interface available on STM32F417xx devices only.
New advanced peripherals include an SDIO, an enhanced flexible static memory control
(FSMC) interface (for devices offered in packages of 100 pins and more), a camera
interface for CMOS sensors and a cryptographic acceleration cell. Refer to Table 2:
STM32F415xx and STM32F417xx: features and peripheral counts for the list of peripherals
available on each part number.
The STM32F415xx and STM32F417xx family operates in the –40 to +105 °C temperature
range from a 1.8 to 3.6 V power supply. The supply voltage can drop to 1.7 V when the
device operates in the 0 to 70 °C temperature range using an external power supply
supervisor: refer to Section : Internal reset OFF. A comprehensive set of power-saving
mode allows the design of low-power applications.
The STM32F415xx and STM32F417xx family offers devices in various packages ranging
from 64 pins to 176 pins. The set of included peripherals changes with the device chosen.
These features make the STM32F415xx and STM32F417xx microcontroller family suitable
for a wide range of applications:
•
Motor drive and application control
•
Medical equipment
•
Industrial applications: PLC, inverters, circuit breakers
•
Printers, and scanners
•
Alarm systems, video intercom, and HVAC
•
Home audio appliances
DocID022063 Rev 5
13/201
Table 2. STM32F415xx and STM32F417xx: features and peripheral counts
Peripherals
STM32F415RG
Flash memory in Kbytes
SRAM in
Kbytes
512
Backup
4
1024
STM32F417Zx
512
1024
Yes(1)
No
No
Yes
DocID022063 Rev 5
Generalpurpose
10
Advancedcontrol
2
Basic
2
IWDG
Yes
WWDG
Yes
RTC
Yes
STM32F417Ix
512
1024
Yes
2S
3/2 (full duplex)(2)
SPI / I
I2C
3
USART/UART
4/2
USB OTG FS
Yes
USB OTG HS
Yes
2
SDIO
Yes
No
Yes
14/201
Yes
Description
CAN
Camera interface
STM32F417Vx
1024
Random number generator
Cryptography
STM32F415ZG
192(112+16+64)
Ethernet
Communicatio
n interfaces
STM32F415VG
System
FSMC memory controller
Timers
STM32F415OG
STM32F415xx, STM32F417xx
Figure 5 shows the general block diagram of the device family.
Peripherals
GPIOs
12-bit ADC
Number of channels
STM32F415RG
STM32F415OG
STM32F415VG
STM32F415ZG
STM32F417Vx
STM32F417Zx
STM32F417Ix
51
72
82
114
82
114
140
16
24
24
LQFP144
UFBGA176
LQFP176
3
16
13
16
12-bit DAC
Number of channels
Yes
2
Maximum CPU frequency
168 MHz
1.8 to 3.6 V(3)
Operating voltage
Ambient temperatures: –40 to +85 °C /–40 to +105 °C
Operating temperatures
DocID022063 Rev 5
Package
24
Description
15/201
Table 2. STM32F415xx and STM32F417xx: features and peripheral counts
Junction temperature: –40 to + 125 °C
LQFP64
WLCSP90
LQFP100
LQFP144
LQFP100
1. For the LQFP100 and WLCSP90 packages, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip
Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this
package.
2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.
3. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to
Section : Internal reset OFF).
STM32F415xx, STM32F417xx
Description
2.1
STM32F415xx, STM32F417xx
Full compatibility throughout the family
The STM32F415xx and STM32F417xx are part of the STM32F4 family. They are fully pinto-pin, software and feature compatible with the STM32F2xx devices, allowing the user to
try different memory densities, peripherals, and performances (FPU, higher frequency) for a
greater degree of freedom during the development cycle.
The STM32F415xx and STM32F417xx devices maintain a close compatibility with the
whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The
STM32F415xx and STM32F417xx, however, are not drop-in replacements for the
STM32F10xxx devices: the two families do not have the same power scheme, and so their
power pins are different. Nonetheless, transition from the STM32F10xxx to the
STM32F41xxx family remains simple as only a few pins are impacted.
Figure 4, Figure 3, Figure 2, and Figure 1 give compatible board designs between the
STM32F41xxx, STM32F2, and STM32F10xxx families.
Figure 1. Compatible board design between STM32F10xx/STM32F41xxx for LQFP64
633
633
633
633
16/201
DocID022063 Rev 5
:RESISTORORSOLDERINGBRIDGE
PRESENTFORTHE34-&XX
CONFIGURATIONNOTPRESENTINTHE
34-&XXCONFIGURATION
AI
STM32F415xx, STM32F417xx
Description
Figure 2. Compatible board design STM32F10xx/STM32F2/STM32F41xxx
for LQFP100 package
633
633
633
633
:RESISTORORSOLDERINGBRIDGE
ª PRESENTFORTHE34-&XXX
CONFIGURATIONNOTPRESENTINTHE
34-&XXCONFIGURATION
633
6$$ 6
33
6 33FOR34-&XX
6 $$FOR34-&XX
4WO :RESISTORSCONNECTEDTO
6$$ 633
6 33FORTHE34-&XX
6 33FORTHE34-&XX
6 336 $$OR.#FORTHE34-&XX
AIC
Figure 3. Compatible board design between STM32F10xx/STM32F2/STM32F41xxx
for LQFP144 package
966
ŸUHVLVWRURUVROGHULQJEULGJH
SUHVHQWIRUWKH670)[[
FRQILJXUDWLRQQRWSUHVHQWLQWKH
670)[[FRQILJXUDWLRQ
966
966
6LJQDOIURP
H[WHUQDOSRZHU
VXSSO\
VXSHUYLVRU
1RWSRSXODWHGZKHQŸ
UHVLVWRURUVROGHULQJ
EULGJHSUHVHQW
3'5B21
966
9'' 966
1RWSRSXODWHGIRU670)[[
7ZRŸUHVLVWRUVFRQQHFWHGWR
966IRU670)[[
966IRUWKH670)[[
9''
966
9''IRU670)[[
9669''RU1&IRUWKH670)[[
9''RUVLJQDOIURPH[WHUQDOSRZHUVXSSO\VXSHUYLVRUIRUWKH670)[[
DLG
DocID022063 Rev 5
17/201
Description
STM32F415xx, STM32F417xx
Figure 4. Compatible board design between STM32F2 and STM32F41xxx
for LQFP176 and BGA176 packages
6LJQDOIURPH[WHUQDO
SRZHUVXSSO\
VXSHUYLVRU
3'5B21
9'' 966
7ZRŸUHVLVWRUVFRQQHFWHGWR
9669''RU1&IRUWKH670)[[
9''RUVLJQDOIURPH[WHUQDOSRZHUVXSSO\VXSHUYLVRUIRUWKH670)[[
069
18/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
2.2
Description
Device overview
Figure 5. STM32F41xxx block diagram
&&0GDWD5$0.%
1-7567-7',
-7&.6:&/.
-7'26:'-7'2
-7$*6:
(70
$+%
038
19,&
([WHUQDOPHPRU\
FRQWUROOHU)60&
65$0365$0125)ODVK
3&&DUG$7$1$1')ODVK
&/.1(>@$>@
'>@2(1:(1
1%/>@1/15(*
1:$,7,25'<&'
1,25',2:5,17>@
75$&(&/.
'%86
7'(6$(6
,%86
8/3,&.'>@',56731;7
'0$
),)2
86%
27*+6
'0$
),)2
,'9%8662)
'0$
6WUHDPV
),)2
'0$
6WUHDPV
),)2
51*
0%
65$0.%
+6<1&96<1&
&DPHUD
LQWHUIDFH
38,;&/.'>@
65$0.%
$+%0+]
$+%0+]
3+<
'3'0
3+<
0',2DV$)
,1711,,6DV$)
+$6+
)ODVK
XSWR
),)2
(WKHUQHW0$&
0,,RU50,,DV$)
$+%EXVPDWUL[60
6%86
),)2
$50&RUWH[0
0+]
)38
$57$&&(/
&$&+(
75$&('>@
86%
27*)6
'3
'0
,'9%8662)
3RZHUPDQDJPW
9''
9ROWDJH
UHJXODWRU
WR9
9'' WR9
966
9&$39&3$
#9''
#9''$
3$>@
5& +6
*3,23257$
5& / 6
3%>@
*3,23257%
3&>@
*3,23257&
3'>@
*3,23257'
325
UHVHW
,QW
6XSSO\
VXSHUYLVLRQ
3253'5
%25
3 / /
#9''
#9''$
;7$/26&
0+]
5HVHW
*3,23257(
*3,23257)
3:5
LQWHUIDFH
3,>@
/6
*3,23257,
FRPSOFKDQQHOV7,0B&+>@1
FKDQQHOV7,0B&+>@(75
%.,1DV$)
6',200&
7,03:0
7,03:0
FKDQQHOVDV$)
E
E
FKDQQHODV$)
7,0
E
FKDQQHODV$)
7,0
E
VPFDUG
LU'$
86$57
5;7;&.
&76576DV$)
VPFDUG
LU'$
86$57
026,0,62
6&.166DV$)
$+%$3%
E
7,0
5;7;&.
&76576DV$)
$+%$3%
::'*
63,
#9''$
9''5()B$'&
7HPSHUDWXUHVHQVRU
DQDORJLQSXWVFRPPRQ
WRWKH$'&V
$'&
DQDORJLQSXWVFRPPRQ
WRWKH$'&
$'&
DQDORJLQSXWVIRU$'&
7,0
E
7,0
E
$ 3 % 0 +]
$3%0+]PD[
FRPSOFKDQQHOV7,0B&+>@1
FKDQQHOV7,0B&+>@(75
%.,1DV$)
'0$
'0$
$3%0+]
'>@
&0'&.DV$)
(;7,7:.83
),)2
$)
#9''$
'$&
,7)
'$&
,)
57&
.%%.365$0
7,0
E
FKDQQHOV(75DV$)
7,0
E
FKDQQHOV(75DV$)
7,0
E
FKDQQHOV(75DV$)
7,0
E
FKDQQHOV
7,0
E
FKDQQHOVDV$)
7,0
E
FKDQQHODV$)
7,0
E
FKDQQHODV$)
86$57
VPFDUG
LU'$
5;7;DV$)
&76576DV$)
86$57
VPFDUG
LU'$
5;7;DV$)
&76576DV$)
8$57
5;7;DV$)
8$57
5;7;DV$)
026,6'0,626'BH[W6&.&.
166:60&.DV$)
63,6
026,6'0,626'BH[W6&.&.
166:60&.DV$)
63,6
,&60%86
6&/6'$60%$DV$)
,&60%86
6&/6'$60%$DV$)
,&60%86
6&/6'$60%$DV$)
E[&$1
DV$)
26&B287
57&B$)
57&B$)
$:8
%DFNXSUHJLVWHU
E[&$1
$'&
'$&B287
26&B,1
;7$/N+]
/6
*3,23257+
26&B287
9%$7 WR9
#9%$7
),)2
3+>@
)&/.
*3,23257*
3&/.[
3)>@
3*>@
26&B,1
,:'*
FORFN$ * 7
0 $1
FRQWURO
+&/.[
3(>@
9''$966$
1567
39'
7;5;
7;5;
'$&B287
DV$)
DLG
1. The timers connected to APB2 are clocked from TIMxCLK up to 168 MHz, while the timers connected to APB1 are clocked
from TIMxCLK either up to 84 MHz or 168 MHz, depending on TIMPRE bit configuration in the RCC_DCKCFGR register.
2. The camera interface and ethernet are available only on STM32F417xx devices.
DocID022063 Rev 5
19/201
Description
2.2.1
STM32F415xx, STM32F417xx
ARM® Cortex®-M4 core with FPU and embedded Flash and SRAM
The ARM Cortex-M4 processor with FPU is the latest generation of ARM processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The ARM Cortex-M4 32-bit RISC processor with FPU features exceptional code-efficiency,
delivering the high-performance expected from an ARM core in the memory size usually
associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
Its single precision FPU (floating point unit) speeds up software development by using
metalanguage development tools, while avoiding saturation.
The STM32F415xx and STM32F417xx family is compatible with all ARM tools and software.
Figure 5 shows the general block diagram of the STM32F41xxx family.
Note:
Cortex-M4 with FPU is binary compatible with Cortex-M3.
2.2.2
Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard ARM® Cortex®-M4 with FPU processors. It balances the inherent performance
advantage of the ARM Cortex-M4 with FPU over Flash memory technologies, which
normally requires the processor to wait for the Flash memory at higher frequencies.
To release the processor full 210 DMIPS performance at this frequency, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 168 MHz.
2.2.3
Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
2.2.4
Embedded Flash memory
The STM32F41xxx devices embed a Flash memory of 512 Kbytes or 1 Mbytes available for
storing programs and data.
20/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
2.2.5
Description
CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a software
signature during runtime, to be compared with a reference signature generated at link-time
and stored at a given memory location.
2.2.6
Embedded SRAM
All STM32F41xxx products embed:
•
Up to 192 Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory)
data RAM
RAM memory is accessed (read/write) at CPU clock speed with 0 wait states.
•
4 Kbytes of backup SRAM
This area is accessible only from the CPU. Its content is protected against possible
unwanted write accesses, and is retained in Standby or VBAT mode.
2.2.7
Multi-AHB bus matrix
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB
HS) and the slaves (Flash memory, RAM, FSMC, AHB and APB peripherals) and ensures a
seamless and efficient operation even when several high-speed peripherals work
simultaneously.
DocID022063 Rev 5
21/201
Description
STM32F415xx, STM32F417xx
Figure 6. Multi-AHB matrix
)#/$%
$#/$%
!##%,
53"?(3?-
-!#
53"/4'
%THERNET
(3
%4(%2.%4?-
$-!?0
'0
$-!
$-!?-%-
$-!?-%-
'0
$-!
$-!?0)
3BUS
)BUS
$BUS
!2#ORTEX-
+BYTE
##-DATA2!-
&LASH
MEMORY
32!-
+BYTE
32!-
+BYTE
!("
PERIPHERALS
!("
PERIPHERALS
&3-#
3TATIC-EM#TL
!0"
!0"
"USMATRIX3
AID
2.2.8
DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,
support burst transfer and are designed to provide the maximum peripheral bandwidth
(AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. Configuration is made by software and transfer sizes between
source and destination are independent.
22/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Description
The DMA can be used with the main peripherals:
2.2.9
•
SPI and I2S
•
I2C
•
USART
•
General-purpose, basic and advanced-control timers TIMx
•
DAC
•
SDIO
•
Cryptographic acceleration
•
Camera interface (DCMI)
•
ADC.
Flexible static memory controller (FSMC)
The FSMC is embedded in the STM32F415xx and STM32F417xx family. It has four Chip
Select outputs supporting the following modes: PCCard/Compact Flash, SRAM, PSRAM,
NOR Flash and NAND Flash.
Functionality overview:
•
Write FIFO
•
Maximum FSMC_CLK frequency for synchronous accesses is 60 MHz.
LCD parallel interface
The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high
performance solutions using external controllers with dedicated acceleration.
2.2.10
Nested vectored interrupt controller (NVIC)
The STM32F415xx and STM32F417xx embed a nested vectored interrupt controller able to
manage 16 priority levels, and handle up to 82 maskable interrupt channels plus the 16
interrupt lines of the Cortex®-M4 with FPU core.
•
Closely coupled NVIC gives low-latency interrupt processing
•
Interrupt entry vector table address passed directly to the core
•
Allows early processing of interrupts
•
Processing of late arriving, higher-priority interrupts
•
Support tail chaining
•
Processor state automatically saved
•
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
2.2.11
External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 23 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
DocID022063 Rev 5
23/201
Description
STM32F415xx, STM32F417xx
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected
to the 16 external interrupt lines.
2.2.12
Clocks and startup
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full
temperature range. The application can then select as system clock either the RC oscillator
or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is
detected, the system automatically switches back to the internal RC oscillator and a
software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing
to increase the frequency up to 168 MHz. Similarly, full interrupt management of the PLL
clock entry is available when necessary (for example if an indirectly used external oscillator
fails).
Several prescalers allow the configuration of the three AHB buses, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB
buses is 168 MHz while the maximum frequency of the high-speed APB domains is
84 MHz. The maximum allowed frequency of the low-speed APB domain is 42 MHz.
The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class
performance. In this case, the I2S master clock can generate all standard sampling
frequencies from 8 kHz to 192 kHz.
2.2.13
Boot modes
At startup, boot pins are used to select one out of three boot options:
•
Boot from user Flash
•
Boot from system memory
•
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB13), USB
OTG FS in Device mode (PA11/PA12) through DFU (device firmware upgrade).
2.2.14
Power supply schemes
•
VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when
enabled), provided externally through VDD pins.
•
VSSA, VDDA = 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset
blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
•
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
Refer to Figure 21: Power supply scheme for more details.
Note:
VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced
temperature range, and with the use of an external power supply supervisor (refer to
Section : Internal reset OFF).
Refer to Table 2 in order to identify the packages supporting this option.
24/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
2.2.15
Description
Power supply supervisor
Internal reset ON
On packages embedding the PDR_ON pin, the power supply supervisor is enabled by
holding PDR_ON high. On all other packages, the power supply supervisor is always
enabled.
The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is
reached, the option byte loading process starts, either to confirm or modify default BOR
threshold levels, or to disable BOR permanently. Three BOR thresholds are available
through option bytes. The device remains in reset mode when VDD is below a specified
threshold, VPOR/PDR or VBOR, without the need for an external reset circuit.
The device also features an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
Internal reset OFF
This feature is available only on packages featuring the PDR_ON pin. The internal power-on
reset (POR) / power-down reset (PDR) circuitry is disabled with the PDR_ON pin.
An external power supply supervisor should monitor VDD and should maintain the device in
reset mode as long as VDD is below a specified threshold. PDR_ON should be connected to
this external power supply supervisor. Refer to Figure 7: Power supply supervisor
interconnection with internal reset OFF.
Figure 7. Power supply supervisor interconnection with internal reset OFF
9''
([WHUQDO9''SRZHUVXSSO\VXSHUYLVRU
([WUHVHWFRQWUROOHUDFWLYHZKHQ
9''9
3'5B21
1567
$SSOLFDWLRQUHVHW
VLJQDORSWLRQDO
9''
069
1. PDR = 1.7 V for reduce temperature range; PDR = 1.8 V for all temperature range.
The VDD specified threshold, below which the device must be maintained under reset, is
1.8 V (see Figure 7). This supply voltage can drop to 1.7 V when the device operates in the
0 to 70 °C temperature range.
DocID022063 Rev 5
25/201
Description
STM32F415xx, STM32F417xx
A comprehensive set of power-saving mode allows to design low-power applications.
When the internal reset is OFF, the following integrated features are no more supported:
•
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
•
The brownout reset (BOR) circuitry is disabled
•
The embedded programmable voltage detector (PVD) is disabled
•
VBAT functionality is no more available and VBAT pin should be connected to VDD
All packages, except for the LQFP64 and LQFP100, allow to disable the internal reset
through the PDR_ON signal.
Figure 8. PDR_ON and NRST control with internal reset OFF
9 ''
3'5 9
WLPH
5HVHWE\RWKHUVRXUFHWKDQ
SRZHUVXSSO\VXSHUYLVRU
1567
3'5B21
3'5B21
WLPH
069
1. PDR = 1.7 V for reduce temperature range; PDR = 1.8 V for all temperature range.
2.2.16
Voltage regulator
The regulator has four operating modes:
•
•
26/201
Regulator ON
–
Main regulator mode (MR)
–
Low-power regulator (LPR)
–
Power-down
Regulator OFF
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Description
Regulator ON
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding
BYPASS_REG low. On all other packages, the regulator is always enabled.
There are three power modes configured by software when regulator is ON:
•
MR is used in the nominal regulation mode (With different voltage scaling in Run)
In Main regulator mode (MR mode), different voltage scaling are provided to reach the
best compromise between maximum frequency and dynamic power consumption.
Refer to Table 14: General operating conditions.
•
LPR is used in the Stop modes
The LP regulator mode is configured by software when entering Stop mode.
•
Power-down is used in Standby mode.
The Power-down mode is activated only when entering in Standby mode. The regulator
output is in high impedance and the kernel circuitry is powered down, inducing zero
consumption. The contents of the registers and SRAM are lost)
Two external ceramic capacitors should be connected on VCAP_1 & VCAP_2 pin. Refer to
Figure 21: Power supply scheme and Figure 16: VCAP_1/VCAP_2 operating conditions.
All packages have regulator ON feature.
Regulator OFF
This feature is available only on packages featuring the BYPASS_REG pin. The regulator is
disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply
externally a V12 voltage source through VCAP_1 and VCAP_2 pins.
Since the internal voltage scaling is not manage internally, the external voltage value must
be aligned with the targeted maximum frequency. Refer to Table 14: General operating
conditions.
The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling
capacitors.
Refer to Figure 21: Power supply scheme
When the regulator is OFF, there is no more internal monitoring on V12. An external power
supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin
should be used for this purpose, and act as power-on reset on V12 power domain.
In regulator OFF mode the following features are no more supported:
•
PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power
domain which is not reset by the NRST pin.
•
As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As
a consequence, PA0 and NRST pins must be managed separately if the debug
connection under reset or pre-reset is required.
The standby mode is not available
•
DocID022063 Rev 5
27/201
Description
STM32F415xx, STM32F417xx
Figure 9. Regulator OFF
9
([WHUQDO9&$3BSRZHU
ƉƉůŝĐĂƚŝŽŶƌĞƐĞƚ
VXSSO\VXSHUYLVRU
ƐŝŐŶĂů;ŽƉƚŝŽŶĂůͿ
([WUHVHWFRQWUROOHUDFWLYH
ZKHQ9&$3B0LQ9
9''
3$
9''
1567
%<3$66B5(*
9
9&$3B
9&$3B
Ăŝϭϴϰϵϴsϰ
The following conditions must be respected:
Note:
28/201
•
VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains.
•
If the time for VCAP_1 and VCAP_2 to reach V12 minimum value is faster than the time for
VDD to reach 1.8 V, then PA0 should be kept low to cover both conditions: until VCAP_1
and VCAP_2 reach V12 minimum value and until VDD reaches 1.8 V (see Figure 10).
•
Otherwise, if the time for VCAP_1 and VCAP_2 to reach V12 minimum value is slower
than the time for VDD to reach 1.8 V, then PA0 could be asserted low externally (see
Figure 11).
•
If VCAP_1 and VCAP_2 go below V12 minimum value and VDD is higher than 1.8 V, then
a reset must be asserted on PA0 pin.
The minimum value of V12 depends on the maximum frequency targeted in the application
(see Table 14: General operating conditions).
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Description
Figure 10. Startup in regulator OFF mode: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization
9''
3'5 9RU9
9
0LQ9
9&$3B9&$3B
WLPH
1567
WLPH
DLH
1. This figure is valid both whatever the internal reset mode (ON or OFF).
2. PDR = 1.7 V for reduced temperature range; PDR = 1.8 V for all temperature ranges.
Figure 11. Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization
9''
3'5 9RU9
9&$3B9&$3B
9
0LQ9
1567
WLPH
3$DVVHUWHGH[WHUQDOO\
WLPH
DLG
1. This figure is valid both whatever the internal reset mode (ON or OFF).
2. PDR = 1.7 V for a reduced temperature range; PDR = 1.8 V for all temperature ranges.
DocID022063 Rev 5
29/201
Description
2.2.17
STM32F415xx, STM32F417xx
Regulator ON/OFF and internal reset ON/OFF availability
Table 3. Regulator ON/OFF and internal reset ON/OFF availability
Regulator ON
Regulator OFF
Yes
No
LQFP64
LQFP100
Internal reset ON
Internal reset
OFF
Yes
No
Yes
PDR_ON set to
VDD
Yes
PDR_ON
connected to an
external power
supply supervisor
LQFP144
WLCSP90
UFBGA176
LQFP176
2.2.18
Yes
Yes
BYPASS_REG set BYPASS_REG set
to VDD
to VSS
Real-time clock (RTC), backup SRAM and backup registers
The backup domain of the STM32F415xx and STM32F417xx includes:
•
The real-time clock (RTC)
•
4 Kbytes of backup SRAM
•
20 backup registers
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binarycoded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are
performed automatically. The RTC provides a programmable alarm and programmable
periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is
also available in binary format.
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz
output to compensate for any natural quartz deviation.
Two alarm registers are used to generate an alarm at a specific time and calendar fields can
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit
programmable binary auto-reload downcounter with programmable resolution is available
and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a
time base of 1 second from a clock at 32.768 kHz.
The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data
which need to be retained in VBAT and standby mode. This memory area is disabled by
default to minimize power consumption (see Section 2.2.19: Low-power modes). It can be
enabled by software.
The backup registers are 32-bit registers used to store 80 bytes of user application data
when VDD power is not present. Backup registers are not reset by a system, a power reset,
or when the device wakes up from the Standby mode (see Section 2.2.19: Low-power
modes).
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,
hours, day, and date.
30/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Description
Like backup SRAM, the RTC and backup registers are supplied through a switch that is
powered either from the VDD supply when present or from the VBAT pin.
2.2.19
Low-power modes
The STM32F415xx and STM32F417xx support three low-power modes to achieve the best
compromise between low-power consumption, short startup time and available wakeup
sources:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
•
Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of
SRAM and registers. All clocks in the V12 domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup /
tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup).
•
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire V12 domain is powered off. The PLL,
the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain and the backup SRAM when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,
a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event
occurs.
The standby mode is not supported when the embedded voltage regulator is bypassed
and the V12 domain is controlled by an external power.
2.2.20
VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
supercapacitor, or from VDD when no external battery and an external supercapacitor are
present.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC, the backup registers and the backup SRAM.
Note:
When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
When PDR_ON pin is not connected to VDD (internal reset OFF), the VBAT functionality is no
more available and VBAT pin should be connected to VDD.
DocID022063 Rev 5
31/201
Description
2.2.21
STM32F415xx, STM32F417xx
Timers and watchdogs
The STM32F415xx and STM32F417xx devices include two advanced-control timers, eight
general-purpose timers, two basic timers and two watchdog timers.
All timer counters can be frozen in debug mode.
Table 4 compares the features of the advanced-control, general-purpose and basic timers.
Table 4. Timer feature comparison
Timer
type
Counter Counter
Timer
resolution
type
Prescaler
factor
Max
Max
DMA
Capture/
Complementary interface timer
request
compare
output
clock
clock
generation channels
(MHz) (MHz)
Advanced TIM1,
-control
TIM8
16-bit
Up,
Any integer
Down,
between 1
Up/down and 65536
Yes
4
Yes
84
168
TIM2,
TIM5
32-bit
Up,
Any integer
Down,
between 1
Up/down and 65536
Yes
4
No
42
84
TIM3,
TIM4
16-bit
Up,
Any integer
Down,
between 1
Up/down and 65536
Yes
4
No
42
84
TIM9
16-bit
Up
Any integer
between 1
and 65536
No
2
No
84
168
TIM10
,
TIM11
16-bit
Up
Any integer
between 1
and 65536
No
1
No
84
168
TIM12
16-bit
Up
Any integer
between 1
and 65536
No
2
No
42
84
TIM13
,
TIM14
16-bit
Up
Any integer
between 1
and 65536
No
1
No
42
84
TIM6,
TIM7
16-bit
Up
Any integer
between 1
and 65536
Yes
0
No
42
84
General
purpose
Basic
Advanced-control timers (TIM1, TIM8)
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators
multiplexed on 6 channels. They have complementary PWM outputs with programmable
inserted dead times. They can also be considered as complete general-purpose timers.
Their 4 independent channels can be used for:
32/201
•
Input capture
•
Output compare
•
PWM generation (edge- or center-aligned modes)
•
One-pulse mode output
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Description
If configured as standard 16-bit timers, they have the same features as the general-purpose
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0100%).
The advanced-control timer can work together with the TIMx timers via the Timer Link
feature for synchronization or event chaining.
TIM1 and TIM8 support independent DMA request generation.
General-purpose timers (TIMx)
There are ten synchronizable general-purpose timers embedded in the STM32F41xxx
devices (see Table 4 for differences).
•
TIM2, TIM3, TIM4, TIM5
The STM32F41xxx include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3,
and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload
up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent
channels for input capture/output compare, PWM or one-pulse mode output. This gives
up to 16 input capture/output compare/PWMs on the largest packages.
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the
Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are
capable of handling quadrature (incremental) encoder signals and the digital outputs
from 1 to 4 hall-effect sensors.
•
TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9
and TIM12 have two independent channels for input capture/output compare, PWM or
one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5
full-featured general-purpose timers. They can also be used as simple time bases.
Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger and waveform generation. They can also be
used as a generic 16-bit time base.
TIM6 and TIM7 support independent DMA request generation.
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
DocID022063 Rev 5
33/201
Description
STM32F415xx, STM32F417xx
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
2.2.22
•
A 24-bit downcounter
•
Autoreload capability
•
Maskable system interrupt generation when the counter reaches 0
•
Programmable clock source.
Inter-integrated circuit interface (I²C)
Up to three I²C bus interfaces can operate in multimaster and slave modes. They can
support the Standard-mode (up to 100 kHz) and Fast-mode (up to 400 kHz). They support
the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware
CRC generation/verification is embedded.
They can be served by DMA and they support SMBus 2.0/PMBus.
2.2.23
Universal synchronous/asynchronous receiver transmitters (USART)
The STM32F415xx and STM32F417xx embed four universal synchronous/asynchronous
receiver transmitters (USART1, USART2, USART3 and USART6) and two universal
asynchronous receiver transmitters (UART4 and UART5).
These six interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to
communicate at speeds of up to 10.5 Mbit/s. The other available interfaces communicate at
up to 5.25 Mbit/s.
USART1, USART2, USART3 and USART6 also provide hardware management of the CTS
and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication
capability. All interfaces can be served by the DMA controller.
34/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Description
Table 5. USART feature comparison
Max. baud rate Max. baud rate
Smartcard
in Mbit/s
in Mbit/s
(ISO 7816) (oversampling (oversampling
by 16)
by 8)
USART
name
Standard
features
Modem
(RTS/
CTS)
USART1
X
X
X
X
X
X
5.25
10.5
APB2
(max.
84 MHz)
USART2
X
X
X
X
X
X
2.62
5.25
APB1
(max.
42 MHz)
USART3
X
X
X
X
X
X
2.62
5.25
APB1
(max.
42 MHz)
UART4
X
-
X
-
X
-
2.62
5.25
APB1
(max.
42 MHz)
UART5
X
-
X
-
X
-
2.62
5.25
APB1
(max.
42 MHz)
USART6
X
X
X
X
X
X
5.25
10.5
APB2
(max.
84 MHz)
2.2.24
SPI
LIN
master
irDA
APB
mapping
Serial peripheral interface (SPI)
The STM32F41xxx feature up to three SPIs in slave and master modes in full-duplex and
simplex communication modes. SPI1 can communicate at up to 42 Mbits/s, SPI2 and SPI3
can communicate at up to 21 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies
and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification
supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.
The SPI interface can be configured to operate in TI mode for communications in master
mode and slave mode.
2.2.25
Inter-integrated sound (I2S)
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can be
operated in master or slave mode, in full duplex and half-duplex communication modes, and
can be configured to operate with a 16-/32-bit resolution as an input or output channel.
Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of
the I2S interfaces is/are configured in master mode, the master clock can be output to the
external DAC/CODEC at 256 times the sampling frequency.
All I2Sx can be served by the DMA controller.
DocID022063 Rev 5
35/201
Description
2.2.26
STM32F415xx, STM32F417xx
Audio PLL (PLLI2S)
The devices feature an additional dedicated PLL for audio I2S application. It allows to
achieve error-free I2S sampling clock accuracy without compromising on the CPU
performance, while using USB peripherals.
The PLLI2S configuration can be modified to manage an I2S sample rate change without
disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.
The audio PLL can be programmed with very low error to obtain sampling rates ranging
from 8 KHz to 192 KHz.
In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S
flow with an external PLL (or Codec output).
2.2.27
Secure digital input/output interface (SDIO)
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.
The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory
Card Specification Version 2.0.
The SDIO Card Specification Version 2.0 is also supported with two different databus
modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack
of MMC4.1 or previous.
In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital
protocol Rev1.1.
2.2.28
Ethernet MAC interface with dedicated DMA and IEEE 1588 support
Peripheral available only on the STM32F417xx devices.
The STM32F417xx devices provide an IEEE-802.3-2002-compliant media access controller
(MAC) for ethernet LAN communications through an industry-standard mediumindependent interface (MII) or a reduced medium-independent interface (RMII). The
STM32F417xx requires an external physical interface device (PHY) to connect to the
physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F417xx MII
port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz
(MII) from the STM32F417xx.
36/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Description
The STM32F417xx includes the following features:
2.2.29
•
Supports 10 and 100 Mbit/s rates
•
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM
and the descriptors (see the STM32F40xxx/41xxx reference manual for details)
•
Tagged MAC frame support (VLAN support)
•
Half-duplex (CSMA/CD) and full-duplex operation
•
MAC control sublayer (control frames) support
•
32-bit CRC generation and removal
•
Several address filtering modes for physical and multicast address (multicast and
group addresses)
•
32-bit status code for each transmitted or received frame
•
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the
receive FIFO are both 2 Kbytes.
•
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008
(PTP V2) with the time stamp comparator connected to the TIM2 input
•
Triggers interrupt when system time becomes greater than target time
Controller area network (bxCAN)
The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1
Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one
CAN is used). 256 bytes of SRAM are allocated for each CAN.
2.2.30
Universal serial bus on-the-go full-speed (OTG_FS)
The STM32F415xx and STM32F417xx embed an USB OTG full-speed device/host/OTG
peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the
USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable
endpoint setting and supports suspend/resume. The USB OTG full-speed controller
requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE
oscillator. The major features are:
2.2.31
•
Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
•
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
•
4 bidirectional endpoints
•
8 host channels with periodic OUT support
•
HNP/SNP/IP inside (no need for any external resistor)
•
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
Universal serial bus on-the-go high-speed (OTG_HS)
The STM32F415xx and STM32F417xx devices embed a USB OTG high-speed (up to
480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and
high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and
features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using
the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.
DocID022063 Rev 5
37/201
Description
STM32F415xx, STM32F417xx
The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG
1.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock
that is generated by a PLL connected to the HSE oscillator.
The major features are:
2.2.32
•
Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing
•
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
•
6 bidirectional endpoints
•
12 host channels with periodic OUT support
•
Internal FS OTG PHY support
•
External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is
connected to the microcontroller ULPI port through 12 signals. It can be clocked using
the 60 MHz output.
•
Internal USB DMA
•
HNP/SNP/IP inside (no need for any external resistor)
•
for OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
Digital camera interface (DCMI)
The camera interface is not available in STM32F415xx devices.
STM32F417xx products embed a camera interface that can connect with camera modules
and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The
camera interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features:
2.2.33
•
Programmable polarity for the input pixel clock and synchronization signals
•
Parallel data communication can be 8-, 10-, 12- or 14-bit
•
Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2
progressive video, RGB 565 progressive video or compressed data (like JPEG)
•
Supports continuous mode or snapshot (a single frame) mode
•
Capability to automatically crop the image
Cryptographic acceleration
The STM32F415xx and STM32F417xx devices embed a cryptographic accelerator. This
cryptographic accelerator provides a set of hardware acceleration for the advanced
cryptographic algorithms usually needed to provide confidentiality, authentication, data
integrity and non repudiation when exchanging messages with a peer.
38/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Description
These algorithms consists of:
Encryption/Decryption
–
DES/TDES (data encryption standard/triple data encryption standard): ECB
(electronic codebook) and CBC (cipher block chaining) chaining algorithms, 64-,
128- or 192-bit key
–
AES (advanced encryption standard): ECB, CBC and CTR (counter mode)
chaining algorithms, 128, 192 or 256-bit key
Universal hash
–
SHA-1 (secure hash algorithm)
–
MD5
–
HMAC
The cryptographic accelerator supports DMA request generation.
2.2.34
Random number generator (RNG)
All STM32F415xx and STM32F417xx products embed an RNG that delivers 32-bit random
numbers generated by an integrated analog circuit.
2.2.35
General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
Fast I/O handling allowing maximum I/O toggling up to 84 MHz.
2.2.36
Analog-to-digital converters (ADCs)
Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16
external channels, performing conversions in the single-shot or scan mode. In scan mode,
automatic conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
•
Simultaneous sample and hold
•
Interleaved sample and hold
The ADC can be served by the DMA controller. An analog watchdog feature allows very
precise monitoring of the converted voltage of one, some or all selected channels. An
interrupt is generated when the converted voltage is outside the programmed thresholds.
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,
TIM2, TIM3, TIM4, TIM5, or TIM8 timer.
2.2.37
Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 1.8 V and 3.6 V. The temperature sensor is internally
DocID022063 Rev 5
39/201
Description
STM32F415xx, STM32F417xx
connected to the ADC1_IN16 input channel which is used to convert the sensor output
voltage into a digital value.
As the offset of the temperature sensor varies from chip to chip due to process variation, the
internal temperature sensor is mainly suitable for applications that detect temperature
changes instead of absolute temperatures. If an accurate temperature reading is needed,
then an external temperature sensor part should be used.
2.2.38
Digital-to-analog converter (DAC)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs.
This dual digital Interface supports the following features:
•
two DAC converters: one for each output channel
•
8-bit or 12-bit monotonic output
•
left or right data alignment in 12-bit mode
•
synchronized update capability
•
noise-wave generation
•
triangular-wave generation
•
dual DAC channel independent or simultaneous conversions
•
DMA capability for each channel
•
external triggers for conversion
•
input voltage reference VREF+
Eight DAC trigger inputs are used in the device. The DAC channels are triggered through
the timer update outputs that are also connected to different DMA streams.
2.2.39
Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
2.2.40
Embedded Trace Macrocell™
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F41xxx through a small number of ETM pins to an external hardware trace port
analyser (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or
any other high-speed channel. Real-time instruction and data flow activity can be recorded
and then formatted for display on the host computer that runs the debugger software. TPA
hardware is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
40/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Pinouts and pin description
6$$
633 0"
0"
"//4
0"
0"
0"
0"
0"
0$
0#
0#
0#
0! 0!
Figure 12. STM32F41xxx LQFP64 pinout
6"!4
0#
0#
0#
0(
0(
.234
0#
0#
0#
0#
633!
6$$!
0!?7+50
0!
0!
,1&0
6$$ 6#!0?
0! 0! 0! 0! 0! 0! 0#
0#
0#
0#
0"
0"
0"
0"
0!
633
6$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0"
0"
6#!0?
6$$
3
Pinouts and pin description
AIB
1. The above figure shows the package top view.
DocID022063 Rev 5
41/201
Pinouts and pin description
STM32F415xx, STM32F417xx
6$$
633
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0$
0$
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!
Figure 13. STM32F41xxx LQFP100 pinout
,1&0
6$$
633
6#!0?
0! 0! 0! 0! 0! 0! 0#
0#
0#
0#
0$
0$
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
0!
633
6$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0%
0%
0%
0%
0%
0%
0%
0%
0%
0"
0"
6#!0?
6$$
0%
0%
0%
0%
0%
6"!4
0#
0#
0#
633
6$$
0(
0(
.234
0#
0#
0#
0#
6$$
633!
62%&
6$$!
0!
0!
0!
AIC
1. The above figure shows the package top view.
42/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Pinouts and pin description
6$$
0$2?/.
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0'
6$$
633
0'
0'
0'
0'
0'
0'
0$
0$
6$$
633
0$
0$
0$
0$
0$
0$
0#
0#
0#
0! 0! Figure 14. STM32F41xxx LQFP144 pinout
,1&0
6$$
633
6#!0?
0! 0! 0! 0! 0! 0! 0#
0#
0#
0#
6$$
633
0'
0'
0'
0'
0'
0'
0'
0$
0$
6$$
633
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
6#!0?
6$$
0! 633
6$$
0! 0! 0! 0! 0#
0#
0"
0"
0"
0&
0&
633
6$$
0&
0&
0&
0'
0'
0%
0%
0%
633
6$$
0%
0%
0%
0%
0%
0%
0"
0"
0%
0%
0%
0%
0%
6"!4
0#
0#
0#
0&
0&
0&
0&
0&
0&
633
6$$
0&
0&
0&
0&
0&
0(
0(
.234
0#
0#
0#
0#
6$$
633!
62%&
6$$!
0! 0! 0! AIB
1. The above figure shows the package top view.
DocID022063 Rev 5
43/201
Pinouts and pin description
STM32F415xx, STM32F417xx
3,
3,
3,
3,
9''
3'5B21
3(
3(
3%
3%
%227
3%
3%
3%
3%
3%
3*
9''
966
3*
3*
3*
3*
3*
3*
3'
3'
9''
966
3'
3'
3'
3'
3'
3'
3&
3&
3&
3$
3$
9''
966
3,
3,
Figure 15. STM32F41xxx LQFP176 pinout
/4)3
9
9
3,
3,
3+
3+
3+
9''
966
9&$3B
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
9''
966
3*
3*
3*
3*
3*
3*
3*
3'
3'
9''
966
3'
3'
3'
3'
3'
3'
3%
3%
3%
3%
9''
966
3+
3+
3+
3$
%<3$66B5(*
9''
3$
3$
3$
3$
3&
3&
3%
3%
3%
3)
3)
966
9''
3)
3)
3)
3*
3*
3(
3(
3(
966
9''
3(
3(
3(
3(
3(
3(
3%
3%
9&$3B
9''
3+
3+
3+
3+
3+
3+
3(
3(
3(
3(
3(
9%$7
3,
3&
3&
3&
3,
3,
3,
966
9''
3)
3)
3)
3)
3)
3)
966
9''
3)
3)
3)
3)
3)
3+
3+
1567
3&
3&
3&
3&
9''
966$
95()
9''$
3$
3$
3$
3+
3+
1. The above figure shows the package top view.
44/201
DocID022063 Rev 5
069
STM32F415xx, STM32F417xx
Pinouts and pin description
Figure 16. STM32F41xxx UFBGA176 ballout
!
0%
0%
0%
0%
0"
0"
0'
0'
0"
0"
0$
0#
0!
0!
0!
"
0%
0%
0%
0"
0"
0"
0'
0'
0'
0'
0$
0$
0#
0#
0!
#
6"!4
0)
0)
0)
6$$
0$2?/.
6$$
6$$
6$$
0'
0$
0$
0)
0)
0!
$
0#
0)
0)
0)
633
"//4
633
633
633
0$
0$
0$
0(
0)
0!
%
0#
0&
0)
0)
0(
0(
0)
0! &
0#
633
6$$
0(
633
633
633
633
633
633
6#!0?
0#
0! '
0(
633
6$$
0(
633
633
633
633
633
633
6$$
0#
0#
(
0(
0&
0&
0(
633
633
633
633
633
633
6$$
0'
0#
*
.234
0&
0&
0(
633
633
633
633
633
6$$
6$$
0'
0'
+
0&
0&
0&
6$$
633
633
633
633
633
0(
0'
0'
0'
,
0&
0&
0&
"90!33?
2%'
0(
0(
0$
0'
-
633!
0#
0#
0#
0#
0"
0'
633
633
0(
0(
0(
0$
0$
.
62%&
0! 0!
0!
0#
0&
0'
6$$
6$$
6$$
0%
0(
0$
0$
0$
0
62%&
0!
0! 0!
0#
0&
0&
0%
0%
0%
0%
0"
0"
0$
0$
2
6$$!
0! 0!
0"
0"
0&
0&
0%
0%
0%
0%
0"
0"
0"
0"
6#!0?
AIB
1. This figure shows the package top view.
DocID022063 Rev 5
45/201
Pinouts and pin description
STM32F415xx, STM32F417xx
Figure 17. STM32F41xxx WLCSP90 ballout
0#
0$2?/.
"//4
0"
0$
0$
0#
0!
6$$
0#
6$$
0"
0"
0$
0$
0!
0)
6#!0?
0!
633
0"
0"
0$
0$
0#
0)
0!
0!
0#
"90!33?
2%'
0"
0"
0$
0#
0!
0!
0!
0!
%
0#
0#
633
633
6$$
633
6$$
0#
0#
0#
&
0(
0(
0!
6$$
0%
0%
6#!0?
0#
0$
0$
'
.234
6$$!
0!
0"
0%
0%
0%
0$
0$
0$
(
633!
0!
0!
0"
0%
0%
0"
0$
0$
0"
0!
0!
0!
0"
0%
0%
0"
0"
0"
0"
!
6"!4
0#
"
#
$
*
-36
1. This figure shows the package bump view.
Table 6. Legend/abbreviations used in the pinout table
Name
Pin name
Pin type
I/O structure
Notes
Abbreviation
Definition
Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
S
Supply pin
I
Input only pin
I/O
Input / output pin
FT
5 V tolerant I/O
TTa
3.3 V tolerant I/O directly connected to ADC
B
Dedicated BOOT0 pin
RST
Bidirectional reset pin with embedded weak pull-up resistor
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Alternate
functions
Functions selected through GPIOx_AFR registers
Additional
functions
Functions directly selected/enabled through peripheral registers
46/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Pinouts and pin description
Table 7. STM32F41xxx pin and ball definitions
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
(function after
reset)(1)
Pin type
I / O structure
-
-
1
1
A2
1
PE2
I/O
FT
TRACECLK/ FSMC_A23 /
ETH_MII_TXD3 /
EVENTOUT
-
-
2
2
A1
2
PE3
I/O
FT
TRACED0/FSMC_A19 /
EVENTOUT
-
-
3
3
B1
3
PE4
I/O
FT
TRACED1/FSMC_A20 /
DCMI_D4/ EVENTOUT
-
-
4
4
B2
4
PE5
I/O
FT
TRACED2 / FSMC_A21 /
TIM9_CH1 / DCMI_D6 /
EVENTOUT
-
-
5
5
B3
5
PE6
I/O
FT
TRACED3 / FSMC_A22 /
TIM9_CH2 / DCMI_D7 /
EVENTOUT
1
A10
6
6
C1
6
VBAT
S
-
-
-
-
D2
7
PI8
I/O
FT
2
A9
7
7
D1
8
PC13
I/O
FT
3
B10
8
8
E1
9
PC14/OSC32_IN
I/O
(PC14)
FT
4
B9
9
9
F1
10
PC15/
OSC32_OUT
(PC15)
I/O
FT
-
-
-
-
D3
11
PI9
I/O
FT
CAN1_RX / EVENTOUT
-
-
-
-
E3
12
PI10
I/O
FT
ETH_MII_RX_ER /
EVENTOUT
-
-
-
-
E4
13
PI11
I/O
FT
OTG_HS_ULPI_DIR /
EVENTOUT
-
-
-
-
F2
14
VSS
S
-
-
-
-
F3
15
VDD
S
-
-
-
10
E2
16
PF0
I/O
FT
FSMC_A0 / I2C2_SDA /
EVENTOUT
Pin name
Notes
LQFP64
Pin number
Alternate functions
(2)(
3)
(2)
(3)
(2)(
3)
(2)(
3)
DocID022063 Rev 5
Additional
functions
EVENTOUT
RTC_TAMP1,
RTC_TAMP2,
RTC_TS
EVENTOUT
RTC_OUT,
RTC_TAMP1,
RTC_TS
EVENTOUT
OSC32_IN(4)
EVENTOUT
OSC32_OUT(4)
47/201
Pinouts and pin description
STM32F415xx, STM32F417xx
Table 7. STM32F41xxx pin and ball definitions (continued)
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
(function after
reset)(1)
Pin type
I / O structure
-
-
-
11
H3
17
PF1
I/O
FT
FSMC_A1 / I2C2_SCL /
EVENTOUT
-
-
-
12
H2
18
PF2
I/O
FT
FSMC_A2 / I2C2_SMBA /
EVENTOUT
-
-
-
13
J2
19
PF3
I/O
FT
(4)
FSMC_A3/EVENTOUT
ADC3_IN9
FT
(4)
FSMC_A4/EVENTOUT
ADC3_IN14
FT
(4)
FSMC_A5/EVENTOUT
ADC3_IN15
-
-
-
14
J3
20
Pin name
PF4
I/O
Notes
LQFP64
Pin number
Alternate functions
Additional
functions
-
-
-
15
K3
21
PF5
I/O
-
C9
10
16
G2
22
VSS
S
-
B8
11
17
G3
23
VDD
S
-
-
-
18
K2
24
PF6
I/O
FT
(4)
TIM10_CH1 /
FSMC_NIORD/
EVENTOUT
ADC3_IN4
-
-
-
19
K1
25
PF7
I/O
FT
(4)
TIM11_CH1/FSMC_NREG
/ EVENTOUT
ADC3_IN5
-
-
-
20
L3
26
PF8
I/O
FT
(4)
TIM13_CH1 /
FSMC_NIOWR/
EVENTOUT
ADC3_IN6
-
-
-
21
L2
27
PF9
I/O
FT
(4)
TIM14_CH1 / FSMC_CD/
EVENTOUT
ADC3_IN7
-
-
-
22
L1
28
PF10
I/O
FT
(4)
FSMC_INTR/ EVENTOUT
ADC3_IN8
5
F10 12
23
G1
29
PH0/OSC_IN
(PH0)
I/O
FT
EVENTOUT
OSC_IN(4)
6
F9
13
24
H1
30
PH1/OSC_OUT
(PH1)
I/O
FT
EVENTOUT
OSC_OUT(4)
7
G10 14
25
J1
31
NRST
I/O
RS
T
8
E10 15
26
M2
32
PC0
I/O
FT
(4)
OTG_HS_ULPI_STP/
EVENTOUT
ADC123_IN10
27
M3
33
PC1
I/O
FT
(4)
ETH_MDC/ EVENTOUT
ADC123_IN11
FT
(4)
SPI2_MISO /
OTG_HS_ULPI_DIR /
ETH_MII_TXD2
/I2S2ext_SD/ EVENTOUT
ADC123_IN12
9
-
16
10 D10 17
48/201
28
M4
34
PC2
I/O
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Pinouts and pin description
Table 7. STM32F41xxx pin and ball definitions (continued)
11
E9
18
29
M5
35
PC3
I/O
-
-
19
30
-
36
VDD
S
12 H10 20
31
M1
37
VSSA
S
-
-
-
-
N1
-
VREF–
S
-
-
21
32
P1
38
VREF+
S
13
G9
22
33
R1
39
VDDA
S
14 C10 23
34
N3
40
PA0/WKUP
(PA0)
I/O
Notes
(function after
reset)(1)
I / O structure
Pin name
Pin type
LQFP176
UFBGA176
LQFP144
LQFP100
WLCSP90
LQFP64
Pin number
Alternate functions
Additional
functions
FT
(4)
SPI2_MOSI / I2S2_SD /
OTG_HS_ULPI_NXT /
ETH_MII_TX_CLK/
EVENTOUT
ADC123_IN13
(5)
USART2_CTS/
UART4_TX/
ETH_MII_CRS /
TIM2_CH1_ETR/
TIM5_CH1 / TIM8_ETR/
EVENTOUT
ADC123_IN1
ADC123_IN2
FT
24
35
N2
41
PA1
I/O
FT
(4)
USART2_RTS /
UART4_RX/
ETH_RMII_REF_CLK /
ETH_MII_RX_CLK /
TIM5_CH2 / TIM2_CH2/
EVENTOUT
16 J10 25
36
P2
42
PA2
I/O
FT
(4)
USART2_TX/TIM5_CH3 /
TIM9_CH1 / TIM2_CH3 /
ETH_MDIO/ EVENTOUT
15
F8
-
-
-
-
F4
43
PH2
I/O
FT
ETH_MII_CRS/EVENTOU
T
-
-
-
-
G4
44
PH3
I/O
FT
ETH_MII_COL/EVENTOU
T
-
-
-
-
H4
45
PH4
I/O
FT
I2C2_SCL /
OTG_HS_ULPI_NXT/
EVENTOUT
-
-
-
-
J4
46
PH5
I/O
FT
I2C2_SDA/ EVENTOUT
DocID022063 Rev 5
ADC123_IN0/WKUP(
4)
49/201
Pinouts and pin description
STM32F415xx, STM32F417xx
Table 7. STM32F41xxx pin and ball definitions (continued)
Notes
(function after
reset)(1)
Alternate functions
Additional
functions
(4)
USART2_RX/TIM5_CH4 /
TIM9_CH2 / TIM2_CH4 /
OTG_HS_ULPI_D0 /
ETH_MII_COL/
EVENTOUT
ADC123_IN3
I/O TTa
(4)
SPI1_NSS / SPI3_NSS /
USART2_CK /
DCMI_HSYNC /
OTG_HS_SOF/ I2S3_WS/
EVENTOUT
ADC12_IN4
/DAC_OUT1
I/O TTa
(4)
SPI1_SCK/
OTG_HS_ULPI_CK /
TIM2_CH1_ETR/
TIM8_CH1N/ EVENTOUT
ADC12_IN5/DAC_O
UT2
(4)
SPI1_MISO /
TIM8_BKIN/TIM13_CH1 /
DCMI_PIXCLK /
TIM3_CH1 / TIM1_BKIN/
EVENTOUT
ADC12_IN6
ADC12_IN7
17
H9
26
37
R2
47
PA3
I/O
18
E5
27
38
-
-
VSS
S
L4
48
BYPASS_REG
I
K4
49
VDD
S
D9
19
20
21
22
E4
J9
G8
H8
28
29
30
31
39
40
41
42
N4
P4
P3
50
51
52
PA4
PA5
PA6
I / O structure
Pin name
Pin type
LQFP176
UFBGA176
LQFP144
LQFP100
WLCSP90
LQFP64
Pin number
I/O
FT
FT
FT
23
J8
32
43
R3
53
PA7
I/O
FT
(4)
SPI1_MOSI/ TIM8_CH1N
/ TIM14_CH1/TIM3_CH2/
ETH_MII_RX_DV /
TIM1_CH1N /
ETH_RMII_CRS_DV/
EVENTOUT
24
-
33
44
N5
54
PC4
I/O
FT
(4)
ETH_RMII_RX_D0 /
ETH_MII_RX_D0/
EVENTOUT
ADC12_IN14
25
-
34
45
P5
55
PC5
I/O
FT
(4)
ETH_RMII_RX_D1 /
ETH_MII_RX_D1/
EVENTOUT
ADC12_IN15
(4)
TIM3_CH3 / TIM8_CH2N/
OTG_HS_ULPI_D1/
ETH_MII_RXD2 /
TIM1_CH2N/ EVENTOUT
ADC12_IN8
26
G7
50/201
35
46
R5
56
PB0
I/O
FT
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Pinouts and pin description
Table 7. STM32F41xxx pin and ball definitions (continued)
Notes
57
PB1
I/O
FT
28
J7
37
48
M6
58
PB2/BOOT1
(PB2)
I/O
FT
EVENTOUT
-
-
-
49
R6
59
PF11
I/O
FT
DCMI_D12/ EVENTOUT
-
-
-
50
P6
60
PF12
I/O
FT
FSMC_A6/ EVENTOUT
-
-
-
51
M8
61
VSS
S
-
-
-
52
N8
62
VDD
S
-
-
-
53
N6
63
PF13
I/O
FT
FSMC_A7/ EVENTOUT
-
-
-
54
R7
64
PF14
I/O
FT
FSMC_A8/ EVENTOUT
-
-
-
55
P7
65
PF15
I/O
FT
FSMC_A9/ EVENTOUT
-
-
-
56
N7
66
PG0
I/O
FT
FSMC_A10/ EVENTOUT
-
-
-
57
M7
67
PG1
I/O
FT
FSMC_A11/ EVENTOUT
-
G6
38
58
R8
68
PE7
I/O
FT
FSMC_D4/TIM1_ETR/
EVENTOUT
-
H6
39
59
P8
69
PE8
I/O
FT
FSMC_D5/ TIM1_CH1N/
EVENTOUT
-
J6
40
60
P9
70
PE9
I/O
FT
FSMC_D6/TIM1_CH1/
EVENTOUT
-
-
-
61
M9
71
VSS
S
-
-
-
62
N9
72
VDD
S
-
F6
41
63
R9
73
PE10
I/O
FT
FSMC_D7/TIM1_CH2N/
EVENTOUT
-
J5
42
64
P10
74
PE11
I/O
FT
FSMC_D8/TIM1_CH2/
EVENTOUT
-
H5
43
65
R10
75
PE12
I/O
FT
FSMC_D9/TIM1_CH3N/
EVENTOUT
-
G5
44
66
N11
76
PE13
I/O
FT
FSMC_D10/TIM1_CH3/
EVENTOUT
Pin name
(function after
reset)(1)
Pin type
R4
LQFP176
47
UFBGA176
36
LQFP144
H7
TIM3_CH4 / TIM8_CH3N/
OTG_HS_ULPI_D2/
ETH_MII_RXD3 /
TIM1_CH3N/ EVENTOUT
LQFP100
27
(4)
WLCSP90
Alternate functions
LQFP64
I / O structure
Pin number
DocID022063 Rev 5
Additional
functions
ADC12_IN9
51/201
Pinouts and pin description
STM32F415xx, STM32F417xx
Table 7. STM32F41xxx pin and ball definitions (continued)
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
(function after
reset)(1)
Pin type
I / O structure
-
F5
45
67
P11
77
PE14
I/O
FT
FSMC_D11/TIM1_CH4/
EVENTOUT
-
G4
46
68
R11
78
PE15
I/O
FT
FSMC_D12/TIM1_BKIN/
EVENTOUT
FT
SPI2_SCK / I2S2_CK /
I2C2_SCL/ USART3_TX /
OTG_HS_ULPI_D3 /
ETH_MII_RX_ER /
TIM2_CH3/ EVENTOUT
FT
I2C2_SDA/USART3_RX/
OTG_HS_ULPI_D4 /
ETH_RMII_TX_EN/
ETH_MII_TX_EN /
TIM2_CH4/ EVENTOUT
29
H4
47
69
R12
79
Pin name
PB10
I/O
Notes
LQFP64
Pin number
Alternate functions
30
J4
48
70
R13
80
PB11
I/O
31
F4
49
71
M10
81
VCAP_1
S
32
-
50
72
N10
82
VDD
S
-
-
-
-
M11
83
PH6
I/O
FT
I2C2_SMBA / TIM12_CH1
/ ETH_MII_RXD2/
EVENTOUT
-
-
-
-
N12
84
PH7
I/O
FT
I2C3_SCL /
ETH_MII_RXD3/
EVENTOUT
-
-
-
-
M12
85
PH8
I/O
FT
I2C3_SDA /
DCMI_HSYNC/
EVENTOUT
-
-
-
-
M13
86
PH9
I/O
FT
I2C3_SMBA /
TIM12_CH2/ DCMI_D0/
EVENTOUT
-
-
-
-
L13
87
PH10
I/O
FT
TIM5_CH1 / DCMI_D1/
EVENTOUT
-
-
-
-
L12
88
PH11
I/O
FT
TIM5_CH2 / DCMI_D2/
EVENTOUT
-
-
-
-
K12
89
PH12
I/O
FT
TIM5_CH3 / DCMI_D3/
EVENTOUT
-
-
-
-
H12
90
VSS
S
-
-
-
-
J12
91
VDD
S
52/201
DocID022063 Rev 5
Additional
functions
STM32F415xx, STM32F417xx
Pinouts and pin description
Table 7. STM32F41xxx pin and ball definitions (continued)
33
34
35
J3
J1
J2
51
52
53
73
74
75
P12
P13
R14
92
93
94
PB12
PB13
PB14
I/O
I/O
I/O
Notes
(function after
reset)(1)
I / O structure
Pin name
Pin type
LQFP176
UFBGA176
LQFP144
LQFP100
WLCSP90
LQFP64
Pin number
Alternate functions
FT
SPI2_NSS / I2S2_WS /
I2C2_SMBA/
USART3_CK/ TIM1_BKIN
/ CAN2_RX /
OTG_HS_ULPI_D5/
ETH_RMII_TXD0 /
ETH_MII_TXD0/
OTG_HS_ID/ EVENTOUT
FT
SPI2_SCK / I2S2_CK /
USART3_CTS/
TIM1_CH1N /CAN2_TX /
OTG_HS_ULPI_D6 /
ETH_RMII_TXD1 /
ETH_MII_TXD1/
EVENTOUT
FT
SPI2_MISO/ TIM1_CH2N
/ TIM12_CH1 /
OTG_HS_DM/
USART3_RTS /
TIM8_CH2N/I2S2ext_SD/
EVENTOUT
36
H1
54
76
R15
95
PB15
I/O
FT
SPI2_MOSI / I2S2_SD/
TIM1_CH3N / TIM8_CH3N
/ TIM12_CH2 /
OTG_HS_DP/
EVENTOUT
-
H2
55
77
P15
96
PD8
I/O
FT
FSMC_D13 /
USART3_TX/ EVENTOUT
-
H3
56
78
P14
97
PD9
I/O
FT
FSMC_D14 /
USART3_RX/ EVENTOUT
-
G3
57
79
N15
98
PD10
I/O
FT
FSMC_D15 /
USART3_CK/ EVENTOUT
-
G1
58
80
N14
99
PD11
I/O
FT
FSMC_CLE /
FSMC_A16/USART3_CT
S/ EVENTOUT
FT
FSMC_ALE/
FSMC_A17/TIM4_CH1 /
USART3_RTS/
EVENTOUT
-
G2
59
81
N13 100
PD12
I/O
DocID022063 Rev 5
Additional
functions
OTG_HS_VBUS
RTC_REFIN
53/201
Pinouts and pin description
STM32F415xx, STM32F417xx
Table 7. STM32F41xxx pin and ball definitions (continued)
FT
FSMC_A18/TIM4_CH2/
EVENTOUT
I/O
FT
FSMC_D0/TIM4_CH3/
EVENTOUT/ EVENTOUT
PD15
I/O
FT
FSMC_D1/TIM4_CH4/
EVENTOUT
L15 106
PG2
I/O
FT
FSMC_A12/ EVENTOUT
88
K15 107
PG3
I/O
FT
FSMC_A13/ EVENTOUT
-
89
K14 108
PG4
I/O
FT
FSMC_A14/ EVENTOUT
-
-
90
K13 109
PG5
I/O
FT
FSMC_A15/ EVENTOUT
-
-
-
91
J15 110
PG6
I/O
FT
FSMC_INT2/ EVENTOUT
-
-
-
92
J14
111
PG7
I/O
FT
FSMC_INT3
/USART6_CK/
EVENTOUT
-
-
-
93
H14 112
PG8
I/O
FT
USART6_RTS /
ETH_PPS_OUT/
EVENTOUT
-
-
-
94
G12 113
VSS
S
-
-
-
95
H13 114
VDD
S
FT
I2S2_MCK /
TIM8_CH1/SDIO_D6 /
USART6_TX /
DCMI_D0/TIM3_CH1/
EVENTOUT
WLCSP90
LQFP100
LQFP144
-
-
60
82
-
-
-
83
-
-
-
84
J13 103
VDD
S
-
F2
61
85
M14 104
PD14
-
F1
62
86
L14 105
-
-
-
87
-
-
-
-
-
-
37
F3
63
96
LQFP176
LQFP64
Pin name
(function after
reset)(1)
PD13
102
VSS
S
M15 101
-
H15 115
PC6
I/O
Notes
I / O structure
I/O
UFBGA176
Pin type
Pin number
Alternate functions
38
E1
64
97
G15 116
PC7
I/O
FT
I2S3_MCK /
TIM8_CH2/SDIO_D7 /
USART6_RX /
DCMI_D1/TIM3_CH2/
EVENTOUT
39
E2
65
98
G14 117
PC8
I/O
FT
TIM8_CH3/SDIO_D0
/TIM3_CH3/ USART6_CK
/ DCMI_D2/ EVENTOUT
54/201
DocID022063 Rev 5
Additional
functions
STM32F415xx, STM32F417xx
Pinouts and pin description
Table 7. STM32F41xxx pin and ball definitions (continued)
40
E3
66
99
F14 118
PC9
I/O
Notes
(function after
reset)(1)
I / O structure
Pin name
Pin type
LQFP176
UFBGA176
LQFP144
LQFP100
WLCSP90
LQFP64
Pin number
Alternate functions
FT
I2S_CKIN/ MCO2 /
TIM8_CH4/SDIO_D1 /
/I2C3_SDA / DCMI_D3 /
TIM3_CH4/ EVENTOUT
41
D1
67 100 F15 119
PA8
I/O
FT
MCO1 / USART1_CK/
TIM1_CH1/ I2C3_SCL/
OTG_FS_SOF/
EVENTOUT
42
D2
68 101 E15 120
PA9
I/O
FT
USART1_TX/ TIM1_CH2 /
I2C3_SMBA / DCMI_D0/
EVENTOUT
43
D3
69 102 D15 121
PA10
I/O
FT
USART1_RX/ TIM1_CH3/
OTG_FS_ID/DCMI_D1/
EVENTOUT
FT
USART1_CTS / CAN1_RX
/ TIM1_CH4 /
OTG_FS_DM/
EVENTOUT
44
C1
70 103 C15 122
PA11
I/O
45
C2
71 104 B15 123
PA12
I/O
FT
USART1_RTS /
CAN1_TX/ TIM1_ETR/
OTG_FS_DP/
EVENTOUT
46
D4
72 105 A15 124
PA13
(JTMS-SWDIO)
I/O
FT
JTMS-SWDIO/
EVENTOUT
47
B1
73 106 F13 125
VCAP_2
S
-
E7
74 107 F12 126
VSS
S
48
E6
75 108 G13 127
VDD
S
-
-
-
-
E12 128
PH13
I/O
FT
TIM8_CH1N / CAN1_TX/
EVENTOUT
-
-
-
-
E13 129
PH14
I/O
FT
TIM8_CH2N / DCMI_D4/
EVENTOUT
-
-
-
-
D13 130
PH15
I/O
FT
TIM8_CH3N / DCMI_D11/
EVENTOUT
-
C3
-
-
E14 131
PI0
I/O
FT
TIM5_CH4 / SPI2_NSS /
I2S2_WS / DCMI_D13/
EVENTOUT
DocID022063 Rev 5
Additional
functions
OTG_FS_VBUS
55/201
Pinouts and pin description
STM32F415xx, STM32F417xx
Table 7. STM32F41xxx pin and ball definitions (continued)
LQFP144
Pin type
I / O structure
-
-
D14 132
PI1
I/O
FT
SPI2_SCK / I2S2_CK /
DCMI_D8/ EVENTOUT
-
-
-
-
C14 133
PI2
I/O
FT
TIM8_CH4 /SPI2_MISO /
DCMI_D9 / I2S2ext_SD/
EVENTOUT
-
-
-
-
C13 134
PI3
I/O
FT
TIM8_ETR / SPI2_MOSI /
I2S2_SD / DCMI_D10/
EVENTOUT
-
-
-
-
D9
135
VSS
S
-
-
-
-
C9
136
VDD
S
49
A2
76 109 A14 137
PA14
(JTCK/SWCLK)
I/O
FT
JTCK-SWCLK/
EVENTOUT
77 110 A13 138
PA15
(JTDI)
FT
JTDI/ SPI3_NSS/
I2S3_WS/TIM2_CH1_ET
R / SPI1_NSS /
EVENTOUT
FT
SPI3_SCK / I2S3_CK/
UART4_TX/SDIO_D2 /
DCMI_D8 / USART3_TX/
EVENTOUT
FT
UART4_RX/ SPI3_MISO /
SDIO_D3 /
DCMI_D4/USART3_RX /
I2S3ext_SD/ EVENTOUT
50
51
52
B3
D5
C4
78 111 B14 139
79 112 B13 140
Pin name
(function after
reset)(1)
PC10
PC11
I/O
I/O
I/O
Notes
LQFP100
B2
LQFP176
WLCSP90
-
UFBGA176
LQFP64
Pin number
Alternate functions
53
A3
80 113 A12 141
PC12
I/O
FT
UART5_TX/SDIO_CK /
DCMI_D9 / SPI3_MOSI
/I2S3_SD / USART3_CK/
EVENTOUT
-
D6
81 114 B12 142
PD0
I/O
FT
FSMC_D2/CAN1_RX/
EVENTOUT
-
C5
82 115 C12 143
PD1
I/O
FT
FSMC_D3 / CAN1_TX/
EVENTOUT
54
B4
83 116 D12 144
PD2
I/O
FT
TIM3_ETR/UART5_RX/
SDIO_CMD / DCMI_D11/
EVENTOUT
56/201
DocID022063 Rev 5
Additional
functions
STM32F415xx, STM32F417xx
Pinouts and pin description
Table 7. STM32F41xxx pin and ball definitions (continued)
I / O structure
I/O
FT
FSMC_CLK/
USART2_CTS/
EVENTOUT
-
A4
85 118 D10 146
PD4
I/O
FT
FSMC_NOE/
USART2_RTS/
EVENTOUT
-
C6
86 119 C11 147
PD5
I/O
FT
FSMC_NWE/USART2_TX
/ EVENTOUT
-
-
-
120
D8
148
VSS
S
-
-
-
121
C8
149
VDD
S
-
B5
87 122 B11 150
PD6
I/O
FT
FSMC_NWAIT/
USART2_RX/ EVENTOUT
-
A5
88 123 A11 151
PD7
I/O
FT
USART2_CK/FSMC_NE1/
FSMC_NCE2/
EVENTOUT
-
-
-
124 C10 152
PG9
I/O
FT
USART6_RX /
FSMC_NE2/FSMC_NCE3
/ EVENTOUT
-
-
-
125 B10 153
PG10
I/O
FT
FSMC_NCE4_1/
FSMC_NE3/ EVENTOUT
Pin name
(function after
reset)(1)
Notes
Pin type
PD3
LQFP176
84 117 D11 145
UFBGA176
-
LQFP144
WLCSP90
-
LQFP100
LQFP64
Pin number
Alternate functions
-
-
-
126
B9
154
PG11
I/O
FT
FSMC_NCE4_2 /
ETH_MII_TX_EN/
ETH _RMII_TX_EN/
EVENTOUT
-
-
-
127
B8
155
PG12
I/O
FT
FSMC_NE4 /
USART6_RTS/
EVENTOUT
FT
FSMC_A24 /
USART6_CTS
/ETH_MII_TXD0/
ETH_RMII_TXD0/
EVENTOUT
FT
FSMC_A25 / USART6_TX
/ETH_MII_TXD1/
ETH_RMII_TXD1/
EVENTOUT
-
-
-
-
-
-
128
129
A8
A7
156
157
PG13
PG14
I/O
I/O
DocID022063 Rev 5
Additional
functions
57/201
Pinouts and pin description
STM32F415xx, STM32F417xx
Table 7. STM32F41xxx pin and ball definitions (continued)
LQFP100
LQFP144
UFBGA176
LQFP176
-
E8
-
130
D7
158
VSS
S
-
F7
-
131
C7
159
VDD
S
-
-
-
132
B7
160
PG15
I/O
55
B6
89 133 A10 161
56
A6
90 134
57
58
D7
C7
91 135
92 136
A9
A6
B6
162
163
164
USART6_CTS /
DCMI_D13/ EVENTOUT
PB3
(JTDO/
TRACESWO)
I/O
FT
JTDO/ TRACESWO/
SPI3_SCK / I2S3_CK /
TIM2_CH2 / SPI1_SCK/
EVENTOUT
PB4
(NJTRST)
I/O
FT
NJTRST/ SPI3_MISO /
TIM3_CH1 / SPI1_MISO /
I2S3ext_SD/ EVENTOUT
FT
I2C1_SMBA/ CAN2_RX /
OTG_HS_ULPI_D7 /
ETH_PPS_OUT/TIM3_CH
2 / SPI1_MOSI/
SPI3_MOSI / DCMI_D10 /
I2S3_SD/ EVENTOUT
FT
I2C1_SCL/ TIM4_CH1 /
CAN2_TX /
DCMI_D5/USART1_TX/
EVENTOUT
I2C1_SDA / FSMC_NL /
DCMI_VSYNC /
USART1_RX/ TIM4_CH2/
EVENTOUT
PB5
PB6
I/O
I/O
B7
93 137
B5
165
PB7
I/O
FT
60
A7
94 138
D6
166
BOOT0
I
B
62
D8
C8
58/201
95 139
96 140
A5
B4
167
168
Alternate functions
FT
59
61
Notes
WLCSP90
(function after
reset)(1)
I / O structure
LQFP64
Pin name
Pin type
Pin number
PB8
PB9
I/O
I/O
Additional
functions
VPP
FT
TIM4_CH3/SDIO_D4/
TIM10_CH1 / DCMI_D6 /
ETH_MII_TXD3 /
I2C1_SCL/ CAN1_RX/
EVENTOUT
FT
SPI2_NSS/ I2S2_WS /
TIM4_CH4/ TIM11_CH1/
SDIO_D5 / DCMI_D7 /
I2C1_SDA / CAN1_TX/
EVENTOUT
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Pinouts and pin description
Table 7. STM32F41xxx pin and ball definitions (continued)
LQFP176
Pin type
I / O structure
-
97 141
A4
169
PE0
I/O
FT
TIM4_ETR / FSMC_NBL0
/ DCMI_D2/ EVENTOUT
-
-
98 142
A3
170
PE1
I/O
FT
FSMC_NBL1 / DCMI_D3/
EVENTOUT
63
-
99
-
D5
-
VSS
S
-
A8
-
143
C6
171
PDR_ON
I
64
A1
10
144
0
C5
172
VDD
S
-
-
-
-
D4
173
PI4
I/O
FT
TIM8_BKIN / DCMI_D5/
EVENTOUT
-
-
-
-
C4
174
PI5
I/O
FT
TIM8_CH1 /
DCMI_VSYNC/
EVENTOUT
-
-
-
-
C3
175
PI6
I/O
FT
TIM8_CH2 / DCMI_D6/
EVENTOUT
-
-
-
-
C2
176
PI7
I/O
FT
TIM8_CH3 / DCMI_D7/
EVENTOUT
Pin name
Notes
UFBGA176
-
LQFP144
WLCSP90
(function after
reset)(1)
LQFP100
LQFP64
Pin number
Alternate functions
Additional
functions
FT
1. Function availability depends on the chosen device.
2. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These I/Os must not be used as a current source (e.g. to drive an LED).
3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC
register description sections in the STM32F4xx reference manual, available from the STMicroelectronics website:
www.st.com.
4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
5. If the device is delivered in an UFBGA176 or WLCSP90 and the BYPASS_REG pin is set to VDD (Regulator off/internal reset
ON mode), then PA0 is used as an internal Reset (active low).
DocID022063 Rev 5
59/201
Pinouts and pin description
STM32F415xx, STM32F417xx
Table 8. FSMC pin definition
FSMC
Pins
(1)
CF
LQFP100(2)
PE2
A23
A23
Yes
PE3
A19
A19
Yes
PE4
A20
A20
Yes
PE5
A21
A21
Yes
PE6
A22
A22
Yes
WLCSP90
(2)
PF0
A0
A0
-
-
PF1
A1
A1
-
-
PF2
A2
A2
-
-
PF3
A3
A3
-
-
PF4
A4
A4
-
-
PF5
A5
A5
-
-
PF6
NIORD
-
-
PF7
NREG
-
-
PF8
NIOWR
-
-
PF9
CD
-
-
PF10
INTR
-
-
PF12
A6
A6
-
-
PF13
A7
A7
-
-
PF14
A8
A8
-
-
PF15
A9
A9
-
-
PG0
A10
A10
-
-
A11
-
-
PG1
60/201
NOR/PSRAM/
NOR/PSRAM Mux NAND 16 bit
SRAM
PE7
D4
D4
DA4
D4
Yes
Yes
PE8
D5
D5
DA5
D5
Yes
Yes
PE9
D6
D6
DA6
D6
Yes
Yes
PE10
D7
D7
DA7
D7
Yes
Yes
PE11
D8
D8
DA8
D8
Yes
Yes
PE12
D9
D9
DA9
D9
Yes
Yes
PE13
D10
D10
DA10
D10
Yes
Yes
PE14
D11
D11
DA11
D11
Yes
Yes
PE15
D12
D12
DA12
D12
Yes
Yes
PD8
D13
D13
DA13
D13
Yes
Yes
PD9
D14
D14
DA14
D14
Yes
Yes
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Pinouts and pin description
Table 8. FSMC pin definition (continued)
FSMC
Pins
(1)
CF
PD10
D15
NOR/PSRAM/
NOR/PSRAM Mux NAND 16 bit
SRAM
LQFP100(2)
WLCSP90
(2)
D15
DA15
D15
Yes
Yes
PD11
A16
A16
CLE
Yes
Yes
PD12
A17
A17
ALE
Yes
Yes
PD13
A18
A18
Yes
PD14
D0
D0
DA0
D0
Yes
Yes
PD15
D1
D1
DA1
D1
Yes
Yes
PG2
A12
-
-
PG3
A13
-
-
PG4
A14
-
-
PG5
A15
-
-
PG6
INT2
-
-
PG7
INT3
-
-
PD0
D2
D2
DA2
D2
Yes
Yes
PD1
D3
D3
DA3
D3
Yes
Yes
CLK
CLK
PD3
Yes
PD4
NOE
NOE
NOE
NOE
Yes
Yes
PD5
NWE
NWE
NWE
NWE
Yes
Yes
PD6
NWAIT
NWAIT
NWAIT
NWAIT
Yes
Yes
PD7
NE1
NE1
NCE2
Yes
Yes
PG9
NE2
NE2
NCE3
-
-
NE3
NE3
-
-
-
-
PG10
NCE4_1
PG11
NCE4_2
PG12
NE4
NE4
-
-
PG13
A24
A24
-
-
PG14
A25
A25
-
-
PB7
NADV
NADV
Yes
Yes
PE0
NBL0
NBL0
Yes
PE1
NBL1
NBL1
Yes
1. Full FSMC features are available on LQFP144, LQFP176, and UFBGA176. The features available on
smaller packages are given in the dedicated package column.
2. Ports F and G are not available in devices delivered in 100-pin packages.
DocID022063 Rev 5
61/201
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
SYS
TIM1/2
TIM3/4/5
TIM8/9/10
/11
I2C1/2/3
SPI1/SPI2/
I2S2/I2S2e
xt
SPI3/I2Sext
/I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/2
TIM12/13/
14
OTG_FS/
OTG_HS
ETH
FSMC/SDIO
/OTG_FS
DCMI
PA0
TIM2_CH1_
ETR
TIM 5_CH1
TIM8_ETR
USART2_CTS
UART4_TX
ETH_MII_CRS
EVENTOUT
PA1
TIM2_CH2
TIM5_CH2
USART2_RTS
UART4_RX
ETH_MII
_RX_CLK
ETH_RMII__REF
_CLK
EVENTOUT
PA2
TIM2_CH3
TIM5_CH3
ETH_MDIO
EVENTOUT
ETH _MII_COL
EVENTOUT
Port
PA3
TIM2_CH4
TIM5_CH4
TIM9_CH1
USART2_TX
TIM9_CH2
USART2_RX
PA4
DocID022063 Rev 5
Port A
SPI1_NSS
PA5
TIM2_CH1_
ETR
PA6
TIM1_BKIN
PA7
PA8
TIM1_CH1N
MCO1
PA9
TIM3_CH1
TIM3_CH2
OTG_HS_ULPI_
D0
TIM8_CH1N
SPI1_SCK
TIM8_BKIN
SPI1_MISO
TIM8_CH1N
SPI3_NSS
I2S3_WS
USART2_CK
OTG_HS_SOF
AF14
DCMI_HSYN
C
OTG_HS_ULPI_
CK
DCMI_PIXCK
ETH_MII _RX_DV
ETH_RMII
_CRS_DV
TIM14_CH1
TIM1_CH1
I2C3_SCL
USART1_CK
TIM1_CH2
I2C3_SMB
A
USART1_TX
EVENTOUT
EVENTOUT
OTG_FS_SOF
EVENTOUT
DCMI_D0
EVENTOUT
DCMI_D1
EVENTOUT
PA10
TIM1_CH3
USART1_RX
PA11
TIM1_CH4
USART1_CTS
CAN1_RX
OTG_FS_DM
EVENTOUT
TIM1_ETR
USART1_RTS
CAN1_TX
OTG_FS_DP
EVENTOUT
PA12
OTG_FS_ID
EVENTOUT
EVENTOUT
TIM13_CH1
SPI1_MOSI
AF15
EVENTOUT
PA14
JTCKSWCLK
EVENTOUT
PA15
JTDI
SPI1_NSS
SPI3_NSS/
I2S3_WS
EVENTOUT
62/201
Pinouts and pin description
PA13
JTMSSWDIO
TIM 2_CH1
TIM 2_ETR
STM32F415xx, STM32F417xx
Table 9. Alternate function mapping
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
SYS
TIM1/2
TIM3/4/5
TIM8/9/10
/11
I2C1/2/3
SPI1/SPI2/
I2S2/I2S2e
xt
SPI3/I2Sext
/I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/2
TIM12/13/
14
OTG_FS/
OTG_HS
ETH
FSMC/SDIO
/OTG_FS
DCMI
PB0
TIM1_CH2N
TIM3_CH3
TIM8_CH2N
OTG_HS_ULPI_
D1
ETH _MII_RXD2
EVENTOUT
PB1
TIM1_CH3N
TIM3_CH4
TIM8_CH3N
OTG_HS_ULPI_
D2
ETH _MII_RXD3
EVENTOUT
Port
AF14
PB2
DocID022063 Rev 5
Port B
EVENTOUT
PB3
JTDO/
TRACES
WO
PB4
NJTRST
TIM2_CH2
TIM3_CH1
PB5
TIM3_CH2
I2C1_SMB
A
PB6
TIM4_CH1
I2C1_SCL
PB7
TIM4_CH2
PB8
TIM4_CH3
PB9
TIM4_CH4
TIM10_CH1
TIM11_CH1
SPI1_MOSI
SPI3_MOSI
I2S3_SD
EVENTOUT
I2S3ext_SD
I2C2_SDA
PB12
TIM1_BKIN
I2C2_SMB
A
PB13
TIM1_CH1N
EVENTOUT
CAN2_RX
USART1_TX
OTG_HS_ULPI_
D7
ETH _PPS_OUT
CAN2_TX
USART1_RX
CAN1_RX
SPI2_SCK
I2S2_CK
TIM2_CH4
ETH _MII_TXD3
CAN1_TX
DCMI_D10
EVENTOUT
DCMI_D5
EVENTOUT
FSMC_NL
DCMI_VSYN
C
EVENTOUT
SDIO_D4
DCMI_D6
EVENTOUT
SDIO_D5
DCMI_D7
EVENTOUT
USART3_TX
OTG_HS_ULPI_
D3
ETH_ MII_RX_ER
EVENTOUT
USART3_RX
OTG_HS_ULPI_
D4
ETH _MII_TX_EN
ETH
_RMII_TX_EN
EVENTOUT
SPI2_NSS
I2S2_WS
USART3_CK
CAN2_RX
OTG_HS_ULPI_
D5
ETH _MII_TXD0
ETH _RMII_TXD0
SPI2_SCK
I2S2_CK
USART3_CTS
CAN2_TX
OTG_HS_ULPI_
D6
ETH _MII_TXD1
ETH _RMII_TXD1
USART3_RTS
TIM12_CH1
OTG_HS_DM
EVENTOUT
TIM12_CH2
OTG_HS_DP
EVENTOUT
TIM8_CH2N
SPI2_MISO
TIM8_CH3N
SPI2_MOSI
I2S2_SD
I2S2ext_SD
OTG_HS_ID
EVENTOUT
EVENTOUT
STM32F415xx, STM32F417xx
TIM1_CH3N
SPI3_MISO
I2C1_SDA
PB11
TIM1_CH2N
SPI1_MISO
SPI2_NSS
I2S2_WS
I2C2_SCL
RTC_
REFIN
SPI3_SCK
I2S3_CK
I2C1_SCL
TIM2_CH3
PB14
SPI1_SCK
I2C1_SDA
PB10
PB15
AF15
Pinouts and pin description
63/201
Table 9. Alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
SYS
TIM1/2
TIM3/4/5
TIM8/9/10
/11
I2C1/2/3
SPI1/SPI2/
I2S2/I2S2e
xt
SPI3/I2Sext
/I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/2
TIM12/13/
14
OTG_FS/
OTG_HS
ETH
FSMC/SDIO
/OTG_FS
DCMI
Port
OTG_HS_ULPI_
STP
PC0
PC1
DocID022063 Rev 5
Port C
AF14
AF15
EVENTOUT
ETH_MDC
EVENTOUT
OTG_HS_ULPI_
DIR
ETH _MII_TXD2
EVENTOUT
OTG_HS_ULPI_
NXT
ETH
_MII_TX_CLK
EVENTOUT
PC4
ETH_MII_RXD0
ETH_RMII_RXD0
EVENTOUT
PC5
ETH _MII_RXD1
ETH _RMII_RXD1
EVENTOUT
PC2
SPI2_MISO
PC3
SPI2_MOSI
I2S2_SD
PC6
TIM3_CH1
TIM8_CH1
PC7
TIM3_CH2
TIM8_CH2
PC8
TIM3_CH3
TIM8_CH3
TIM3_CH4
TIM8_CH4
PC9
MCO2
I2S2_MCK
I2S3_MCK
I2C3_SDA
PC12
USART6_TX
SDIO_D6
DCMI_D0
USART6_RX
SDIO_D7
DCMI_D1
EVENTOUT
USART6_CK
SDIO_D0
DCMI_D2
EVENTOUT
SDIO_D1
DCMI_D3
EVENTOUT
I2S_CKIN
PC10
PC11
I2S2ext_SD
I2S3ext_SD
STM32F415xx, STM32F417xx
Table 9. Alternate function mapping (continued)
EVENTOUT
SPI3_SCK/
I2S3_CK
USART3_TX/
UART4_TX
SDIO_D2
DCMI_D8
EVENTOUT
SPI3_MISO/
USART3_RX
UART4_RX
SDIO_D3
DCMI_D4
EVENTOUT
SPI3_MOSI
I2S3_SD
USART3_CK
UART5_TX
SDIO_CK
DCMI_D9
EVENTOUT
PC13
EVENTOUT
PC14
EVENTOUT
PC15
EVENTOUT
Pinouts and pin description
64/201
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
SYS
TIM1/2
TIM3/4/5
TIM8/9/10
/11
I2C1/2/3
SPI1/SPI2/
I2S2/I2S2e
xt
SPI3/I2Sext
/I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/2
TIM12/13/
14
OTG_FS/
OTG_HS
ETH
FSMC/SDIO
/OTG_FS
DCMI
Port
AF14
AF15
PD0
CAN1_RX
FSMC_D2
EVENTOUT
PD1
CAN1_TX
FSMC_D3
EVENTOUT
PD2
TIM3_ETR
UART5_RX
SDIO_CMD
DCMI_D11
EVENTOUT
PD3
USART2_CTS
FSMC_CLK
EVENTOUT
PD4
USART2_RTS
FSMC_NOE
EVENTOUT
PD5
USART2_TX
FSMC_NWE
EVENTOUT
PD6
USART2_RX
FSMC_NWAIT
EVENTOUT
PD7
USART2_CK
FSMC_NE1/
FSMC_NCE2
EVENTOUT
PD8
USART3_TX
FSMC_D13
EVENTOUT
Port D
DocID022063 Rev 5
PD9
USART3_RX
FSMC_D14
EVENTOUT
PD10
USART3_CK
FSMC_D15
EVENTOUT
PD11
USART3_CTS
FSMC_A16
EVENTOUT
USART3_RTS
PD12
TIM4_CH1
FSMC_A17
EVENTOUT
PD13
TIM4_CH2
FSMC_A18
EVENTOUT
PD14
TIM4_CH3
FSMC_D0
EVENTOUT
PD15
TIM4_CH4
FSMC_D1
EVENTOUT
Pinouts and pin description
65/201
Table 9. Alternate function mapping (continued)
STM32F415xx, STM32F417xx
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
SYS
TIM1/2
TIM3/4/5
TIM8/9/10
/11
I2C1/2/3
SPI1/SPI2/
I2S2/I2S2e
xt
SPI3/I2Sext
/I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/2
TIM12/13/
14
OTG_FS/
OTG_HS
ETH
FSMC/SDIO
/OTG_FS
DCMI
FSMC_NBL0
DCMI_D2
EVENTOUT
FSMC_NBL1
DCMI_D3
EVENTOUT
Port
PE0
TIM4_ETR
PE1
Port E
AF14
AF15
PE2
TRACECL
K
PE3
TRACED0
FSMC_A19
PE4
TRACED1
FSMC_A20
DCMI_D4
EVENTOUT
PE5
TRACED2
TIM9_CH1
FSMC_A21
DCMI_D6
EVENTOUT
PE6
TRACED3
TIM9_CH2
FSMC_A22
DCMI_D7
EVENTOUT
ETH _MII_TXD3
FSMC_A23
EVENTOUT
EVENTOUT
DocID022063 Rev 5
PE7
TIM1_ETR
FSMC_D4
EVENTOUT
PE8
TIM1_CH1N
FSMC_D5
EVENTOUT
PE9
TIM1_CH1
FSMC_D6
EVENTOUT
PE10
TIM1_CH2N
FSMC_D7
EVENTOUT
PE11
TIM1_CH2
FSMC_D8
EVENTOUT
PE12
TIM1_CH3N
FSMC_D9
EVENTOUT
PE13
TIM1_CH3
FSMC_D10
EVENTOUT
PE14
TIM1_CH4
FSMC_D11
EVENTOUT
PE15
TIM1_BKIN
FSMC_D12
EVENTOUT
STM32F415xx, STM32F417xx
Table 9. Alternate function mapping (continued)
Pinouts and pin description
66/201
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
SYS
TIM1/2
TIM3/4/5
TIM8/9/10
/11
I2C1/2/3
SPI1/SPI2/
I2S2/I2S2e
xt
SPI3/I2Sext
/I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/2
TIM12/13/
14
OTG_FS/
OTG_HS
ETH
FSMC/SDIO
/OTG_FS
DCMI
Port
AF14
AF15
PF0
I2C2_SDA
FSMC_A0
EVENTOUT
PF1
I2C2_SCL
FSMC_A1
EVENTOUT
PF2
I2C2_
SMBA
FSMC_A2
EVENTOUT
PF3
FSMC_A3
EVENTOUT
PF4
FSMC_A4
EVENTOUT
PF5
FSMC_A5
EVENTOUT
PF6
TIM10_CH1
FSMC_NIORD
EVENTOUT
PF7
TIM11_CH1
FSMC_NREG
EVENTOUT
FSMC_
NIOWR
EVENTOUT
FSMC_CD
EVENTOUT
FSMC_INTR
EVENTOUT
Pinouts and pin description
67/201
Table 9. Alternate function mapping (continued)
Port F
DocID022063 Rev 5
PF8
TIM13_CH1
PF9
TIM14_CH1
PF10
PF11
DCMI_D12
EVENTOUT
PF12
FSMC_A6
EVENTOUT
PF13
FSMC_A7
EVENTOUT
PF14
FSMC_A8
EVENTOUT
PF15
FSMC_A9
EVENTOUT
STM32F415xx, STM32F417xx
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
SYS
TIM1/2
TIM3/4/5
TIM8/9/10
/11
I2C1/2/3
SPI1/SPI2/
I2S2/I2S2e
xt
SPI3/I2Sext
/I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/2
TIM12/13/
14
OTG_FS/
OTG_HS
ETH
FSMC/SDIO
/OTG_FS
DCMI
Port
DocID022063 Rev 5
Port G
AF14
AF15
PG0
FSMC_A10
PG1
FSMC_A11
EVENTOUT
PG2
FSMC_A12
EVENTOUT
PG3
FSMC_A13
EVENTOUT
PG4
FSMC_A14
EVENTOUT
PG5
FSMC_A15
EVENTOUT
PG6
FSMC_INT2
EVENTOUT
FSMC_INT3
EVENTOUT
PG7
USART6_CK
PG8
USART6_
RTS
PG9
USART6_RX
ETH _PPS_OUT
PG10
ETH _MII_TX_EN
ETH _RMII_
TX_EN
PG11
EVENTOUT
STM32F415xx, STM32F417xx
Table 9. Alternate function mapping (continued)
EVENTOUT
FSMC_NE2/
FSMC_NCE3
EVENTOUT
FSMC_
NCE4_1/
FSMC_NE3
EVENTOUT
FSMC_NCE4_
2
EVENTOUT
FSMC_NE4
EVENTOUT
PG12
USART6_
RTS
PG13
UART6_CTS
ETH _MII_TXD0
ETH _RMII_TXD0
FSMC_A24
EVENTOUT
PG14
USART6_TX
ETH _MII_TXD1
ETH _RMII_TXD1
FSMC_A25
EVENTOUT
PG15
USART6_
CTS
DCMI_D13
EVENTOUT
Pinouts and pin description
68/201
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
SYS
TIM1/2
TIM3/4/5
TIM8/9/10
/11
I2C1/2/3
SPI1/SPI2/
I2S2/I2S2e
xt
SPI3/I2Sext
/I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/2
TIM12/13/
14
OTG_FS/
OTG_HS
ETH
FSMC/SDIO
/OTG_FS
DCMI
Port
AF14
PH0
AF15
EVENTOUT
PH1
EVENTOUT
PH2
PH3
PH4
I2C2_SDA
PH6
I2C2_SMB
A
PH7
I2C3_SCL
EVENTOUT
ETH _MII_COL
EVENTOUT
OTG_HS_ULPI_
NXT
I2C2_SCL
PH5
ETH _MII_CRS
EVENTOUT
Pinouts and pin description
69/201
Table 9. Alternate function mapping (continued)
EVENTOUT
TIM12_CH1
ETH _MII_RXD2
EVENTOUT
ETH _MII_RXD3
EVENTOUT
Port H
DocID022063 Rev 5
PH8
I2C3_SDA
PH9
I2C3_SMB
A
TIM12_CH2
DCMI_HSYN
C
EVENTOUT
DCMI_D0
EVENTOUT
PH10
TIM5_CH1
DCMI_D1
EVENTOUT
PH11
TIM5_CH2
DCMI_D2
EVENTOUT
PH12
TIM5_CH3
DCMI_D3
EVENTOUT
PH13
TIM8_CH1N
CAN1_TX
EVENTOUT
PH14
TIM8_CH2N
DCMI_D4
EVENTOUT
PH15
TIM8_CH3N
DCMI_D11
EVENTOUT
STM32F415xx, STM32F417xx
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
SYS
TIM1/2
TIM3/4/5
TIM8/9/10
/11
I2C1/2/3
SPI1/SPI2/
I2S2/I2S2e
xt
SPI3/I2Sext
/I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/2
TIM12/13/
14
OTG_FS/
OTG_HS
ETH
FSMC/SDIO
/OTG_FS
DCMI
Port
PI0
TIM5_CH4
PI1
Port I
AF14
AF15
SPI2_NSS
I2S2_WS
DCMI_D13
EVENTOUT
SPI2_SCK
I2S2_CK
DCMI_D8
EVENTOUT
DCMI_D9
EVENTOUT
DCMI_D10
EVENTOUT
PI2
TIM8_CH4
SPI2_MISO
I2S2ext_SD
PI3
TIM8_ETR
SPI2_MOSI
I2S2_SD
PI4
TIM8_BKIN
DCMI_D5
EVENTOUT
PI5
TIM8_CH1
DCMI_
VSYNC
EVENTOUT
PI6
TIM8_CH2
DCMI_D6
EVENTOUT
PI7
TIM8_CH3
DCMI_D7
EVENTOUT
DocID022063 Rev 5
PI8
PI9
EVENTOUT
CAN1_RX
EVENTOUT
PI10
PI11
STM32F415xx, STM32F417xx
Table 9. Alternate function mapping (continued)
ETH _MII_RX_ER
OTG_HS_ULPI_
DIR
EVENTOUT
EVENTOUT
Pinouts and pin description
70/201
STM32F415xx, STM32F417xx
4
Memory mapping
Memory mapping
The memory map is shown in Figure 18.
Figure 18. STM32F41xxx memory map
2ESERVED
#/24%8-INTERNALPERIPHERALS
2ESERVED
!("
2ESERVED
X%X&&&&&&&&
X%X%&&&&&
X!X$&&&&&&&
X!&&&
X
X#X&&&&&&&
X"&&
!("
X&&&&&&&&
X%
X$&&&&&&&
-BYTE
BLOCK
#ORTEX-gS
INTERNAL
PERIPHERALS
2ESERVED
X
XX&&&&&&&
X&&&&
-BYTE
BLOCK
.OTUSED
X#
X"&&&&&&&
!("
-BYTE
BLOCK
&3-#REGISTERS
X!
X&&&&&&&
X
X&&&&&&&
X
X&&&&&&&
-BYTE
BLOCK
&3-#BANK
BANK
2ESERVED
X
XX&&&&
X&&
-BYTE
BLOCK
&3-#BANK
BANK
-BYTE
BLOCK
0ERIPHERALS
!0"
X
X&&&&&&&
-BYTE
BLOCK
32!X
X&&&&&&&
-BYTE
BLOCK
#ODE
X
2ESERVED
32!-+"ALIASED
BYBITBANDING
XX&&&&&&&
32!-+"ALIASED
BYBITBANDING
XX"&&&
2ESERVED
/PTION"YTES
2ESERVED
3YSTEMMEMORY/40
2ESERVED
##-DATA2!-
+"DATA32!-
2ESERVED
&LASH
2ESERVED
!LIASEDTO&LASHSYSTEM
MEMORYOR32!-DEPENDING
ONTHE"//4PINS
X#X&&&&
2ESERVED
X
XX&&&&
X&&&
X&&&#X&&&&&&&
X&&&#X&&&#
X&&&!X&&&&&&
X&&&X&&&!&
XX&&%&&&&
!0"
XX&&&&
XX&&&&&&&
XX&&&&&
XX&&&&&&
XX&&&&&
X
AIF
DocID022063 Rev 5
71/201
Memory mapping
STM32F415xx, STM32F417xx
Table 10. STM32F41x register boundary addresses
Bus
Cortex-M4
AHB3
AHB2
72/201
Boundary address
Peripheral
0xE00F FFFF - 0xFFFF FFFF
Reserved
0xE000 0000 - 0xE00F FFFF
Cortex-M4 internal peripherals
0xA000 1000 - 0xDFFF FFFF
Reserved
0xA000 0000 - 0xA000 0FFF
FSMC control register
0x9000 0000 - 0x9FFF FFFF
FSMC bank 4
0x8000 0000 - 0x8FFF FFFF
FSMC bank 3
0x7000 0000 - 0x7FFF FFFF
FSMC bank 2
0x6000 0000 - 0x6FFF FFFF
FSMC bank 1
0x5006 0C00- 0x5FFF FFFF
Reserved
0x5006 0800 - 0x5006 0BFF
RNG
0x5006 0400 - 0x5006 07FF
HASH
0x5006 0000 - 0x5006 03FF
CRYP
0x5005 0400 - 0x5005 FFFF
Reserved
0x5005 0000 - 0x5005 03FF
DCMI
0x5004 0000- 0x5004 FFFF
Reserved
0x5000 0000 - 0x5003 FFFF
USB OTG FS
0x4008 0000- 0x4FFF FFFF
Reserved
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Memory mapping
Table 10. STM32F41x register boundary addresses (continued)
Bus
Boundary address
Peripheral
0x4004 0000 - 0x4007 FFFF
USB OTG HS
0x4002 9400 - 0x4003 FFFF
Reserved
0x4002 9000 - 0x4002 93FF
0x4002 8C00 - 0x4002 8FFF
0x4002 8800 - 0x4002 8BFF
ETHERNET MAC
0x4002 8400 - 0x4002 87FF
0x4002 8000 - 0x4002 83FF
AHB1
0x4002 6800 - 0x4002 7FFF
Reserved
0x4002 6400 - 0x4002 67FF
DMA2
0x4002 6000 - 0x4002 63FF
DMA1
0x4002 5000 - 0x4002 5FFF
Reserved
0x4002 4000 - 0x4002 4FFF
BKPSRAM
0x4002 3C00 - 0x4002 3FFF
Flash interface register
0x4002 3800 - 0x4002 3BFF
RCC
0x4002 3400 - 0x4002 37FF
Reserved
0x4002 3000 - 0x4002 33FF
CRC
0x4002 2400 - 0x4002 2FFF
Reserved
0x4002 2000 - 0x4002 23FF
GPIOI
0x4002 1C00 - 0x4002 1FFF
GPIOH
0x4002 1800 - 0x4002 1BFF
GPIOG
0x4002 1400 - 0x4002 17FF
GPIOF
0x4002 1000 - 0x4002 13FF
GPIOE
0x4002 0C00 - 0x4002 0FFF
GPIOD
0x4002 0800 - 0x4002 0BFF
GPIOC
0x4002 0400 - 0x4002 07FF
GPIOB
0x4002 0000 - 0x4002 03FF
GPIOA
0x4001 5800- 0x4001 FFFF
Reserved
DocID022063 Rev 5
73/201
Memory mapping
STM32F415xx, STM32F417xx
Table 10. STM32F41x register boundary addresses (continued)
Bus
APB2
74/201
Boundary address
Peripheral
0x4001 4C00 - 0x4001 57FF
Reserved
0x4001 4800 - 0x4001 4BFF
TIM11
0x4001 4400 - 0x4001 47FF
TIM10
0x4001 4000 - 0x4001 43FF
TIM9
0x4001 3C00 - 0x4001 3FFF
EXTI
0x4001 3800 - 0x4001 3BFF
SYSCFG
0x4001 3400 - 0x4001 37FF
Reserved
0x4001 3000 - 0x4001 33FF
SPI1
0x4001 2C00 - 0x4001 2FFF
SDIO
0x4001 2400 - 0x4001 2BFF
Reserved
0x4001 2000 - 0x4001 23FF
ADC1 - ADC2 - ADC3
0x4001 1800 - 0x4001 1FFF
Reserved
0x4001 1400 - 0x4001 17FF
USART6
0x4001 1000 - 0x4001 13FF
USART1
0x4001 0800 - 0x4001 0FFF
Reserved
0x4001 0400 - 0x4001 07FF
TIM8
0x4001 0000 - 0x4001 03FF
TIM1
0x4000 7800- 0x4000 FFFF
Reserved
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Memory mapping
Table 10. STM32F41x register boundary addresses (continued)
Bus
APB1
Boundary address
Peripheral
0x4000 7800 - 0x4000 7FFF
Reserved
0x4000 7400 - 0x4000 77FF
DAC
0x4000 7000 - 0x4000 73FF
PWR
0x4000 6C00 - 0x4000 6FFF
Reserved
0x4000 6800 - 0x4000 6BFF
CAN2
0x4000 6400 - 0x4000 67FF
CAN1
0x4000 6000 - 0x4000 63FF
Reserved
0x4000 5C00 - 0x4000 5FFF
I2C3
0x4000 5800 - 0x4000 5BFF
I2C2
0x4000 5400 - 0x4000 57FF
I2C1
0x4000 5000 - 0x4000 53FF
UART5
0x4000 4C00 - 0x4000 4FFF
UART4
0x4000 4800 - 0x4000 4BFF
USART3
0x4000 4400 - 0x4000 47FF
USART2
0x4000 4000 - 0x4000 43FF
I2S3ext
0x4000 3C00 - 0x4000 3FFF
SPI3 / I2S3
0x4000 3800 - 0x4000 3BFF
SPI2 / I2S2
0x4000 3400 - 0x4000 37FF
I2S2ext
0x4000 3000 - 0x4000 33FF
IWDG
0x4000 2C00 - 0x4000 2FFF
WWDG
0x4000 2800 - 0x4000 2BFF
RTC & BKP Registers
0x4000 2400 - 0x4000 27FF
Reserved
0x4000 2000 - 0x4000 23FF
TIM14
0x4000 1C00 - 0x4000 1FFF
TIM13
0x4000 1800 - 0x4000 1BFF
TIM12
0x4000 1400 - 0x4000 17FF
TIM7
0x4000 1000 - 0x4000 13FF
TIM6
0x4000 0C00 - 0x4000 0FFF
TIM5
0x4000 0800 - 0x4000 0BFF
TIM4
0x4000 0400 - 0x4000 07FF
TIM3
0x4000 0000 - 0x4000 03FF
TIM2
DocID022063 Rev 5
75/201
Electrical characteristics
STM32F415xx, STM32F417xx
5
Electrical characteristics
5.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
5.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3Σ).
5.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
1.8 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2Σ).
5.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
5.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 19.
5.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 20.
Figure 19. Pin loading conditions
Figure 20. Pin input voltage
34-&PIN
34-&PIN
#P&
/3#?/54(I:WHEN
USING(3%OR,3%
6).
/3#?/54(I:WHEN
USING(3%OR,3%
-36
-36
76/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
5.1.6
Electrical characteristics
Power supply scheme
Figure 21. Power supply scheme
9%$7
9%$7
WR9
*3,2V
,1
9&$3B
9&$3B
î—)
9''
966
îQ)
î—)
/HYHOVKLIWHU
287
9''
%DFNXSFLUFXLWU\
26&.57&
:DNHXSORJLF
%DFNXSUHJLVWHUV
EDFNXS5$0
3RZHU
VZLWFK
,2
/RJLF
.HUQHOORJLF
&38GLJLWDO
5$0
9ROWDJH
UHJXODWRU
)ODVKPHPRU\
%<3$66B5(*
3'5B21
9''
9''$
95()
Q)
—)
5HVHW
FRQWUROOHU
Q)
—)
95()
95()
$'&
$QDORJ
5&V
3//
966$
069
1. Each power supply pair must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be
placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality
of the device.
2. To connect BYPASS_REG and PDR_ON pins, refer to Section 2.2.16: Voltage regulator and Table 2.2.15: Power supply
supervisor.
3. The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the voltage regulator is
OFF.
4. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.
5. VDDA=VDD and VSSA=VSS.
DocID022063 Rev 5
77/201
Electrical characteristics
5.1.7
STM32F415xx, STM32F417xx
Current consumption measurement
Figure 22. Current consumption measurement scheme
)$$?6"!4
6"!4
)$$
6$$
6$$!
AI
5.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 11: Voltage characteristics,
Table 12: Current characteristics, and Table 13: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 11. Voltage characteristics
Symbol
VDD–VSS
VIN
|ΔVDDx|
|VSSX − VSS|
VESD(HBM)
Ratings
Min
Max
–0.3
4.0
Input voltage on five-volt tolerant pin(2)
VSS–0.3
VDD+4
Input voltage on any other pin
VSS–0.3
4.0
Variations between different VDD power pins
-
50
Variations between all the different ground pins
-
50
External main supply voltage (including VDDA, VDD
)(1)
Electrostatic discharge voltage (human body model)
Unit
V
mV
see Section 5.3.14:
Absolute maximum
ratings (electrical
sensitivity)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. VIN maximum value must always be respected. Refer to Table 12 for the values of the maximum allowed
injected current.
78/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Table 12. Current characteristics
Symbol
Ratings
Max.
IVDD
Total current into VDD power lines (source)(1)
240
IVSS
(1)
Total current out of VSS ground lines (sink)
240
Output current sunk by any I/O and control pin
25
Output current source by any I/Os and control pin
25
IIO
IINJ(PIN) (2)
ΣIINJ(PIN)
(4)
Injected current on five-volt tolerant I/O
(3)
Unit
mA
–5/+0
(4)
±5
Injected current on any other pin
Total injected current (sum of all I/O and control pins)
(5)
±25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. Negative injection disturbs the analog performance of the device. See note in Section 5.3.21: 12-bit ADC
characteristics.
3. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 11 for the values of the maximum allowed input voltage.
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 11 for the values of the maximum allowed input voltage.
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
Table 13. Thermal characteristics
Symbol
TSTG
TJ
Ratings
Storage temperature range
Value
Unit
–65 to +150
°C
125
°C
Maximum junction temperature
5.3
Operating conditions
5.3.1
General operating conditions
Table 14. General operating conditions
Symbol
Parameter
Conditions
Min
Typ
Max
VOS bit in PWR_CR register = 0(1)
0
144
VOS bit in PWR_CR register= 1
0
168
fHCLK
Internal AHB clock frequency
fPCLK1
Internal APB1 clock frequency
0
42
fPCLK2
Internal APB2 clock frequency
0
84
1.8(2)
3.6
1.8(2)
2.4
2.4
3.6
1.65
3.6
VDD
VDDA(3)(4)
VBAT
Standard operating voltage
Analog operating voltage
(ADC limited to 1.2 M samples)
Analog operating voltage
(ADC limited to 1.4 M samples)
Must be the same potential as
VDD(5)
Backup operating voltage
DocID022063 Rev 5
Unit
MHz
V
V
V
79/201
Electrical characteristics
STM32F415xx, STM32F417xx
Table 14. General operating conditions (continued)
Symbol
Parameter
Min
Typ
Max
Unit
1.08
1.14
1.20
V
VOS bit in PWR_CR register= 1
Max frequency 168MHz
1.20
1.26
1.32
V
Regulator OFF:
1.2 V external voltage must be
supplied from external regulator
on VCAP_1/VCAP_2 pins
Max frequency 144MHz
1.10
1.14
1.20
V
Max frequency 168MHz
1.20
1.26
1.30
V
Input voltage on RST and FT
pins(6)
2 V ≤ VDD ≤ 3.6 V
–0.3
-
5.5
VDD ≤ 2 V
–0.3
-
5.2
–0.3
-
VDDA+
0.3
-
5.5
Regulator ON:
1.2 V internal voltage on
VCAP_1/VCAP_2 pins
V12
VIN
Conditions
VOS bit in PWR_CR register =
Max frequency 144MHz
Input voltage on TTa pins
0(1)
Input voltage on B pin
PD
Power dissipation at TA = 85 °C
for suffix 6 or TA = 105 °C for
suffix 7(7)
Ambient temperature for 6 suffix
version
TA
Ambient temperature for 7 suffix
version
TJ
Junction temperature range
LQFP64
-
435
LQFP100
-
465
LQFP144
-
500
LQFP176
-
526
UFBGA176
-
513
WLCSP90
-
543
–40
85
Low-power dissipation
–40
105
Maximum power dissipation
–40
105
Low-power dissipation
–40
125
6 suffix version
–40
105
7 suffix version
–40
125
Maximum power dissipation
(8)
(8)
V
mW
°C
°C
°C
1. The average expected gain in power consumption when VOS = 0 compared to VOS = 1 is around 10% for the whole
temperature range, when the system clock frequency is between 30 and 144 MHz.
2. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of
an external power supply supervisor (refer to Section : Internal reset OFF).
3. When the ADC is used, refer to Table 67: ADC characteristics.
4. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.
5. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and
VDDA can be tolerated during power-up and power-down operation.
6. To sustain a voltage higher than VDD+0.3, the internal pull-up and pull-down resistors must be disabled.
7. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
8. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.
80/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Table 15. Limitations depending on the operating power supply range
Operating
power
supply
range
ADC
operation
VDD =1.8 to
2.1 V(3)
Conversion
time up to
1.2 Msps
VDD = 2.1 to
2.4 V
Conversion
time up to
1.2 Msps
VDD = 2.4 to
2.7 V
VDD = 2.7 to
3.6 V(5)
Conversion
time up to
2.4 Msps
Conversion
time up to
2.4 Msps
Maximum
Flash
memory
access
frequency
with no wait
state
(fFlashmax)
20 MHz
(4)
22 MHz
24 MHz
30 MHz
Maximum Flash
memory access
frequency
with wait
states(1) (2)
I/O operation
Possible
Flash
memory
operations
Clock output
Frequency on
I/O pins
160 MHz with 7
wait states
– Degraded
speed
performance up to 30 MHz
– No I/O
compensation
8-bit erase
and program
operations
only
168 MHz with 7
wait states
– Degraded
speed
performance up to 30 MHz
– No I/O
compensation
16-bit erase
and program
operations
168 MHz with 6
wait states
– Degraded
speed
performance
up to 48 MHz
– I/O
compensation
works
16-bit erase
and program
operations
168 MHz with 5
wait states
– up to
60 MHz
– Full-speed
when VDD =
operation
3.0 to 3.6 V
– I/O
– up to
compensation
48 MHz
works
when VDD =
2.7 to 3.0 V
32-bit erase
and program
operations
1. It applies only when code executed from Flash memory access, when code executed from RAM, no wait state is required.
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the
execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state
program execution.
3. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use
of an external power supply supervisor (refer to Section : Internal reset OFF).
4. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and power.
5. The voltage range for OTG USB FS can drop down to 2.7 V. However it is degraded between 2.7 and 3 V.
DocID022063 Rev 5
81/201
Electrical characteristics
5.3.2
STM32F415xx, STM32F417xx
VCAP_1/VCAP_2 external capacitor
Stabilization for the main regulator is achieved by connecting an external capacitor CEXT to
the VCAP_1/VCAP_2 pins. CEXT is specified in Table 16.
Figure 23. External capacitor CEXT
&
(65
5/HDN
069
1. Legend: ESR is the equivalent series resistance.
Table 16. VCAP_1/VCAP_2 operating conditions(1)
Symbol
Parameter
Conditions
CEXT
Capacitance of external capacitor
2.2 µF
ESR
ESR of external capacitor
<2Ω
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be
replaced by two 100 nF decoupling capacitors.
5.3.3
Operating conditions at power-up / power-down (regulator ON)
Subject to general operating conditions for TA.
Table 17. Operating conditions at power-up / power-down (regulator ON)
Symbol
tVDD
5.3.4
Parameter
Min
Max
VDD rise time rate
20
∞
VDD fall time rate
20
∞
Unit
µs/V
Operating conditions at power-up / power-down (regulator OFF)
Subject to general operating conditions for TA.
Table 18. Operating conditions at power-up / power-down (regulator OFF)(1)
Symbol
tVDD
tVCAP
Parameter
Conditions
Min
Max
VDD rise time rate
Power-up
20
∞
VDD fall time rate
Power-down
20
∞
VCAP_1 and VCAP_2 rise time
Power-up
rate
20
∞
VCAP_1 and VCAP_2 fall time
rate
20
∞
Power-down
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below
minimum value of V12.
82/201
DocID022063 Rev 5
Unit
µs/V
STM32F415xx, STM32F417xx
5.3.5
Electrical characteristics
Embedded reset and power control block characteristics
The parameters given in Table 19 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 14.
Table 19. Embedded reset and power control block characteristics
Symbol
VPVD
Parameter
Conditions
Min
Typ
Max
Unit
PLS[2:0]=000 (rising
edge)
2.09
2.14
2.19
V
PLS[2:0]=000 (falling
edge)
1.98
2.04
2.08
V
PLS[2:0]=001 (rising
edge)
2.23
2.30
2.37
V
PLS[2:0]=001 (falling
edge)
2.13
2.19
2.25
V
PLS[2:0]=010 (rising
edge)
2.39
2.45
2.51
V
PLS[2:0]=010 (falling
edge)
2.29
2.35
2.39
V
PLS[2:0]=011 (rising edge)
2.54
2.60
2.65
V
2.44
2.51
2.56
V
2.70
2.76
2.82
V
PLS[2:0]=100 (falling
edge)
2.59
2.66
2.71
V
PLS[2:0]=101 (rising
edge)
2.86
2.93
2.99
V
PLS[2:0]=101 (falling
edge)
2.65
2.84
2.92
V
PLS[2:0]=110 (rising edge)
2.96
3.03
3.10
V
PLS[2:0]=110 (falling
edge)
2.85
2.93
2.99
V
PLS[2:0]=111 (rising edge)
3.07
3.14
3.21
V
PLS[2:0]=111 (falling
edge)
2.95
3.03
3.09
V
-
100
Falling edge
1.60
1.68
1.76
V
Rising edge
1.64
1.72
1.80
V
-
40
Falling edge
2.13
2.19
2.24
V
Rising edge
2.23
2.29
2.33
V
PLS[2:0]=011 (falling
Programmable voltage edge)
detector level selection
PLS[2:0]=100 (rising
edge)
VPVDhyst(1)
PVD hysteresis
VPOR/PDR
Power-on/power-down
reset threshold
VPDRhyst(1)
PDR hysteresis
VBOR1
Brownout level 1
threshold
DocID022063 Rev 5
-
mV
-
mV
83/201
Electrical characteristics
STM32F415xx, STM32F417xx
Table 19. Embedded reset and power control block characteristics (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VBOR2
Brownout level 2
threshold
Falling edge
2.44
2.50
2.56
V
Rising edge
2.53
2.59
2.63
V
VBOR3
Brownout level 3
threshold
Falling edge
2.75
2.83
2.88
V
Rising edge
2.85
2.92
2.97
V
-
100
0.5
1.5
3.0
ms
-
160
200
mA
-
-
5.4
µC
VBORhyst
(1)
BOR hysteresis
TRSTTEMPO(1)(2) Reset temporization
(1)
InRush current on
voltage regulator
power-on (POR or
wakeup from Standby)
ERUSH(1)
InRush energy on
voltage regulator
power-on (POR or
wakeup from Standby)
IRUSH
VDD = 1.8 V, TA = 105 °C,
IRUSH = 171 mA for 31 µs
-
mV
1. Guaranteed by design, not tested in production.
2. The reset temporization is measured from the power-on (POR reset or wakeup from VBAT) to the instant
when first instruction is read by the user application code.
5.3.6
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 22: Current consumption
measurement scheme.
All Run mode current consumption measurements given in this section are performed using
a CoreMark-compliant code.
Typical and maximum current consumption
The MCU is placed under the following conditions:
84/201
•
At startup, all I/O pins are configured as analog inputs by firmware.
•
All peripherals are disabled except if it is explicitly mentioned.
•
The Flash memory access time is adjusted to fHCLK frequency (0 wait state from 0 to
30 MHz, 1 wait state from 30 to 60 MHz, 2 wait states from 60 to 90 MHz, 3 wait states
from 90 to 120 MHz, 4 wait states from 120 to 150 MHz, and 5 wait states from 150 to
168 MHz).
•
When the peripherals are enabled HCLK is the system clock, fPCLK1 = fHCLK/4, and
fPCLK2 = fHCLK/2, except is explicitly mentioned.
•
The maximum values are obtained for VDD = 3.6 V and maximum ambient temperature
(TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless otherwise specified.
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Table 20. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled) or RAM (1)
Max(2)
Typ
Symbol
Parameter
Conditions
External clock(3), all
peripherals enabled(4)(5)
IDD
Supply current in
Run mode
External clock(3), all
peripherals disabled(4)(5)
fHCLK
TA =
25 °C
TA =
85 °C
TA =
105 °C
168 MHz
87
102
109
144 MHz
67
80
86
120 MHz
56
69
75
90 MHz
44
56
62
60 MHz
30
42
49
30 MHz
16
28
35
25 MHz
12
24
31
16 MHz(6)
9
20
28
8 MHz
5
17
24
4 MHz
3
15
22
2 MHz
2
14
21
168 MHz
40
54
61
144 MHz
31
43
50
120 MHz
26
38
45
90 MHz
20
32
39
60 MHz
14
26
33
30 MHz
8
20
27
25 MHz
6
18
25
5
16
24
8 MHz
3
15
22
4 MHz
2
14
21
2 MHz
2
14
21
16 MHz
(6)
Unit
mA
1. Code and data processing running from SRAM1 using boot pins.
2. Guaranteed by characterization results, tested in production at VDD max and fHCLK max with peripherals enabled.
3. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.
4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for
the analog part.
5. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
6. In this case HCLK = system clock/2.
DocID022063 Rev 5
85/201
Electrical characteristics
STM32F415xx, STM32F417xx
Table 21. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled)
Max(1)
Typ
Symbol
Parameter
Conditions
fHCLK
External clock(2),
all peripherals
enabled(3)(4)
IDD
Supply current
in Run mode
External clock(2),
all peripherals
disabled(3)(4)
Unit
TA = 25 °C TA = 85 °C TA = 105 °C
168 MHz
93
109
117
144 MHz
76
89
96
120 MHz
67
79
86
90 MHz
53
65
73
60 MHz
37
49
56
30 MHz
20
32
39
25 MHz
16
27
35
16 MHz
11
23
30
8 MHz
6
18
25
4 MHz
4
16
23
2 MHz
3
15
22
168 MHz
46
61
69
144 MHz
40
52
60
120 MHz
37
48
56
90 MHz
30
42
50
60 MHz
22
33
41
30 MHz
12
24
31
25 MHz
10
21
29
16 MHz
7
19
26
8 MHz
4
16
23
4 MHz
3
15
22
2 MHz
2
14
21
mA
1. Guaranteed by characterization results, tested in production at VDD max and fHCLK max with peripherals enabled.
2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.
3. When analog peripheral blocks such as (ADCs, DACs, HSE, LSE, HSI,LSI) are on, an additional power consumption
should be considered.
4.
When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC
for the analog part.
86/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Figure 24. Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator ON) or RAM, and peripherals OFF
)$$25.M!
#
#
#
#
#
#
#05&REQUENCY-(Z
-36
Figure 25. Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator ON) or RAM, and peripherals ON
)$$25.M!
#
#
#
#
#
#
#05&REQUENCY-(Z
-36
DocID022063 Rev 5
87/201
Electrical characteristics
STM32F415xx, STM32F417xx
Figure 26. Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF
)$$25.M!
#
#
#
#
#
#
#05&REQUENCY-(Z
-36
Figure 27. Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON
)$$25.M!
#
#
#
#
#
#
#05&REQUENCY-(Z
-36
88/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Table 22. Typical and maximum current consumption in Sleep mode
Max(1)
Typ
Symbol
Parameter
Conditions
External clock(2),
all peripherals enabled(3)
IDD
Supply current in
Sleep mode
External clock(2), all
peripherals disabled
fHCLK
TA =
25 °C
TA =
85 °C
TA =
105 °C
168 MHz
59
77
84
144 MHz
46
61
67
120 MHz
38
53
60
90 MHz
30
44
51
60 MHz
20
34
41
30 MHz
11
24
31
25 MHz
8
21
28
16 MHz
6
18
25
8 MHz
3
16
23
4 MHz
2
15
22
2 MHz
2
14
21
168 MHz
12
27
35
144 MHz
9
22
29
120 MHz
8
20
28
90 MHz
7
19
26
60 MHz
5
17
24
30 MHz
3
16
23
25 MHz
2
15
22
16 MHz
2
14
21
8 MHz
1
14
21
4 MHz
1
13
21
2 MHz
1
13
21
Unit
mA
1. Guaranteed by characterization results, tested in production at VDD max and fHCLK max with peripherals enabled.
2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.
3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
DocID022063 Rev 5
89/201
Electrical characteristics
STM32F415xx, STM32F417xx
Table 23. Typical and maximum current consumptions in Stop mode
Typ
Symbol
Parameter
Supply
current in
Stop mode
with main
regulator in
Run mode
IDD_STOP
Supply
current in
Stop mode
with main
regulator in
Low-power
mode
Conditions
Max
TA =
25 °C
TA =
25 °C
Flash in Stop mode, low-speed and highspeed internal RC oscillators and high-speed
oscillator OFF (no independent watchdog)
0.45
1.5
11.00
20.00
Flash in Deep power-down mode, low-speed
and high-speed internal RC oscillators and
high-speed oscillator OFF (no independent
watchdog)
0.40
1.5
11.00
20.00
Flash in Stop mode, low-speed and highspeed internal RC oscillators and high-speed
oscillator OFF (no independent watchdog)
0.31
1.1
8.00
15.00
Flash in Deep power-down mode, low-speed
and high-speed internal RC oscillators and
high-speed oscillator OFF (no independent
watchdog)
0.28
1.1
8.00
15.00
TA =
TA =
85 °C 105 °C
Unit
mA
Table 24. Typical and maximum current consumptions in Standby mode
Max(1)
Typ
Symbol
Parameter
TA =
105 °C
VDD =
1.8 V
VDD=
2.4 V
VDD =
3.3 V
3.0
3.4
4.0
20
36
2.4
2.7
3.3
16
32
2.4
2.6
3.0
12.5
24.8
1.7
1.9
2.2
9.8
19.2
Backup SRAM ON, lowspeed oscillator and RTC ON
Backup SRAM OFF, lowSupply current speed oscillator and RTC ON
IDD_STBY in Standby
Backup SRAM ON, RTC
mode
OFF
Backup SRAM OFF, RTC
OFF
Unit
VDD = 3.6 V
µA
1. Guaranteed by characterization results, not tested in production.
90/201
TA =
85 °C
TA = 25 °C
Conditions
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Table 25. Typical and maximum current consumptions in VBAT mode
Max(1)
Typ
Symbol
Parameter
Backup
IDD_VBA domain
supply
T
current
TA =
85 °C
TA = 25 °C
Conditions
TA =
105 °C
VBAT
=
1.8 V
VBAT=
2.4 V
VBAT
=
3.3 V
VBAT = 3.6 V
Backup SRAM ON, low-speed
oscillator and RTC ON
1.29
1.42
1.68
6
11
Backup SRAM OFF, low-speed
oscillator and RTC ON
0.62
0.73
0.96
3
5
Backup SRAM ON, RTC OFF
0.79
0.81
0.86
5
10
Backup SRAM OFF, RTC OFF
0.10
0.10
0.10
2
4
Unit
µA
1. Guaranteed by characterization results, not tested in production.
Figure 28. Typical VBAT current consumption (LSE and RTC ON/backup RAM OFF)
ϯ͘ϱ
ϯ
/sdŝŶ;ђͿ
Ϯ͘ϱ
ϭ͘ϲϱs
ϭ͘ϴs
Ϯ
Ϯs
Ϯ͘ϰs
ϭ͘ϱ
Ϯ͘ϳs
ϯs
ϯ͘ϯs
ϭ
ϯ͘ϲs
Ϭ͘ϱ
Ϭ
Ϭ
ϭϬ
ϮϬ
ϯϬ
ϰϬ
ϱϬ
ϲϬ
ϳϬ
ϴϬ
ϵϬ
ϭϬϬ
dĞŵƉĞƌĂƚƵƌĞŝŶ;ΣͿ
-36
DocID022063 Rev 5
91/201
Electrical characteristics
STM32F415xx, STM32F417xx
Figure 29. Typical VBAT current consumption (LSE and RTC ON/backup RAM ON)
ϲ
ϱ
/sdŝŶ;ђͿ
ϰ
ϭ͘ϲϱs
ϭ͘ϴs
Ϯs
ϯ
Ϯ͘ϰs
Ϯ͘ϳs
ϯs
Ϯ
ϯ͘ϯs
ϯ͘ϲs
ϭ
Ϭ
Ϭ
ϭϬ
ϮϬ
ϯϬ
ϰϬ
ϱϬ
ϲϬ
ϳϬ
ϴϬ
ϵϬ
ϭϬϬ
dĞŵƉĞƌĂƚƵƌĞŝŶ;ΣͿ
-36
92/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Additional current consumption
The MCU is placed under the following conditions:
•
All I/O pins are configured in analog mode.
•
The Flash memory access time is adjusted to fHCLK frequency.
•
The voltage scaling is adjusted to fHCLK frequency as follows:
–
Scale 2 for fHCLK ≤ 144 MHz
–
Scale 1 for 144 MHz < fHCLK ≤ 168 MHz.
•
The system clock is HCLK, fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2.
•
The HSE crystal clock frequency is 25 MHz.
•
TA= 25 °C.
Table 26. Typical current consumption in Run mode, code with data processing
running from Flash memory, regulator ON (ART accelerator enabled
except prefetch), VDD = 1.8 V(1)
Symbol
IDD
Parameter
Conditions
Supply current in
Run mode
All peripheral
disabled
fHCLK (MHz)
Typ. at TA =
25 °C
160
36.2
144
29.3
120
24.7
90
19.3
60
13.4
30
7.7
25
6.0
Unit
mA
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals
(such as ADC or DAC) is not included.
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 48: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution:
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
DocID022063 Rev 5
93/201
Electrical characteristics
STM32F415xx, STM32F417xx
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 28: Peripheral current consumption), the I/Os used by an application also contribute
to the current consumption. When an I/O pin switches, it uses the current from the MCU
supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load
(internal or external) connected to the pin:
I SW = V DD × f SW × C
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
94/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Table 27. Switching output I/O current consumption
Symbol
Parameter
Conditions(1)
I/O toggling
frequency (fSW)
Typ
2 MHz
0.02
8 MHz
0.14
25 MHz
0.51
50 MHz
0.86
60 MHz
1.30
2 MHz
0.10
8 MHz
0.38
25 MHz
1.18
50 MHz
2.47
60 MHz
2.86
2 MHz
0.17
8 MHz
0.66
25 MHz
1.70
50 MHz
2.65
60 MHz
3.48
2 MHz
0.23
8 MHz
0.95
25 MHz
3.20
50 MHz
4.69
60 MHz
8.06
2 MHz
0.30
8 MHz
1.22
25 MHz
3.90
50 MHz
8.82
60 MHz
-(3)
VDD = 3.3 V(2)
C = CINT
VDD = 3.3 V
CEXT = 0 pF
C = CINT + CEXT+ CS
IDDIO
I/O switching
current
VDD = 3.3 V
CEXT = 10 pF
C = CINT + CEXT+ CS
VDD = 3.3 V
CEXT = 22 pF
C = CINT + CEXT+ CS
VDD = 3.3 V
CEXT = 33 pF
C = CINT + CEXT+ CS
Unit
mA
1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value).
2. This test is performed by cutting the LQFP package pin (pad removal).
3. At 60 MHz, C maximum load is specified 30 pF.
DocID022063 Rev 5
95/201
Electrical characteristics
STM32F415xx, STM32F417xx
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 28. The MCU is placed
under the following conditions:
•
At startup, all I/O pins are configured as analog pins by firmware.
•
All peripherals are disabled unless otherwise mentioned
•
The code is running from Flash memory and the Flash memory access time is equal to
5 wait states at 168 MHz.
•
The code is running from Flash memory and the Flash memory access time is equal to
4 wait states at 144 MHz, and the power scale mode is set to 2.
•
The ART accelerator is ON.
•
The given value is calculated by measuring the difference of current consumption
–
with all peripherals clocked off
–
with one peripheral clocked on (with only the clock applied)
•
When the peripherals are enabled: HCLK is the system clock, fPCLK1 = fHCLK/4, and
fPCLK2 = fHCLK/2.
•
The typical values are obtained for VDD = 3.3 V and TA= 25 °C, unless otherwise
specified.
Table 28. Peripheral current consumption
IDD(Typ)(1)
Peripheral
AHB1
(up to 168 MHz)
96/201
Scale1
Scale2
(up t 168 MHz)
(up to 144 MHz)
GPIOA
2.70
2.40
GPIOB
2.50
2.22
GPIOC
2.54
2.28
GPIOD
2.55
2.28
GPIOE
2.68
2.40
GPIOF
2.53
2.28
GPIOG
2.51
2.22
GPIOH
2.51
2.22
GPIOI
2.50
2.22
OTG_HS+ULPI
28.33
25.38
CRC
0.41
0.40
BKPSRAM
0.63
0.58
DMA1
37.44
33.58
DMA2
37.69
33.93
ETH_MAC
ETH_MAC_TX
ETH_MAC_RX
ETH_MAC_PTP
20.43
18.39
DocID022063 Rev 5
Unit
µA/MHz
STM32F415xx, STM32F417xx
Electrical characteristics
Table 28. Peripheral current consumption (continued)
IDD(Typ)(1)
Peripheral
AHB2
(up to 168 MHz)
AHB3
(up to 168 MHz)
Unit
Scale1
Scale2
(up t 168 MHz)
(up to 144 MHz)
OTG_FS
26.45
26.67
DCMI
5.87
5.35
RNG
1.50
1.67
Hash
9.73
8.86
Crypto
2.23
2.08
FSMC
12.46
11.31
µA/MHz
13.10
11.81
µA/MHz
Bus matrix(2)
DocID022063 Rev 5
µA/MHz
97/201
Electrical characteristics
STM32F415xx, STM32F417xx
Table 28. Peripheral current consumption (continued)
IDD(Typ)(1)
Peripheral
APB1
(up to 42 MHz)
98/201
Scale1
Scale2
(up t 168 MHz)
(up to 144 MHz)
TIM2
16.71
16.50
TIM3
12.33
11.94
TIM4
13.45
12.92
TIM5
17.14
16.58
TIM6
2.43
3.06
TIM7
2.43
2.22
TIM12
6.62
6.83
TIM13
5.05
5.47
TIM14
5.26
5.61
PWR
1.00
0.56
USART2
2.69
2.78
USART3
2.74
2.78
UART4
3.24
3.33
UART5
2.69
2.78
I2C1
2.67
2.50
I2C2
2.83
2.78
I2C3
2.81
2.78
SPI2
2.43
2.22
SPI3
2.43
2.22
(3)
I2S2
2.43
2.22
I2S3(3)
2.26
2.22
CAN1
5.12
5.56
CAN2
4.81
5.28
(4)
DAC
1.67
1.67
WWDG
1.00
0.83
DocID022063 Rev 5
Unit
µA/MHz
STM32F415xx, STM32F417xx
Electrical characteristics
Table 28. Peripheral current consumption (continued)
IDD(Typ)(1)
Peripheral
APB2
(up to 84 MHz)
Scale1
Scale2
(up t 168 MHz)
(up to 144 MHz)
SDIO
7.08
7.92
TIM1
16.79
15.51
TIM8
17.88
16.53
TIM9
7.64
7.28
TIM10
4.89
4.82
TIM11
5.19
4.82
ADC1(5)
4.67
4.58
ADC2
(5)
4.67
4.58
ADC3
(5)
4.43
4.44
SPI1
1.32
1.39
USART1
3.51
3.72
USART6
3.55
3.75
SYSCFG
0.74
0.56
Unit
µA/MHz
1. When the I/O compensation cell is ON, IDD typical value increases by 0.22 mA.
2. The BusMatrix is automatically active when at least one master is ON.
3. To enable an I2S peripheral, first set the I2SMOD bit and then the I2SE bit in the SPI_I2SCFGR register.
4. When the DAC is ON and EN1/2 bits are set in DAC_CR register, add an additional power consumption of
0.8 mA per DAC channel for the analog part.
5. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of
1.6 mA per ADC for the analog part.
5.3.7
Wakeup time from low-power mode
The wakeup times given in Table 29 is measured on a wakeup phase with a 16 MHz HSI
RC oscillator. The clock source used to wake up the device depends from the current
operating mode:
•
Stop or Standby mode: the clock source is the RC oscillator
•
Sleep mode: the clock source is the clock that was set before entering Sleep mode.
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 14.
DocID022063 Rev 5
99/201
Electrical characteristics
STM32F415xx, STM32F417xx
Table 29. Low-power mode wakeup timings
Min(1)
Typ(1)
Max(1)
Unit
Wakeup from Sleep mode
-
5
-
CPU
clock
cycle
Wakeup from Stop mode (regulator in Run mode and
Flash memory in Stop mode)
-
13
-
Wakeup from Stop mode (regulator in low-power mode
and Flash memory in Stop mode)
-
17
40
Wakeup from Stop mode (regulator in Run mode and
Flash memory in Deep power-down mode)
-
105
-
Wakeup from Stop mode (regulator in low-power mode
and Flash memory in Deep power-down mode)
-
110
-
260
375
480
Symbol
Parameter
tWUSLEEP(2)
tWUSTOP(2)
tWUSTDBY(2)(3)
Wakeup from Standby mode
µs
µs
1. Guaranteed by characterization results, not tested in production.
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.
3. tWUSTDBY minimum and maximum values are given at 105 °C and –45 °C, respectively.
5.3.8
External clock source characteristics
High-speed external user clock generated from an external source
The characteristics given in Table 30 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 14.
Table 30. High-speed external user clock characteristics
Symbol
Parameter
Conditions
Typ
Max
Unit
1
-
50
MHz
fHSE_ext
External user clock source
frequency(1)
VHSEH
OSC_IN input pin high level voltage
0.7VDD
-
VDD
VHSEL
OSC_IN input pin low level voltage
VSS
-
0.3VDD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1)
5
-
-
tr(HSE)
tf(HSE)
Cin(HSE)
IL
V
ns
OSC_IN rise or fall time
(1)
OSC_IN input capacitance(1)
DuCy(HSE) Duty cycle
OSC_IN Input leakage current
VSS ≤ VIN ≤ VDD
1. Guaranteed by design, not tested in production.
100/201
Min
DocID022063 Rev 5
-
-
10
-
5
-
pF
45
-
55
%
-
-
±1
µA
STM32F415xx, STM32F417xx
Electrical characteristics
Low-speed external user clock generated from an external source
The characteristics given in Table 31 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 14.
Table 31. Low-speed external user clock characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
-
32.768
1000
kHz
0.7VDD
-
VDD
fLSE_ext
User External clock source
frequency(1)
VLSEH
OSC32_IN input pin high level
voltage
VLSEL
OSC32_IN input pin low level voltage
VSS
-
0.3VDD
tw(LSE)
tf(LSE)
OSC32_IN high or low time(1)
450
-
-
tr(LSE)
tf(LSE)
Cin(LSE)
DuCy(LSE)
IL
V
ns
OSC32_IN rise or fall
time(1)
OSC32_IN input capacitance(1)
Duty cycle
VSS ≤ VIN ≤ VDD
OSC32_IN Input leakage current
-
-
50
-
5
-
pF
30
-
70
%
-
-
±1
µA
1. Guaranteed by design, not tested in production.
Figure 30. High-speed external clock source AC timing diagram
6(3%(
6(3%,
TR(3%
TF(3%
T7(3% T
T7(3%
4(3%
%XTERNAL
CLOCKSOURCE
F(3%?EXT
/3#?).
),
34-&
AI
DocID022063 Rev 5
101/201
Electrical characteristics
STM32F415xx, STM32F417xx
Figure 31. Low-speed external clock source AC timing diagram
6,3%(
6,3%,
TR,3%
TF,3%
T7,3%
/3#?).
),
T7,3% T
4,3%
F,3%?EXT
%XTERNAL
CLOCKSOURCE
34-&
AI
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 32. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 32. HSE 4-26 MHz oscillator characteristics (1)
Symbol
Min
Typ
Max
Unit
Oscillator frequency
4
-
26
MHz
RF
Feedback resistor
-
200
-
kΩ
Gm
Oscillator transconductance
5
-
-
Gmcritmax
Maximum critical crystal Gm
-
-
1
-
2
-
fOSC_IN
Parameter
tSU(HSE)(2) Startup time
Conditions
Startup
VDD is stabilized
mA/V
ms
1. Guaranteed by design, not tested in production.
2. Guaranteed by characterization, not tested in production. tSU(HSE) is the startup time measured from the
moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for
a standard crystal resonator and can vary significantly with the crystal manufacturer
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 32). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
102/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Note:
Electrical characteristics
For information on electing the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 32. Typical application with an 8 MHz crystal
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
&/
I+6(
26&B,1
0+]
UHVRQDWRU
5(;7
&/
5)
%LDV
FRQWUROOHG
JDLQ
26&B28 7
670)
DL
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 33. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 33. LSE oscillator characteristics (fLSE = 32.768 kHz) (1)
Symbol
Min
Typ
Max
Unit
Oscillator frequency
-
32.768
-
MHz
RF
Feedback resistor
-
18.4
-
MΩ
IDD
LSE current consumption
-
-
1
µA
Gm
Oscillator transconductance
2.8
-
-
-
-
0.56
-
2
-
fOSC_IN
Parameter
Gmcritmax Maximum critical crystal Gm
tSU(LSE)(2) startup time
Conditions
Startup
VDD is stabilized
µA/V
s
1. Guaranteed by design, not tested in production.
2. Guaranteed by characterization, not tested in production. tSU(LSE) is the startup time measured from the
moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is
measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer
Note:
For information on electing the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
DocID022063 Rev 5
103/201
Electrical characteristics
STM32F415xx, STM32F417xx
Figure 33. Typical application with a 32.768 kHz crystal
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
&/
I/6(
26&B,1
%LDV
5) FRQWUROOHG
JDLQ
N+ ]
UHVRQDWRU
26&B28 7
&/
670)
DL
5.3.9
Internal clock source characteristics
The parameters given in Table 34 and Table 35 are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 14.
High-speed internal (HSI) RC oscillator
Table 34. HSI oscillator characteristics (1)
Symbol
Parameter
fHSI
Conditions
Min
Typ
Max
Unit
-
16
-
MHz
-
-
1
%
TA = –40 to
105 °C(2)
–8
-
4.5
%
TA = –10 to 85 °C(2)
–4
-
4
%
TA = 25 °C
–1
-
1
%
HSI oscillator
startup time
-
2.2
4
µs
HSI oscillator
power consumption
-
60
80
µA
Frequency
User-trimmed with the RCC_CR
register
Accuracy of the HSI
oscillator
Factorycalibrated
ACCHSI
tsu(HSI)(3)
IDD(HSI)
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Guaranteed by characterization results not tested in production.
3. Guaranteed by design, not tested in production.
Low-speed internal (LSI) RC oscillator
Table 35. LSI oscillator characteristics (1)
Symbol
fLSI(2)
tsu(LSI)(3)
IDD(LSI)
(3)
Parameter
Min
Typ
Max
Unit
17
32
47
kHz
LSI oscillator startup time
-
15
40
µs
LSI oscillator power consumption
-
0.4
0.6
µA
Frequency
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.
2. Guaranteed by characterization results, not tested in production.
3. Guaranteed by design, not tested in production.
104/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Figure 34. ACCLSI versus temperature
MAX
AVG
MIN
.ORMALIZEDDEVIATI ON
4EMPERAT URE #
-36
5.3.10
PLL characteristics
The parameters given in Table 36 and Table 37 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Table 14.
Table 36. Main PLL characteristics
Symbol
Parameter
fPLL_IN
PLL input clock(1)
fPLL_OUT
PLL multiplier output clock
fPLL48_OUT
48 MHz PLL multiplier output
clock
fVCO_OUT
PLL VCO output
tLOCK
PLL lock time
Conditions
Min
Typ
Max
Unit
0.95(2)
1
2.10
MHz
24
-
168
MHz
-
48
75
MHz
192
-
432
MHz
VCO freq = 192 MHz
75
-
200
VCO freq = 432 MHz
100
-
300
DocID022063 Rev 5
µs
105/201
Electrical characteristics
STM32F415xx, STM32F417xx
Table 36. Main PLL characteristics (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
RMS
-
25
-
peak
to
peak
-
±150
-
RMS
-
15
-
peak
to
peak
-
±200
-
Main clock output (MCO) for
RMII Ethernet
Cycle to cycle at 50 MHz
on 1000 samples
-
32
-
Main clock output (MCO) for MII
Ethernet
Cycle to cycle at 25 MHz
on 1000 samples
-
40
-
Bit Time CAN jitter
Cycle to cycle at 1 MHz
on 1000 samples
-
330
-
IDD(PLL)(4)
PLL power consumption on VDD
VCO freq = 192 MHz
VCO freq = 432 MHz
0.15
0.45
-
0.40
0.75
mA
IDDA(PLL)(4)
PLL power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55
-
0.40
0.85
mA
Cycle-to-cycle jitter
System clock
120 MHz
Period Jitter
Jitter
(3)
Unit
ps
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between PLL and PLLI2S.
2. Guaranteed by design, not tested in production.
3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.
4. Guaranteed by characterization results, not tested in production.
Table 37. PLLI2S (audio PLL) characteristics
Symbol
Parameter
fPLLI2S_IN
PLLI2S input clock(1)
fPLLI2S_OUT
PLLI2S multiplier output clock
fVCO_OUT
PLLI2S VCO output
tLOCK
PLLI2S lock time
Master I2S clock jitter
(3)
Jitter
WS I2S clock jitter
106/201
Conditions
Min
Typ
Max
Unit
0.95(2)
1
2.10
MHz
-
-
216
MHz
192
-
432
MHz
VCO freq = 192 MHz
75
-
200
VCO freq = 432 MHz
100
-
300
RMS
-
90
-
peak
to
peak
-
±280
-
ps
Average frequency of
12.288 MHz
N = 432, R = 5
on 1000 samples
-
90
-
ps
Cycle to cycle at 48 KHz
on 1000 samples
-
400
-
ps
Cycle to cycle at
12.288 MHz on
48KHz period,
N=432, R=5
DocID022063 Rev 5
µs
STM32F415xx, STM32F417xx
Electrical characteristics
Table 37. PLLI2S (audio PLL) characteristics (continued)
Symbol
Parameter
Conditions
IDD(PLLI2S)(4)
PLLI2S power consumption on
VDD
VCO freq = 192 MHz
VCO freq = 432 MHz
IDDA(PLLI2S)(4)
PLLI2S power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
Min
Typ
Max
Unit
0.15
0.45
-
0.40
0.75
mA
-
0.40
0.85
mA
0.30
0.55
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
2. Guaranteed by design, not tested in production.
3. Value given with main PLL running.
4. Guaranteed by characterization results, not tested in production.
5.3.11
PLL spread spectrum clock generation (SSCG) characteristics
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic
interferences (see Table 44: EMI characteristics). It is available only on the main PLL.
Table 38. SSCG parameters constraint
Symbol
Parameter
Min
Typ
Max(1)
Unit
fMod
Modulation frequency
-
-
10
KHz
md
Peak modulation depth
0.25
-
2
%
-
215−1
-
MODEPER * INCSTEP
-
1. Guaranteed by design, not tested in production.
Equation 1
The frequency modulation period (MODEPER) is given by the equation below:
MODEPER = round [ f PLL_IN ⁄ ( 4 × fMod ) ]
fPLL_IN and fMod must be expressed in Hz.
As an example:
If fPLL_IN = 1 MHz, and fMOD = 1 kHz, the modulation depth (MODEPER) is given by
equation 1:
6
3
MODEPER = round [ 10 ⁄ ( 4 × 10 ) ] = 250
Equation 2
Equation 2 allows to calculate the increment step (INCSTEP):
INCSTEP = round [ ( ( 2
15
– 1 ) × md × PLLN ) ⁄ ( 100 × 5 × MODEPER ) ]
fVCO_OUT must be expressed in MHz.
DocID022063 Rev 5
107/201
Electrical characteristics
STM32F415xx, STM32F417xx
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):
INCSTEP = round [ ( ( 2
15
– 1 ) × 2 × 240 ) ⁄ ( 100 × 5 × 250 ) ] = 126md(quantitazed)%
An amplitude quantization error may be generated because the linear modulation profile is
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage
quantized modulation depth is given by the following formula:
md quantized % = ( MODEPER × INCSTEP × 100 × 5 ) ⁄ ( ( 2
15
– 1 ) × PLLN )
As a result:
md quantized % = ( 250 × 126 × 100 × 5 ) ⁄ ( ( 2
15
– 1 ) × 240 ) = 2,002%(peak)
Figure 35 and Figure 36 show the main PLL output clock waveforms in center spread and
down spread modes, where:
F0 is fPLL_OUT nominal.
Tmode is the modulation period.
md is the modulation depth.
Figure 35. PLL output clock waveforms in center spread mode
&REQUENCY0,,?/54
MD
&
MD
TMODE
XTMODE
4IME
AI
108/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Figure 36. PLL output clock waveforms in down spread mode
&REQUENCY0,,?/54
&
XMD
TMODE
4IME
XTMODE
AI
5.3.12
Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
The devices are shipped to customers with the Flash memory erased.
Table 39. Flash memory characteristics
Symbol
IDD
Parameter
Supply current
Conditions
Min
Typ
Max
Write / Erase 8-bit mode, VDD = 1.8 V
-
5
-
Write / Erase 16-bit mode, VDD = 2.1 V
-
8
-
Write / Erase 32-bit mode, VDD = 3.3 V
-
12
-
Unit
mA
Table 40. Flash memory programming
Symbol
tprog
Parameter
Word programming time
tERASE16KB Sector (16 KB) erase time
Conditions
Min(1)
Typ
Max(1) Unit
Program/erase parallelism
(PSIZE) = x 8/16/32
-
16
100(2)
Program/erase parallelism
(PSIZE) = x 8
-
400
800
Program/erase parallelism
(PSIZE) = x 16
-
300
600
Program/erase parallelism
(PSIZE) = x 32
-
250
500
DocID022063 Rev 5
µs
ms
109/201
Electrical characteristics
STM32F415xx, STM32F417xx
Table 40. Flash memory programming (continued)
Symbol
Parameter
tERASE64KB Sector (64 KB) erase time
tERASE128KB Sector (128 KB) erase time
tME
Vprog
Mass erase time
Programming voltage
Conditions
Min(1)
Typ
Program/erase parallelism
(PSIZE) = x 8
-
1200
2400
Program/erase parallelism
(PSIZE) = x 16
-
700
1400
Program/erase parallelism
(PSIZE) = x 32
-
550
1100
Program/erase parallelism
(PSIZE) = x 8
-
2
4
Program/erase parallelism
(PSIZE) = x 16
-
1.3
2.6
Program/erase parallelism
(PSIZE) = x 32
-
1
2
Program/erase parallelism
(PSIZE) = x 8
-
16
32
Program/erase parallelism
(PSIZE) = x 16
-
11
22
Program/erase parallelism
(PSIZE) = x 32
-
8
16
32-bit program operation
2.7
-
3.6
V
16-bit program operation
2.1
-
3.6
V
8-bit program operation
1.8
-
3.6
V
1. Guaranteed by characterization results, not tested in production.
2. The maximum programming time is measured after 100K erase operations.
110/201
DocID022063 Rev 5
Max(1) Unit
ms
s
s
STM32F415xx, STM32F417xx
Electrical characteristics
Table 41. Flash memory programming with VPP
Symbol
Parameter
Conditions
tprog
Double word programming
tERASE16KB
Sector (16 KB) erase time
tERASE64KB
Sector (64 KB) erase time
tERASE128KB Sector (128 KB) erase time
tME
Min(1)
Typ
Max(1)
Unit
-
16
100(2)
µs
-
230
-
-
490
-
-
875
-
-
6.9
-
s
2.7
-
3.6
V
TA = 0 to +40 °C
VDD = 3.3 V
VPP = 8.5 V
Mass erase time
ms
Vprog
Programming voltage
VPP
VPP voltage range
7
-
9
V
IPP
Minimum current sunk on
the VPP pin
10
-
-
mA
-
-
1
hour
tVPP(3)
Cumulative time during
which VPP is applied
1. Guaranteed by design, not tested in production.
2. The maximum programming time is measured after 100K erase operations.
3. VPP should only be connected during programming/erasing.
Table 42. Flash memory endurance and data retention
Value
Symbol
NEND
tRET
Parameter
Endurance
Data retention
Conditions
Min(1)
TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions)
10
1 kcycle(2) at TA = 85 °C
30
1 kcycle
(2)
10 kcycles
at TA = 105 °C
10
(2)
20
at TA = 55 °C
Unit
kcycles
Years
1. Guaranteed by characterization results, not tested in production.
2. Cycling performed over the whole temperature range.
5.3.13
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
•
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
DocID022063 Rev 5
111/201
Electrical characteristics
STM32F415xx, STM32F417xx
A device reset allows normal operations to be resumed.
The test results are given in Table 43. They are based on the EMS levels and classes
defined in application note AN1709.
Table 43. EMS characteristics
Symbol
Parameter
Conditions
Level/
Class
VFESD
VDD = 3.3 V, LQFP176, TA = +25 °C,
Voltage limits to be applied on any I/O pin to
fHCLK = 168 MHz, conforms to
induce a functional disturbance
IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP176, TA =
+25 °C, fHCLK = 168 MHz, conforms
to IEC 61000-4-2
4A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
•
Corrupted program counter
•
Unexpected reset
•
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
112/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application,
executing EEMBC? code, is running. This emission test is compliant with SAE IEC61967-2
standard which specifies the test board and the pin loading.
Table 44. EMI characteristics
Symbol
Parameter
Max vs.
[fHSE/fCPU]
Monitored
frequency band
Conditions
Unit
25/168 MHz
VDD = 3.3 V, TA = 25 °C, LQFP176
package, conforming to SAE J1752/3
EEMBC, code running from Flash with
ART accelerator enabled
SEMI
5.3.14
0.1 to 30 MHz
32
30 to 130 MHz
25
130 MHz to 1GHz
29
SAE EMI Level
4
0.1 to 30 MHz
19
30 to 130 MHz
16
130 MHz to 1GHz
18
SAE EMI level
3.5
Peak level
VDD = 3.3 V, TA = 25 °C, LQFP176
package, conforming to SAE J1752/3
EEMBC, code running from Flash with
ART accelerator and PLL spread
spectrum enabled
dBµV
-
dBµV
-
Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 45. ESD absolute maximum ratings
Symbol
Ratings
Conditions
Class
Maximum
value(1)
2
2000(2)
VESD(HBM)
Electrostatic discharge
voltage (human body
model)
TA = +25 °C conforming to JESD22-A114
VESD(CDM)
Electrostatic discharge
voltage (charge device
model)
TA = +25 °C conforming to
ANSI/ESD STM5.3.1
Unit
V
II
500
1. Guaranteed by characterization results, not tested in production.
2. On VBAT pin, VESD(HBM) is limited to 1000 V.
DocID022063 Rev 5
113/201
Electrical characteristics
STM32F415xx, STM32F417xx
Static latchup
Two complementary static tests are required on six parts to assess the latchup
performance:
•
A supply overvoltage is applied to each power supply pin
•
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latchup standard.
Table 46. Electrical sensitivities
Symbol
LU
5.3.15
Parameter
Static latch-up class
Conditions
TA = +105 °C conforming to JESD78A
Class
II level A
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of
5 μA/+0 μA range), or other functional failure (for example reset, oscillator frequency
deviation).
Negative induced leakage current is caused by negative injection and positive induced
leakage current by positive injection.
The test results are given in Table 47.
114/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Table 47. I/O current injection susceptibility
Functional susceptibility
Symbol
IINJ(1)
Description
Negative
injection
Positive
injection
Injected current on BOOT0 pin
−0
NA
Injected current on NRST pin
−0
NA
Injected current on PE2, PE3, PE4, PE5, PE6,
PI8, PC13, PC14, PC15, PI9, PI10, PI11, PF0,
PF1, PF2, PF3, PF4, PF5, PF10, PH0/OSC_IN,
PH1/OSC_OUT, PC0, PC1, PC2, PC3, PB6,
PB7, PB8, PB9, PE0, PE1, PI4, PI5, PI6, PI7,
PDR_ON, BYPASS_REG
−0
NA
Injected current on all FT pins
−5
NA
Injected current on any other pin
−5
+5
Unit
mA
1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.
5.3.16
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 48 are derived from tests
performed under the conditions summarized in Table 14. All I/Os are CMOS and TTL
compliant.
Table 48. I/O static characteristics
Symbol
Parameter
FT, TTa and NRST I/O input low
level voltage
VIL
BOOT0 I/O input low level
voltage
FT, TTa and NRST I/O input low
level voltage
VIH
BOOT0 I/O input low level
voltage
Conditions
Min
Typ
Max
-
-
0.3VDD-0.04(1)
-
-
0.3VDD(2)
1.75 V ≤ VDD ≤ 3.6 V
-40 °C≤ TA ≤ 105 °C
-
-
1.7 V ≤ VDD ≤ 3.6 V
0 °C≤ TA ≤ 105 °C
-
-
0.45VDD+0.3(1)
-
-
0.7VDD(2)
-
-
-
-
-
-
1.7 V ≤ VDD ≤ 3.6 V
1.7 V ≤ VDD ≤ 3.6 V
1.75 V ≤ VDD ≤ 3.6 V
-40 °C≤ TA ≤ 105 °C
1.7 V ≤ VDD ≤ 3.6 V
0 °C≤ TA ≤ 105 °C
Unit
0.1VDD-+0.1(1)
0.17VDD
DocID022063 Rev 5
V
+0.7(1)
115/201
Electrical characteristics
STM32F415xx, STM32F417xx
Table 48. I/O static characteristics (continued)
Symbol
Parameter
FT, TTa and NRST I/O input
hysteresis
VHYS
BOOT0 I/O input hysteresis
Ilkg
RPU
RPD
CIO(8)
Conditions
Min
Typ
Max
1.7 V ≤ VDD ≤ 3.6 V
10%VDD(3)
-
-
1.75 V ≤ VDD ≤ 3.6 V
-40 °C≤ TA ≤ 105 °C
V
0.1
-
-
VSS ≤ VIN ≤ VDD
-
-
±1
I/O FT input leakage current (5)
VIN = 5 V
-
-
3
All pins
except for
PA10 and
PB12
(OTG_FS_ID,
OTG_HS_ID)
VIN = VSS
30
40
50
PA10 and
PB12
(OTG_FS_ID,
OTG_HS_ID)
-
7
10
14
VIN = VDD
30
40
50
-
7
10
14
-
5
-
1.7 V ≤ VDD ≤ 3.6 V
0 °C≤ TA ≤ 105 °C
I/O input leakage current (4)
Weak pull-up
equivalent
resistor(6)
All pins
except for
Weak pull-down PA10 and
equivalent
PB12
resistor(7)
PA10 and
PB12
I/O pin
capacitance
Unit
µA
kΩ
pF
1. Guaranteed by design, not tested in production.
2. Tested in production.
3. With a minimum of 200 mV.
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 47: I/O
current injection susceptibility
5. To sustain a voltage higher than VDD + 0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be
higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 47: I/O current injection
susceptibility.
6. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS. This PMOS
contribution to the series resistance is minimum (~10% order).
7. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS
contribution to the series resistance is minimum (~10% order).
8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results, not tested in production.
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters.
116/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can
sink or source up to ±3mA. When using the PC13 to PC15 GPIOs in output mode, the
speed should not exceed 2 MHz with a maximum load of 30 pF.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 5.2. In particular:
•
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Table 12).
•
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS (see Table 12).
Output voltage levels
Unless otherwise specified, the parameters given in Table 49 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 14. All I/Os are CMOS and TTL compliant.
Table 49. Output voltage characteristics(1)
Symbol
Parameter
VOL(2)
Output low level voltage
VOH(3)
Output high level voltage
VOL (2)
Output low level voltage
VOH (3)
Output high level voltage
VOL(2)(4) Output low level voltage
VOH(3)(4) Output high level voltage
Conditions
Min
Max
CMOS port
IIO = +8 mA
2.7 V < VDD < 3.6 V
-
0.4
VDD–0.4
-
-
0.4
2.4
-
-
1.3
VDD–1.3
-
-
0.4
VDD–0.4
-
TTL port
IIO =+ 8mA
2.7 V < VDD < 3.6 V
IIO = +20 mA
2.7 V < VDD < 3.6 V
VOL(2)(4) Output low level voltage
VOH(3)(4)
Output high level voltage
IIO = +6 mA
2 V < VDD < 2.7 V
Unit
V
V
V
V
1. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited
amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed
should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current
source (e.g. to drive an LED).
2. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 12
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 12 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
4. Guaranteed by characterization results, not tested in production.
DocID022063 Rev 5
117/201
Electrical characteristics
STM32F415xx, STM32F417xx
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 37 and
Table 50, respectively.
Unless otherwise specified, the parameters given in Table 50 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 14.
Table 50. I/O AC characteristics(1)(2)
OSPEEDRy
[1:0] bit
value(1)
Symbol
Parameter
Conditions
fmax(IO)out Maximum frequency(3)
00
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
fmax(IO)out Maximum frequency(3)
01
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
fmax(IO)out Maximum frequency(3)
10
tf(IO)out/
tr(IO)out
118/201
Output high to low level fall
time and output low to high
level rise time
Min
Typ
Max
CL = 50 pF, VDD > 2.70 V
-
-
4
CL = 50 pF, VDD > 1.8 V
-
-
2
CL = 10 pF, VDD > 2.70 V
-
-
8
CL = 10 pF, VDD > 1.8 V
-
-
4
CL = 50 pF, VDD = 1.8 V to
3.6 V
-
-
100
CL = 50 pF, VDD > 2.70 V
-
-
25
CL = 50 pF, VDD > 1.8 V
-
-
12.5
CL = 10 pF, VDD > 2.70 V
-
-
50(4)
CL = 10 pF, VDD > 1.8 V
-
-
20
CL = 50 pF, VDD >2.7 V
-
-
10
CL = 50 pF, VDD > 1.8 V
-
-
20
CL = 10 pF, VDD > 2.70 V
-
-
6
CL = 10 pF, VDD > 1.8 V
-
-
10
CL = 40 pF, VDD > 2.70 V
-
-
50(4)
CL = 40 pF, VDD > 1.8 V
-
-
25
CL = 10 pF, VDD > 2.70 V
-
-
100(4)
CL = 10 pF, VDD > 1.8 V
-
-
50(4)
CL = 40 pF, VDD > 2.70 V
-
-
6
CL = 40 pF, VDD > 1.8 V
-
-
10
CL = 10 pF, VDD > 2.70 V
-
-
4
CL = 10 pF, VDD > 1.8 V
-
-
6
DocID022063 Rev 5
Unit
MHz
ns
MHz
ns
MHz
ns
STM32F415xx, STM32F417xx
Electrical characteristics
Table 50. I/O AC characteristics(1)(2) (continued)
OSPEEDRy
[1:0] bit
value(1)
Symbol
Parameter
Conditions
Fmax(IO)out Maximum frequency(3)
11
tf(IO)out/
tr(IO)out
-
tEXTIpw
Output high to low level fall
time and output low to high
level rise time
Min
Typ
Max
CL = 30 pF, VDD > 2.70 V
-
-
100(4)
CL = 30 pF, VDD > 1.8 V
-
-
50(4)
CL = 10 pF, VDD > 2.70 V
-
-
180(4)
CL = 10 pF, VDD > 1.8 V
-
-
100(4)
CL = 30 pF, VDD > 2.70 V
-
-
4
CL = 30 pF, VDD > 1.8 V
-
-
6
CL = 10 pF, VDD > 2.70 V
-
-
2.5
CL = 10 pF, VDD > 1.8 V
-
-
4
10
-
-
Pulse width of external signals
detected by the EXTI
controller
Unit
MHz
ns
ns
1. Guaranteed by characterization results, not tested in production.
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of
the GPIOx_SPEEDR GPIO port output speed register.
3. The maximum frequency is defined in Figure 37.
4. For maximum frequencies above 50 MHz, the compensation cell should be used.
Figure 37. I/O AC characteristics definition
(;7(51$/
287387
21&/
WU,2RXW
WI,2RXW
7
0D[LPXPIUHTXHQF\LVDFKLHYHGLIWUWI”7DQGLIWKHGXW\F\FOHLV
ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´
DocID022063 Rev 5
DLG
119/201
Electrical characteristics
5.3.17
STM32F415xx, STM32F417xx
NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 48).
Unless otherwise specified, the parameters given in Table 51 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 14.
Table 51. NRST pin characteristics
Symbol
VIL(NRST)(1)
Parameter
NRST Input low level voltage
VIH(NRST)(1) NRST Input high level voltage
VIL(NRST)(1)
NRST Input low level voltage
VIH(NRST)(1) NRST Input high level voltage
Vhys(NRST)
Min
Typ
Max
TTL ports
2.7 V ≤ VDD
≤ 3.6 V
-
-
0.8
2
-
-
CMOS ports
1.8 V ≤ VDD
≤ 3.6 V
NRST Schmitt trigger voltage
hysteresis
(1)
VNF(NRST)
(1)
TNRST_OUT
Generated reset pulse duration
-
0.3VDD
0.7VDD
-
V
200
-
mV
30
40
50
kΩ
-
-
100
ns
VDD > 2.7 V
300
-
-
ns
Internal
Reset source
20
-
-
µs
VIN = VSS
NRST Input filtered pulse
NRST Input not filtered pulse
Unit
-
Weak pull-up equivalent resistor(2)
RPU
VF(NRST)
Conditions
1. Guaranteed by design, not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to
the series resistance must be minimum (~10% order).
Figure 38. Recommended NRST pin protection
9''
([WHUQDO
UHVHWFLUFXLW 1567 538
,QWHUQDO5HVHW
)LOWHU
—)
670)
DLF
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 51. Otherwise the reset is not taken into account by the device.
120/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
5.3.18
Electrical characteristics
TIM timer characteristics
The parameters given in Table 52 and Table 53 are guaranteed by design.
Refer to Section 5.3.16: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 52. Characteristics of TIMx connected to the APB1 domain(1)
Symbol
tres(TIM)
Parameter
Timer resolution time
Conditions
AHB/APB1
prescaler distinct
from 1, fTIMxCLK =
84 MHz
AHB/APB1
prescaler = 1,
fTIMxCLK = 42 MHz
fEXT
ResTIM
tCOUNTER
Min
Max
Unit
1
-
tTIMxCLK
11.9
-
ns
1
-
tTIMxCLK
23.8
-
ns
Timer external clock
frequency on CH1 to CH4
0
fTIMxCLK/2
MHz
0
42
MHz
Timer resolution
-
16/32
bit
16-bit counter clock
period when internal clock
is selected
1
65536
tTIMxCLK
780
µs
-
tTIMxCLK
0.0119
51130563
µs
-
65536 × 65536
tTIMxCLK
-
51.1
s
32-bit counter clock
period when internal clock
is selected
fTIMxCLK = 84 MHz 0.0119
APB1= 42 MHz
1
tMAX_COUNT Maximum possible count
1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers.
DocID022063 Rev 5
121/201
Electrical characteristics
STM32F415xx, STM32F417xx
Table 53. Characteristics of TIMx connected to the APB2 domain(1)
Symbol
tres(TIM)
Parameter
Timer resolution time
Conditions
AHB/APB2
prescaler distinct
from 1, fTIMxCLK =
168 MHz
AHB/APB2
prescaler = 1,
fTIMxCLK = 84 MHz
fEXT
ResTIM
tCOUNTER
Timer external clock
frequency on CH1 to
CH4
Timer resolution
16-bit counter clock
period when internal
clock is selected
fTIMxCLK =
168 MHz
APB2 = 84 MHz
tMAX_COUNT Maximum possible count
Min
Max
Unit
1
-
tTIMxCLK
5.95
-
ns
1
-
tTIMxCLK
11.9
-
ns
0
fTIMxCLK/2
MHz
0
84
MHz
-
16
bit
1
65536
tTIMxCLK
-
32768
tTIMxCLK
1. TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers.
5.3.19
Communications interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
•
Standard-mode (Sm): with a bit rate up to 100 kbit/s
•
Fast-mode (Fm): with a bit rate up to 400 kbit/s.
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to RM0090 reference manual).
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDD is disabled, but is still present. Refer to
Section 5.3.16: I/O port characteristics for more details on the I2C I/O characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog
filter characteristics:
Table 54. I2C analog filter characteristics(1)
Symbol
Parameter
Min
Max
Unit
tAF
Maximum pulse width of spikes
that are suppressed by the analog
filter
50(2)
260(3)
ns
1. Guaranteed by design, not tested in production.
2. Spikes with widths below tAF(min) are filtered.
3. Spikes with widths above tAF(max) are not filtered
122/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 55 for SPI are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 14 with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load C = 30 pF
•
Measurement points are done at CMOS levels: 0.5 VDD
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO).
Table 55. SPI dynamic characteristics(1)
Symbol
Parameter
Master mode, SPI1,
2.7V < VDD < 3.6V
fSCK
SPI clock frequency
1/tc(SCK)
Duty(SCK)
Conditions
Slave mode, SPI1,
2.7V < VDD < 3.6V
Master mode, SPI1/2/3,
1.7V < VDD < 3.6V
Slave mode, SPI1/2/3,
1.7V < VDD < 3.6V
Duty cycle of SPI clock
frequency
Slave mode
DocID022063 Rev 5
Min
Typ
Max
Unit
42
-
42
MHz
21
-
21
30
50
70
%
123/201
Electrical characteristics
STM32F415xx, STM32F417xx
Table 55. SPI dynamic characteristics(1) (continued)
Symbol
Parameter
tw(SCKH)
SCK high and low time
tw(SCKL)
Conditions
Master mode, SPI presc = 2,
2.7V < VDD < 3.6V
Master mode, SPI presc = 2,
1.7V < VDD < 3.6V
Min
TPCLK-2
NSS setup time
Slave mode, SPI presc = 2
4 x TPCLK
th(NSS)
NSS hold time
Slave mode, SPI presc = 2
2 x TPCLK
Data input setup time
tsu(SI)
th(MI)
Data input hold time
th(SI)
ta(SO)
(2)
tdis(SO)
(3)
Data output access time
Data output disable time
tv(SO)
Data output valid/hold time
th(SO)
tv(MO)
th(MO)
Data output valid time
Data output hold time
Max
Unit
TPCLK-0.5 TPCLK TPCLK+0.5
tsu(NSS)
tsu(MI)
Typ
TPCLK
TPCLK+2
-
-
Master mode
6.5
-
-
Slave mode
2.5
-
-
Master mode
2.5
-
-
Slave mode
4
-
-
Slave mode, SPI presc = 2
0
-
4 x TPCLK
Slave mode, SPI1,
2.7V < VDD < 3.6V
0
-
7.5
Slave mode, SPI1/2/3
1.7V < VDD < 3.6V
0
-
16.5
Slave mode (after enable edge),
SPI1, 2.7V < VDD < 3.6V
-
11
13
Slave mode (after enable edge),
SPI2/3, 2.7V < VDD < 3.6V
-
12
16.5
Slave mode (after enable edge),
SPI1, 1.7V < VDD < 3.6V
-
15.5
19
Slave mode (after enable edge),
SPI2/3, 1.7V < VDD < 3.6V
-
18
20.5
Master mode (after enable edge),
SPI1, 2.7V < VDD < 3.6V
-
-
2.5
Master mode (after enable edge),
SPI1/2/3, 1.7V < VDD < 3.6V
-
-
4.5
Master mode (after enable edge)
0
-
-
ns
1. Guaranteed by characterization results, not tested in production.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.
124/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Figure 39. SPI timing diagram - slave mode and CPHA = 0
NSS input
tc(SCK)
th(NSS)
tSU(NSS)
SCK Input
CPHA= 0
CPOL=0
tw(SCKH)
tw(SCKL)
CPHA= 0
CPOL=1
tv(SO)
ta(SO)
MISO
OUT P UT
tr(SCK)
tf(SCK)
th(SO)
MS B O UT
BI T6 OUT
tdis(SO)
LSB OUT
tsu(SI)
MOSI
I NPUT
B I T1 IN
M SB IN
LSB IN
th(SI)
ai14134c
Figure 40. SPI timing diagram - slave mode and CPHA = 1
166LQSXW
6&.,QSXW
W68166
&3+$ &32/ &3+$ &32/ WF6&.
WZ6&.+
WZ6&./
WY62
WD62
0,62
287 3 87
WK62
06 % 2 87
WVX6,
026,
, 1387
WK166
%, 7 287
WU6&.
WI6&.
WGLV62
/6% 287
WK6,
0 6% ,1
% , 7 ,1
/6% ,1
DL
DocID022063 Rev 5
125/201
Electrical characteristics
STM32F415xx, STM32F417xx
Figure 41. SPI timing diagram - master mode
(IGH
.33INPUT
3#+/UTPUT
#0(! #0/,
3#+/UTPUT
TC3#+
#0(!
#0/,
#0(! #0/,
#0(!
#0/,
TSU-)
-)3/
).0 54
TW3#+(
TW3#+,
TR3#+
TF3#+
-3 ").
") 4).
,3").
TH-)
-/3)
/54054
- 3"/54
TV-/
" ) 4/54
,3"/54
TH-/
AI6
126/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
I2S interface characteristics
Unless otherwise specified, the parameters given in Table 56 for the i2S interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 14, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load C = 30 pF
•
Measurement points are done at CMOS levels: 0.5 VDD
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (CK, SD, WS).
Table 56. I2S dynamic characteristics(1)
Symbol
Parameter
Conditions
Min
Max
Unit
256 x
8K
256 x FS(2)
MHz
Master data: 32 bits
-
64 x FS
Slave data: 32 bits
-
64 x FS
fMCK
I2S main clock output
fCK
I2S clock frequency
DCK
I2S clock frequency duty cycle Slave receiver
30
70
tv(WS)
WS valid time
Master mode
0
6
th(WS)
WS hold time
Master mode
0
-
tsu(WS)
WS setup time
Slave mode
1
-
th(WS)
WS hold time
Slave mode
0
-
Master receiver
7.5
-
Slave receiver
2
-
Master receiver
0
-
Slave receiver
0
-
Slave transmitter (after enable edge)
-
27
Master transmitter (after enable edge)
-
20
Master transmitter (after enable edge)
2.5
-
tsu(SD_MR)
tsu(SD_SR)
th(SD_MR)
th(SD_SR)
tv(SD_ST)
th(SD_ST)
Data input setup time
Data input hold time
Data output valid time
tv(SD_MT)
th(SD_MT)
Data output hold time
-
MHz
%
ns
1. Guaranteed by characterization results, not tested in production.
2. The maximum value of 256 x FS is 42 MHz (APB1 maximum frequency).
Note:
Refer to the I2S section of RM0090 reference manual for more details on the sampling
frequency (FS). fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The
value of these parameters might be slightly impacted by the source clock accuracy. DCK
depends mainly on the value of ODD bit. The digital contribution leads to a minimum value
of I2SDIV / (2 x I2SDIV + ODD) and a maximum value of (I2SDIV + ODD) / (2 x I2SDIV +
ODD). FS maximum value is supported for each mode/condition.
DocID022063 Rev 5
127/201
Electrical characteristics
STM32F415xx, STM32F417xx
Figure 42. I2S slave timing diagram (Philips protocol)
CK Input
tc(CK)
CPOL = 0
CPOL = 1
tw(CKH)
th(WS)
tw(CKL)
WS input
tv(SD_ST)
tsu(WS)
SDtransmit
LSB transmit(2)
MSB transmit
Bitn transmit
tsu(SD_SR)
LSB receive(2)
SDreceive
th(SD_ST)
LSB transmit
th(SD_SR)
MSB receive
Bitn receive
LSB receive
ai14881b
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 43. I2S master timing diagram (Philips protocol)(1)
tf(CK)
tr(CK)
CK output
tc(CK)
CPOL = 0
tw(CKH)
CPOL = 1
tv(WS)
th(WS)
tw(CKL)
WS output
tv(SD_MT)
SDtransmit
LSB transmit(2)
MSB transmit
LSB receive(2)
LSB transmit
th(SD_MR)
tsu(SD_MR)
SDreceive
Bitn transmit
th(SD_MT)
MSB receive
Bitn receive
LSB receive
ai14884b
1. Guaranteed by characterization results, not tested in production.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
128/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
USB OTG FS characteristics
This interface is present in both the USB OTG HS and USB OTG FS controllers.
Table 57. USB OTG FS startup time
Symbol
tSTARTUP(1)
Parameter
USB OTG FS transceiver startup time
Max
Unit
1
µs
1. Guaranteed by design, not tested in production.
Table 58. USB OTG FS DC electrical characteristics
Symbol
VDD
Input
levels
Parameter
Conditions
USB OTG FS operating
voltage
Min.(1) Typ. Max.(1) Unit
3.0(2)
-
3.6
VDI(3) Differential input sensitivity
I(USB_FS_DP/DM,
USB_HS_DP/DM)
0.2
-
-
VCM(3)
Differential common mode
range
Includes VDI range
0.8
-
2.5
VSE(3)
Single ended receiver
threshold
1.3
-
2.0
VOL
Static output level low
-
-
0.3
2.8
-
3.6
17
21
24
0.65
1.1
2.0
Output
levels
RPD
RPU
VOH
Static output level high
RL of 1.5 kΩ to 3.6 V(4)
RL of 15 kΩ to
PA11, PA12, PB14, PB15
(USB_FS_DP/DM,
USB_HS_DP/DM)
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
VSS(4)
V
V
V
VIN = VDD
kΩ
PA12, PB15 (USB_FS_DP,
USB_HS_DP)
VIN = VSS
1.5
1.8
2.1
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
VIN = VSS
0.25
0.37
0.55
1. All the voltages are measured from the local ground potential.
2. The STM32F415xx and STM32F417xx USB OTG FS functionality is ensured down to 2.7 V but not the full
USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.
3. Guaranteed by design, not tested in production.
4. RL is the load connected on the USB OTG FS drivers
DocID022063 Rev 5
129/201
Electrical characteristics
STM32F415xx, STM32F417xx
Figure 44. USB OTG FS timings: definition of data signal rise and fall time
Crossover
points
Differen tial
Data L ines
VCRS
VS S
tr
tf
ai14137
Table 59. USB OTG FS electrical characteristics(1)
Driver characteristics
Symbol
Parameter
Rise time(2)
tr
tf
Fall
time(2)
Conditions
Min
Max
Unit
CL = 50 pF
4
20
ns
CL = 50 pF
4
20
ns
tr/tf
90
110
%
1.3
2.0
V
Rise/ fall time matching
trfm
Output signal crossover voltage
VCRS
1. Guaranteed by design, not tested in production.
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
USB HS characteristics
Unless otherwise specified, the parameters given in Table 62 for ULPI are derived from
tests performed under the ambient temperature, fHCLK frequency summarized in Table 61
and VDD supply voltage conditions summarized in Table 60, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load C = 30 pF
•
Measurement points are done at CMOS levels: 0.5VDD.
Refer to Section Section 5.3.16: I/O port characteristics for more details on the input/output
characteristics.
Table 60. USB HS DC electrical characteristics
Symbol
Input level
Parameter
USB OTG HS operating voltage
VDD
Min.(1)
Max.(1)
Unit
2.7
3.6
V
1. All the voltages are measured from the local ground potential.
Table 61. USB HS clock timing parameters(1)
Parameter
Symbol
fHCLK value to guarantee proper operation of
USB HS interface
Frequency (first transition)
8-bit ±10%
Frequency (steady state) ±500 ppm
130/201
Min
Nominal
Max
30
FSTART_8BIT
FSTEADY
DocID022063 Rev 5
Unit
MHz
54
60
66
MHz
59.97
60
60.03
MHz
STM32F415xx, STM32F417xx
Electrical characteristics
Table 61. USB HS clock timing parameters(1)
Parameter
Duty cycle (first transition)
Symbol
8-bit ±10%
Duty cycle (steady state) ±500 ppm
Min
Nominal
Max
Unit
40
50
60
%
49.975
50
50.025
%
-
-
1.4
ms
DSTART_8BIT
DSTEADY
Time to reach the steady state frequency and
TSTEADY
duty cycle after the first transition
Clock startup time after the
de-assertion of SuspendM
Peripheral
TSTART_DEV
-
-
5.6
Host
TSTART_HOST
-
-
-
-
-
-
PHY preparation time after the first transition
TPREP
of the input clock
ms
µs
1. Guaranteed by design, not tested in production.
Table 62. ULPI timing
Value(1)
Parameter
Symbol
Control in (ULPI_DIR) setup time
tSC
Control in (ULPI_NXT) setup time
Unit
Min.
Max.
-
2.0
-
1.5
Control in (ULPI_DIR, ULPI_NXT) hold time
tHC
0
-
Data in setup time
tSD
-
2.0
Data in hold time
tHD
0
-
Control out (ULPI_STP) setup time and hold time
tDC
-
9.2
Data out available from clock rising edge
tDD
-
10.7
ns
1. VDD = 2.7 V to 3.6 V and TA = –40 to 85 °C.
Figure 45. ULPI timing diagram
#LOCK
#ONTROL)N
5,0)?$)2
5,0)?.84
T3#
T(#
T3$
T($
DATA)N
BIT
T$#
#ONTROLOUT
5,0)?340
DATAOUT
BIT
T$#
T$$
AIC
DocID022063 Rev 5
131/201
Electrical characteristics
STM32F415xx, STM32F417xx
Ethernet characteristics
Unless otherwise specified, the parameters given in Table 64, Table 65 and Table 66 for
SMI, RMII and MII are derived from tests performed under the ambient temperature, fHCLK
frequency summarized in Table 14 and VDD supply voltage conditions summarized in
Table 63, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load C = 30 pF
•
Measurement points are done at CMOS levels: 0.5VDD.
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output
characteristics.
Table 63. Ethernet DC electrical characteristics
Symbol
Input level
Parameter
VDD
Min.(1)
Max.(1)
Unit
2.7
3.6
V
Ethernet operating voltage
1. All the voltages are measured from the local ground potential.
Table 64 gives the list of Ethernet MAC signals for the SMI (station management interface)
and Figure 46 shows the corresponding timing diagram.
Figure 46. Ethernet SMI timing diagram
W0'&
(7+B0'&
WG0',2
(7+B0',22
WVX0',2
WK0',2
(7+B0',2,
069
Table 64. Dynamic characteristics: Eternity MAC signals for SMI(1)
Symbol
Parameter
Min
Typ
Max
411
420
425
tMDC
MDC cycle time(2.38 MHz)
Td(MDIO)
Write data valid time
6
10
13
tsu(MDIO)
Read data setup time
12
-
-
th(MDIO)
Read data hold time
0
-
-
1. Guaranteed by characterization results, not tested in production.
Table 65 gives the list of Ethernet MAC signals for the RMII and Figure 47 shows the
corresponding timing diagram.
132/201
DocID022063 Rev 5
Unit
ns
STM32F415xx, STM32F417xx
Electrical characteristics
Figure 47. Ethernet RMII timing diagram
RMII_REF_CLK
td(TXEN)
td(TXD)
RMII_TX_EN
RMII_TXD[1:0]
tsu(RXD)
tsu(CRS)
tih(RXD)
tih(CRS)
RMII_RXD[1:0]
RMII_CRS_DV
ai15667
Table 65. Dynamic characteristics: Ethernet MAC signals for RMII
Symbol
Rating
Min
Typ
Max
Unit
tsu(RXD)
Receive data setup time
2
-
-
ns
tih(RXD)
Receive data hold time
1
-
-
ns
tsu(CRS)
Carrier sense set-up time
0.5
-
-
ns
tih(CRS)
Carrier sense hold time
2
-
-
ns
td(TXEN)
Transmit enable valid delay time
8
9.5
11
ns
td(TXD)
Transmit data valid delay time
8.5
10
11.5
ns
Table 66 gives the list of Ethernet MAC signals for MII and Figure 47 shows the
corresponding timing diagram.
Figure 48. Ethernet MII timing diagram
MII_RX_CLK
MII_RXD[3:0]
MII_RX_DV
MII_RX_ER
tsu(RXD)
tsu(ER)
tsu(DV)
tih(RXD)
tih(ER)
tih(DV)
MII_TX_CLK
td(TXEN)
td(TXD)
MII_TX_EN
MII_TXD[3:0]
ai15668
DocID022063 Rev 5
133/201
Electrical characteristics
STM32F415xx, STM32F417xx
Table 66. Dynamic characteristics: Ethernet MAC signals for MII(1)
Symbol
Parameter
Min
Typ
Max
tsu(RXD)
Receive data setup time
9
-
tih(RXD)
Receive data hold time
10
-
tsu(DV)
Data valid setup time
9
-
tih(DV)
Data valid hold time
8
-
tsu(ER)
Error setup time
6
-
tih(ER)
Error hold time
8
-
td(TXEN)
Transmit enable valid delay time
0
10
14
td(TXD)
Transmit data valid delay time
0
10
15
Unit
ns
1. Guaranteed by characterization results, not tested in production.
5.3.20
CAN (controller area network) interface
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (CANTX and CANRX).
5.3.21
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 67 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 14.
Table 67. ADC characteristics
Symbol
Parameter
VDDA
Power supply
VREF+
Positive reference voltage
Conditions
Min
Typ
Max
Unit
1.8(1)
-
3.6
V
1.8(1)(2)(3)
-
VDDA
V
0.6
15
18
MHz
VDDA = 2.4 to 3.6 V(3)
0.6
30
36
MHz
fADC = 30 MHz,
12-bit resolution
-
-
1764
kHz
-
-
17
1/fADC
0 (VSSA or VREFtied to ground)
-
VREF+
V
-
-
50
κΩ
-
-
6
κΩ
-
4
-
pF
-
-
0.100
µs
1.8(1)(3)
fADC
fTRIG(4)
VAIN
RAIN(4)
ADC clock frequency
External trigger frequency
VDDA =
2.4 V
to
Conversion voltage range(5)
External input impedance
See Equation 1 for
details
RADC(4)(6) Sampling switch resistance
CADC(4)
tlat(4)
134/201
Internal sample and hold
capacitor
Injection trigger conversion
latency
fADC = 30 MHz
-
DocID022063 Rev 5
-
(7)
3
1/fADC
STM32F415xx, STM32F417xx
Electrical characteristics
Table 67. ADC characteristics (continued)
Symbol
Parameter
tlatr(4)
Regular trigger conversion
latency
tS(4)
Sampling time
tSTAB(4)
Power-up time
tCONV(4)
Conditions
Min
Typ
Max
Unit
fADC = 30 MHz
-
-
0.067
µs
-
-
2(7)
1/fADC
0.100
-
16
µs
3
-
480
1/fADC
-
2
3
µs
fADC = 30 MHz
12-bit resolution
0.50
-
16.40
µs
fADC = 30 MHz
10-bit resolution
0.43
-
16.34
µs
fADC = 30 MHz
8-bit resolution
0.37
-
16.27
µs
fADC = 30 MHz
6-bit resolution
0.30
-
16.20
µs
fADC = 30 MHz
Total conversion time (including
sampling time)
9 to 492 (tS for sampling +n-bit resolution for successive
approximation)
fS(4)
Sampling rate
(fADC = 30 MHz, and
tS = 3 ADC cycles)
1/fADC
12-bit resolution
Single ADC
-
-
2
Msps
12-bit resolution
Interleave Dual ADC
mode
-
-
3.75
Msps
12-bit resolution
Interleave Triple ADC
mode
-
-
6
Msps
IVREF+(4)
ADC VREF DC current
consumption in conversion
mode
-
300
500
µA
IVDDA(4)
ADC VDDA DC current
consumption in conversion
mode
-
1.6
1.8
mA
1. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of
an external power supply supervisor (refer to Section : Internal reset OFF).
2. It is recommended to maintain the voltage difference between VREF+ and VDDA below 1.8 V.
3. VDDA -VREF+ < 1.2 V.
4. Guaranteed by characterization results, not tested in production.
5. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
6. RADC maximum value is given for VDD=1.8 V, and minimum value for VDD=3.3 V.
7. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 67.
Equation 1: RAIN max formula
R AIN
( k – 0,5 )
- – R ADC
= ------------------------------------------------------------N+2
f ADC × C ADC × ln ( 2
DocID022063 Rev 5
)
135/201
Electrical characteristics
STM32F415xx, STM32F417xx
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of
sampling periods defined in the ADC_SMPR1 register.
Table 68. ADC accuracy at fADC = 30 MHz(1)
a
Symbol
Parameter
Test conditions
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
fPCLK2 = 60 MHz,
fADC = 30 MHz, RAIN < 10 kΩ,
VDDA = 1.8(3) to 3.6 V
Typ
Max(2)
±2
±5
±1.5
±2.5
±1.5
±3
±1
±2
±1.5
±3
Unit
LSB
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
2. Guaranteed by characterization results, not tested in production.
3. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range,
and with the use of an external power supply supervisor (refer to Section : Internal reset OFF).
Note:
136/201
ADC accuracy vs. negative injection current: injecting a negative current on any analog
input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and SIINJ(PIN) in
Section 5.3.16 does not affect the ADC accuracy.
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Figure 49. ADC accuracy characteristics
6 $$!
6 2%&
;,3" )$%!, ORDEPENDINGONPACKAGE=
%'
%4
%/
%,
%$
, 3")$%!,
6 33!
6$$!
AIC
1. See also Table 68.
2. Example of an actual transfer curve.
3. Ideal transfer curve.
4. End point correlation line.
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
Figure 50. Typical connection diagram using the ADC
670)
9''
5$,1 $,1[
9$,1
&SDUDVLWLF
6DPSOHDQGKROG$'&
FRQYHUWHU
97
9
5$'&
97
9
,/“—$
ELW
FRQYHUWHU
& $'&
DL
1. Refer to Table 67 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
DocID022063 Rev 5
137/201
Electrical characteristics
STM32F415xx, STM32F417xx
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 51 or Figure 52,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 51. Power supply and reference decoupling (VREF+ not connected to VDDA)
STM32F
V REF+
(See note 1)
1 µF // 10 nF
V DDA
1 µF // 10 nF
V SSA/V REF(See note 1)
ai17535
1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144,
and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA.
Figure 52. Power supply and reference decoupling (VREF+ connected to VDDA)
STM32F
VREF+/VDDA
(See note 1)
1 µF // 10 nF
VREF–/VSSA
(See note 1)
ai17536
1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144,
and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA.
138/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
5.3.22
Electrical characteristics
Temperature sensor characteristics
Table 69. Temperature sensor characteristics
Symbol
Parameter
Min
Typ
Max
Unit
VSENSE linearity with temperature
-
±1
±2
°C
Average slope
-
2.5
mV/°C
Voltage at 25 °C
-
0.76
V
tSTART(2)
Startup time
-
6
10
µs
TS_temp(2)
ADC sampling time when reading the temperature (1 °C accuracy)
10
-
-
µs
TL(1)
Avg_Slope
(1)
V25(1)
1. Guaranteed by characterization results, not tested in production.
2. Guaranteed by design, not tested in production.
Table 70. Temperature sensor calibration values
Symbol
Parameter
Memory address
TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA=3.3 V
0x1FFF 7A2C - 0x1FFF 7A2D
TS_CAL2 TS ADC raw data acquired at temperature of 110 °C, VDDA=3.3 V
0x1FFF 7A2E - 0x1FFF 7A2F
5.3.23
VBAT monitoring characteristics
Table 71. VBAT monitoring characteristics
Symbol
Parameter
Min
Typ
Max
Unit
KΩ
R
Resistor bridge for VBAT
-
50
-
Q
Ratio on VBAT measurement
-
2
-
Error on Q
–1
-
+1
%
ADC sampling time when reading the VBAT
1 mV accuracy
5
-
-
µs
Er(1)
TS_vbat(2)(2)
1. Guaranteed by design, not tested in production.
2. Shortest sampling time can be determined in the application by multiple iterations.
DocID022063 Rev 5
139/201
Electrical characteristics
5.3.24
STM32F415xx, STM32F417xx
Embedded reference voltage
The parameters given in Table 72 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 14.
Table 72. Embedded internal reference voltage
Symbol
VREFINT
TS_vrefint(1)
VRERINT_s(2)
Parameter
Internal reference voltage
Conditions
Min
Typ
–40 °C < TA < +105 °C
1.18
1.21
1.24
V
10
-
-
µs
-
3
5
mV
ADC sampling time when reading the
internal reference voltage
Internal reference voltage spread over the
temperature range
VDD = 3 V
Max
Unit
TCoeff(2)
Temperature coefficient
-
30
50
ppm/°C
tSTART(2)
Startup time
-
6
10
µs
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design, not tested in production.
Table 73. Internal reference voltage calibration values
Symbol
VREFIN_CAL
5.3.25
Parameter
Memory address
Raw data acquired at temperature of 30 °C, VDDA=3.3 V
0x1FFF 7A2A - 0x1FFF 7A2B
DAC electrical characteristics
Table 74. DAC characteristics
Symbol
Parameter
Min
Typ
Max
Unit
VDDA
Analog supply voltage
1.8(1)
-
3.6
V
VREF+
Reference supply voltage
1.8(1)
-
3.6
V
VSSA
Ground
0
-
0
V
Resistive load with buffer
ON
5
-
-
kΩ
RLOAD(2)
Comments
VREF+ ≤ VDDA
Impedance output with
buffer OFF
-
-
15
kΩ
When the buffer is OFF, the
Minimum resistive load between
DAC_OUT and VSS to have a 1%
accuracy is 1.5 MΩ
Capacitive load
-
-
50
pF
Maximum capacitive load at
DAC_OUT pin (when the buffer is
ON).
DAC_OUT Lower DAC_OUT voltage
min(2)
with buffer ON
0.2
-
-
V
DAC_OUT Higher DAC_OUT voltage
with buffer ON
max(2)
-
-
VDDA – 0.2
V
RO(2)
CLOAD(2)
140/201
DocID022063 Rev 5
It gives the maximum output
excursion of the DAC.
It corresponds to 12-bit input code
(0x0E0) to (0xF1C) at VREF+ =
3.6 V and (0x1C7) to (0xE38) at
VREF+ = 1.8 V
STM32F415xx, STM32F417xx
Electrical characteristics
Table 74. DAC characteristics (continued)
Symbol
Min
Typ
Max
Unit
DAC_OUT Lower DAC_OUT voltage
min(2)
with buffer OFF
-
0.5
-
mV
DAC_OUT Higher DAC_OUT voltage
with buffer OFF
max(2)
-
-
VREF+ – 1LSB
V
-
170
240
IVREF+(4)
IDDA(4)
DNL(4)
INL(4)
Offset(4)
Gain
error(4)
Parameter
DAC DC VREF current
consumption in quiescent
mode (Standby mode)
DAC DC VDDA current
consumption in quiescent
mode(3)
Differential non linearity
Difference between two
consecutive code-1LSB)
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 1023)
It gives the maximum output
excursion of the DAC.
With no load, worst code (0x800)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
With no load, worst code (0xF1C)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
-
50
75
-
280
380
µA
With no load, middle code (0x800)
on the inputs
-
475
625
µA
With no load, worst code (0xF1C)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
-
-
±0.5
LSB
Given for the DAC in 10-bit
configuration.
-
-
±2
LSB
Given for the DAC in 12-bit
configuration.
-
-
±1
LSB
Given for the DAC in 10-bit
configuration.
-
-
±4
LSB
Given for the DAC in 12-bit
configuration.
-
-
±10
mV
Given for the DAC in 12-bit
configuration
Offset error
(difference between
measured value at Code
(0x800) and the ideal value
= VREF+/2)
-
-
±3
LSB
Given for the DAC in 10-bit at
VREF+ = 3.6 V
-
-
±12
LSB
Given for the DAC in 12-bit at
VREF+ = 3.6 V
Gain error
-
-
±0.5
%
Given for the DAC in 12-bit
configuration
-
3
6
µs
CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
-
-
-
dB
CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
Settling time (full scale: for a
10-bit input code transition
(4) between the lowest and the
tSETTLING
highest input codes when
DAC_OUT reaches final
value ±4LSB
THD(4)
µA
Comments
Total Harmonic Distortion
Buffer ON
DocID022063 Rev 5
141/201
Electrical characteristics
STM32F415xx, STM32F417xx
Table 74. DAC characteristics (continued)
Symbol
Parameter
Min
Typ
Max
Unit
Comments
Update
rate(2)
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to i+1LSB)
-
-
1
MS/s
Wakeup time from off state
tWAKEUP(4) (Setting the ENx bit in the
DAC Control register)
-
6.5
10
µs
CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ
input code between lowest and
highest possible ones.
Power supply rejection ratio
PSRR+ (2) (to VDDA) (static DC
measurement)
-
–67
–40
dB
No RLOAD, CLOAD = 50 pF
CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
1. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of
an external power supply supervisor (refer to Section : Internal reset OFF).
2. Guaranteed by design, not tested in production.
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic
consumption occurs.
4. Guaranteed by characterization results, not tested in production.
Figure 53. 12-bit buffered /non-buffered DAC
Buffered/Non-buffered DAC
Buffer(1)
R LOAD
DACx_OUT
12-bit
digital to
analog
converter
C LOAD
ai17157
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external
loads directly without the use of an external operational amplifier. The buffer can be bypassed by
configuring the BOFFx bit in the DAC_CR register.
5.3.26
FSMC characteristics
Unless otherwise specified, the parameters given in Table 75 to Table 86 for the FSMC
interface are derived from tests performed under the ambient temperature, fHCLK frequency
and VDD supply voltage conditions summarized in Table 14, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load C = 30 pF
•
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section Section 5.3.16: I/O port characteristics for more details on the input/output
characteristics.
142/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Asynchronous waveforms and timings
Figure 54 through Figure 57 represent asynchronous waveforms and Table 75 through
Table 78 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
•
AddressSetupTime = 1
•
AddressHoldTime = 0x1
•
DataSetupTime = 0x1
•
BusTurnAroundDuration = 0x0
In all timing tables, the THCLK is the HCLK clock period.
Figure 54. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
TW.%
&3-#?.%
TV./%?.%
T W./%
T H.%?./%
&3-#?./%
&3-#?.7%
TV!?.%
&3-#?!;=
T H!?./%
!DDRESS
TV",?.%
T H",?./%
&3-#?.",;=
T H$ATA?.%
T SU$ATA?./%
TH$ATA?./%
T SU$ATA?.%
$ATA
&3-#?$;=
T V.!$6?.%
TW.!$6
&3-#?.!$6 AIC
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
DocID022063 Rev 5
143/201
Electrical characteristics
STM32F415xx, STM32F417xx
Table 75. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2)
Symbol
tw(NE)
Parameter
FSMC_NE low time
2THCLK–0.5 2 THCLK+1
Unit
ns
3
ns
2THCLK–2
2THCLK+ 2
ns
th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time
0
-
ns
FSMC_NEx low to FSMC_A valid
-
4.5
ns
th(A_NOE)
Address hold time after FSMC_NOE high
4
-
ns
tv(BL_NE)
FSMC_NEx low to FSMC_BL valid
-
1.5
ns
FSMC_BL hold time after FSMC_NOE high
0
-
ns
THCLK+4
-
ns
THCLK+4
-
ns
th(Data_NOE) Data hold time after FSMC_NOE high
0
-
ns
Data hold time after FSMC_NEx high
0
-
ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low
-
2
ns
-
THCLK
ns
tw(NOE)
tv(A_NE)
th(BL_NOE)
FSMC_NOE low time
tsu(Data_NE) Data to FSMC_NEx high setup time
tsu(Data_NO
E)
th(Data_NE)
tw(NADV)
Data to FSMC_NOEx high setup time
FSMC_NADV low time
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
144/201
Max
0.5
tv(NOE_NE)
FSMC_NEx low to FSMC_NOE low
Min
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
WZ1(
)60&B1([
)60&B12(
WY1:(B1(
W K1(B1:(
WZ1:(
)60&B1:(
WK$B1:(
WY$B1(
)60&B$>@
$GGUHVV
WY%/B1(
)60&B1%/>@
WK%/B1:(
1%/
WY'DWDB1(
WK'DWDB1:(
'DWD
)60&B'>@
W Y1$'9B1(
)60&B1$'9
WZ1$'9
DL
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
Table 76. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)
Symbol
tw(NE)
tv(NWE_NE)
tw(NWE)
th(NE_NWE)
tv(A_NE)
Parameter
Min
Max
Unit
3THCLK
3THCLK+ 4
ns
THCLK–0.5
THCLK+0.5
ns
FSMC_NWE low time
THCLK–1
THCLK+2
ns
FSMC_NWE high to FSMC_NE high hold time
THCLK–1
-
ns
-
0
ns
THCLK– 2
-
ns
-
1.5
ns
THCLK– 1
-
ns
FSMC_NE low time
FSMC_NEx low to FSMC_NWE low
FSMC_NEx low to FSMC_A valid
th(A_NWE)
Address hold time after FSMC_NWE high
tv(BL_NE)
FSMC_NEx low to FSMC_BL valid
th(BL_NWE)
FSMC_BL hold time after FSMC_NWE high
tv(Data_NE)
Data to FSMC_NEx low to Data valid
-
THCLK+3
ns
th(Data_NWE)
Data hold time after FSMC_NWE high
THCLK–1
-
ns
tv(NADV_NE)
FSMC_NEx low to FSMC_NADV low
-
2
ns
FSMC_NADV low time
-
THCLK+0.5
ns
tw(NADV)
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
DocID022063 Rev 5
145/201
Electrical characteristics
STM32F415xx, STM32F417xx
Figure 56. Asynchronous multiplexed PSRAM/NOR read waveforms
TW.%
&3-#?.%
TV./%?.%
T H.%?./%
&3-#?./%
T W./%
&3-#?.7%
TV!?.%
&3-#?!;=
T H!?./%
!DDRESS
TV",?.%
TH",?./%
&3-#?.",;=
.",
TH$ATA?.%
TSU$ATA?.%
T V!?.%
&3-#? !$;=
TSU$ATA?./%
!DDRESS
T V.!$6?.%
TH$ATA?./%
$ATA
TH!$?.!$6
TW.!$6
&3-#?.!$6
AIB
Table 77. Asynchronous multiplexed PSRAM/NOR read timings(1)(2)
Symbol
tw(NE)
tv(NOE_NE)
tw(NOE)
th(NE_NOE)
tv(A_NE)
tv(NADV_NE)
tw(NADV)
th(AD_NADV)
Parameter
Min
Max
Unit
3THCLK–1
3THCLK+1
ns
2THCLK–0.5
2THCLK+0.5
ns
THCLK–1
THCLK+1
ns
FSMC_NOE high to FSMC_NE high hold time
0
-
ns
FSMC_NEx low to FSMC_A valid
-
3
ns
FSMC_NEx low to FSMC_NADV low
1
2
ns
THCLK– 2
THCLK+1
ns
THCLK
-
ns
THCLK–1
-
ns
FSMC_NE low time
FSMC_NEx low to FSMC_NOE low
FSMC_NOE low time
FSMC_NADV low time
FSMC_AD(adress) valid hold time after FSMC_NADV high)
th(A_NOE)
Address hold time after FSMC_NOE high
th(BL_NOE)
FSMC_BL time after FSMC_NOE high
0
-
ns
tv(BL_NE)
FSMC_NEx low to FSMC_BL valid
-
2
ns
tsu(Data_NE)
Data to FSMC_NEx high setup time
THCLK+4
-
ns
tsu(Data_NOE) Data to FSMC_NOE high setup time
THCLK+4
-
ns
th(Data_NE)
Data hold time after FSMC_NEx high
0
-
ns
th(Data_NOE)
Data hold time after FSMC_NOE high
0
-
ns
1. CL = 30 pF.
146/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
2. Guaranteed by characterization results, not tested in production.
Figure 57. Asynchronous multiplexed PSRAM/NOR write waveforms
tw(NE)
FSMC_NEx
FSMC_NOE
tv(NWE_NE)
tw(NWE)
t h(NE_NWE)
FSMC_NWE
tv(A_NE)
FSMC_A[25:16]
th(A_NWE)
Address
tv(BL_NE)
th(BL_NWE)
FSMC_NBL[1:0]
NBL
t v(A_NE)
t v(Data_NADV)
Address
FSMC_AD[15:0]
t v(NADV_NE)
th(Data_NWE)
Data
th(AD_NADV)
tw(NADV)
FSMC_NADV
ai14891B
Table 78. Asynchronous multiplexed PSRAM/NOR write timings(1)(2)
Symbol
Min
Max
Unit
FSMC_NE low time
4THCLK–0.5
4THCLK+3
ns
FSMC_NEx low to FSMC_NWE low
THCLK–0.5
THCLK -0.5
ns
FSMC_NWE low tim e
2THCLK–0.5
2THCLK+3
ns
THCLK
-
ns
FSMC_NEx low to FSMC_A valid
-
0
ns
FSMC_NEx low to FSMC_NADV low
1
2
ns
FSMC_NADV low time
THCLK– 2
THCLK+ 1
ns
th(AD_NADV)
FSMC_AD(address) valid hold time after
FSMC_NADV high)
THCLK–2
-
ns
th(A_NWE)
Address hold time after FSMC_NWE high
THCLK
-
ns
th(BL_NWE)
FSMC_BL hold time after FSMC_NWE high
THCLK–2
-
ns
FSMC_NEx low to FSMC_BL valid
-
1.5
ns
tv(Data_NADV)
FSMC_NADV high to Data valid
-
THCLK–0.5
ns
th(Data_NWE)
Data hold time after FSMC_NWE high
THCLK
-
ns
tw(NE)
tv(NWE_NE)
tw(NWE)
th(NE_NWE)
tv(A_NE)
tv(NADV_NE)
tw(NADV)
tv(BL_NE)
Parameter
FSMC_NWE high to FSMC_NE high hold time
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
DocID022063 Rev 5
147/201
Electrical characteristics
STM32F415xx, STM32F417xx
Synchronous waveforms and timings
Figure 58 through Figure 61 represent synchronous waveforms and Table 80 through
Table 82 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
•
BurstAccessMode = FSMC_BurstAccessMode_Enable;
•
MemoryType = FSMC_MemoryType_CRAM;
•
WriteBurst = FSMC_WriteBurst_Enable;
•
CLKDivision = 1; (0 is not supported, see the STM32F40xxx/41xxx reference manual)
•
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
In all timing tables, the THCLK is the HCLK clock period (with maximum
FSMC_CLK = 60 MHz).
Figure 58. Synchronous multiplexed NOR/PSRAM read timings
"53452.
TW#,+
TW#,+
&3-#?#,+
$ATALATENCY
TD#,+,.%X,
T D#,+,.%X(
&3-#?.%X
TD#,+,.!$6,
TD#,+,.!$6(
&3-#?.!$6
TD#,+,!)6
TD#,+,!6
&3-#?!;=
TD#,+,./%,
TD#,+,./%(
&3-#?./%
TD#,+,!$)6
TSU!$6#,+(
TD#,+,!$6
&3-#?!$;=
!$;=
TH#,+(!$6
TSU!$6#,+(
$
TSU.7!)46#,+(
TH#,+(!$6
$
TH#,+(.7!)46
&3-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46#,+(
TH#,+(.7!)46
&3-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46#,+(
TH#,+(.7!)46
AIG
148/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Table 79. Synchronous multiplexed NOR/PSRAM read timings(1)(2)
Symbol
tw(CLK)
Parameter
FSMC_CLK period
Min
Max
Unit
2THCLK
-
ns
td(CLKL-NExL)
FSMC_CLK low to FSMC_NEx low (x=0..2)
-
0
ns
td(CLKL-NExH)
FSMC_CLK low to FSMC_NEx high (x= 0…2)
2
-
ns
td(CLKL-NADVL)
FSMC_CLK low to FSMC_NADV low
-
2
ns
2
-
ns
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high
td(CLKL-AV)
FSMC_CLK low to FSMC_Ax valid (x=16…25)
-
0
ns
td(CLKL-AIV)
FSMC_CLK low to FSMC_Ax invalid (x=16…25)
0
-
ns
td(CLKL-NOEL)
FSMC_CLK low to FSMC_NOE low
-
0
ns
td(CLKL-NOEH)
FSMC_CLK low to FSMC_NOE high
2
-
ns
td(CLKL-ADV)
FSMC_CLK low to FSMC_AD[15:0] valid
-
4.5
ns
td(CLKL-ADIV)
FSMC_CLK low to FSMC_AD[15:0] invalid
0
-
ns
tsu(ADV-CLKH)
FSMC_A/D[15:0] valid data before FSMC_CLK high
6
-
ns
th(CLKH-ADV)
FSMC_A/D[15:0] valid data after FSMC_CLK high
0
-
ns
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high
4
-
ns
th(CLKH-NWAIT)
0
-
ns
FSMC_NWAIT valid after FSMC_CLK high
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
DocID022063 Rev 5
149/201
Electrical characteristics
STM32F415xx, STM32F417xx
Figure 59. Synchronous multiplexed PSRAM write timings
"53452.
TW#,+
TW#,+
&3-#?#,+
$ATALATENCY
TD#,+,.%X,
TD#,+,.%X(
&3-#?.%X
TD#,+,.!$6,
TD#,+,.!$6(
&3-#?.!$6
TD#,+,!6
TD#,+,!)6
&3-#?!;=
TD#,+,.7%,
TD#,+,.7%(
&3-#?.7%
TD#,+,!$)6
TD#,+,$ATA
TD#,+,!$6
&3-#?!$;=
TD#,+,$ATA
!$;=
$
$
&3-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46#,+(
TH#,+(.7!)46
TD#,+,.",(
&3-#?.",
AIG
Table 80. Synchronous multiplexed PSRAM write timings(1)(2)
Symbol
tw(CLK)
Parameter
FSMC_CLK period
Max
Unit
2THCLK
-
ns
td(CLKL-NExL)
FSMC_CLK low to FSMC_NEx low (x=0..2)
-
1
ns
td(CLKL-NExH)
FSMC_CLK low to FSMC_NEx high (x= 0…2)
1
-
ns
-
0
ns
FSMC_CLK low to FSMC_NADV high
0
-
ns
td(CLKL-AV)
FSMC_CLK low to FSMC_Ax valid (x=16…25)
-
0
ns
td(CLKL-AIV)
FSMC_CLK low to FSMC_Ax invalid (x=16…25)
8
-
ns
td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low
-
0.5
ns
td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high
0
-
ns
td(CLKL-ADIV)
FSMC_CLK low to FSMC_AD[15:0] invalid
0
-
ns
td(CLKL-DATA)
FSMC_A/D[15:0] valid data after FSMC_CLK
low
-
3
ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low
td(CLKLNADVH)
150/201
Min
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Table 80. Synchronous multiplexed PSRAM write timings(1)(2) (continued)
Symbol
Parameter
Min
Max
Unit
0
-
ns
4
-
ns
0
-
ns
td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high
tsu(NWAIT-
FSMC_NWAIT valid before FSMC_CLK high
CLKH)
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
Figure 60. Synchronous non-multiplexed NOR/PSRAM read timings
"53452.
TW#,+
TW#,+
&3-#?#,+
TD#,+,.%X,
TD#,+,.%X(
$ATALATENCY
&3-#?.%X
TD#,+,.!$6,
TD#,+,.!$6(
&3-#?.!$6
TD#,+,!)6
TD#,+,!6
&3-#?!;=
TD#,+,./%,
TD#,+,./%(
&3-#?./%
TSU$6#,+(
TH#,+($6
TSU$6#,+(
&3-#?$;=
$
TSU.7!)46#,+(
TH#,+($6
$
TH#,+(.7!)46
&3-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46#,+(
T H#,+(.7!)46
&3-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46#,+(
TH#,+(.7!)46
AIF
DocID022063 Rev 5
151/201
Electrical characteristics
STM32F415xx, STM32F417xx
Table 81. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2)
Symbol
Parameter
Max
Unit
2THCLK –0.5
-
ns
tw(CLK)
FSMC_CLK period
td(CLKL-NExL)
FSMC_CLK low to FSMC_NEx low (x=0..2)
-
0.5
ns
td(CLKL-NExH)
FSMC_CLK low to FSMC_NEx high (x= 0…2)
0
-
ns
td(CLKL-NADVL)
FSMC_CLK low to FSMC_NADV low
-
2
ns
td(CLKL-NADVH)
FSMC_CLK low to FSMC_NADV high
3
-
ns
td(CLKL-AV)
FSMC_CLK low to FSMC_Ax valid (x=16…25)
-
0
ns
td(CLKL-AIV)
FSMC_CLK low to FSMC_Ax invalid (x=16…25)
2
-
ns
td(CLKL-NOEL)
FSMC_CLK low to FSMC_NOE low
-
0.5
ns
td(CLKL-NOEH)
FSMC_CLK low to FSMC_NOE high
1.5
-
ns
tsu(DV-CLKH)
FSMC_D[15:0] valid data before FSMC_CLK high
6
-
ns
th(CLKH-DV)
FSMC_D[15:0] valid data after FSMC_CLK high
3
-
ns
4
-
ns
0
-
ns
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high
th(CLKH-NWAIT)
FSMC_NWAIT valid after FSMC_CLK high
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
152/201
Min
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Figure 61. Synchronous non-multiplexed PSRAM write timings
TW#,+
"53452.
TW#,+
&3-#?#,+
TD#,+,.%X,
TD#,+,.%X(
$ATALATENCY
&3-#?.%X
TD#,+,.!$6,
TD#,+,.!$6(
&3-#?.!$6
TD#,+,!6
TD#,+,!)6
&3-#?!;=
TD#,+,.7%,
TD#,+,.7%(
&3-#?.7%
TD#,+,$ATA
&3-#?$;=
TD#,+,$ATA
$
$
&3-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46#,+(
TD#,+,.",(
TH#,+(.7!)46
&3-#?.",
AIG
Table 82. Synchronous non-multiplexed PSRAM write timings(1)(2)
Symbol
tw(CLK)
Parameter
FSMC_CLK period
Min
Max Unit
2THCLK
-
ns
td(CLKL-NExL)
FSMC_CLK low to FSMC_NEx low (x=0..2)
-
1
ns
td(CLKL-NExH)
FSMC_CLK low to FSMC_NEx high (x= 0…2)
1
-
ns
td(CLKL-NADVL)
FSMC_CLK low to FSMC_NADV low
-
7
ns
td(CLKL-NADVH)
FSMC_CLK low to FSMC_NADV high
6
-
ns
td(CLKL-AV)
FSMC_CLK low to FSMC_Ax valid (x=16…25)
-
0
ns
td(CLKL-AIV)
FSMC_CLK low to FSMC_Ax invalid (x=16…25)
6
-
ns
td(CLKL-NWEL)
FSMC_CLK low to FSMC_NWE low
-
1
ns
td(CLKL-NWEH)
FSMC_CLK low to FSMC_NWE high
2
-
ns
td(CLKL-Data)
FSMC_D[15:0] valid data after FSMC_CLK low
-
3
ns
td(CLKL-NBLH)
FSMC_CLK low to FSMC_NBL high
3
-
ns
tsu(NWAIT-CLKH)
FSMC_NWAIT valid before FSMC_CLK high
4
-
ns
th(CLKH-NWAIT)
FSMC_NWAIT valid after FSMC_CLK high
0
-
ns
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
DocID022063 Rev 5
153/201
Electrical characteristics
STM32F415xx, STM32F417xx
PC Card/CompactFlash controller waveforms and timings
Figure 62 through Figure 67 represent synchronous waveforms, and Table 83 and Table 84
provide the corresponding timings. The results shown in this table are obtained with the
following FSMC configuration:
•
COM.FSMC_SetupTime = 0x04;
•
COM.FSMC_WaitSetupTime = 0x07;
•
COM.FSMC_HoldSetupTime = 0x04;
•
COM.FSMC_HiZSetupTime = 0x00;
•
ATT.FSMC_SetupTime = 0x04;
•
ATT.FSMC_WaitSetupTime = 0x07;
•
ATT.FSMC_HoldSetupTime = 0x04;
•
ATT.FSMC_HiZSetupTime = 0x00;
•
IO.FSMC_SetupTime = 0x04;
•
IO.FSMC_WaitSetupTime = 0x07;
•
IO.FSMC_HoldSetupTime = 0x04;
•
IO.FSMC_HiZSetupTime = 0x00;
•
TCLRSetupTime = 0;
•
TARSetupTime = 0.
In all timing tables, the THCLK is the HCLK clock period.
Figure 62. PC Card/CompactFlash controller waveforms for common memory read
access
)60&B1&(B
)60&B1&(B
WK1&([$,
WY1&([$
)60&B$>@
WK1&([15(*
WK1&([1,25'
WK1&([1,2:5
WG15(*1&([
WG1,25'1&([
)60&B15(*
)60&B1,2:5
)60&B1,25'
)60&B1:(
WG1&(B12(
)60&B12(
WZ12(
WVX'12(
WK12('
)60&B'>@
DLE
1. FSMC_NCE4_2 remains high (inactive during 8-bit access.
154/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Figure 63. PC Card/CompactFlash controller waveforms for common memory write
access
)60&B1&(B
)60&B1&(B +LJK
WY1&(B$
WK1&(B$,
)60&B$>@
WK1&(B15(*
WK1&(B1,25'
WK1&(B1,2:5
WG15(*1&(B
WG1,25'1&(B
)60&B15(*
)60&B1,2:5
)60&B1,25'
WG1&(B1:(
WZ1:(
WG1:(1&(B
)60&B1:(
)60&B12(
0(0[+,= WG'1:(
WY1:('
WK1:('
)60&B'>@
DL
DocID022063 Rev 5
155/201
Electrical characteristics
STM32F415xx, STM32F417xx
Figure 64. PC Card/CompactFlash controller waveforms for attribute memory read
access
)60&B1&(B
WY1&(B$
WK1&(B$,
)60&B1&(B +LJK
)60&B$>@
)60&B1,2:5
)60&B1,25'
WG15(*1&(B
WK1&(B15(*
)60&B15(*
)60&B1:(
WG1&(B12(
WZ12(
WG12(1&(B
)60&B12(
WVX'12(
WK12('
)60&B'>@
DLE
1. Only data bits 0...7 are read (bits 8...15 are disregarded).
156/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Figure 65. PC Card/CompactFlash controller waveforms for attribute memory write
access
)60&B1&(B
)60&B1&(B
+LJK
WY1&(B$
WK1&(B$,
)60&B$>@
)60&B1,2:5
)60&B1,25'
WG15(*1&(B
WK1&(B15(*
)60&B15(*
WG1&(B1:(
WZ1:(
)60&B1:(
WG1:(1&(B
)60&B12(
WY1:('
)60&B'>@
DLE
1. Only data bits 0...7 are driven (bits 8...15 remains Hi-Z).
Figure 66. PC Card/CompactFlash controller waveforms for I/O space read access
)60&B1&(B
)60&B1&(B
WK1&(B$,
WY1&([$
)60&B$>@
)60&B15(*
)60&B1:(
)60&B12(
)60&B1,2:5
WZ1,25'
WG1,25'1&(B
)60&B1,25'
WVX'1,25'
WG1,25''
)60&B'>@
DL%
DocID022063 Rev 5
157/201
Electrical characteristics
STM32F415xx, STM32F417xx
Figure 67. PC Card/CompactFlash controller waveforms for I/O space write access
)60&B1&(B
)60&B1&(B
WY1&([$
WK1&(B$,
)60&B$>@
)60&B15(*
)60&B1:(
)60&B12(
)60&B1,25'
WG1&(B1,2:5
WZ1,2:5
)60&B1,2:5
$77[+,= WK1,2:5'
WY1,2:5'
)60&B'>@
DLF
Table 83. Switching characteristics for PC Card/CF read and write cycles
in attribute/common space(1)(2)
Symbol
Parameter
Min
Max
Unit
tv(NCEx-A)
FSMC_Ncex low to FSMC_Ay valid
-
0
ns
th(NCEx_AI)
FSMC_NCEx high to FSMC_Ax invalid
4
-
ns
td(NREG-NCEx)
FSMC_NCEx low to FSMC_NREG valid
-
3.5
ns
th(NCEx-NREG)
FSMC_NCEx high to FSMC_NREG invalid
THCLK+4
-
ns
td(NCEx-NWE)
FSMC_NCEx low to FSMC_NWE low
-
5THCLK+0.5
ns
td(NCEx-NOE)
FSMC_NCEx low to FSMC_NOE low
-
5THCLK +0.5
ns
8THCLK–1
8THCLK+1
ns
5THCLK+2.5
-
ns
4.5
-
ns
3
-
ns
8THCLK–0.5
8THCLK+ 3
ns
5THCLK–1
-
ns
tw(NOE)
td(NOE_NCEx)
tsu (D-NOE)
FSMC_NOE low width
FSMC_NOE high to FSMC_NCEx high
FSMC_D[15:0] valid data before FSMC_NOE high
th(N0E-D)
FSMC_N0E high to FSMC_D[15:0] invalid
tw(NWE)
FSMC_NWE low width
td(NWE_NCEx)
FSMC_NWE high to FSMC_NCEx high
td(NCEx-NWE)
FSMC_NCEx low to FSMC_NWE low
-
5THCLK+ 1
ns
FSMC_NWE low to FSMC_D[15:0] valid
-
0
ns
tv(NWE-D)
th (NWE-D)
FSMC_NWE high to FSMC_D[15:0] invalid
8THCLK –1
-
ns
td (D-NWE)
FSMC_D[15:0] valid before FSMC_NWE high
13THCLK –1
-
ns
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
158/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Table 84. Switching characteristics for PC Card/CF read and write cycles
in I/O space(1)(2)
Symbol
Parameter
tw(NIOWR)
FSMC_NIOWR low width
tv(NIOWR-D)
FSMC_NIOWR low to FSMC_D[15:0] valid
th(NIOWR-D)
FSMC_NIOWR high to FSMC_D[15:0] invalid
Min
Max
Unit
8THCLK –1
-
ns
-
5THCLK– 1
ns
8THCLK– 2
-
ns
-
5THCLK+ 2.5
ns
5THCLK–1.5
-
ns
-
5THCLK+ 2
ns
td(NCE4_1-NIOWR) FSMC_NCE4_1 low to FSMC_NIOWR valid
th(NCEx-NIOWR)
FSMC_NCEx high to FSMC_NIOWR invalid
td(NIORD-NCEx)
FSMC_NCEx low to FSMC_NIORD valid
th(NCEx-NIORD)
FSMC_NCEx high to FSMC_NIORD) valid
5THCLK– 1.5
-
ns
FSMC_NIORD low width
8THCLK–0.5
-
ns
tw(NIORD)
tsu(D-NIORD)
FSMC_D[15:0] valid before FSMC_NIORD high
9
-
ns
td(NIORD-D)
FSMC_D[15:0] valid after FSMC_NIORD high
0
-
ns
1. CL = 30 pF.
2. Guaranteed by characterization results, not tested in production.
NAND controller waveforms and timings
Figure 68 through Figure 71 represent synchronous waveforms, and Table 85 and Table 86
provide the corresponding timings. The results shown in this table are obtained with the
following FSMC configuration:
•
COM.FSMC_SetupTime = 0x01;
•
COM.FSMC_WaitSetupTime = 0x03;
•
COM.FSMC_HoldSetupTime = 0x02;
•
COM.FSMC_HiZSetupTime = 0x01;
•
ATT.FSMC_SetupTime = 0x01;
•
ATT.FSMC_WaitSetupTime = 0x03;
•
ATT.FSMC_HoldSetupTime = 0x02;
•
ATT.FSMC_HiZSetupTime = 0x01;
•
Bank = FSMC_Bank_NAND;
•
MemoryDataWidth = FSMC_MemoryDataWidth_16b;
•
ECC = FSMC_ECC_Enable;
•
ECCPageSize = FSMC_ECCPageSize_512Bytes;
•
TCLRSetupTime = 0;
•
TARSetupTime = 0.
In all timing tables, the THCLK is the HCLK clock period.
DocID022063 Rev 5
159/201
Electrical characteristics
STM32F415xx, STM32F417xx
Figure 68. NAND controller waveforms for read access
&3-#?.#%X
!,%&3-#?!
#,%&3-#?!
&3-#?.7%
TD!,%./%
TH./%!,%
&3-#?./%.2%
TSU$./%
TH./%$
&3-#?$;=
AIC
Figure 69. NAND controller waveforms for write access
&3-#?.#%X
!,%&3-#?!
#,%&3-#?!
TD!,%.7%
TH.7%!,%
&3-#?.7%
&3-#?./%.2%
TV.7%$
TH.7%$
&3-#?$;=
AIC
160/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Electrical characteristics
Figure 70. NAND controller waveforms for common memory read access
)60&B1&([
$/()60&B$
&/()60&B$
WG$/(12(
WK12($/(
)60&B1:(
WZ12(
)60&B12(
WVX'12(
WK12('
)60&B'>@
DLF
Figure 71. NAND controller waveforms for common memory write access
&3-#?.#%X
!,%&3-#?!
#,%&3-#?!
TD!,%./%
TW.7%
TH./%!,%
&3-#?.7%
&3-#?./%
TD$.7%
TV.7%$
TH.7%$
&3-#?$;=
AIC
Table 85. Switching characteristics for NAND Flash read cycles(1)
Symbol
tw(N0E)
Parameter
FSMC_NOE low width
Min
Max
Unit
4THCLK–
0.5
4THCLK+ 3
ns
tsu(D-NOE)
FSMC_D[15-0] valid data before FSMC_NOE high
10
-
ns
th(NOE-D)
FSMC_D[15-0] valid data after FSMC_NOE high
0
-
ns
td(ALE-NOE)
FSMC_ALE valid before FSMC_NOE low
-
3THCLK
ns
th(NOE-ALE)
FSMC_NWE high to FSMC_ALE invalid
3THCLK– 2
-
ns
1. CL = 30 pF.
DocID022063 Rev 5
161/201
Electrical characteristics
STM32F415xx, STM32F417xx
Table 86. Switching characteristics for NAND Flash write cycles(1)
Symbol
tw(NWE)
Parameter
FSMC_NWE low width
Min
Max
Unit
4THCLK–1
4THCLK+ 3
ns
-
0
ns
tv(NWE-D)
FSMC_NWE low to FSMC_D[15-0] valid
th(NWE-D)
FSMC_NWE high to FSMC_D[15-0] invalid
3THCLK –2
-
ns
td(D-NWE)
FSMC_D[15-0] valid before FSMC_NWE high
5THCLK–3
-
ns
-
3THCLK
ns
3THCLK–2
-
ns
td(ALE-NWE)
FSMC_ALE valid before FSMC_NWE low
th(NWE-ALE)
FSMC_NWE high to FSMC_ALE invalid
1. CL = 30 pF.
5.3.27
Camera interface (DCMI) timing specifications
Unless otherwise specified, the parameters given in Table 87 for DCMI are derived from
tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage
summarized in Table 13, with the following configuration:
•
PCK polarity: falling
•
VSYNC and HSYNC polarity: high
•
Data format: 14 bits
Figure 72. DCMI timing diagram
'&0,B3,;&/.
'&0,B3,;&/.
WVX+6<1&
WK+6<1&
'&0,B+6<1&
WVX96<1&
WK+6<1&
'&0,B96<1&
WVX'$7$ WK'$7$
'$7$>@
069
Table 87. DCMI characteristics(1)
Symbol
162/201
Parameter
Min
Max
Frequency ratio DCMI_PIXCLK/fHCLK
-
0.4
DCMI_PIXCLK
Pixel clock input
-
54
MHz
Dpixel
Pixel clock input duty cycle
30
70
%
DocID022063 Rev 5
Unit
STM32F415xx, STM32F417xx
Electrical characteristics
Table 87. DCMI characteristics(1) (continued)
Symbol
Parameter
Min
Max
2.5
-
tsu(DATA)
Data input setup time
th(DATA)
Data hold time
1
-
tsu(HSYNC),
tsu(VSYNC)
HSYNC/VSYNC input setup time
2
-
th(HSYNC),
th(VSYNC)
HSYNC/VSYNC input hold time
0.5
-
Unit
ns
1. Guaranteed by characterization results, not tested in production.
5.3.28
SD/SDIO MMC card host interface (SDIO) characteristics
Unless otherwise specified, the parameters given in Table 88 are derived from tests
performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions
summarized in Table 14 with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load C = 30 pF
•
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output
characteristics.
Figure 73. SDIO high-speed mode
tf
tr
tC
tW(CKH)
tW(CKL)
CK
tOV
tOH
D, CMD
(output)
tISU
tIH
D, CMD
(input)
ai14887
DocID022063 Rev 5
163/201
Electrical characteristics
STM32F415xx, STM32F417xx
Figure 74. SD default mode
CK
tOVD
tOHD
D, CMD
(output)
ai14888
Table 88. Dynamic characteristics: SD / MMC characteristics(1)
Symbol
fPP
Parameter
Conditions
Min
Typ
Max
Unit
48
MHz
-
Clock frequency in data transfer mode
0
SDIO_CK/fPCLK2 frequency ratio
-
-
8/3
tW(CKL)
Clock low time
fPP = 48 MHz
8.5
9
-
tW(CKH)
Clock high time
fPP = 48 MHz
8.3
10
-
ns
CMD, D inputs (referenced to CK) in MMC and SD HS mode
tISU
Input setup time HS
fPP = 48 MHz
3
-
-
tIH
Input hold time HS
fPP = 48 MHz
0
-
-
ns
CMD, D outputs (referenced to CK) in MMC and SD HS mode
tOV
Output valid time HS
fPP = 48 MHz
-
4.5
6
tOH
Output hold time HS
fPP = 48 MHz
1
-
-
ns
CMD, D inputs (referenced to CK) in SD default mode
tISUD
Input setup time SD
fPP = 24 MHz
1.5
-
-
tIHD
Input hold time SD
fPP = 24 MHz
0.5
-
-
ns
CMD, D outputs (referenced to CK) in SD default mode
tOVD
Output valid default time SD
fPP = 24 MHz
-
4.5
7
tOHD
Output hold default time SD
fPP = 24 MHz
0.5
-
-
ns
1. Guaranteed by characterization results, not tested in production.
5.3.29
RTC characteristics
Table 89. RTC characteristics
164/201
Symbol
Parameter
-
fPCLK1/RTCCLK frequency ratio
Conditions
Any read/write operation
from/to an RTC register
DocID022063 Rev 5
Min
Max
4
-
STM32F415xx, STM32F417xx
6
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
6.1
WLCSP90 package information
Figure 75. WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch wafer level chip scale
package outline
H
H
EEE =
$EDOOORFDWLRQ
!
H
'HWDLO$
H
*
*
$
)
$
%277209,(:
%8036,'(
$
$
$
$
6,'(9,(:
)52179,(:
'
"UMP
HHH
!ORIENTATION
REFERENCE
$
(
E
AAA
8
7239,(:
:$)(5%$&.6,'(
CCC
DDD
: 89
:
6HDWLQJSODQH
:
'HWDLO$
5RWDWHGƒ
!*7?-%?6
1. Drawing is not to scale.
DocID022063 Rev 5
165/201
Package information
STM32F415xx, STM32F417xx
Table 90. WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch wafer level chip scale
package mechanical data
inches(1)
millimeters
Symbol
Typ
Min
Max
Typ
Min
Max
A
0.540
0.600
0.585
0.0207
0.0219
0.0230
A1
-
0.190
-
-
0.0069
-
A2
-
0.380
-
-
0.0150
-
(2)
A3
-
0.025
-
-
0.0010
-
(3)
0.240
0.270
0.300
0.0087
0.0098
0.0110
D
4.188
4.223
4.258
0.1008
0.1022
0.1036
E
3.934
3.969
4.004
0.1115
0.1129
0.1143
e
-
0.400
-
-
0.0157
-
e1
-
3.600
-
-
0.0787
-
e2
-
3.200
-
-
0.0787
-
F
-
0.3115
-
-
0.0117
-
G
-
0.3845
-
-
0.0171
-
aaa
-
-
0.100
-
-
0.0039
bbb
-
-
0.100
-
-
0.0039
ccc
-
-
0.100
-
-
0.0039
ddd
-
-
0.050
-
-
0.0020
eee
-
-
0.050
-
-
0.0020
b
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Back side coating.
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
Figure 76. WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch wafer level chip scale
recommended footprint
'SDG
'VP
166/201
DocID022063 Rev 5
069
STM32F415xx, STM32F417xx
Package information
Table 91. WLCSP90 recommended PCB design rules
Dimension
Recommended values
Pitch
0.4 mm
Dpad
260 µm max. (circular)
220 µm recommended
Dsm
300 µm min. (for 260 µm diameter pad)
PCB pad design
Non-solder mask defined via underbump allowed
Device marking for WLCSP90
The following figure gives an example of topside marking and ball A1 position identifier
location.
Figure 77. WLCSP90 marking example (package top view)
3URGXFWLGHQWLILFDWLRQ
)2*
5HYLVLRQFRGH
'DWHFRGH
<
::
5
%DOO$
LQGHQWLIHU
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
DocID022063 Rev 5
167/201
Package information
6.2
STM32F415xx, STM32F417xx
LQFP64 package information
Figure 78. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline
PP
*$8*(3/$1(
F
$
$
$
6($7,1*3/$1(
&
$
FFF &
'
'
'
.
/
/
3,1
,'(17,),&$7,21
(
(
(
E
H
:B0(B9
1. Drawing is not to scale.
Table 92. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package
mechanical data
inches(1)
millimeters
Symbol
168/201
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
-
12.000
-
-
0.4724
-
D1
-
10.000
-
-
0.3937
-
D3
-
7.500
-
-
0.2953
-
E
-
12.000
-
-
0.4724
-
E1
-
10.000
-
-
0.3937
-
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Package information
Table 92. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package
mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
E3
-
7.500
-
-
0.2953
-
e
-
0.500
-
-
0.0197
-
K
0°
3.5°
7°
0°
3.5°
7°
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 79. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package
recommended footprint
AIC
1. Drawing is not to scale.
2. Dimensions are in millimeters.
DocID022063 Rev 5
169/201
Package information
STM32F415xx, STM32F417xx
Device marking for LQFP64
The following figure gives an example of topside marking and pin 1 position identifier
location.
Figure 80. LPQF64 marking example (package top view)
5HYLVLRQFRGH
5
3URGXFWLGHQWLILFDWLRQ
670)
5*7
< ::
'DWHFRGH
3LQLGHQWLILHU
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
170/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
6.3
Package information
LQPF100 package information
Figure 81. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline
MM
C
!
!
!
3%!4).'0,!.%
#
'!5'%0,!.%
$
,
$
!
+
CCC #
,
$
0).
)$%.4)&)#!4)/.
%
%
%
B
E
,?-%?6
1. Drawing is not to scale.
Table 93. LQPF100 – 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data(1)
millimeters
inches
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
15.800
16.000
16.200
0.6220
0.6299
0.6378
D1
13.800
14.000
14.200
0.5433
0.5512
0.5591
D3
-
12.000
-
-
0.4724
-
E
15.80
16.000
16.200
0.6220
0.6299
0.6378
DocID022063 Rev 5
171/201
Package information
STM32F415xx, STM32F417xx
Table 93. LQPF100 – 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data(1) (continued)
millimeters
inches
Symbol
Min
Typ
Max
Min
Typ
Max
E1
13.800
14.000
14.200
0.5433
0.5512
0.5591
E3
-
12.000
-
-
0.4724
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 82. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint
AIC
1. Drawing is not to scale.
2. Dimensions are in millimeters.
172/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Package information
Device marking for LFP100
The following figure gives an example of topside marking and pin 1 position identifier
location.
Figure 83. LQFP100 marking example (package top view)
3URGXFW
LGHQWLILFDWLRQ
670)
5HYLVLRQ
FRGH
9*75
'DWHFRGH
< ::
^důŽŐŽ
3LQLGHQWLILHU
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
DocID022063 Rev 5
173/201
Package information
6.4
STM32F415xx, STM32F417xx
LQFP144 package information
Figure 84. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline
C
!
!
!
3%!4).'
0,!.%
#
MM
CCC #
!
'!5'%0,!.%
$
+
,
$
,
$
%
%
%
B
0).
)$%.4)&)#!4)/.
E
!?-%?6
1. Drawing is not to scale.
Table 94. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
21.800
22.000
22.200
0.8583
0.8661
0.874
D1
19.800
20.000
20.200
0.7795
0.7874
0.7953
174/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Package information
Table 94. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
D3
-
17.500
-
-
0.689
-
E
21.800
22.000
22.200
0.8583
0.8661
0.8740
E1
19.800
20.000
20.200
0.7795
0.7874
0.7953
E3
-
17.500
-
-
0.6890
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 85. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package
recommended footprint
DLH
1. Drawing is not to scale.
2. Dimensions are in millimeters.
DocID022063 Rev 5
175/201
Package information
STM32F415xx, STM32F417xx
Device marking for LQPF144
The following figure gives an example of topside marking and pin 1 position identifier
location.
Figure 86. LQFP144 marking example (package top view)
2SWLRQDOHMHFWRUKROH
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
5
670)=*7
'DWHFRGH
<::
3LQLGHQWLILHU
2SWLRQDO
HMHFWRUKROH
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
176/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
6.5
Package information
UFBGA176+25 package information
Figure 87. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch
ball grid array package outline
&
^ĞĂƚŝŶŐƉůĂŶĞ
Ϯ ϰ
ĚĚĚ ϭ
ď
$EDOO
LGHQWLILHU
Ğ
$EDOO
LQGH[
DUHD
$
&
&
Ğ
Z
ϭϱ
ϭ
KddKDs/t
‘EEDOOV
dKWs/t
‘ HHH 0 & $ ‘ III 0 &
ϬϳͺDͺsϲ
1. Drawing is not to scale.
Table 95. UFBGA176+25 - 201-ball, 10 × 10 × 0.65 mm pitch, ultra thin fine pitch
ball grid array mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.460
0.530
0.600
0.0181
0.0209
0.0236
A1
0.050
0.080
0.110
0.0020
0.0031
0.0043
A2
0.400
0.450
0.500
0.0157
0.0177
0.0197
A4
0.270
0.320
0.370
0.0106
0.0126
0.0146
b
0.230
0.280
0.330
0.0091
0.0110
0.0130
D
9.950
10.000
10.050
0.3917
0.3937
0.3957
E
9.950
10.000
10.050
0.3917
0.3937
0.3957
e
-
0.650
-
-
0.0256
-
F
0.400
0.450
0.500
0.0157
0.0177
0.0197
ddd
-
-
0.080
-
-
0.0031
eee
-
-
0.150
-
-
0.0059
fff
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID022063 Rev 5
177/201
Package information
STM32F415xx, STM32F417xx
Figure 88. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch
ball grid array recommended footprint
'SDG
'VP
Ϭϳͺ&Wͺsϭ
Table 96. UFBGA176+2 recommended PCB design rules (0.65 mm pitch BGA)
Dimension
Note:
Recommended values
Pitch
0.65
Dpad
0.300 mm
Dsm
0.400 mm typ. (depends on the soldermask
registration tolerance)
Non solder mask defined (NSMD) pads are recommended.
4 to 6 mils solder paste screen printing process.
Stencil opening is 0.300 mm.
Stencil thickness is between 0.100 mm and 0.125 mm.
Pad trace width is 0.100 mm.
178/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Package information
Device marking for UFBGA176+25
The following figure gives an example of topside marking and ball A 1 position identifier
location.
Figure 89. UFBGA176+25 marking example (package top view)
5HYLVLRQFRGH
5
3URGXFWLGHQWLILFDWLRQ
670
),*+
'DWHFRGH
%DOO
$LGHQWLILHU
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
DocID022063 Rev 5
179/201
Package information
6.6
STM32F415xx, STM32F417xx
LQFP176 package information
Figure 90. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline
C
!
!
!
# 3EATINGPLANE
MM
GAUGEPLANE
K
!
,
($
0).
)$%.4)&)#!4)/.
,
$
:%
%
(%
E
:$
B
4?-%?6
1. Drawing is not to scale.
Table 97. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
-
1.450
0.0531
-
0.0571
b
0.170
-
0.270
0.0067
-
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
23.900
-
24.100
0.9409
-
0.9488
HD
25.900
-
26.100
1.0197
-
1.0276
180/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Package information
Table 97. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package
mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
ZD
-
1.250
-
-
0.0492
-
E
23.900
-
24.100
0.9409
-
0.9488
HE
25.900
-
26.100
1.0197
-
1.0276
ZE
-
1.250
-
-
0.0492
-
e
-
0.500
-
-
0.0197
-
0.450
-
0.750
0.0177
-
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
-
7°
0°
-
7°
ccc
-
-
0.080
-
-
0.0031
(2)
L
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. L dimension is measured at gauge plane at 0.25 mm above the seating plane.
DocID022063 Rev 5
181/201
Package information
STM32F415xx, STM32F417xx
Figure 91. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended
footprint
4?&0?6
1. Dimensions are expressed in millimeters.
182/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Package information
Device marking for LQFP176
The following figure gives an example of topside marking and pin 1 position identifier
location.
Figure 92. LQFP176 marking example (package top view)
3URGXFWLGHQWLILFDWLRQ
670),*7
5HYLVLRQFRGH
< ::
'DWHFRGH
5
3LQLGHQWLILHU
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
DocID022063 Rev 5
183/201
Package information
6.7
STM32F415xx, STM32F417xx
Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x ΘJA)
Where:
•
TA max is the maximum ambient temperature in °C,
•
ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
•
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
•
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 98. Package thermal characteristics
Symbol
ΘJA
Parameter
Value
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch
46
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch
43
Thermal resistance junction-ambient
LQFP144 - 20 × 20 mm / 0.5 mm pitch
40
Thermal resistance junction-ambient
LQFP176 - 24 × 24 mm / 0.5 mm pitch
38
Thermal resistance junction-ambient
UFBGA176 - 10× 10 mm / 0.65 mm pitch
39
Thermal resistance junction-ambient
WLCSP90 - 0.400 mm pitch
Unit
°C/W
38.1
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
184/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
7
Part numbering
Part numbering
Table 99. Ordering information scheme
Example:
STM32
F 415 R E
T
6 xxx
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
415 = STM32F41xxx, connectivity, cryptographic acceleration
417= STM32F41xxx, connectivity, camera interface, Ethernet
cryptographic acceleration
Pin count
R = 64 pins
O = 90 pins
V = 100 pins
Z = 144 pins
I = 176 pins
Flash memory size
E = 512 Kbytes of Flash memory
G = 1024 Kbytes of Flash memory
Package
T = LQFP
H = UFBGA
Y = WLCSP
Temperature range
6 = Industrial temperature range, –40 to 85 °C.
7 = Industrial temperature range, –40 to 105 °C.
Options
xxx = programmed parts
TR = tape and reel
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
DocID022063 Rev 5
185/201
Application block diagrams
Appendix A
A.1
STM32F415xx, STM32F417xx
Application block diagrams
USB OTG full speed (FS) interface solutions
Figure 93. USB controller configured as peripheral-only and used
in Full speed mode
6$$
6TO6$$
6OLATGEREGULATOR 6"53
$-
/3#?).
0!0"
$0
0!0"
633
/3#?/54
53"3TD"CONNECTOR
34-&XX
-36
1. External voltage regulator only needed when building a VBUS powered device.
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
Figure 94. USB controller configured as host-only and used in full speed mode
6$$
%.
'0)/
'0)/)21
#URRENTLIMITER
POWERSWITCH 60WR
6"53
/3#?).
0!0"
0!0"
$$0
633
/3#?/54
53"3TD!CONNECTOR
34-&XX
/VERCURRENT
-36
1. The current limiter is required only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
186/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Application block diagrams
Figure 95. USB controller configured in dual mode and used in full speed mode
6$$
6TO6$$
VOLTAGEREGULATOR 6$$
'0)/)21
/VERCURRENT
#URRENTLIMITER
POWERSWITCH 60WR
34-&XX
0!0"
0!0"
/3#?).
/3#?/54
0!0"
0!0"
6"53
$$0
)$
633
53"MICRO!"CONNECTOR
'0)/
%.
-36
1. External voltage regulator only needed when building a VBUS powered device.
2. The current limiter is required only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
3. The ID pin is required in dual role only.
4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
DocID022063 Rev 5
187/201
Application block diagrams
A.2
STM32F415xx, STM32F417xx
USB OTG high speed (HS) interface solutions
Figure 96. USB controller configured as peripheral, host, or dual-mode
and used in high speed mode
34-&XX
&30(9
53"(3
/4'#TRL
$0
$-
NOTCONNECTED
$0
5,0)?#,+
$-
5,0)?$;=
5,0)
)$
5,0)?$)2
6"53
5,0)?340
53"
CONNECTOR
633
5,0)?.84
(IGHSPEED
/4'0(9
0,,
84
OR-(Z84
-#/OR-#/
8)
-36
1. It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the
STM32F41xxx with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example
of a possible connection.
2. The ID pin is required in dual role only.
188/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
A.3
Application block diagrams
Ethernet interface solutions
Figure 97. MII mode using a 25 MHz crystal
34-
-#5
-))?48?#,+
-))?48?%.
-))?48$;=
-))?#23
-))?#/,
%THERNET
-!#
(#,+
%THERNET
0(9
-))
PINS
-))?28?#,+
-))?28$;=
-))?28?$6
-))?28?%2
)%%%040
4IMER
INPUT
TRIGGER 4IMESTAMP
4)-
COMPARATOR
-))-$#
PINS
-$)/
-$#
003?/54
84!,
-(Z
/3#
(#,+
0,,
0(9?#,+-(Z
-#/-#/
84
-36
1. fHCLK must be greater than 25 MHz.
2. Pulse per second when using IEEE1588 PTP optional signal.
Figure 98. RMII with a 50 MHz oscillator
34-
-#5
%THERNET
0(9
2-))?48?%.
%THERNET
-!#
2-))?48$;=
2-))?28$;=
(#,+
2-))?#28?$6
2-))?2%&?#,+
)%%%040
4IMER
INPUT
TRIGGER 4IMESTAMP
4)-
COMPARATOR
2-))
PINS
2-))-$#
PINS
-$)/
-$#
OR
OR-(Z SYNCHRONOUS -(Z
/3#
-(Z
(#,+
0,,
0(9?#,+-(Z
84
-(Z
-36
1. fHCLK must be greater than 25 MHz.
DocID022063 Rev 5
189/201
Application block diagrams
STM32F415xx, STM32F417xx
Figure 99. RMII with a 25 MHz crystal and PHY with PLL
34-&
-#5
%THERNET
0(9
2-))?48?%.
%THERNET
-!#
2-))?48$;=
2-))?28$;=
(#,+
)%%%040
2-))?#28?$6
2-))?2%&?#,+
2-))
PINS
2%&?#,+
-$)/
4IMER
INPUT
TRIGGER 4IMESTAMP
4)-
COMPARATOR
2-))-$#
PINS
-$#
OR
OR-(Z SYNCHRONOUS -(Z
84!,
-(Z
/3#
0,,
(#,+
0,,
-#/-#/
0(9?#,+-(Z 84
-36
1. fHCLK must be greater than 25 MHz.
2. The 25 MHz (PHY_CLK) must be derived directly from the HSE oscillator, before the PLL block.
190/201
DocID022063 Rev 5
STM32F415xx, STM32F417xx
8
Revision history
Revision history
Table 100. Document revision history
Date
Revision
15-Sep-2011
1
Initial release.
2
Added WLCSP90 package on cover page.
Renamed USART4 and USART5 into UART4 and UART5,
respectively.
Updated number of USB OTG HS and FS in Table 2: STM32F415xx
and STM32F417xx: features and peripheral counts.
Updated Figure 3: Compatible board design between
STM32F10xx/STM32F2/STM32F41xxx for LQFP144 package and
Figure 4: Compatible board design between STM32F2 and
STM32F41xxx for LQFP176 and BGA176 packages, and removed
note 1 and 2.
Updated Section 2.2.9: Flexible static memory controller (FSMC).
Modified I/Os used to reprogram the Flash memory for CAN2 and
USB OTG FS in Section 2.2.13: Boot modes.
Updated note in Section 2.2.14: Power supply schemes.
PDR_ON no more available on LQFP100 package. Updated
Section 2.2.16: Voltage regulator. Updated condition to obtain a
minimum supply voltage of 1.7 V in the whole document.
Renamed USART4/5 to UART4/5 and added LIN and IrDA feature for
UART4 and UART5 in Table 5: USART feature comparison.
Removed support of I2C for OTG PHY in Section 2.2.30: Universal
serial bus on-the-go full-speed (OTG_FS).
Added Table 6: Legend/abbreviations used in the pinout table.
Table 7: STM32F41xxx pin and ball definitions: replaced VSS_3,
VSS_4, and VSS_8 by VSS; reformatted Table 7: STM32F41xxx pin and
ball definitions to better highlight I/O structure, and alternate functions
versus additional functions; signal corresponding to LQFP100 pin 99
changed from PDR_ON to VSS; EVENTOUT added in the list of
alternate functions for all I/Os; ADC3_IN8 added as alternate function
for PF10; FSMC_CLE and FSMC_ALE added as alternate functions
for PD11 and PD12, respectively; PH10 alternate function
TIM15_CH1_ETR renamed TIM5_CH1; updated PA4 and PA5 I/O
structure to TTa.
Removed OTG_HS_SCL, OTG_HS_SDA, OTG_FS_INTN in Table 7:
STM32F41xxx pin and ball definitions and Table 9: Alternate function
mapping.
Changed TCM data RAM to CCM data RAM in Figure 18:
STM32F41xxx memory map.
Added IVDD and IVSS maximum values in Table 12: Current
characteristics.
Added Note 1 related to fHCLK, updated Note 2 in Table 14: General
operating conditions, and added maximum power dissipation values.
Updated Table 15: Limitations depending on the operating power
supply range.
24-Jan-2012
Changes
DocID022063 Rev 5
191/201
Revision history
STM32F415xx, STM32F417xx
Table 100. Document revision history (continued)
Date
24-Jan-2012
192/201
Revision
Changes
Added V12 in Table 19: Embedded reset and power control block
characteristics.
Updated Table 21: Typical and maximum current consumption in Run
mode, code with data processing running from Flash memory (ART
accelerator disabled) and Table 20: Typical and maximum current
consumption in Run mode, code with data processing running from
Flash memory (ART accelerator enabled) or RAM. Added Figure ,
Figure 25, Figure 26, and Figure 27.
Updated Table 22: Typical and maximum current consumption in Sleep
mode and removed Note 1.
Updated Table 23: Typical and maximum current consumptions in Stop
mode and Table 24: Typical and maximum current consumptions in
Standby mode, Table 25: Typical and maximum current consumptions
in VBAT mode, and Table 27: Switching output I/O current
consumption.
Section : On-chip peripheral current consumption: modified conditions,
and updated Table 28: Peripheral current consumption and Note 2.
Changed fHSE_ext to 50 MHz and tr(HSE)/tf(HSE) maximum value in
Table 30: High-speed external user clock characteristics.
2
Added Cin(LSE) in Table 31: Low-speed external user clock
(continued) characteristics.
Updated maximum PLL input clock frequency, removed related note,
and deleted jitter for MCO for RMII Ethernet typical value in Table 36:
Main PLL characteristics. Updated maximum PLLI2S input clock
frequency and removed related note in Table 37: PLLI2S (audio PLL)
characteristics.
Updated Section : Flash memory to specify that the devices are
shipped to customers with the Flash memory erased. Updated
Table 39: Flash memory characteristics, and added tME in Table 40:
Flash memory programming.
Updated Table 43: EMS characteristics, and Table 44: EMI
characteristics.
Updated Table 56: I2S dynamic characteristics
Updated Figure 45: ULPI timing diagram and Table 62: ULPI timing.
Added tCOUNTER and tMAX_COUNT in Table 52: Characteristics of TIMx
connected to the APB1 domain and Table 53: Characteristics of TIMx
connected to the APB2 domain. Updated Table 65: Dynamic
characteristics: Ethernet MAC signals for RMII.
Removed USB-IF certification in Section : USB OTG FS
characteristics.
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Revision history
Table 100. Document revision history (continued)
Date
24-Jan-2012
Revision
Changes
Updated Table 61: USB HS clock timing parameters
Updated Table 67: ADC characteristics.
Updated Table 68: ADC accuracy at fADC = 30 MHz.
Updated Note 1 in Table 74: DAC characteristics.
Section 5.3.26: FSMC characteristics: updated Table 75 toTable 86,
changed CL value to 30 pF, and modified FSMC configuration for
asynchronous timings and waveforms. Updated Figure 59:
Synchronous multiplexed PSRAM write timings.
Updated Table 98: Package thermal characteristics.
Appendix A.1: USB OTG full speed (FS) interface solutions: modified
2
(continued) Figure 93: USB controller configured as peripheral-only and used in
Full speed mode added Note 2, updated Figure 94: USB controller
configured as host-only and used in full speed mode and added
Note 2, changed Figure 95: USB controller configured in dual mode
and used in full speed mode and added Note 3.
Appendix A.2: USB OTG high speed (HS) interface solutions: removed
figures USB OTG HS device-only connection in FS mode and USB
OTG HS host-only connection in FS mode, and updated Figure 96:
USB controller configured as peripheral, host, or dual-mode and used
in high speed mode and added Note 2.
Added Appendix A.3: Ethernet interface solutions.
DocID022063 Rev 5
193/201
Revision history
STM32F415xx, STM32F417xx
Table 100. Document revision history (continued)
Date
31-May-2012
194/201
Revision
Changes
3
Updated Figure 5: STM32F41xxx block diagram and Figure 7: Power
supply supervisor interconnection with internal reset OFF
Added SDIO, added notes related to FSMC and SPI/I2S in Table 2:
STM32F415xx and STM32F417xx: features and peripheral counts.
Starting from Silicon revision Z, USB OTG full-speed interface is now
available for all STM32F415xx devices.
Added full information on WLCSP90 package together with
corresponding part numbers.
Changed number of AHB buses to 3.
Modified available Flash memory sizes in Section 2.2.4: Embedded
Flash memory.
Modified number of maskable interrupt channels in Section 2.2.10:
Nested vectored interrupt controller (NVIC).
Updated case of Regulator ON/internal reset ON, Regulator
ON/internal reset OFF, and Regulator OFF/internal reset ON in
Section 2.2.16: Voltage regulator.
Updated standby mode description in Section 2.2.19: Low-power
modes.
Added Note 1 below Figure 16: STM32F41xxx UFBGA176 ballout.
Added Note 1 below Figure 17: STM32F41xxx WLCSP90 ballout.
Updated Table 7: STM32F41xxx pin and ball definitions.
Added Table 8: FSMC pin definition.
Removed OTG_HS_INTN alternate function in Table 7: STM32F41xxx
pin and ball definitions and Table 9: Alternate function mapping.
Removed I2S2_WS on PB6/AF5 in Table 9: Alternate function
mapping.
Replaced JTRST by NJTRST, removed ETH_RMII _TX_CLK, and
modified I2S3ext_SD on PC11 in Table 9: Alternate function mapping.
Added Table 10: STM32F41x register boundary addresses.
Updated Figure 18: STM32F41xxx memory map.
Updated VDDA and VREF+ decoupling capacitor in Figure 21: Power
supply scheme.
Added power dissipation maximum value for WLCSP90 in Table 14:
General operating conditions.
Updated VPOR/PDR in Table 19: Embedded reset and power control
block characteristics.
Updated notes in Table 21: Typical and maximum current consumption
in Run mode, code with data processing running from Flash memory
(ART accelerator disabled), Table 20: Typical and maximum current
consumption in Run mode, code with data processing running from
Flash memory (ART accelerator enabled) or RAM, and Table 22:
Typical and maximum current consumption in Sleep mode.
Updated maximum current consumption at TA = 25 °n Table 23:
Typical and maximum current consumptions in Stop mode.
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Revision history
Table 100. Document revision history (continued)
Date
31-May-2012
Revision
Changes
Removed fHSE_ext typical value in Table 30: High-speed external user
clock characteristics. Updated Table 32: HSE 4-26 MHz oscillator
characteristics and Table 33: LSE oscillator characteristics (fLSE =
32.768 kHz).
Added fPLL48_OUT maximum value in Table 36: Main PLL
characteristics.
Modified equation 1 and 2 in Section 5.3.11: PLL spread spectrum
clock generation (SSCG) characteristics.
Updated Table 39: Flash memory characteristics, Table 40: Flash
memory programming, and Table 41: Flash memory programming with
VPP.
Updated Section : Output driving current.
Table 56: I2C characteristics: Note 4 updated and applied to th(SDA) in
Fast mode, and removed note 4 related to th(SDA) minimum value.
3
Updated
Table 67: ADC characteristics. Updated note concerning ADC
(continued)
accuracy vs. negative injection current below Table 68: ADC accuracy
at fADC = 30 MHz.
Added WLCSP90 thermal resistance in Table 98: Package thermal
characteristics.
Updated Table 90: WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch
wafer level chip scale package mechanical data.
Updated Figure 87: UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm
pitch, ultra fine pitch ball grid array package outline and Table 95:
UFBGA176+25 - 201-ball, 10 × 10 × 0.65 mm pitch, ultra thin fine pitch
ball grid array mechanical data.
Added Figure 91: LQFP176 - 176-pin, 24 x 24 mm low profile quad flat
recommended footprint.
Removed 256 and 768 Kbyte Flash memory density from Table 99:
Ordering information scheme.
DocID022063 Rev 5
195/201
Revision history
STM32F415xx, STM32F417xx
Table 100. Document revision history (continued)
Date
04-Jun-2013
196/201
Revision
Changes
4
Modified Note 1 below Table 2: STM32F415xx and STM32F417xx:
features and peripheral counts.
Updated Figure 4 title.
Updated Note 3 below Figure 21: Power supply scheme.
Changed simplex mode into half-duplex mode in Section 2.2.25: Interintegrated sound (I2S).
Replaced DAC1_OUT and DAC2_OUT by DAC_OUT1 and
DAC_OUT2, respectively.
Updated pin 36 signal in Figure 15: STM32F41xxx LQFP176 pinout.
Changed pin number from F8 to D4 for PA13 pin in Table 7:
STM32F41xxx pin and ball definitions.
Replaced TIM2_CH1/TIM2_ETR by TIM2_CH1_ETR for PA0 and PA5
pins in Table 9: Alternate function mapping.
Changed system memory into System memory + OTP in Figure 18:
STM32F41xxx memory map.
Added Note 1 below Table 16: VCAP_1/VCAP_2 operating conditions.
Updated IDDA description in Table 74: DAC characteristics.
Removed PA9/PB13 connection to VBUS in Figure 93: USB controller
configured as peripheral-only and used in Full speed mode and
Figure 94: USB controller configured as host-only and used in full
speed mode.
Updated SPI throughput on front page and Section 2.2.24: Serial
peripheral interface (SPI)
Updated operating voltages in Table 2: STM32F415xx and
STM32F417xx: features and peripheral counts
Updated note in Section 2.2.14: Power supply schemes
Updated Section 2.2.15: Power supply supervisor
Updated “Regulator ON” paragraph in Section 2.2.16: Voltage
regulator
Removed note in Section 2.2.19: Low-power modes
Corrected wrong reference manual in Section 2.2.28: Ethernet MAC
interface with dedicated DMA and IEEE 1588 support
Updated Table 15: Limitations depending on the operating power
supply range
Updated Table 24: Typical and maximum current consumptions in
Standby mode
Updated Table 25: Typical and maximum current consumptions in
VBAT mode
Updated Table 37: PLLI2S (audio PLL) characteristics
Updated Table 44: EMI characteristics
Updated Table 49: Output voltage characteristics
Updated Table 51: NRST pin characteristics
Updated Table 55: SPI dynamic characteristics
Updated Table 56: I2S dynamic characteristics
Deleted Table 59
Updated Table 62: ULPI timing
Updated Figure 46: Ethernet SMI timing diagram
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Revision history
Table 100. Document revision history (continued)
Date
04-Jun-2013
Revision
Changes
Updated Figure 87: UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm
pitch, ultra fine pitch ball grid array package outline
Updated Table 95: UFBGA176+25 - 201-ball, 10 × 10 × 0.65 mm pitch,
ultra thin fine pitch ball grid array mechanical data
Updated Figure 5: STM32F41xxx block diagram
Updated Section 2: Description
Updated footnote (3) in Table 2: STM32F415xx and STM32F417xx:
features and peripheral counts
Updated Figure 3: Compatible board design between
STM32F10xx/STM32F2/STM32F41xxx for LQFP144 package
Updated Figure 4: Compatible board design between STM32F2 and
STM32F41xxx for LQFP176 and BGA176 packages
Updated Section 2.2.14: Power supply schemes
Updated Section 2.2.15: Power supply supervisor
Updated Section 2.2.16: Voltage regulator, including figures.
Updated Table 14: General operating conditions, including footnote (2).
Updated Table 15: Limitations depending on the operating power
supply range, including footnote (3).
Updated footnote (1) in Table 67: ADC characteristics.
Updated footnote (3) in Table 68: ADC accuracy at fADC = 30 MHz.
Updated footnote (1) in Table 74: DAC characteristics.
Updated Figure 9: Regulator OFF.
Updated Figure 7: Power supply supervisor interconnection with
4
internal reset OFF.
(continued)
Added Section 2.2.17: Regulator ON/OFF and internal reset ON/OFF
availability.
Updated footnote (2) of Figure 21: Power supply scheme.
Replaced respectively “I2S3S_WS" by "I2S3_WS”, “I2S3S_CK” by
“I2S3_CK” and “FSMC_BLN1” by “FSMC_NBL1” in Table 9: Alternate
function mapping.
Added “EVENTOUT” as alternate function “AF15” for pin PC13, PC14,
PC15, PH0, PH1, PI8 in Table 9: Alternate function mapping
Replaced “DCMI_12” by “DCMI_D12” in Table 7: STM32F41xxx pin
and ball definitions.
Removed the following sentence from Section : I2C interface
characteristics: ”Unless otherwise specified, the parameters
given in Table 56 are derived from tests performed under the
ambient temperature, fPCLK1 frequency and VDD supply voltage
conditions summarized in Table 14.”.
In Table 7: STM32F41xxx pin and ball definitions on page 47:
– For pin PC13, replaced “RTC_AF1” by “RTC_OUT, RTC_TAMP1,
RTC_TS”
– for pin PI8, replaced “RTC_AF2” by “RTC_TAMP1, RTC_TAMP2,
RTC_TS”.
– for pin PB15, added RTC_REFIN in Alternate functions column.
In Table 9: Alternate function mapping on page 62, for port
PB15, replaced “RTC_50Hz” by “RTC_REFIN”.
DocID022063 Rev 5
197/201
Revision history
STM32F415xx, STM32F417xx
Table 100. Document revision history (continued)
Date
04-Jun-2013
198/201
Revision
Changes
Updated Figure 6: Multi-AHB matrix.
Updated Figure 7: Power supply supervisor interconnection with
internal reset OFF
Changed 1.2 V to V12 in Section : Regulator OFF
Updated LQFP176 pin 48.
Updated Section 1: Introduction.
Updated Section 2: Description.
Updated operating voltage in Table 2: STM32F415xx and
STM32F417xx: features and peripheral counts.
Updated Note 1.
Updated Section 2.2.15: Power supply supervisor.
Updated Section 2.2.16: Voltage regulator.
Updated Figure 9: Regulator OFF.
Updated Table 3: Regulator ON/OFF and internal reset ON/OFF
availability.
Updated Section 2.2.19: Low-power modes.
Updated Section 2.2.20: VBAT operation.
Updated Section 2.2.22: Inter-integrated circuit interface (I²C) .
Updated pin 48 in Figure 15: STM32F41xxx LQFP176 pinout.
Updated Table 6: Legend/abbreviations used in the pinout table.
Updated Table 7: STM32F41xxx pin and ball definitions.
Updated Table 14: General operating conditions.
4
Updated Table 15: Limitations depending on the operating power
(continued) supply range.
Updated Section 5.3.7: Wakeup time from low-power mode.
Updated Table 34: HSI oscillator characteristics.
Updated Section 5.3.15: I/O current injection characteristics.
Updated Table 48: I/O static characteristics.
Updated Table 51: NRST pin characteristics.
Updated Table 56: I2C characteristics.
Updated Figure 39: I2C bus AC waveforms and measurement circuit.
Updated Section 5.3.19: Communications interfaces.
Updated Table 67: ADC characteristics.
Added Table 70: Temperature sensor calibration values.
Added Table 73: Internal reference voltage calibration values.
Updated Section 5.3.26: FSMC characteristics.
Updated Section 5.3.28: SD/SDIO MMC card host interface (SDIO)
characteristics.
Updated Table 23: Typical and maximum current consumptions in Stop
mode.
Updated Section : SPI interface characteristics included Table 55.
Updated Section : I2S interface characteristics included Table 56.
Updated Table 64: Dynamic characteristics: Eternity MAC signals for
SMI.
Updated Table 66: Dynamic characteristics: Ethernet MAC signals for
MII.
DocID022063 Rev 5
STM32F415xx, STM32F417xx
Revision history
Table 100. Document revision history (continued)
Date
04-Jun-2013
Revision
Changes
Updated Table 64: Dynamic characteristics: Eternity MAC signals for
SMI.
Updated Table 66: Dynamic characteristics: Ethernet MAC signals for
MII.
Updated Table 79: Synchronous multiplexed NOR/PSRAM read
timings.
Updated Table 80: Synchronous multiplexed PSRAM write timings.
Updated Table 81: Synchronous non-multiplexed NOR/PSRAM read
4
timings.
(continued)
Updated Table 82: Synchronous non-multiplexed PSRAM write
timings.
Updated Section 5.3.27: Camera interface (DCMI) timing specifications
including Table 87: DCMI characteristics and addition of Figure 72:
DCMI timing diagram.
Updated Section 5.3.28: SD/SDIO MMC card host interface (SDIO)
characteristics including Table 88.
Updated Chapter Figure 9.
DocID022063 Rev 5
199/201
Revision history
STM32F415xx, STM32F417xx
Table 100. Document revision history (continued)
Date
06-Mar-2015
200/201
Revision
Changes
5
Replace Cortex-M4F by Cortex-M4 with FPU throughout the
document.
Updated Section : Regulator OFF and Table 3: Regulator ON/OFF and
internal reset ON/OFF availability for LQFP176.
Updated Figure 15: STM32F41xxx LQFP176 pinout and Table 7:
STM32F41xxx pin and ball definitions.
Updated Figure 6: Multi-AHB matrix.
Added note 1 below Figure 12: STM32F41xxx LQFP64 pinout,
Figure 13: STM32F41xxx LQFP100 pinout, Figure 14: STM32F41xxx
LQFP144 pinout and Figure 15: STM32F41xxx LQFP176 pinout.
Updated IVDD and IVSS in Table 12: Current characteristics.
Updated PLS[2:0]=101 (falling edge) configuration in Table 19:
Embedded reset and power control block characteristics.
Added Section : Additional current consumption. Updated Section :
On-chip peripheral current consumption.
Updated Table 29: Low-power mode wakeup timings.
Updated Table 32: HSE 4-26 MHz oscillator characteristics and
Table 33: LSE oscillator characteristics (fLSE = 32.768 kHz).
Changed condition related to VESD(CDM) in Table 45: ESD absolute
maximum ratings.
Updated Table 47: I/O current injection susceptibility, Table 48: I/O
static characteristics, Table 49: Output voltage characteristics
conditions, Table 50: I/O AC characteristics and Figure 37: I/O AC
characteristics definition.
Updated Section : I2C interface characteristics.
Remove note 3 in Table 69: Temperature sensor characteristics.
Updated Figure 72: DCMI timing diagram.
Modified Figure 75: WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch
wafer level chip scale package outline and Table 90: WLCSP90 - 4.223
x 3.969 mm, 0.400 mm pitch wafer level chip scale package
mechanical data. Added Figure 76: WLCSP90 - 4.223 x 3.969 mm,
0.400 mm pitch wafer level chip scale recommended footprint and
Table 91: WLCSP90 recommended PCB design rules. /
Modified Figure 78: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat
package outline and Table 92: LQFP64 – 10 x 10 mm 64 pin low-profile
quad flat package mechanical data.
Updated Figure 87: UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm
pitch, ultra fine pitch ball grid array package outline and Table 95:
UFBGA176+25 - 201-ball, 10 × 10 × 0.65 mm pitch, ultra thin fine pitch
ball grid array mechanical data. Added Figure 88: UFBGA176+25 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array
recommended footprint and Table 96: UFBGA176+2 recommended
PCB design rules (0.65 mm pitch BGA).
Updated Figure 90: LQFP176 - 176-pin, 24 x 24 mm low profile quad
flat package outline.
Added Section : Device marking for WLCSP90, Section : Device
marking for LQFP64, Section : Device marking for LFP100, Section :
Device marking for LQPF144, Section : Device marking for
UFBGA176+25 and Section : Device marking for LQFP176.
DocID022063 Rev 5
STM32F415xx, STM32F417xx
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
DocID022063 Rev 5
201/201