TENAND LTV-123M

深圳市腾恩科技有限公司
SHENZHEN TENAND TECHNOLOGY CO.,LTD
http://www.tenand.com
!"#"
$%$ "
&'(µ
(()Ω
*$##$"+, -#)(.)#+!$/"
01$1
"+ "+, -#)(.)#+!$/"
2+ "+, -#)(.2)#+!$/"
"1$"+, -#)(.2#)
' -#)(.22#)
' ) 3
)&1+1
((#1 4,4,
.5+/1+,
!$$6,174&!$18!
9,
!$$6
!$$6,1
' -#)(.22#)
' ( 3
)&1+1
((#1 4,4,
.5+/1+,
!$$6,174&!$18!
9,
!$$6
!$$6,1
' -#)(.22#)
' . 3
' -#)(.22#)
±
±
!±
"#
"±
!#
"±
!"
' 9 3
(°
!
$%
&
'
()*+
*
*
!
$./*+
*
!
*
/.$*+
*
*
$$%
&
'
$
"
*
2
*
0+%
.34
°$
5+%
.34
"
°$
"
°$
&,-
0--
1
&*+
1" 5+%
)5)9:;
$%$ !$$6
1
!$$4 !1
)2!6411+!1!"/
1164+$$+1
!
+1/
1
(!
$%$ 4!<#+
++
!$$6
1
.!4%""$1%$ !$$6
4%
(5)2+1
' -#)(.22#)
' 3
(°
&,-
0--
) =
$
*+
*
6
"
*
&7"'
()$%
&
6
6
µ'
*7*
$
$
6
"
*727
89:
$$%
&
6
6
'
*7"*2&7
$./
;*+
;*
!
6
6
*
&7
'
&7
/.$
;*+
;*
6
6
*
&7
µ'
&7
&
"
6
"
'
1
$%(
$(
6
<
$./
5%*+
*
6
6
"
*
&7"'
&7
'
&(
(
6
Ω
$*
3<(9
*727
=9:
$$%
(',5 /(
$9'('$/(&5&$5
" " #" !
+$
×
×
$
6
$%.0 >%?
6
@
6
9:
((
6
"
@
µ
( 6
"
@
µ
&7'
*7*
*7*2&7"'
(7
Ω2.;
*7"*2&7"'
(7
Ω
× )
' -#)(.22#)
' ; 3
-#)(.
-
:)
=:);
>
).:(;
(:9
5
):(
->5
:9
(°
' -#)(.22#)
' ? 3
Fig.1 Forword Current
vs. Ambient Temperatute
Fig.2 Collector Power Dissiption
vs. Ambient Temperature
Collector Power dissipation Pc (mW)
60
Forward current IF(mA)
50
40
30
20
10
0
-30
0
25
50
75
100
125
200
150
100
50
0
-30
o
7mA
2
Ta= 75 C
50 C
o
200
o
25 C
0C
-25 C
o
100
o
50
20
10
5
2
1
0
2
4
6
8 10 12 14 16 18 20
0
0.5
Forward current IF (mA)
1.0
1.5
2.0
2.5
3.0
Forward voltage VF (V)
Fig.5 Current Transfer Ratio vs.
Forward Current
Fig.6 Collector Current vs.
Collector-emitter Voltage
200
50
VCE= 5V
Ta= 25 C
180
o
o
160
Collector current Ic (mA)
Current transfer ratio CTR (%)
125
1
0
140
120
100
80
60
40
40
25mA
30
20mA
2
5
10
20
Forward current IF(mA)
' -#)(.22#)
50
Pc(MAX.)
15mA
20
10mA
10
5mA
0
1
Ta= 25 C
IF = 30mA
20
0
100
o
Forward current IF (mA)
Collecotr-emitter saturation voltage
VCE (sat) (V)
5mA
3
75
500
O
Ta= 25 C
1mA
3mA
4
50
Fig.4 Forward Current vs. Forward
Voltage
6
Ic= 0.5mA
25
Ambient temperature Ta ( C)
Fig.3 Collector-emitter Saturation
Voltage vs. Forward Current
5
0
o
Ambient temperature Ta ( C)
0
1
2
3
4
5
6
7
8
9
Collector-emitter voltage VCE (V)
' = 3
Fig.8 Collector-emitter Saturation Voltage
vs. Ambient Temperature
Relative current transfer ratio (%)
150
Collector-emitter saturation voltage
VCE(sat) (V)
Fig.7 Relative Current Transfer Ratio
vs. Ambient Temperature
I F= 5mA
VCE= 5V
100
50
0
-30
0
25
50
75
0.16
I F= 20mA
I C= 1mA
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0
-25
100
0
o
75
100
Fig.10 Response Time vs. Load
Resistance
-5
500
VCE= 20V
-6
10
Response time (µs)
Collector dark current ICEO (A)
50
Ambient temperature Ta ( C)
Fig.9 Collector Dark Current vs.
Ambient Temperature
10
25
o
Ambient temperature Ta ( C)
-7
10
-8
10
-9
10
-10
10
200
100
VCE= 2V
I C= 2mA
Ta= 25 C
o
50
tf
20
10
tr
td
5
ts
2
1
0.5
-11
10
-25
0
25
50
75
0.2
0.05
100
Fig.11 Frequency Response
VCE= 2V
I C= 2mA
Ta= 25 C
0
o
RL= 10kΩ
1
2
5
Input RD
RL
Input
Output
Output
10
10%
90%
ts
td
100Ω
10
0.5
Test Circuit for Response Time
Vcc
Voltage gain Av (dB)
0.1 0.2
Load resistance RL (kΩ)
o
Ambient temperature Ta ( C)
tr
1kΩ
tf
Test Circuit for Frequency Response
Vcc
20
0.5 1
RD
2
5 10 20
50 100
RL
Output
500
Frequency f (kHz)
' -#)(.22#)
' 3 3