深圳市腾恩科技有限公司 SHENZHEN TENAND TECHNOLOGY CO.,LTD http://www.tenand.com !"#" $%$ " &'(µ (()Ω *$##$"+, -#)(.)#+!$/" 01$1 "+ "+, -#)(.)#+!$/" 2+ "+, -#)(.2)#+!$/" "1$"+, -#)(.2#) ' -#)(.22#) ' ) 3 )&1+1 ((#1 4,4, .5+/1+, !$$6,174&!$18! 9, !$$6 !$$6,1 ' -#)(.22#) ' ( 3 )&1+1 ((#1 4,4, .5+/1+, !$$6,174&!$18! 9, !$$6 !$$6,1 ' -#)(.22#) ' . 3 ' -#)(.22#) ± ± !± "# "± !# "± !" ' 9 3 (° ! $% & ' ()*+ * * ! $./*+ * ! * /.$*+ * * $$% & ' $ " * 2 * 0+% .34 °$ 5+% .34 " °$ " °$ &,- 0-- 1 &*+ 1" 5+% )5)9:; $%$ !$$6 1 !$$4 !1 )2!6411+!1!"/ 1164+$$+1 ! +1/ 1 (! $%$ 4!<#+ ++ !$$6 1 .!4%""$1%$ !$$6 4% (5)2+1 ' -#)(.22#) ' 3 (° &,- 0-- ) = $ *+ * 6 " * &7"' ()$% & 6 6 µ' *7* $ $ 6 " *727 89: $$% & 6 6 ' *7"*2&7 $./ ;*+ ;* ! 6 6 * &7 ' &7 /.$ ;*+ ;* 6 6 * &7 µ' &7 & " 6 " ' 1 $%( $( 6 < $./ 5%*+ * 6 6 " * &7"' &7 ' &( ( 6 Ω $* 3<(9 *727 =9: $$% (',5 /( $9'('$/(&5&$5 " " #" ! +$ × × $ 6 $%.0 >%? 6 @ 6 9: (( 6 " @ µ ( 6 " @ µ &7' *7* *7*2&7"' (7 Ω2.; *7"*2&7"' (7 Ω × ) ' -#)(.22#) ' ; 3 -#)(. - :) =:); > ).:(; (:9 5 ):( ->5 :9 (° ' -#)(.22#) ' ? 3 Fig.1 Forword Current vs. Ambient Temperatute Fig.2 Collector Power Dissiption vs. Ambient Temperature Collector Power dissipation Pc (mW) 60 Forward current IF(mA) 50 40 30 20 10 0 -30 0 25 50 75 100 125 200 150 100 50 0 -30 o 7mA 2 Ta= 75 C 50 C o 200 o 25 C 0C -25 C o 100 o 50 20 10 5 2 1 0 2 4 6 8 10 12 14 16 18 20 0 0.5 Forward current IF (mA) 1.0 1.5 2.0 2.5 3.0 Forward voltage VF (V) Fig.5 Current Transfer Ratio vs. Forward Current Fig.6 Collector Current vs. Collector-emitter Voltage 200 50 VCE= 5V Ta= 25 C 180 o o 160 Collector current Ic (mA) Current transfer ratio CTR (%) 125 1 0 140 120 100 80 60 40 40 25mA 30 20mA 2 5 10 20 Forward current IF(mA) ' -#)(.22#) 50 Pc(MAX.) 15mA 20 10mA 10 5mA 0 1 Ta= 25 C IF = 30mA 20 0 100 o Forward current IF (mA) Collecotr-emitter saturation voltage VCE (sat) (V) 5mA 3 75 500 O Ta= 25 C 1mA 3mA 4 50 Fig.4 Forward Current vs. Forward Voltage 6 Ic= 0.5mA 25 Ambient temperature Ta ( C) Fig.3 Collector-emitter Saturation Voltage vs. Forward Current 5 0 o Ambient temperature Ta ( C) 0 1 2 3 4 5 6 7 8 9 Collector-emitter voltage VCE (V) ' = 3 Fig.8 Collector-emitter Saturation Voltage vs. Ambient Temperature Relative current transfer ratio (%) 150 Collector-emitter saturation voltage VCE(sat) (V) Fig.7 Relative Current Transfer Ratio vs. Ambient Temperature I F= 5mA VCE= 5V 100 50 0 -30 0 25 50 75 0.16 I F= 20mA I C= 1mA 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0 -25 100 0 o 75 100 Fig.10 Response Time vs. Load Resistance -5 500 VCE= 20V -6 10 Response time (µs) Collector dark current ICEO (A) 50 Ambient temperature Ta ( C) Fig.9 Collector Dark Current vs. Ambient Temperature 10 25 o Ambient temperature Ta ( C) -7 10 -8 10 -9 10 -10 10 200 100 VCE= 2V I C= 2mA Ta= 25 C o 50 tf 20 10 tr td 5 ts 2 1 0.5 -11 10 -25 0 25 50 75 0.2 0.05 100 Fig.11 Frequency Response VCE= 2V I C= 2mA Ta= 25 C 0 o RL= 10kΩ 1 2 5 Input RD RL Input Output Output 10 10% 90% ts td 100Ω 10 0.5 Test Circuit for Response Time Vcc Voltage gain Av (dB) 0.1 0.2 Load resistance RL (kΩ) o Ambient temperature Ta ( C) tr 1kΩ tf Test Circuit for Frequency Response Vcc 20 0.5 1 RD 2 5 10 20 50 100 RL Output 500 Frequency f (kHz) ' -#)(.22#) ' 3 3