TENAND LTV-358

深圳市腾恩科技有限公司
SHENZHEN TENAND TECHNOLOGY CO.,LTD
http://www.tenand.com
! "#$%&%'()
)*
+",- -(! "
./
0% 1
&# &-, "1
2#1%
,! ,,-! 341%#1
)
( %-5"
/% '()
6'%%!&0..)7
6'%%!&0..)7.2.7/*
2%%!&./8)/*
9:;%%!&9(.<8/
0:;%%!&4..8)
30:;%%!&).8*(.
20:;%%!&.7.*)=.(
30%%!&78*//
+1#&
#
,>,",&
1"
4"# - 4 '()
4"
. 7
./(&"&-&
/9-1&-5
, #5&?$@, &A,
)5
, #
, #5&
4 '()
4"
/ 7
4 '()
!
±
±
±
±
"
#±
4"
) 7
/°
!
!$%
&
()*+
*
,
*
$/0 *+
*
*
0 /$*+
*
,
*
$$%
&
'
$
*
3
* 1+ %
/45
°$
6+ %
/45
°$
,
°$
&-.
1..
2
&*+
2 6+ %
'
.9.+8B<
! "
, #
&
", $",&
.2,#$&&-,&,%1
&&#$- -&
,
-&1
&
/,
! "
$,C(-
--
, #
&
),$!%% &! "
, #
$!
/9.2-&
4 '()
4"
8 7
/°
&-.
1..
*
7
*
&8 '
()$%
&
7
7
µ'
*8*
$
$
7
!
*838
9:;
$$%
&
7
7
'
*8*3&8
$/0 <*+
<*
7
7
*
&8
'
&8
0 /$
<*+
<*
,
7
7
*
&8
µ'
&8
&
7
$(
#
7
&
7
7
2
$%(
$(
7
7
=
$/0 6%*+
*
7
7
*
&8 '
&8
'
&(
(
7
Ω
$*
4,=(:
!+$
$
7
,
!
*838
>:;
( (
7
#
µ
( !
7
#
µ
2
$%(
$$%
. =
$
!*+
$$%
('-6!0(
$:'('$0(&6&$6
" " #" !
×
×
'
=
'
&8 '
*8*
&8
'
*8*
*8*3&8 '
(8
Ω
× .
4 '()
4"
7
'()
4 '()
B.<
D/
E
.)B/<
D8
/B8
D*
E5
B8
D/
/°
.
/°
4"
< 7
Fig.1 Forword Current
vs. Ambient Temperatute
Fig.2 Collector Power Dissiption
vs. Ambient Temperature
Collector Power dissipation Pc (mW)
60
Forward current IF (mA)
50
40
30
20
10
0
-55
0
25
50
75
100
125
200
150
100
50
0
-55
o
7mA
100
125
o
4
3
2
1
Ta= 75 C
50 C
o
200
o
25 C
0C
-25 C
o
100
o
50
20
10
5
2
1
5
0
10
15
0
0.5
1.0
1.5
2.0
2.5
3.0
Forward voltage VF (V)
Forward current I F (mA)
Fig.5 Current Transfer Ratio vs.
Forward Current
Fig.6 Collector Current vs.
Collector-emitter Voltage
200
50
VCE= 5V
Ta= 25 C
180
I F= 30mA
160
140
120
100
80
60
40
o
Ta= 25 C
25mA
o
Collector current Ic (mA)
Current transfer ratio CTR (%)
75
500
O
Ta= 25 C
0
40
20mA
30
Pc(MAX.)
15mA
20
10mA
10
5mA
20
0
0
1
2
5
10
20
Forward current I F (mA)
4 '()
50
Fig.4 Forward Current vs. Forward
Voltage
Forward current I F (mA)
1mA
3mA
5mA
Ic= 0.5mA
Collecotr-emitter saturation voltage
VCE(sat) (V)
5
25
Ambient temperature Ta ( C)
Fig.3 Collector-emitter Saturation
Voltage vs. Forward Current
6
0
o
Ambient temperature Ta ( C)
50
0
1
2
3
4
5
6
7
8
9
Collector-emitter voltage VCE (V)
4"
* 7
Fig.7 Relative Current Transfer Ratio
vs. Ambient Temperature
Fig.8 Collector-emitter Saturation Voltage
vs. Ambient Temperature
0.10
I F= 5mA
VCE= 5V
100
50
Collector-emitter saturation voltage
VCE (sat) (V)
Relative current transfer ratio (%)
150
I F= 20mA
I C= 1mA
0.08
0.06
0.04
0.02
0
0
20
40
60
80
100
20
40
o
Collector dark current ICEO (nA)
100
Fig.10 Response Time vs. Load
Resistance
500
VCE= 20V
Response time ( s)
1000
100
10
200
100
VCE= 2V
I C= 2mA
Ta= 25 C
o
50
tr
20
10
td
tf
5
ts
2
1
0.5
1
20
40
60
80
0.2
0.05
100
o
0.1 0.2
0.5
1
2
5
Fig.11 Frequency Response
Test Circuit for Response Time
Vcc
VCE= 2V
I C= 2mA
Ta= 25 C
o
0
Input
RD
RL
Input
Output
Output
10%
90%
ts
td
100
10
RL= 10k
10
Load resistance RL (k )
Ambient temperature Ta ( C)
Voltage gain Av (dB)
80
Ambient temperature Ta ( C)
Fig.9 Collector Dark Current vs.
Ambient Temperature
10000
60
o
Ambient temperature Ta ( C)
tr
tf
1k
Test Circuit for Frequency Response
Vcc
20
0.5 1
RD
2
5 10 20
50 100
RL
Output
500
Frequency f (kHz)
4 '()
4"
7
!" "#!$% "&
. ;
&" $
-&&$,,-&%&
% ,$# $
30 seconds
230 C
200 C
180 C
1 minute
25 C
2 minutes
1.5 minutes
1 minute
/ F,
",
&",&
-,
&1 %,%1
% 1, &,&!-
:%,%,%-5",&!-$,,-&#!.
'(
4 '()
4"
7 7