TENAND LTV-357

深圳市腾恩科技有限公司
SHENZHEN TENAND TECHNOLOGY CO.,LTD
http://www.tenand.com
!"#$%$&'()
()
*$+
%"
%,-!+
."+$
- --, /0+$"+
(
'$,1!
2$&'()
!
"#
!
$
% !
&"
!
'"
(%
3+"%
"
-4-!-%
+!
0!",
0 &'()
深圳市腾恩科技有限公司
SHENZHEN TENAND TECHNOLOGY CO.,LTD
http://www.tenand.com
0!
5 6
52'%!%,%
27,+%,1
-"1%8#9-%:-
(1
-"
-"1%
0 &'()
0!
2 6
)
*+
$+-./01.2
-/3
1
%+1-4.
0.5-5
4%+1-4.
0.5-5
4--.5-5
4-
0 &'()
,
$
$
$
±
±&
&&±
±
±&
0!
( 6
)6&°
!
*7
4-
&
5
8
1
(3-9
(
#
(
$*
%+11+-+4
$
5,
33
.-"5+--
(3-9
(
&
(
5+--
"33
.-(3-9
(
#
(
33
.-7
4-
&
5
33
.-$*
%+11+-+4
$
&
5,
$--
5,
(+1
&
(51
!
-+49)
5
-7
)
"&&:;
°
-9
)
5
-7
)1-9
"&&:;&
°
)13
#
°
$)
!)$)
)-3$*
%+11+-+4
13-+4(3-9
3
+49)
5
-7
5753;<=
!
-"
%
!-#!-%
5.-"#%%,-%-$+
%%"#,,%
-
,%+
%
2-
!
#->',
,,
-"
%
(-# $$% !
-"
# 275.,%
0 &'()
0!
; 6
)6&°
$)
!)$)
=
$
*(3-9
(
<
(
65
8
1
7
4-
<
<
µ
(6(
)
5+43.+-4.
<
&
(606 =>
33
.-%27
4-
<
<
4
(6(6
33
.-"5+--
?
2*4(3-9
?(
&
<
<
(
65
6
5+--
"33
.-
?
2*4(3-9
?(
#
<
<
(
6µ
6
&
<
5
7
4-)410
8-+
)8
&
<
#
@
33
.-"5+--
-7-+4(3-9
(
<
<
(
65
65
13-+48
1+1-4.
8
<
Ω
%&(
:#@8=
3-+49.+-4.
<
#
(606=>
8
141
)+5
8+1
-
<
µ1
8
141
)+5
33
-
<
µ1
33
.-7
4-
)88
=8)8)
" " #" !
&× ×
6&5
(6&(
(6(65
86Ω
× 5
0 &'()
0!
6
&'()
?<5=
@
5(<2=
2<;
/
(<=
*
<5
7
5<(
@/*71
<=
7
*
2°
0 &'()
0!
= 6
Fig.1 Forword Current
vs. Ambient Temperatute
Fig.2 Collector Power Dissiption
vs. Ambient Temperature
Collector Power dissipation Pc (mW)
60
Forward current I F(mA)
50
40
30
20
10
0
-55
0
25
50
75
100
125
200
150
100
50
0
-55
o
7mA
100
125
o
4
3
2
Ta= 75 C
50 C
o
200
o
25 C
0C
-25 C
o
100
o
50
20
10
5
1
2
1
5
0
10
15
0
0.5
Forward current I F(mA)
1.0
1.5
2.0
2.5
3.0
Forward voltage VF(V)
Fig.5 Current Transfer Ratio vs.
Forward Current
Fig.6 Collector Current vs.
Collector-emitter Voltage
200
50
VCE= 5V
Ta= 25 C
180
IF= 30mA
160
140
120
100
80
60
40
o
Ta= 25 C
25mA
o
Collector current Ic (mA)
Current transfer ratio CTR (%)
75
500
O
Ta= 25 C
0
40
20mA
30
15mA
Pc(MAX.)
20
10mA
10
5mA
20
0
0
1
2
5
10
20
Forward current I F(mA)
0 &'()
50
Fig.4 Forward Current vs. Forward
Voltage
Forward current I F(mA)
1mA
3mA
5mA
Ic= 0.5mA
Collecotr-emitter saturation voltage
VCE (sat) (V)
5
25
Ambient temperature Ta ( C)
Fig.3 Collector-emitter Saturation
Voltage vs. Forward Current
6
0
o
Ambient temperature Ta ( C)
50
0
1
2
3
4
5
6
7
8
9
Collector-emitter voltage VCE(V)
0!
) 6
Fig.7 Relative Current Transfer Ratio
vs. Ambient Temperature
Fig.8 Collector-emitter Saturation Voltage
vs. Ambient Temperature
0.10
I F= 5mA
VCE= 2V
100
50
Collector-emitter saturation voltage
VCE (sat) (V)
Relative current transfer ratio (%)
150
I F= 20mA
I C= 1mA
0.08
0.06
0.04
0.02
0
0
20
40
60
80
100
20
40
o
Collector dark current ICEO (nA)
100
Fig.10 Response Time vs. Load
Resistance
500
VCE= 20V
Response time ( s)
1000
100
10
200
100
VCE= 2V
I C= 2mA
Ta= 25 C
o
50
tr
20
10
td
tf
5
ts
2
1
0.5
1
20
40
60
80
0.2
0.05
100
o
0.1 0.2
0.5
1
2
5
Fig.11 Frequency Response
Test Circuit for Response Time
Vcc
VCE= 2V
I C= 2mA
Ta= 25 C
o
0
Input
RD
RL
Input
Output
Output
10%
90%
ts
td
100Ω
10
RL= 10kΩ
10
Load resistance RL (k )
Ambient temperature Ta ( C)
Voltage gain Av (dB)
80
Ambient temperature Ta ( C)
Fig.9 Collector Dark Current vs.
Ambient Temperature
10000
60
o
Ambient temperature Ta ( C)
1kΩ
tr
tf
Test Circuit for Frequency Response
Vcc
20
0.5 1
RD
2
5 10 20
50 100
RL
Output
500
Frequency f (kHz)
0 &'()
0!
? 6
5 A
%!#
,%%#--,%$%
$
-#"#
30 seconds
230 C
200 C
180 C
1 minute
25 C
2 minutes
1.5 minutes
1 minute
2 B-
!-
%!-%
,-
%+$-$+
$+-%-% ,
C$-$-$,1!-% ,#--,%" 5
D
0 &'()
0!
6 6