ALTERA 5M570ZT144C5N

3. DC and Switching Characteristics for
MAX V Devices
May 2011
MV51003-1.2
MV51003-1.2
This chapter covers the electrical and switching characteristics for MAX® V devices.
Electrical characteristics include operating conditions and power consumptions. This
chapter also describes the timing model and specifications.
You must consider the recommended DC and switching conditions described in this
chapter to maintain the highest possible performance and reliability of the MAX V
devices.
This chapter contains the following sections:
■
“Operating Conditions” on page 3–1
■
“Power Consumption” on page 3–10
■
“Timing Model and Specifications” on page 3–10
Operating Conditions
Table 3–1 through Table 3–15 on page 3–9 list information about absolute maximum
ratings, recommended operating conditions, DC electrical characteristics, and other
specifications for MAX V devices.
Absolute Maximum Ratings
Table 3–1 lists the absolute maximum ratings for the MAX V device family.
Table 3–1. Absolute Maximum Ratings for MAX V Devices (Note 1), (2)
Symbol
Parameter
Conditions
With respect to ground
Minimum
Maximum
Unit
–0.5
2.4
V
VCCINT
Internal supply voltage
VCCIO
I/O supply voltage
—
–0.5
4.6
V
VI
DC input voltage
—
–0.5
4.6
V
IOUT
DC output current, per pin
—
–25
25
mA
TSTG
Storage temperature
No bias
–65
150
°C
TAMB
Ambient temperature
Under bias (3)
–65
135
°C
TJ
Junction temperature
TQFP and BGA packages
under bias
—
135
°C
Notes to Table 3–1:
(1) For more information, refer to the Operating Requirements for Altera Devices Data Sheet.
(2) Conditions beyond those listed in Table 3–1 may cause permanent damage to a device. Additionally, device operation at the absolute maximum
ratings for extended periods of time may have adverse affects on the device.
(3) For more information about “under bias” conditions, refer to Table 3–2.
© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.
MAX V Device Handbook
May 2011
Subscribe
3–2
Chapter 3: DC and Switching Characteristics for MAX V Devices
Operating Conditions
Recommended Operating Conditions
Table 3–2 lists recommended operating conditions for the MAX V device family.
Table 3–2. Recommended Operating Conditions for MAX V Devices
Symbol
VCCINT (1)
VCCIO (1)
Parameter
Conditions
Minimum
Maximum
Unit
MAX V devices
1.71
1.89
V
Supply voltage for I/O buffers, 3.3-V
operation
—
3.00
3.60
V
Supply voltage for I/O buffers, 2.5-V
operation
—
2.375
2.625
V
Supply voltage for I/O buffers, 1.8-V
operation
—
1.71
1.89
V
Supply voltage for I/O buffers, 1.5-V
operation
—
1.425
1.575
V
Supply voltage for I/O buffers, 1.2-V
operation
—
1.14
1.26
V
(2), (3), (4)
–0.5
4.0
V
—
0
VCCIO
V
0
85
°C
Industrial range
–40
100
°C
Extended range (5)
–40
125
°C
1.8-V supply voltage for internal logic and
in-system programming (ISP)
VI
Input voltage
VO
Output voltage
Commercial range
TJ
Operating junction temperature
Notes to Table 3–2:
(1) MAX V device ISP and/or user flash memory (UFM) programming using JTAG or logic array is not guaranteed outside the recommended
operating conditions (for example, if brown-out occurs in the system during a potential write/program sequence to the UFM, Altera recommends
that you read back the UFM contents and verify it against the intended write data).
(2) The minimum DC input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V for input currents less than 100 mA and periods
shorter than 20 ns.
(3) During transitions, the inputs may overshoot to the voltages shown below based on the input duty cycle. The DC case is equivalent to 100%
duty cycle. For more information about 5.0-V tolerance, refer to the Using MAX V Devices in Multi-Voltage Systems chapter.
Max. Duty Cycle
VIN
4.0 V 100% (DC)
4.1 V 90%
4.2 V 50%
4.3 V 30%
4.4 V 17%
4.5 V 10%
(4) All pins, including the clock, I/O, and JTAG pins, may be driven before VCCINT and VCCIO are powered.
(5) For the extended temperature range of 100 to 125°C, MAX V UFM programming (erase/write) is only supported using the JTAG interface. UFM
programming using the logic array interface is not guaranteed in this range.
MAX V Device Handbook
May 2011
Altera Corporation
Chapter 3: DC and Switching Characteristics for MAX V Devices
Operating Conditions
3–3
Programming/Erasure Specifications
Table 3–3 lists the programming/erasure specifications for the MAX V device family.
Table 3–3. Programming/Erasure Specifications for MAX V Devices
Parameter
Block
Erase and reprogram cycles
Minimum
Typical
Maximum
Unit
UFM
—
—
1000 (1)
Cycles
Configuration flash memory (CFM)
—
—
100
Cycles
Note to Table 3–3:
(1) This value applies to the commercial grade devices. For the industrial grade devices, the value is 100 cycles.
DC Electrical Characteristics
Table 3–4 lists DC electrical characteristics for the MAX V device family.
Table 3–4. DC Electrical Characteristics for MAX V Devices (Note 1) (Part 1 of 2)
Symbol
Parameter
Conditions
Minimum
Typical
Maximum
Unit
II
Input pin leakage current VI = VCCIO max to 0 V (2)
–10
—
10
µA
IOZ
Tri-stated I/O pin leakage
current
VO = VCCIO max to 0 V (2)
–10
—
10
µA
5M40Z, 5M80Z, 5M160Z, and
5M240Z (Commercial grade)
(4), (5)
—
25
90
µA
5M240Z (Commercial grade)
(6)
—
27
96
µA
5M40Z, 5M80Z, 5M160Z, and
5M240Z (Industrial grade)
(5), (7)
—
25
139
µA
5M240Z (Industrial grade) (6)
—
27
152
µA
5M570Z (Commercial grade)
(4)
—
27
96
µA
5M570Z (Industrial grade) (7)
—
27
152
µA
ICCSTANDBY
VCCINT supply current
(standby) (3)
VSCHMITT (8)
Hysteresis for Schmitt
trigger input (9)
ICCPOWERUP
VCCINT supply current
during power-up (10)
RPULLUP
May 2011
Value of I/O pin pull-up
resistor during user
mode and ISP
Altera Corporation
5M1270Z and 5M2210Z
—
2
—
mA
VCCIO = 3.3 V
—
400
—
mV
VCCIO = 2.5 V
—
190
—
mV
MAX V devices
—
—
40
mA
VCCIO = 3.3 V (11)
5
—
25
k
VCCIO = 2.5 V (11)
10
—
40
k
VCCIO = 1.8 V (11)
25
—
60
k
VCCIO = 1.5 V (11)
45
—
95
k
VCCIO = 1.2 V (11)
80
—
130
k
MAX V Device Handbook
3–4
Chapter 3: DC and Switching Characteristics for MAX V Devices
Operating Conditions
Table 3–4. DC Electrical Characteristics for MAX V Devices (Note 1) (Part 2 of 2)
Symbol
Parameter
Conditions
Minimum
Typical
Maximum
Unit
IPULLUP
I/O pin pull-up resistor
current when I/O is
unprogrammed
—
—
—
300
µA
CIO
Input capacitance for
user I/O pin
—
—
—
8
pF
CGCLK
Input capacitance for
dual-purpose GCLK/user
I/O pin
—
—
—
8
pF
Notes to Table 3–4:
(1) Typical values are for TA = 25°C, VCCINT = 1.8 V and VCCIO = 1.2, 1.5, 1.8, 2.5, or 3.3 V.
(2) This value is specified for normal device operation. The value may vary during power-up. This applies to all VCCIO settings (3.3, 2.5, 1.8, 1.5,
and 1.2 V).
(3) VI = ground, no load, and no toggling inputs.
(4) Commercial temperature ranges from 0°C to 85°C with the maximum current at 85°C.
(5) Not applicable to the T144 package of the 5M240Z device.
(6) Only applicable to the T144 package of the 5M240Z device.
(7) Industrial temperature ranges from –40°C to 100°C with the maximum current at 100°C.
(8) This value applies to commercial and industrial range devices. For extended temperature range devices, the V SCHMITT typical value is 300 mV
for VCCIO = 3.3 V and 120 mV for VCCIO = 2.5 V.
(9) The TCK input is susceptible to high pulse glitches when the input signal fall time is greater than 200 ns for all I/O standards.
(10) This is a peak current value with a maximum duration of tCONFIG time.
(11) Pin pull-up resistance values will lower if an external source drives the pin higher than VCCIO.
MAX V Device Handbook
May 2011
Altera Corporation
Chapter 3: DC and Switching Characteristics for MAX V Devices
Operating Conditions
3–5
Output Drive Characteristics
Figure 3–1 shows the typical drive strength characteristics of MAX V devices.
Figure 3–1. Output Drive Characteristics of MAX V Devices (Note 1)
MAX V Output Drive IOH Characteristics
(Maximum Drive Strength)
MAX V Output Drive IOL Characteristics
(Maximum Drive Strength)
60
70
3.3-V VCCIO
3.3-V VCCIO
Typical IO Output Current (mA)
Typical I O Output Current (mA)
60
50
2.5-V VCCIO
40
30
1.8-V VCCIO
20
1.5-V VCCIO
10
50
40
2.5-V VCCIO
30
1.8-V VCCIO
20
1.5-V VCCIO
10
1.2-V VCCIO (2)
1.2-V VCCIO (2)
0
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0.0
3.5
0.5
1.0
1.5
2.0
2.5
3.0
MAX V Output Drive IOL Characteristics
(Minimum Drive Strength)
MAX V Output Drive IOH Characteristics
(Minimum Drive Strength)
30
35
3.3-V VCCIO
Typical IO Output Current (mA)
Typical IO Output Current (mA)
3.3-V VCCIO
30
25
2.5-V VCCIO
20
15
1.8-V VCCIO
10
1.5-V VCCIO
5
3.5
Voltage (V)
Voltage (V)
0
25
20
2.5-V VCCIO
15
1.8-V VCCIO
10
1.5-V VCCIO
5
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0.0
0.5
1.0
Voltage (V)
1.5
2.0
2.5
3.0
3.5
Voltage (V)
Notes to Figure 3–1:
(1) The DC output current per pin is subject to the absolute maximum rating of Table 3–1 on page 3–1.
(2) 1.2-V VCCIO is only applicable to the maximum drive strength.
I/O Standard Specifications
Table 3–5 through Table 3–13 on page 3–8 list the I/O standard specifications for the
MAX V device family.
Table 3–5. 3.3-V LVTTL Specifications for MAX V Devices
Symbol
Parameter
Conditions
Minimum
Maximum
Unit
VCCIO
I/O supply voltage
—
3.0
3.6
V
VIH
High-level input voltage
—
1.7
4.0
V
VIL
Low-level input voltage
—
–0.5
0.8
V
VOH
High-level output voltage
IOH = –4 mA (1)
2.4
—
V
VOL
Low-level output voltage
IOL = 4 mA (1)
—
0.45
V
Note to Table 3–5:
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the
MAX V Device Architecture chapter.
May 2011
Altera Corporation
MAX V Device Handbook
3–6
Chapter 3: DC and Switching Characteristics for MAX V Devices
Operating Conditions
Table 3–6. 3.3-V LVCMOS Specifications for MAX V Devices
Symbol
Parameter
Conditions
Minimum
Maximum
Unit
VCCIO
I/O supply voltage
—
3.0
3.6
V
VIH
High-level input voltage
—
1.7
4.0
V
VIL
Low-level input voltage
—
–0.5
0.8
V
VCCIO – 0.2
—
V
—
0.2
V
VOH
High-level output voltage
VCCIO = 3.0,
IOH = –0.1 mA (1)
VOL
Low-level output voltage
VCCIO = 3.0,
IOL = 0.1 mA (1)
Note to Table 3–6:
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the
MAX V Device Architecture chapter.
Table 3–7. 2.5-V I/O Specifications for MAX V Devices
Symbol
Parameter
Conditions
Minimum
Maximum
Unit
VCCIO
I/O supply voltage
—
2.375
2.625
V
VIH
High-level input voltage
—
1.7
4.0
V
VIL
Low-level input voltage
—
–0.5
0.7
V
IOH = –0.1 mA (1)
2.1
—
V
IOH = –1 mA (1)
2.0
—
V
IOH = –2 mA (1)
1.7
—
V
IOL = 0.1 mA (1)
—
0.2
V
IOL = 1 mA (1)
—
0.4
V
IOL = 2 mA (1)
—
0.7
V
High-level output voltage
VOH
VOL
Low-level output voltage
Note to Table 3–7:
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the
MAX V Device Architecture chapter.
Table 3–8. 1.8-V I/O Specifications for MAX V Devices
Symbol
Parameter
Conditions
Minimum
Maximum
Unit
VCCIO
I/O supply voltage
—
1.71
1.89
V
VIH
High-level input voltage
—
0.65 × VCCIO
2.25 (2)
V
VIL
Low-level input voltage
—
–0.3
0.35 × VCCIO
V
VOH
High-level output voltage
IOH = –2 mA (1)
VCCIO – 0.45
—
V
VOL
Low-level output voltage
IOL = 2 mA (1)
—
0.45
V
Notes to Table 3–8:
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the
MAX V Device Architecture chapter.
(2) This maximum VIH reflects the JEDEC specification. The MAX V input buffer can tolerate a VIH maximum of 4.0, as specified by the VI parameter
in Table 3–2 on page 3–2.
MAX V Device Handbook
May 2011
Altera Corporation
Chapter 3: DC and Switching Characteristics for MAX V Devices
Operating Conditions
3–7
Table 3–9. 1.5-V I/O Specifications for MAX V Devices
Symbol
Parameter
Conditions
Minimum
Maximum
Unit
VCCIO
I/O supply voltage
—
1.425
1.575
V
VIH
High-level input voltage
—
0.65 × VCCIO
VCCIO + 0.3 (2)
V
VIL
Low-level input voltage
—
–0.3
0.35 × VCCIO
V
VOH
High-level output voltage
IOH = –2 mA (1)
0.75 × VCCIO
—
V
VOL
Low-level output voltage
IOL = 2 mA (1)
—
0.25 × VCCIO
V
Notes to Table 3–9:
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the
MAX V Device Architecture chapter.
(2) This maximum VIH reflects the JEDEC specification. The MAX V input buffer can tolerate a VIH maximum of 4.0, as specified by the VI parameter
in Table 3–2 on page 3–2.
Table 3–10. 1.2-V I/O Specifications for MAX V Devices
Symbol
Parameter
Conditions
Minimum
Maximum
Unit
VCCIO
I/O supply voltage
—
1.14
1.26
V
VIH
High-level input voltage
—
0.8 × VCCIO
VCCIO + 0.3
V
VIL
Low-level input voltage
—
–0.3
0.25 × VCCIO
V
VOH
High-level output voltage
IOH = –2 mA (1)
0.75 × VCCIO
—
V
VOL
Low-level output voltage
IOL = 2 mA (1)
—
0.25 × VCCIO
V
Note to Table 3–10:
(1) This specification is supported across all the programmable drive strength settings available for this I/O standard, as shown in the
MAX V Device Architecture chapter.
Table 3–11. 3.3-V PCI Specifications for MAX V Devices (Note 1)
Symbol
Parameter
Conditions
Minimum
Typical
Maximum
Unit
VCCIO
I/O supply voltage
—
3.0
3.3
3.6
V
VIH
High-level input voltage
—
0.5 × VCCIO
—
VCCIO + 0.5
V
VIL
Low-level input voltage
—
–0.5
—
0.3 × VCCIO
V
VOH
High-level output voltage
IOH = –500 µA
0.9 × VCCIO
—
—
V
VOL
Low-level output voltage
IOL = 1.5 mA
—
—
0.1 × VCCIO
V
Note to Table 3–11:
(1) 3.3-V PCI I/O standard is only supported in Bank 3 of the 5M1270Z and 5M2210Z devices.
Table 3–12. LVDS Specifications for MAX V Devices (Note 1)
Symbol
Parameter
Conditions
Minimum
Typical
Maximum
Unit
VCCIO
I/O supply voltage
—
2.375
2.5
2.625
V
VOD
Differential output voltage swing
—
247
—
600
mV
VOS
Output offset voltage
—
1.125
1.25
1.375
V
Note to Table 3–12:
(1) Supports emulated LVDS output using a three-resistor network (LVDS_E_3R).
May 2011
Altera Corporation
MAX V Device Handbook
3–8
Chapter 3: DC and Switching Characteristics for MAX V Devices
Operating Conditions
Table 3–13. RSDS Specifications for MAX V Devices (Note 1)
Symbol
Parameter
Conditions
Minimum
Typical
Maximum
Unit
VCCIO
I/O supply voltage
—
2.375
2.5
2.625
V
VOD
Differential output voltage swing
—
247
—
600
mV
VOS
Output offset voltage
—
1.125
1.25
1.375
V
Note to Table 3–13:
(1) Supports emulated RSDS output using a three-resistor network (RSDS_E_3R).
Bus Hold Specifications
Table 3–14 lists the bus hold specifications for the MAX V device family.
Table 3–14. Bus Hold Specifications for MAX V Devices
VCCIO Level
Parameter
Conditions
1.2 V
1.5 V
1.8 V
2.5 V
3.3 V
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
Unit
Low sustaining
current
VIN > VIL (maximum)
10
—
20
—
30
—
50
—
70
—
µA
High sustaining
current
VIN < VIH (minimum)
–10
—
–20
—
–30
—
–50
—
–70
—
µA
Low overdrive
current
0 V < VIN < VCCIO
—
130
—
160
—
200
—
300
—
500
µA
High overdrive
current
0 V < VIN < VCCIO
—
–130
—
–160
—
–200
—
–300
—
–500
µA
MAX V Device Handbook
May 2011
Altera Corporation
Chapter 3: DC and Switching Characteristics for MAX V Devices
Operating Conditions
3–9
Power-Up Timing
Table 3–15 lists the power-up timing characteristics for the MAX V device family.
Table 3–15. Power-Up Timing for MAX V Devices
Symbol
Parameter
Device
5M40Z
5M80Z
5M160Z
5M240Z (2)
tCONFIG
The amount of time from
when minimum VCCINT is
reached until the device
enters user mode (1)
5M240Z (3)
5M570Z
5M1270Z (4)
5M1270Z (5)
5M2210Z
Temperature Range
Min
Typ
Max
Unit
Commercial and industrial
—
—
200
µs
Extended
—
—
300
µs
Commercial and industrial
—
—
200
µs
Extended
—
—
300
µs
Commercial and industrial
—
—
200
µs
Extended
—
—
300
µs
Commercial and industrial
—
—
200
µs
Extended
—
—
300
µs
Commercial and industrial
—
—
300
µs
Extended
—
—
400
µs
Commercial and industrial
—
—
300
µs
Extended
—
—
400
µs
Commercial and industrial
—
—
300
µs
Extended
—
—
400
µs
Commercial and industrial
—
—
450
µs
Extended
—
—
500
µs
Commercial and industrial
—
—
450
µs
Extended
—
—
500
µs
Notes to Table 3–15:
(1) For more information about power-on reset (POR) trigger voltage, refer to the Hot Socketing and Power-On Reset in MAX V Devices chapter.
(2) Not applicable to the T144 package of the 5M240Z device.
(3) Only applicable to the T144 package of the 5M240Z device.
(4) Not applicable to the F324 package of the 5M1270Z device.
(5) Only applicable to the F324 package of the 5M1270Z device.
May 2011
Altera Corporation
MAX V Device Handbook
3–10
Chapter 3: DC and Switching Characteristics for MAX V Devices
Power Consumption
Power Consumption
You can use the Altera® PowerPlay Early Power Estimator and PowerPlay Power
Analyzer to estimate the device power.
f For more information about these power analysis tools, refer to the PowerPlay Early
Power Estimator for Altera CPLDs User Guide and the PowerPlay Power Analysis chapter
in volume 3 of the Quartus II Handbook.
Timing Model and Specifications
MAX V devices timing can be analyzed with the Altera Quartus® II software, a variety
of industry-standard EDA simulators and timing analyzers, or with the timing model
shown in Figure 3–2.
MAX V devices have predictable internal delays that allow you to determine the
worst-case timing of any design. The software provides timing simulation,
point-to-point delay prediction, and detailed timing analysis for device-wide
performance evaluation.
Figure 3–2. Timing Model for MAX V Devices
Output and Output Enable
Data Delay
t R4
tIODR
tIOE
Data-In/LUT Chain
User
Flash
Memory
I/O Pin
INPUT
Input Routing
Delay
tDL
t LOCAL
I/O Input Delay
t IN
Logic Element
LUT Delay
t LUT
Register Control
Delay
tC
tCOMB
t FASTIO
tCO
tSU
tH
tPRE
tCLR
Output
Delay
t OD
t XZ
t ZX
I/O Pin
From Adjacent LE
t GLOB
Global Input Delay
Output Routing
Delay
t C4
Combinational Path Delay
To Adjacent LE
Register Delays
Data-Out
You can derive the timing characteristics of any signal path from the timing model
and parameters of a particular device. You can calculate external timing parameters,
which represent pin-to-pin timing delays, as the sum of the internal parameters.
f For more information, refer to AN629: Understanding Timing in Altera CPLDs.
MAX V Device Handbook
May 2011
Altera Corporation
Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
3–11
Preliminary and Final Timing
This section describes the performance, internal, external, and UFM timing
specifications. All specifications are representative of the worst-case supply voltage
and junction temperature conditions.
Timing models can have either preliminary or final status. The Quartus II software
issues an informational message during the design compilation if the timing models
are preliminary. Table 3–16 lists the status of the MAX V device timing models.
Preliminary status means the timing model is subject to change. Initially, timing
numbers are created using simulation results, process data, and other known
parameters. These tests are used to make the preliminary numbers as close to the
actual timing parameters as possible.
Final timing numbers are based on actual device operation and testing. These
numbers reflect the actual performance of the device under the worst-case voltage
and junction temperature conditions.
Table 3–16. Timing Model Status for MAX V Devices
Device
Final
5M40Z
v
5M80Z
v
5M160Z
v
5M240Z
v
5M570Z
v
5M1270Z
v
5M2210Z
v
Performance
Table 3–17 lists the MAX V device performance for some common designs. All
performance values were obtained with the Quartus II software compilation of
megafunctions.
Table 3–17. Device Performance for MAX V Devices (Part 1 of 2)
Performance
Resources Used
Resource
Used
LE
May 2011
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z
Design Size and
Function
5M1270Z/ 5M2210Z
Unit
Mode
LEs
UFM
Blocks
C4
C5, I5
C4
C5, I5
16-bit counter (1)
—
16
0
184.1
118.3
247.5
201.1
MHz
64-bit counter (1)
—
64
0
83.2
80.5
154.8
125.8
MHz
16-to-1 multiplexer
—
11
0
17.4
20.4
8.0
9.3
ns
32-to-1 multiplexer
—
24
0
12.5
25.3
9.0
11.4
ns
16-bit XOR function
—
5
0
9.0
16.1
6.6
8.2
ns
16-bit decoder with
single address line
—
5
0
9.2
16.1
6.6
8.2
ns
Altera Corporation
MAX V Device Handbook
3–12
Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
Table 3–17. Device Performance for MAX V Devices (Part 2 of 2)
Performance
Resources Used
Resource
Used
UFM
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z
Design Size and
Function
5M1270Z/ 5M2210Z
Unit
Mode
LEs
UFM
Blocks
C4
C5, I5
C4
C5, I5
512 × 16
None
3
1
10.0
10.0
10.0
10.0
MHz
512 × 16
SPI (2)
37
1
9.7
9.7
8.0
8.0
MHz
512 × 8
Parallel
(3)
73
1
(4)
(4)
(4)
(4)
MHz
512 × 16
I2C (3)
142
1
100 (5)
100 (5)
100 (5)
100 (5)
kHz
Notes to Table 3–17:
(1) This design is a binary loadable up counter.
(2) This design is configured for read-only operation in Extended mode. Read and write ability increases the number of logic elements (LEs) used.
(3) This design is configured for read-only operation. Read and write ability increases the number of LEs used.
(4) This design is asynchronous.
(5) The I2C megafunction is verified in hardware up to 100-kHz serial clock line rate.
Internal Timing Parameters
Internal timing parameters are specified on a speed grade basis independent of device
density. Table 3–18 through Table 3–25 on page 3–19 list the MAX V device internal
timing microparameters for LEs, input/output elements (IOEs), UFM blocks, and
MultiTrack interconnects.
f For more information about each internal timing microparameters symbol, refer to
AN629: Understanding Timing in Altera CPLDs.
Table 3–18. LE Internal Timing Microparameters for MAX V Devices (Part 1 of 2)
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z
Symbol
Parameter
C4
5M1270Z/ 5M2210Z
C5, I5
C4
Unit
C5, I5
Min
Max
Min
Max
Min
Max
Min
Max
tLUT
LE combinational look-up
table (LUT) delay
—
1,215
—
2,247
—
742
—
914
ps
tCOMB
Combinational path delay
—
243
—
309
—
192
—
236
ps
tCLR
LE register clear delay
401
—
545
—
309
—
381
—
ps
tPRE
LE register preset delay
401
—
545
—
309
—
381
—
ps
tSU
LE register setup time
before clock
260
—
321
—
271
—
333
—
ps
tH
LE register hold time
after clock
0
—
0
—
0
—
0
—
ps
tCO
LE register
clock-to-output delay
—
380
—
494
—
305
—
376
ps
MAX V Device Handbook
May 2011
Altera Corporation
Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
3–13
Table 3–18. LE Internal Timing Microparameters for MAX V Devices (Part 2 of 2)
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z
Symbol
Parameter
C4
5M1270Z/ 5M2210Z
C5, I5
C4
Unit
C5, I5
Min
Max
Min
Max
Min
Max
Min
Max
tCLKHL
Minimum clock high or
low time
253
—
339
—
216
—
266
—
ps
tC
Register control delay
—
1,356
—
1,741
—
1,114
—
1,372
ps
Table 3–19. IOE Internal Timing Microparameters for MAX V Devices
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z
Symbol
Parameter
C4
5M1270Z/ 5M2210Z
C5, I5
C4
Unit
C5, I5
Min
Max
Min
Max
Min
Max
Min
Max
tFASTIO
Data output delay from
adjacent LE to I/O block
—
170
—
428
—
207
—
254
ps
tIN
I/O input pad and buffer
delay
—
907
—
986
—
920
—
1,132
ps
tGLOB (1)
I/O input pad and buffer
delay used as global
signal pin
—
2,261
—
3,322
—
1,974
—
2,430
ps
tIOE
Internally generated
output enable delay
—
530
—
1,410
—
374
—
460
ps
tDL
Input routing delay
—
318
—
509
—
291
—
358
ps
tOD (2)
Output delay buffer and
pad delay
—
1,319
—
1,543
—
1,383
—
1,702
ps
tXZ (3)
Output buffer disable
delay
—
1,045
—
1,276
—
982
—
1,209
ps
tZX (4)
Output buffer enable
delay
—
1,160
—
1,353
—
1,303
—
1,604
ps
Notes to Table 3–19:
(1) Delay numbers for tGLOB differ for each device density and speed grade. The delay numbers for tGLOB, shown in Table 3–19, are based on a 5M240Z
device target.
(2) For more information about delay adders associated with different I/O standards, drive strengths, and slew rates, refer to Table 3–34 on page 3–24
and Table 3–35 on page 3–25.
(3) For more information about tXZ delay adders associated with different I/O standards, drive strengths, and slew rates, refer to Table 3–22 on
page 3–15 and Table 3–23 on page 3–15.
(4) For more information about tZX delay adders associated with different I/O standards, drive strengths, and slew rates, refer to Table 3–20 on
page 3–14 and Table 3–21 on page 3–14.
May 2011
Altera Corporation
MAX V Device Handbook
3–14
Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
Table 3–20 through Table 3–23 list the adder delays for tZX and tXZ microparameters
when using an I/O standard other than 3.3-V LVTTL with 16 mA drive strength.
Table 3–20. tZX IOE Microparameter Adders for Fast Slew Rate for MAX V Devices
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z
Standard
C4
5M1270Z/ 5M2210Z
C5, I5
C4
Unit
C5, I5
Min
Max
Min
Max
Min
Max
Min
Max
16 mA
—
0
—
0
—
0
—
0
ps
8 mA
—
72
—
74
—
101
—
125
ps
8 mA
—
0
—
0
—
0
—
0
ps
4 mA
—
72
—
74
—
101
—
125
ps
2.5-V LVTTL /
LVCMOS
14 mA
—
126
—
127
—
155
—
191
ps
7 mA
—
196
—
197
—
545
—
671
ps
1.8-V LVTTL /
LVCMOS
6 mA
—
608
—
610
—
721
—
888
ps
3 mA
—
681
—
685
—
2012
—
2477
ps
4 mA
—
1162
—
1157
—
1590
—
1957
ps
2 mA
—
1245
—
1244
—
3269
—
4024
ps
1.2-V LVCMOS
3 mA
—
1889
—
1856
—
2860
—
3520
ps
3.3-V PCI
20 mA
—
72
—
74
—
–18
—
–22
ps
LVDS
—
—
126
—
127
—
155
—
191
ps
RSDS
—
—
126
—
127
—
155
—
191
ps
3.3-V LVTTL
3.3-V LVCMOS
1.5-V LVCMOS
Table 3–21. tZX IOE Microparameter Adders for Slow Slew Rate for MAX V Devices
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z
Standard
C4
5M1270Z/ 5M2210Z
C5, I5
C4
Unit
C5, I5
Min
Max
Min
Max
Min
Max
Min
Max
16 mA
—
5,951
—
6,063
—
6,012
—
5,743
ps
8 mA
—
6,534
—
6,662
—
8,785
—
8,516
ps
8 mA
—
5,951
—
6,063
—
6,012
—
5,743
ps
4 mA
—
6,534
—
6,662
—
8,785
—
8,516
ps
2.5-V LVTTL /
LVCMOS
14 mA
—
9,110
—
9,237
—
10,072
—
9,803
ps
7 mA
—
9,830
—
9,977
—
12,945
—
12,676
ps
1.8-V LVTTL /
LVCMOS
6 mA
—
21,800
—
21,787
—
21,185
—
20,916
ps
3 mA
—
23,020
—
23,037
—
24,597
—
24,328
ps
4 mA
—
39,120
—
39,067
—
34,517
—
34,248
ps
2 mA
—
40,670
—
40,617
—
39,717
—
39,448
ps
1.2-V LVCMOS
3 mA
—
69,505
—
70,461
—
55,800
—
55,531
ps
3.3-V PCI
20 mA
—
6,534
—
6,662
—
35
—
44
ps
3.3-V LVTTL
3.3-V LVCMOS
1.5-V LVCMOS
MAX V Device Handbook
May 2011
Altera Corporation
Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
3–15
Table 3–22. tXZ IOE Microparameter Adders for Fast Slew Rate for MAX V Devices
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z
Standard
C4
5M1270Z/ 5M2210Z
C5, I5
C4
Unit
C5, I5
Min
Max
Min
Max
Min
Max
Min
Max
—
0
—
0
—
0
—
0
ps
8 mA
—
–69
—
–69
—
–74
—
–91
ps
8 mA
—
0
—
0
—
0
—
0
ps
4 mA
—
–69
—
–69
—
–74
—
–91
ps
2.5-V LVTTL /
LVCMOS
14 mA
—
–7
—
–10
—
–46
—
–56
ps
7 mA
—
–66
—
–69
—
–82
—
–101
ps
1.8-V LVTTL /
LVCMOS
6 mA
—
45
—
37
—
–7
—
–8
ps
3 mA
—
34
—
25
—
119
—
147
ps
4 mA
—
166
—
155
—
339
—
418
ps
3.3-V LVTTL
3.3-V LVCMOS
1.5-V LVCMOS
16 mA
2 mA
—
190
—
179
—
464
—
571
ps
1.2-V LVCMOS
3 mA
—
300
—
283
—
817
—
1,006
ps
3.3-V PCI
20 mA
—
–69
—
–69
—
80
—
99
ps
LVDS
—
—
–7
—
–10
—
–46
—
–56
ps
RSDS
—
—
–7
—
–10
—
–46
—
–56
ps
Table 3–23. tXZ IOE Microparameter Adders for Slow Slew Rate for MAX V Devices
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z
Standard
C4
5M1270Z/ 5M2210Z
C5, I5
C4
Min
Max
Min
Max
Min
16 mA
—
171
—
174
—
8 mA
—
112
—
116
—
8 mA
—
171
—
174
—
4 mA
—
112
—
116
2.5-V LVTTL /
LVCMOS
14 mA
—
213
—
7 mA
—
166
1.8-V LVTTL /
LVCMOS
6 mA
—
3 mA
Unit
C5, I5
Min
Max
73
—
–132
ps
758
—
553
ps
73
—
–132
ps
—
758
—
553
ps
213
—
32
—
–173
ps
—
166
—
714
—
509
ps
441
—
438
—
96
—
–109
ps
—
496
—
494
—
963
—
758
ps
4 mA
—
765
—
755
—
238
—
33
ps
2 mA
—
903
—
897
—
1,319
—
1,114
ps
1.2-V LVCMOS
3 mA
—
1,159
—
1,130
—
400
—
195
ps
3.3-V PCI
20 mA
—
112
—
116
—
303
—
373
ps
3.3-V LVTTL
3.3-V LVCMOS
1.5-V LVCMOS
May 2011
Altera Corporation
Max
MAX V Device Handbook
3–16
Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
1
The default slew rate setting for MAX V devices in the Quartus II design software is
“fast”.
Table 3–24. UFM Block Internal Timing Microparameters for MAX V Devices (Part 1 of 2)
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z
Symbol
Parameter
C4
5M1270Z/ 5M2210Z
C5, I5
C4
Unit
C5, I5
Min
Max
Min
Max
Min
Max
Min
Max
tACLK
Address register clock
period
100
—
100
—
100
—
100
—
ns
tASU
Address register shift
signal setup to address
register clock
20
—
20
—
20
—
20
—
ns
tAH
Address register shift
signal hold to address
register clock
20
—
20
—
20
—
20
—
ns
tADS
Address register data in
setup to address register
clock
20
—
20
—
20
—
20
—
ns
tADH
Address register data in
hold from address
register clock
20
—
20
—
20
—
20
—
ns
tDCLK
Data register clock period
100
—
100
—
100
—
100
—
ns
tDSS
Data register shift signal
setup to data register
clock
60
—
60
—
60
—
60
—
ns
tDSH
Data register shift signal
hold from data register
clock
20
—
20
—
20
—
20
—
ns
tDDS
Data register data in
setup to data register
clock
20
—
20
—
20
—
20
—
ns
tDDH
Data register data in hold
from data register clock
20
—
20
—
20
—
20
—
ns
tDP
Program signal to data
clock hold time
0
—
0
—
0
—
0
—
ns
tPB
Maximum delay between
program rising edge to
UFM busy signal rising
edge
—
960
—
960
—
960
—
960
ns
tBP
Minimum delay allowed
from UFM busy signal
going low to program
signal going low
20
—
20
—
20
—
20
—
ns
tPPMX
Maximum length of busy
pulse during a program
—
100
—
100
—
100
—
100
µs
MAX V Device Handbook
May 2011
Altera Corporation
Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
3–17
Table 3–24. UFM Block Internal Timing Microparameters for MAX V Devices (Part 2 of 2)
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z
Symbol
Parameter
C4
5M1270Z/ 5M2210Z
C5, I5
C4
Unit
C5, I5
Min
Max
Min
Max
Min
Max
Min
Max
tAE
Minimum erase signal
to address clock hold
time
0
—
0
—
0
—
0
—
ns
tEB
Maximum delay between
the erase rising edge to
the UFM busy signal
rising edge
—
960
—
960
—
960
—
960
ns
tBE
Minimum delay allowed
from the UFM busy
signal going low to
erase signal going low
20
—
20
—
20
—
20
—
ns
tEPMX
Maximum length of busy
pulse during an erase
—
500
—
500
—
500
—
500
ms
tDCO
Delay from data register
clock to data register
output
—
5
—
5
—
5
—
5
ns
tOE
Delay from OSC_ENA
signal reaching UFM to
rising clock of OSC
leaving the UFM
180
—
180
—
180
—
180
—
ns
tRA
Maximum read access
time
—
65
—
65
—
65
—
65
ns
tOSCS
Maximum delay between
the OSC_ENA rising edge
to the erase/program
signal rising edge
250
—
250
—
250
—
250
—
ns
tOSCH
Minimum delay allowed
from the
erase/program signal
going low to OSC_ENA
signal going low
250
—
250
—
250
—
250
—
ns
May 2011
Altera Corporation
MAX V Device Handbook
3–18
Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
Figure 3–3 through Figure 3–5 show the read, program, and erase waveforms for
UFM block timing parameters listed in Table 3–24.
Figure 3–3. UFM Read Waveform
ARShft
tASU
tACLK
9 Address Bits tAH
ARClk
tADH
ARDin
DRShft
tADS
tDSS
DRClk
tDCLK 16 Data Bits
tDSH
tDCO
DRDin
DRDout
OSC_ENA
Program
Erase
Busy
Figure 3–4. UFM Program Waveform
ARShft
tASU
ARClk
9 Address Bits
tACLK
tAH
tADH
ARDin
DRShft
tADS
tDSS
16 Data Bits
tDCLK
tDSH
DRClk
DRDin
DRDout
tDDS
tDDH
tOSCS
tOSCH
OSC_ENA
Program
Erase
tPB
tBP
Busy
tPPMX
MAX V Device Handbook
May 2011
Altera Corporation
Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
3–19
Figure 3–5. UFM Erase Waveform
ARShft
tASU
tACLK
9 Address Bits
ARClk
tAH
tADH
ARDin
tADS
DRShft
DRClk
DRDin
DRDout
OSC_ENA
tOSCS
Program
tOSCH
Erase
tEB
Busy
tBE
tEPMX
Table 3–25. Routing Delay Internal Timing Microparameters for MAX V Devices
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z
Routing
C4
5M1270Z/ 5M2210Z
C5, I5
C4
Unit
C5, I5
Min
Max
Min
Max
Min
Max
Min
Max
tC4
—
860
—
1,973
—
561
—
690
tR4
—
655
—
1,479
—
445
—
548
ps
tLOCAL
—
1,143
—
2,947
—
731
—
899
ps
ps
External Timing Parameters
External timing parameters are specified by device density and speed grade. All
external I/O timing parameters shown are for the 3.3-V LVTTL I/O standard with the
maximum drive strength and fast slew rate. For external I/O timing using standards
other than LVTTL or for different drive strengths, use the I/O standard input and
output delay adders in Table 3–32 on page 3–23 through Table 3–36 on page 3–25.
f For more information about each external timing parameters symbol, refer to
AN629: Understanding Timing in Altera CPLDs.
May 2011
Altera Corporation
MAX V Device Handbook
3–20
Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
Table 3–26 lists the external I/O timing parameters for the 5M40Z, 5M80Z, 5M160Z,
and 5M240Z devices.
Table 3–26. Global Clock External I/O Timing Parameters for the 5M40Z, 5M80Z, 5M160Z, and 5M240Z Devices
(Note 1), (2)
C4
Symbol
Parameter
C5, I5
Condition
Unit
Min
Max
Min
Max
tPD1
Worst case pin-to-pin delay through one LUT
10 pF
—
7.9
—
14.0
ns
tPD2
Best case pin-to-pin delay through one LUT
10 pF
—
5.8
—
8.5
ns
tSU
Global clock setup time
—
2.4
—
4.6
—
ns
tH
Global clock hold time
—
0
—
0
—
ns
tCO
Global clock to output delay
10 pF
2.0
6.6
2.0
8.6
ns
tCH
Global clock high time
—
253
—
339
—
ps
tCL
Global clock low time
—
253
—
339
—
ps
tCNT
Minimum global clock period for
16-bit counter
—
5.4
—
8.4
—
ns
fCNT
Maximum global clock frequency for 16-bit
counter
—
—
184.1
—
118.3
MHz
Notes to Table 3–26:
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global
clock input pin maximum frequency.
(2) Not applicable to the T144 package of the 5M240Z device.
Table 3–27 lists the external I/O timing parameters for the T144 package of the
5M240Z device.
Table 3–27. Global Clock External I/O Timing Parameters for the 5M240Z Device (Note 1), (2)
C4
Symbol
Parameter
C5, I5
Condition
Unit
Min
Max
Min
Max
tPD1
Worst case pin-to-pin delay through one LUT
10 pF
—
9.5
—
17.7
ns
tPD2
Best case pin-to-pin delay through one LUT
10 pF
—
5.7
—
8.5
ns
tSU
Global clock setup time
—
2.2
—
4.4
—
ns
tH
Global clock hold time
—
0
—
0
—
ns
tCO
Global clock to output delay
10 pF
2.0
6.7
2.0
8.7
ns
tCH
Global clock high time
—
253
—
339
—
ps
tCL
Global clock low time
—
253
—
339
—
ps
tCNT
Minimum global clock period for 16-bit
counter
—
5.4
—
8.4
—
ns
fCNT
Maximum global clock frequency for 16-bit
counter
—
—
184.1
—
118.3
MHz
Notes to Table 3–27:
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global
clock input pin maximum frequency.
(2) Only applicable to the T144 package of the 5M240Z device.
MAX V Device Handbook
May 2011
Altera Corporation
Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
3–21
Table 3–28 lists the external I/O timing parameters for the 5M570Z device.
Table 3–28. Global Clock External I/O Timing Parameters for the 5M570Z Device (Note 1)
C4
Symbol
Parameter
C5, I5
Condition
Unit
Min
Max
Min
Max
tPD1
Worst case pin-to-pin delay through one LUT
10 pF
—
9.5
—
17.7
ns
tPD2
Best case pin-to-pin delay through one LUT
10 pF
—
5.7
—
8.5
ns
tSU
Global clock setup time
—
2.2
—
4.4
—
ns
tH
Global clock hold time
—
0
—
0
—
ns
tCO
Global clock to output delay
10 pF
2.0
6.7
2.0
8.7
ns
tCH
Global clock high time
—
253
—
339
—
ps
tCL
Global clock low time
—
253
—
339
—
ps
tCNT
Minimum global clock period for 16-bit
counter
—
5.4
—
8.4
—
ns
fCNT
Maximum global clock frequency for 16-bit
counter
—
—
184.1
—
118.3
MHz
Note to Table 3–28:
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global
clock input pin maximum frequency.
Table 3–29 lists the external I/O timing parameters for the 5M1270Z device.
Table 3–29. Global Clock External I/O Timing Parameters for the 5M1270Z Device (Note 1), (2)
C4
Symbol
Parameter
C5, I5
Condition
Unit
Min
Max
Min
Max
tPD1
Worst case pin-to-pin delay through one LUT
10 pF
—
8.1
—
10.0
ns
tPD2
Best case pin-to-pin delay through one LUT
10 pF
—
4.8
—
5.9
ns
tSU
Global clock setup time
—
1.5
—
1.9
—
ns
tH
Global clock hold time
—
0
—
0
—
ns
tCO
Global clock to output delay
10 pF
2.0
5.9
2.0
7.3
ns
tCH
Global clock high time
—
216
—
266
—
ps
tCL
Global clock low time
—
216
—
266
—
ps
tCNT
Minimum global clock period for 16-bit
counter
—
4.0
—
5.0
—
ns
fCNT
Maximum global clock frequency for 16-bit
counter
—
—
247.5
—
201.1
MHz
Notes to Table 3–29:
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global
clock input pin maximum frequency.
(2) Not applicable to the F324 package of the 5M1270Z device.
May 2011
Altera Corporation
MAX V Device Handbook
3–22
Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
Table 3–30 lists the external I/O timing parameters for the F324 package of the
5M1270Z device.
Table 3–30. Global Clock External I/O Timing Parameters for the 5M1270Z Device (Note 1), (2)
C4
Symbol
Parameter
C5, I5
Condition
Unit
Min
Max
Min
Max
tPD1
Worst case pin-to-pin delay through one LUT
10 pF
—
9.1
—
11.2
ns
tPD2
Best case pin-to-pin delay through one LUT
10 pF
—
4.8
—
5.9
ns
tSU
Global clock setup time
—
1.5
—
1.9
—
ns
tH
Global clock hold time
tCO
Global clock to output delay
tCH
—
0
—
0
—
ns
10 pF
2.0
6.0
2.0
7.4
ns
Global clock high time
—
216
—
266
—
ps
tCL
Global clock low time
—
216
—
266
—
ps
tCNT
Minimum global clock period for 16-bit
counter
—
4.0
—
5.0
—
ns
fCNT
Maximum global clock frequency for 16-bit
counter
—
—
247.5
—
201.1
MHz
Notes to Table 3–30:
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global
clock input pin maximum frequency.
(2) Only applicable to the F324 package of the 5M1270Z device.
Table 3–31 lists the external I/O timing parameters for the 5M2210Z device.
Table 3–31. Global Clock External I/O Timing Parameters for the 5M2210Z Device (Note 1)
C4
Symbol
Parameter
C5, I5
Condition
Unit
Min
Max
Min
Max
—
9.1
—
11.2
tPD1
Worst case pin-to-pin delay through one LUT
10 pF
tPD2
Best case pin-to-pin delay through one LUT
10 pF
—
4.8
—
5.9
ns
tSU
Global clock setup time
—
1.5
—
1.9
—
ns
tH
Global clock hold time
—
0
—
0
—
ns
tCO
Global clock to output delay
10 pF
2.0
6.0
2.0
7.4
ns
tCH
Global clock high time
—
216
—
266
—
ps
tCL
Global clock low time
—
216
—
266
—
ps
tCNT
Minimum global clock period for 16-bit
counter
—
4.0
—
5.0
—
ns
fCNT
Maximum global clock frequency for 16-bit
counter
—
—
247.5
—
201.1
MHz
ns
Note to Table 3–31:
(1) The maximum frequency is limited by the I/O standard on the clock input pin. The 16-bit counter critical delay performs faster than this global
clock input pin maximum frequency.
MAX V Device Handbook
May 2011
Altera Corporation
Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
3–23
External Timing I/O Delay Adders
The I/O delay timing parameters for the I/O standard input and output adders and
the input delays are specified by speed grade, independent of device density.
Table 3–32 through Table 3–36 on page 3–25 list the adder delays associated with I/O
pins for all packages. If you select an I/O standard other than 3.3-V LVTTL, add the
input delay adder to the external tSU timing parameters listed in Table 3–26 on
page 3–20 through Table 3–31. If you select an I/O standard other than 3.3-V LVTTL
with 16 mA drive strength and fast slew rate, add the output delay adder to the
external tCO and tPD listed in Table 3–26 on page 3–20 through Table 3–31.
Table 3–32. External Timing Input Delay Adders for MAX V Devices
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z
I/O Standard
C4
5M1270Z/ 5M2210Z
C5, I5
C4
Unit
C5, I5
Min
Max
Min
Max
Min
Max
Min
Max
Without Schmitt
Trigger
—
0
—
0
—
0
—
0
ps
With Schmitt
Trigger
—
387
—
442
—
480
—
591
ps
Without Schmitt
Trigger
—
0
—
0
—
0
—
0
ps
With Schmitt
Trigger
—
387
—
442
—
480
—
591
ps
Without Schmitt
Trigger
—
42
—
42
—
246
—
303
ps
With Schmitt
Trigger
—
429
—
483
—
787
—
968
ps
1.8-V LVTTL /
LVCMOS
Without Schmitt
Trigger
—
378
—
368
—
695
—
855
ps
1.5-V LVCMOS
Without Schmitt
Trigger
—
681
—
658
—
1,334
—
1,642
ps
1.2-V LVCMOS
Without Schmitt
Trigger
—
1,055
—
1,010
—
2,324
—
2,860
ps
3.3-V PCI
Without Schmitt
Trigger
—
0
—
0
—
0
—
0
ps
3.3-V LVTTL
3.3-V LVCMOS
2.5-V LVTTL /
LVCMOS
Table 3–33. External Timing Input Delay tGLOB Adders for GCLK Pins for MAX V Devices (Part 1 of 2)
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z
I/O Standard
3.3-V LVTTL
May 2011
C4
5M1270Z/ 5M2210Z
C5, I5
C4
Unit
C5, I5
Min
Max
Min
Max
Min
Max
Min
Max
Without Schmitt
Trigger
—
0
—
0
—
0
—
0
ps
With Schmitt
Trigger
—
387
—
442
—
400
—
493
ps
Altera Corporation
MAX V Device Handbook
3–24
Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
Table 3–33. External Timing Input Delay tGLOB Adders for GCLK Pins for MAX V Devices (Part 2 of 2)
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z
I/O Standard
C4
5M1270Z/ 5M2210Z
C5, I5
C4
Unit
C5, I5
Min
Max
Min
Max
Min
Max
Min
Max
Without Schmitt
Trigger
—
0
—
0
—
0
—
0
ps
With Schmitt
Trigger
—
387
—
442
—
400
—
493
ps
Without Schmitt
Trigger
—
242
—
242
—
287
—
353
ps
With Schmitt
Trigger
—
429
—
483
—
550
—
677
ps
1.8-V LVTTL /
LVCMOS
Without Schmitt
Trigger
—
378
—
368
—
459
—
565
ps
1.5-V LVCMOS
Without Schmitt
Trigger
—
681
—
658
—
1,111
—
1,368
ps
1.2-V LVCMOS
Without Schmitt
Trigger
—
1,055
—
1,010
—
2,067
—
2,544
ps
3.3-V PCI
Without Schmitt
Trigger
—
0
—
0
—
7
—
9
ps
3.3-V LVCMOS
2.5-V LVTTL /
LVCMOS
Table 3–34. External Timing Output Delay and tOD Adders for Fast Slew Rate for MAX V Devices
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z
I/O Standard
3.3-V LVTTL
3.3-V LVCMOS
2.5-V LVTTL / LVCMOS
1.8-V LVTTL / LVCMOS
1.5-V LVCMOS
C4
5M1270Z/ 5M2210Z
C5, I5
C4
Unit
C5, I5
Min
Max
Min
Max
Min
Max
Min
Max
16 mA
—
0
—
0
—
0
—
0
ps
8 mA
—
39
—
58
—
84
—
104
ps
8 mA
—
0
—
0
—
0
—
0
ps
4 mA
—
39
—
58
—
84
—
104
ps
14 mA
—
122
—
129
—
158
—
195
ps
7 mA
—
196
—
188
—
251
—
309
ps
6 mA
—
624
—
624
—
738
—
909
ps
3 mA
—
686
—
694
—
850
—
1,046
ps
4 mA
—
1,188
—
1,184
—
1,376
—
1,694
ps
2 mA
—
1,279
—
1,280
—
1,517
—
1,867
ps
1.2-V LVCMOS
3 mA
—
1,911
—
1,883
—
2,206
—
2,715
ps
3.3-V PCI
20 mA
—
39
—
58
—
4
—
5
ps
LVDS
—
—
122
—
129
—
158
—
195
ps
RSDS
—
—
122
—
129
—
158
—
195
ps
MAX V Device Handbook
May 2011
Altera Corporation
Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
3–25
Table 3–35. External Timing Output Delay and tOD Adders for Slow Slew Rate for MAX V Devices
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z
I/O Standard
3.3-V LVTTL
3.3-V LVCMOS
2.5-V LVTTL / LVCMOS
1.8-V LVTTL / LVCMOS
1.5-V LVCMOS
C4
5M1270Z/ 5M2210Z
C5, I5
C4
Unit
C5, I5
Min
Max
Min
Max
Min
Max
Min
Max
16 mA
—
5,913
—
6,043
—
6,612
—
6,293
ps
8 mA
—
6,488
—
6,645
—
7,313
—
6,994
ps
8 mA
—
5,913
—
6,043
—
6,612
—
6,293
ps
4 mA
—
6,488
—
6,645
—
7,313
—
6,994
ps
14 mA
—
9,088
—
9,222
—
10,021
—
9,702
ps
7 mA
—
9,808
—
9,962
—
10,881
—
10,562
ps
6 mA
—
21,758
—
21,782
—
21,134
—
20,815
ps
3 mA
—
23,028
—
23,032
—
22,399
—
22,080
ps
4 mA
—
39,068
—
39,032
—
34,499
—
34,180
ps
2 mA
—
40,578
—
40,542
—
36,281
—
35,962
ps
1.2-V LVCMOS
3 mA
—
69,332
—
70,257
—
55,796
—
55,477
ps
3.3-V PCI
20 mA
—
6,488
—
6,645
—
339
—
418
ps
Table 3–36. IOE Programmable Delays for MAX V Devices
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z
Parameter
C4
5M1270Z/ 5M2210Z
C5, I5
C4
Unit
C5, I5
Min
Max
Min
Max
Min
Max
Min
Max
Input Delay from Pin to Internal
Cells = 1
—
1,858
—
2,214
—
1,592
—
1,960
ps
Input Delay from Pin to Internal
Cells = 0
—
569
—
616
—
115
—
142
ps
May 2011
Altera Corporation
MAX V Device Handbook
3–26
Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
Maximum Input and Output Clock Rates
Table 3–37 and Table 3–38 list the maximum input and output clock rates for standard
I/O pins in MAX V devices.
Table 3–37. Maximum Input Clock Rate for I/Os for MAX V Devices
I/O Standard
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z/5M1270Z/
5M2210Z
Unit
C4, C5, I5
3.3-V LVTTL
3.3-V LVCMOS
2.5-V LVTTL
2.5-V LVCMOS
Without Schmitt Trigger
304
MHz
With Schmitt Trigger
304
MHz
Without Schmitt Trigger
304
MHz
With Schmitt Trigger
304
MHz
Without Schmitt Trigger
304
MHz
With Schmitt Trigger
304
MHz
Without Schmitt Trigger
304
MHz
With Schmitt Trigger
304
MHz
1.8-V LVTTL
Without Schmitt Trigger
200
MHz
1.8-V LVCMOS
Without Schmitt Trigger
200
MHz
1.5-V LVCMOS
Without Schmitt Trigger
150
MHz
1.2-V LVCMOS
Without Schmitt Trigger
120
MHz
3.3-V PCI
Without Schmitt Trigger
304
MHz
Table 3–38. Maximum Output Clock Rate for I/Os for MAX V Devices
I/O Standard
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z/5M1270Z/
5M2210Z
Unit
C4, C5, I5
MAX V Device Handbook
3.3-V LVTTL
304
MHz
3.3-V LVCMOS
304
MHz
2.5-V LVTTL
304
MHz
2.5-V LVCMOS
304
MHz
1.8-V LVTTL
200
MHz
1.8-V LVCMOS
200
MHz
1.5-V LVCMOS
150
MHz
1.2-V LVCMOS
120
MHz
3.3-V PCI
304
MHz
LVDS
304
MHz
RSDS
200
MHz
May 2011
Altera Corporation
Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
3–27
LVDS and RSDS Output Timing Specifications
Table 3–39 lists the emulated LVDS output timing specifications for MAX V devices.
Table 3–39. Emulated LVDS Output Timing Specifications for MAX V Devices
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z/5M1270Z/
5M2210Z
Parameter
Mode
Unit
C4, C5, I5
Min
Max
10
—
304
Mbps
9
—
304
Mbps
8
—
304
Mbps
7
—
304
Mbps
6
—
304
Mbps
5
—
304
Mbps
4
—
304
Mbps
3
—
304
Mbps
2
—
304
Mbps
1
—
304
Mbps
tDUTY
—
45
55
%
Total jitter (3)
—
—
0.2
UI
tRISE
—
—
450
ps
tFALL
—
—
450
ps
Data rate (1), (2)
Notes to Table 3–39:
(1) The performance of the LVDS_E_3R transmitter system is limited by the lower of the two—the maximum data rate supported by LVDS_E_3R
I/O buffer or 2x (FMAX of the ALTLVDS_TX instance). The actual performance of your LVDS_E_3R transmitter system must be attained through
the Quartus II timing analysis of the complete design.
(2) For the input clock pin to achieve 304 Mbps, use I/O standard with VCCIO of 2.5 V and above.
(3) This specification is based on external clean clock source.
May 2011
Altera Corporation
MAX V Device Handbook
3–28
Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
Table 3–40 lists the emulated RSDS output timing specifications for MAX V devices.
Table 3–40. Emulated RSDS Output Timing Specifications for MAX V Devices
5M40Z/ 5M80Z/ 5M160Z/
5M240Z/ 5M570Z/5M1270Z/
5M2210Z
Parameter
Mode
Unit
C4, C5, I5
Data rate (1)
tDUTY
Min
Max
10
—
200
Mbps
9
—
200
Mbps
8
—
200
Mbps
7
—
200
Mbps
6
—
200
Mbps
5
—
200
Mbps
4
—
200
Mbps
3
—
200
Mbps
2
—
200
Mbps
1
—
200
Mbps
—
45
55
%
Total jitter (2)
—
—
0.2
UI
tRISE
—
—
450
ps
tFALL
—
—
450
ps
Notes to Table 3–40:
(1) For the input clock pin to achieve 200 Mbps, use I/O standard with VCCIO of 1.8 V and above.
(2) This specification is based on external clean clock source.
MAX V Device Handbook
May 2011
Altera Corporation
Chapter 3: DC and Switching Characteristics for MAX V Devices
Timing Model and Specifications
3–29
JTAG Timing Specifications
Figure 3–6 shows the timing waveform for the JTAG signals for the MAX V device
family.
Figure 3–6. JTAG Timing Waveform for MAX V Devices
TMS
TDI
tJCP
tJCH
tJPSU
tJCL
tJPH
TCK
tJPZX
tJPCO
tJPXZ
TDO
tJSSU
Signal
to be
Captured
tJSH
tJSZX
tJSCO
tJSXZ
Signal
to be
Driven
Table 3–41 lists the JTAG timing parameters and values for the MAX V device family.
Table 3–41. JTAG Timing Parameters for MAX V Devices (Part 1 of 2)
Symbol
Parameter
Min
Max
Unit
TCK clock period for V CCIO1 = 3.3 V
55.5
—
ns
TCK clock period for V CCIO1 = 2.5 V
62.5
—
ns
TCK clock period for V CCIO1 = 1.8 V
100
—
ns
TCK clock period for V CCIO1 = 1.5 V
143
—
ns
tJCH
TCK clock high time
20
—
ns
tJCL
TCK clock low time
20
—
ns
tJPSU
JTAG port setup time (2)
8
—
ns
tJPH
JTAG port hold time
10
—
ns
tJPCO
JTAG port clock to output (2)
—
15
ns
tJPZX
JTAG port high impedance to valid output (2)
—
15
ns
tJPXZ
JTAG port valid output to high impedance (2)
—
15
ns
tJSSU
Capture register setup time
8
—
ns
tJSH
Capture register hold time
10
—
ns
tJSCO
Update register clock to output
—
25
ns
tJSZX
Update register high impedance to valid output
—
25
ns
tJCP (1)
May 2011
Altera Corporation
MAX V Device Handbook
3–30
Chapter 3: DC and Switching Characteristics for MAX V Devices
Document Revision History
Table 3–41. JTAG Timing Parameters for MAX V Devices (Part 2 of 2)
Symbol
tJSXZ
Parameter
Min
Max
Unit
—
25
ns
Update register valid output to high impedance
Notes to Table 3–41:
(1) Minimum clock period specified for 10 pF load on the TDO pin. Larger loads on TDO degrades the maximum TCK frequency.
(2) This specification is shown for 3.3-V LVTTL/LVCMOS and 2.5-V LVTTL/LVCMOS operation of the JTAG pins. For 1.8-V LVTTL/LVCMOS and
1.5-V LVCMOS operation, the tJPSU minimum is 6 ns and tJPCO, tJPZX, and tJPXZ are maximum values at 35 ns.
Document Revision History
Table 3–42 lists the revision history for this chapter.
Table 3–42. Document Revision History
Date
Version
Changes
May 2011
1.2
Updated Table 3–2, Table 3–15, Table 3–16, and Table 3–33.
January 2011
1.1
Updated Table 3–37, Table 3–38, Table 3–39, and Table 3–40.
December 2010
1.0
Initial release.
MAX V Device Handbook
May 2011
Altera Corporation