AOZ8904 Ultra-Low Capacitance TVS Diode Array General Description Features The AOZ8904 is a transient voltage suppressor array designed to protect high speed data lines from Electro Static Discharge (ESD) and lightning. • ESD protection for high-speed data lines: This device incorporates eight surge rated, low capacitance steering diodes and a Transient Voltage Suppressor (TVS) in a single package. During transient conditions, the steering diodes direct the transient to either the positive side of the power supply line or to ground. They may be used to meet the ESD immunity requirements of IEC 61000-4-2, Level 4 (±15kV air, ±8kV contact discharge). The AOZ8904 comes in a Halogen Free and RoHS compliant SOT-23 and SC-70 packages. It is rated over a -40°C to +85°C ambient temperature range. – Exceeds: IEC 61000-4-2 (ESD) ±24kV (air), ±24kV (contact) – IEC 61000-4-5 (Lightning) 4A (8/20µs) – Human Body Model (HBM) ±24kV • Small package saves board space • Low insertion loss • Protects four I/O lines • Low clamping voltage • Low operating voltage: 5.0V Applications • USB 2.0 Power and Data Line Protection • Video Graphics Cards • Monitors and Flat Panel Displays • Digital Video Interface (DVI) Typical Application USB Host Controller +5V Downstream Ports VBUS RT D+ RT DVBUS GND AOZ8904 +5V VBUS RT D+ RT DGND Figure 1. 2 USB High Speed Ports Rev. 2.1 January 2011 www.aosmd.com Page 1 of 11 AOZ8904 Ordering Information Part Number Ambient Temperature Range AOZ8904CIL -40°C to +85°C AOZ8904HIL Package Environmental SOT-23-6 RoHS Compliant Green Product SC-70-6 AOS Green Products used reduced levels of Halogens, and are also RoHS compliant. Please visit www.aosmd.com/web/quality/rohs_compliant.jsp for additional information. Pin Configuration CH1 1 6 CH4 VN 2 5 VP CH2 3 4 CH3 SOT-23-6 / SC-70-6 (Top View) Absolute Maximum Ratings Exceeding the Absolute Maximum ratings may damage the device. Parameter Rating VP – VN 6V Peak Pulse Current (IPP), tP = 8/20µs 4A Peak Power Dissipation (8 x 20µs@ 25°C) 50W Storage Temperature (TS) -65°C to +150°C ESD Rating per IEC61000-4-2, contact(1) ±24kV ESD Rating per IEC61000-4-2, air(2) ±24kV Model(2) ±24kV ESD Rating per Human Body Junction Temperature (TJ) -40°C to +125°C Notes: 1. IEC 61000-4-2 discharge with CDischarge = 150pF, RDischarge = 330Ω. 2. Human Body Discharge per MIL-STD-883, Method 3015 CDischarge = 100pF, RDischarge = 1.5kΩ. Rev. 2.1 January 2011 www.aosmd.com Page 2 of 11 AOZ8904 Electrical Characteristics TA = 25°C unless otherwise specified Symbol VRWM VBR Parameter Reverse Working Voltage Conditions Between pin 5 and 2 Min. (5) Reverse Breakdown Voltage IT = 1mA, between pins 5 and 2 IR Reverse Leakage Current VRWM = 5V, between pins 5 and 2 VF Diode Forward Voltage If = 15mA VCL Channel Clamp Voltage Positive Transients Negative Transient IPP = 1A, tp = 100ns, any I/O pin to Ground(3)(6)(8) Channel Clamp Voltage Positive Transients Negative Transient IPP = 5A, tp = 100ns, any I/O pin to Ground(3)(6)(8) Channel Clamp Voltage Positive Transients Negative Transient IPP = 12A, tp = 100ns, any I/O pin to Ground(3)(6)(8) Junction Capacitance VR = 0V, f = 1Mhz, any I/O pin to Ground(3)(7) Cj ΔCj Channel Input Capacitance Matching Typ. (4) VR = 0V, f = 1Mhz, between I/O Units 5.5 V 6.6 0.7 pins(3)(7) Max. V 0.85 1 µA 0.95 V 11.00 -2.00 V V 14.00 -3.50 V V 18.00 -5.00 V V 1.25 1.3 pF 0.03 pF Notes: 3. These specifications are guaranteed by design. 4. The working peak reverse voltage, VRWM, should be equal to or greater than the DC or continuous peak operating voltage level. 5. VBR is measured at the pulse test current IT. 6. Measurements performed with no external capacitor on VP (Pin 5 floating). 7. Measurements performed with VP biased to 3.3 Volts (Pin 5 @ 3.3V). 8. Measurements performed using a 100 nSec Transmission Line Pulse (TLP) system. Rev. 2.1 January 2011 www.aosmd.com Page 3 of 11 AOZ8904 Typical Performance Characteristics I/O – Gnd Insertion Loss (S21) vs. Frequency Clamping Voltage vs. Peak Pulse Current (Vp = 3.3V) (tperiod = 100ns, tr = 1ns) 16 Insertion Loss (dB) Clamping Voltage, VCL (V) 17 15 14 13 12 11 10 9 0 2 4 6 8 10 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 1 12 10 100 1000 Frequency (MHz) Peak Pulse Current, IPP (A) Forward Voltage vs. Forward Current Analog Crosstalk (I/O–I/O) vs. Frequency (tperiod = 100nS, tr = 1ns) 7 20 Insertion Loss (dB) Forward Voltage (V) 6 5 4 3 2 1 0 -20 -40 -60 -80 0 0 2 4 6 8 10 10 12 100 1000 Frequency (MHz) Forward Current, IPP (A) I/O – I/O Insertion Loss (S21) vs. Frequency Insertion Loss (dB) (Vp = Float) 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 1 10 100 1000 Frequency (MHz) Rev. 2.1 January 2011 www.aosmd.com Page 4 of 11 AOZ8904 Application Information The AOZ8904 TVS is design to protect four data lines from fast damaging transient over-voltage by clamping it to a reference. When the transient on a protected data line exceed the reference voltage the steering diode is forward bias thus, conducting the harmful ESD transient away from the sensitive circuitry under protection. PCB Layout Guidelines Printed circuit board layout is the key to achieving the highest level of surge immunity on power and data lines. The location of the protection devices on the PCB is the simplest and most important design rule to follow. The AOZ8904 devices should be located as close as possible to the noise source. The placement of the AOZ8904 devices should be used on all data and power lines that enter or exit the PCB at the I/O connector. In most systems, surge pulses occur on data and power lines that enter the PCB through the I/O connector. Placing the AOZ8904 devices as close as possible to the noise source ensures that a surge voltage will be clamped before the pulse can be coupled into adjacent PCB traces. In addition, the PCB should use the shortest possible traces. A short trace length equates to low impedance, which ensures that the surge energy will be dissipated by the AOZ8904 device. Long signal traces will act as antennas to receive energy from fields that are produced by the ESD pulse. By keeping line lengths as short as possible, the efficiency of the line to act as an antenna for ESD related fields is reduced. Minimize interconnecting line lengths by placing devices with the most interconnect as close together as possible. The protection circuits should shunt the surge voltage to either the reference or chassis ground. Shunting the surge voltage directly to the IC’s signal ground can cause ground bounce. The clamping performance of TVS diodes on a single ground PCB can be improved by minimizing the impedance with relatively short and wide ground traces. The PCB layout and IC package parasitic inductances can cause significant overshoot to the TVS’s clamping voltage. The inductance of the PCB can be reduced by using short trace lengths and multiple layers Rev. 2.1 January 2011 with separate ground and power planes. One effective method to minimize loop problems is to incorporate a ground plane in the PCB design. The AOZ8904 ultra-low capacitance TVS is designed to protect four high speed data transmission lines from transient over-voltages by clamping them to a fixed reference. The low inductance and construction minimizes voltage overshoot during high current surges. When the voltage on the protected line exceeds the reference voltage the internal steering diodes are forward biased, conducting the transient current away from the sensitive circuitry. Good circuit board layout is critical for the suppression of ESD induced transients. The following guidelines are recommended: 1. Place the TVS near the IO terminals or connectors to restrict transient coupling. 2. Fill unused portions of the PCB with ground plane. 3. Minimize the path length between the TVS and the protected line. 4. Minimize all conductive loops including power and ground loops. 5. The ESD transient return path to ground should be kept as short as possible. 6. Never run critical signals near board edges. 7. Use ground planes whenever possible. 8. Avoid running critical signal traces (clocks, resets, etc.) near PCB edges. 9. Separate chassis ground traces from components and signal traces by at least 4mm. 10. Keep the chassis ground trace length-to-width ratio <5:1 to minimize inductance. 11. Protect all external connections with TVS diodes. www.aosmd.com Page 5 of 11 AOZ8904 TPBIASx 1μ 56Ω 56Ω IEEE 1394 Connector TPAx+ IEEE 1394 PHY TPAxTPBx+ TPBxGND 56Ω 5.1kΩ 56Ω 270p AOZ8904 IEEE1394 Port Connection Rev. 2.1 January 2011 www.aosmd.com Page 6 of 11 AOZ8904 Package Dimensions, SOT-23-6L Gauge Plane D e1 Seating Plane 0.25mm c L E E1 θ1 e b A2 A .010mm A1 Dimensions in millimeters RECOMMENDED LAND PATTERN 2.40 0.80 0.95 0.63 UNIT: mm Dimensions in inches Symbols A A1 A2 Min. 0.90 0.00 0.80 Nom. — — 1.10 Max. 1.25 0.15 1.20 Symbols A A1 A2 Min. 0.035 0.00 0.031 Nom. — — 0.043 Max. 0.049 0.006 0.047 b c D E E1 0.30 0.08 2.70 2.50 1.50 0.40 0.13 2.90 2.80 1.60 0.50 0.20 3.10 3.10 1.70 b c D E E1 0.012 0.003 0.106 0.098 0.059 0.016 0.005 0.114 0.110 0.063 0.020 0.008 0.122 0.122 0.067 e e1 L θ1 0.95 BSC 1.90 BSC 0.30 — 0.60 0° — 8° e e1 L θ1 0.037 BSC 0.075 BSC 0.012 — 0.024 0° — 8° Notes: 1. Package body sizes exclude mold flash and gate burrs. Mold flash at the non-lead sides should be less than 5 mils each. 2. Dimension “L” is measured in gauge plane. 3. Tolerance ±0.100mm (4 mil) unless otherwise specified. 4. Followed from JEDEC MO-178C & MO-193C. 6. Controlling dimension is millimeter. Converted inch dimensions are not necessarily exact. Rev. 2.1 January 2011 www.aosmd.com Page 7 of 11 AOZ8904 Tape and Reel Dimensions, SOT-23-5&6L Tape P2 P1 D1 D0 E1 K0 E2 E B0 A0 P0 Feeding Direction Unit: mm Package A0 B0 K0 D0 D1 E E1 E2 P0 P1 P2 T SOT23-5/6L LP 3.15 ±0.10 3.20 ±0.10 1.40 ±0.10 1.50 ±0.05 1.00 +0.10 / -0 8.00 ±0.30 1.75 ±0.10 3.50 ±0.05 4.00 ±0.10 4.00 ±0.10 2.00 ±0.05 0.23 ±0.03 Reel W1 S K R M N J H Unit: mm Tape Size Reel Size M N 8mm ø177.8 ø177.8 Max. 55.0 Min. W1 H 8.4 13.0 +1.50 / -0.0 +0.5 / -0.2 S K R J 1.5 Min 10.1 Min. 12.7 4.0 ±0.1 Leader/Trailer and Orientation Trailer Tape 300mm min. Rev. 2.1 January 2011 Components Tape Orientation in Pocket www.aosmd.com Leader Tape 500mm min. Page 8 of 11 AOZ8904 Package Dimensions, SC-70-6L D Gauge Plane 0.15mm e1 θ L E1 E e c b A2 A .010mm A1 Dimensions in millimeters RECOMMENDED LAND PATTERN 1.95 0.65 0.35 0.65 UNIT: mm Symbols A A1 A2 b Min. c D E e e1 0.08 1.85 1.80 E1 L θ 1.1 0.26 0° 0.00 0.7 0.15 Nom. — — 0.9 — Max. 1.10 0.10 1.00 0.30 — 0.22 2.10 2.15 2.30 2.40 0.65 BSC 1.30 BSC 1.30 0.36 4° 1.4 0.46 8° Dimensions in inches Symbols A A1 A2 b Min. 0.00 0.028 0.006 c D E e e1 0.003 0.073 0.071 E1 L θ 0.043 0.010 0° Nom. — — 0.035 — Max. 0.043 0.004 0.039 0.012 — 0.009 0.083 0.085 0.091 0.094 0.026 BSC 0.051 BSC 0.051 0.014 4° 0.055 0.018 8° Notes: 1. All dimensions are in millimeters. 2. Dimensions are inclusive of plating 3. Package body sizes exclude mold flash and gate burrs. Mold flash at the non-lead sides should be less than 3 mils. 4. Die is facing up for mold and facing down for trim/form; i.e., reverse trim/form. 5. Dimension L is measured in gauge plane. 6. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact. Rev. 2.1 January 2011 www.aosmd.com Page 9 of 11 AOZ8904 Tape and Reel Dimensions, SC-70-6L Carrier Tape P1 D1 P2 T E1 E2 E B0 K0 A0 D0 P0 Feeding Direction UNIT: mm Package A0 B0 K0 D0 D1 E E1 E2 P0 P1 P2 T SC-70, 6L (8mm) 2.40 ±0.10 2.40 ±0.10 1.19 ±0.10 1.00 Min. 1.55 ±0.05 8.00 ±0.30 1.75 ±0.10 3.50 ±0.05 4.00 ±0.10 4.00 ±0.10 2.00 ±0.05 0.25 ±0.05 Reel W1 S G N M K V R H W W Tape Size Reel Size M N 8mm ø180 ø180.00 ø60.50 9.00 ±0.30 ±0.50 W1 11.40 ±1.00 H K ø13.00 10.60 +0.50/-0.20 S 2.00 ±0.50 G ø9.00 R 5.00 V 18.00 Leader/Trailer and Orientation Trailer Tape 300mm min. or 75 empty pockets Rev. 2.1 January 2011 Components Tape Orientation in Pocket www.aosmd.com Leader Tape 500mm min. or 125 empty pockets Page 10 of 11 AOZ8904 Part Marking LT AOZ8904CIL (SOT-23) AKOW Part Number Code Underscore Denotes Greeen Product Assembly Lot Code Week & Year Code Otption & Assembly Location Code AOZ8904HIL (SC-70) AWL Part Number Code Underscore Denotes Greeen Product Assembly Lot & Location Code Week & Year Code This datasheet contains preliminary data; supplementary data may be published at a later date. Alpha & Omega Semiconductor reserves the right to make changes at any time without notice. LIFE SUPPORT POLICY ALPHA & OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. Rev. 2.1 January 2011 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.aosmd.com Page 11 of 11