KERSEMI IRF1404L

PD -93853C
IRF1404S
IRF1404L
HEXFET® Power MOSFET
Advanced Process Technology
Ultra Low On-Resistance
l Dynamic dv/dt Rating
l 175°C Operating Temperature
l Fast Switching
l Fully Avalanche Rated
Description
®
l
D
l
VDSS = 40V
RDS(on) = 0.004Ω
G
The D2Pak is a surface mount power package capable of
accommodating die sizes up to HEX-4. It provides the
highest power capability and the lowest possible onresistance in any existing surface mount package. The
D2Pak is suitable for high current applications because of
its low internal connection resistance and can dissipate up
to 2.0W in a typical surface mount application.
The through-hole version (IRF1404L) is available for lowprofile applications.
ID = 162A†
S
Seventh Generation HEXFET Power MOSFETs from
International Rectifier utilize advanced processing
techniques to achieve extremely low on-resistance per
silicon area. This benefit, combined with the fast
switching speed and ruggedized device design that
HEXFET power MOSFETs are well known for, provides
the designer with an extremely efficient and reliable
device for use in a wide variety of applications.
D2Pak
IRF1404S
TO-262
IRF1404L
Absolute Maximum Ratings
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TA = 25°C
PD @TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
TSTG
Parameter
Max.
Continuous Drain Current, VGS @ 10V‡
Continuous Drain Current, VGS @ 10V‡
Pulsed Drain Current ‡
Power Dissipation
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy‡
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt ƒ‡
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
162†
115†
650
3.8
200
1.3
± 20
519
95
20
5.0
-55 to +175
-55 to +175
300 (1.6mm from case )
Units
W
W
W/°C
V
mJ
A
mJ
V/ns
Typ.
Max.
Units
–––
–––
0.75
40
°C/W
A
°C
Thermal Resistance
Parameter
RθJC
RθJA
www.kersemi.com
Junction-to-Case
Junction-to-Ambient (PCB mounted, steady-state)*
1
5/18/01
IRF1404S/L
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
RDS(on)
VGS(th)
gfs
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Min.
40
–––
–––
2.0
106
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
IDSS
Drain-to-Source Leakage Current
LS
Internal Source Inductance
–––
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance …‡
–––
–––
–––
–––
–––
–––
V(BR)DSS
∆V(BR)DSS/∆TJ
IGSS
Typ. Max. Units
Conditions
––– –––
V
VGS = 0V, ID = 250µA
0.036 ––– V/°C Reference to 25°C, ID = 1mA
0.00350.004
Ω
VGS = 10V, ID = 95A „
––– 4.0
V
VDS = 10V, ID = 250µA
––– –––
S
VDS = 25V, ID = 60A‡
––– 20
VDS = 40V, VGS = 0V
µA
––– 250
VDS = 32V, VGS = 0V, TJ = 150°C
––– 200
VGS = 20V
nA
––– -200
VGS = -20V
160 200
ID = 95A
35 –––
nC
VDS = 32V
42
60
VGS = 10V „‡
17 –––
VDD = 20V
140 –––
ID = 95A
ns
72 –––
RG = 2.5Ω
26 –––
RD = 0.21Ω „‡
Between lead,
nH
7.5 –––
and center of die contact
7360 –––
VGS = 0V
1680 –––
VDS = 25V
240 –––
pF
ƒ = 1.0MHz, See Fig. 5 ‡
6630 –––
VGS = 0V, V DS = 1.0V, ƒ = 1.0MHz
1490 –––
VGS = 0V, VDS = 32V, ƒ = 1.0MHz
1540 –––
VGS = 0V, VDS = 0V to 32V
Source-Drain Ratings and Characteristics
IS
ISM
VSD
trr
Qrr
ton
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– 162†
showing the
A
G
integral reverse
––– ––– 650
S
p-n junction diode.
––– ––– 1.3
V
TJ = 25°C, IS = 95A, VGS = 0V „
––– 71 110
ns
TJ = 25°C, IF = 95A
––– 180 270
nC di/dt = 100A/µs „‡
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11)
‚ Starting TJ = 25°C, L = 0.12mH
RG = 25Ω, I AS = 95A. (See Figure 12)
ƒ ISD ≤ 95A, di/dt ≤ 150A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C
… Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS
† Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 75A
‡ Use IRF1404 data and test conditions.
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
2
www.kersemi.com
IRF1404S/L
1000
1000
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
4.5V
100
100
4.5V
20µs PULSE WIDTH
TJ = 25 °C
10
0.1
1
10
100
Fig 1. Typical Output Characteristics
RDS(on) , Drain-to-Source On Resistance
(Normalized)
2.5
I D , Drain-to-Source Current (A)
TJ = 25 ° C
TJ = 175 ° C
100
V DS = 25V
20µs PULSE WIDTH
5.0
6.0
7.0
8.0
Fig 3. Typical Transfer Characteristics
www.kersemi.com
10
100
Fig 2. Typical Output Characteristics
1000
VGS , Gate-to-Source Voltage (V)
1
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
10
4.0
20µs PULSE WIDTH
TJ = 175 °C
10
0.1
9.0
ID = 159A
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRF1404S/L
VGS = 0V,
f = 1MHz
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
C, Capacitance (pF)
10000
8000
Ciss
6000
4000
Coss
2000
20
VGS , Gate-to-Source Voltage (V)
12000
ID = 95A
VDS = 32V
VDS = 20V
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
Crss
0
1
10
0
100
0
VDS , Drain-to-Source Voltage (V)
40
80
120
160
200
240
Q G , Total Gate Charge (nC)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
10000
TJ = 175 ° C
1000
ID , Drain Current (A)
ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED
BY RDS(on)
100
10us
100us
100
TJ = 25 ° C
10
1ms
10ms
10
1
0.4
V GS = 0 V
0.8
1.2
1.6
2.0
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
2.4
TC = 25 °C
TJ = 175 °C
Single Pulse
1
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
4
www.kersemi.com
IRF1404S/L
200
RD
VDS
LIMITED BY PACKAGE
VGS
I D , Drain Current (A)
160
D.U.T.
RG
+
-VDD
120
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
80
Fig 10a. Switching Time Test Circuit
40
VDS
90%
0
25
50
75
100
125
150
175
TC , Case Temperature ( ° C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
1
D = 0.50
0.20
0.1
0.10
PDM
0.05
t1
0.02
0.01
0.01
0.00001
t2
SINGLE PULSE
(THERMAL RESPONSE)
0.0001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = P DM x Z thJC + TC
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.kersemi.com
5
EAS , Single Pulse Avalanche Energy (mJ)
IRF1404S/L
1200
1 5V
TOP
1000
D R IV E R
L
VDS
D .U .T
RG
+
V
- DD
IA S
20V
0 .0 1 Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V (B R )D SS
tp
A
BOTTOM
ID
39A
67A
95A
800
600
400
200
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature( ° C)
IAS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
QGD
50
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
V DSav , Avalanche Voltage ( V )
QGS
48
46
44
42
40
0
VGS
20
40
60
80
100
IAV , Avalanche Current ( A)
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
Fig 12d. Typical Drain-to-Source Voltage
Vs. Avalanche Current
6
www.kersemi.com
IRF1404S/L
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
ƒ
+
‚
-
-
„
+

•
•
•
•
RG
Driver Gate Drive
P.W.
+
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D=
Period
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 14. For N-channel HEXFET® Power MOSFETs
www.kersemi.com
7
IRF1404S/L
D2Pak Package Outline
D2Pak Part Marking Information
THIS IS AN IRF530S WITH
LOT CODE 8024
AS S EMBLED ON WW 02, 2000
IN THE AS S EMBLY LINE "L"
INT ERNATIONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
F530S
DAT E CODE
YEAR 0 = 2000
WEEK 02
LINE L
8
www.kersemi.com
IRF1404S/L
TO-262 Package Outline
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL3103L
LOT CODE 1789
AS S EMBLED ON WW 19, 1997
IN T HE AS S EMBLY LINE "C"
INT ERNAT IONAL
RECT IFIER
LOGO
AS S E MBLY
LOT CODE
PART NUMBER
DAT E CODE
YEAR 7 = 1997
WEEK 19
LINE C
9
www.kersemi.com
IRF1404S/L
D2Pak Tape & Reel Information
TR R
1 .6 0 (.0 6 3 )
1 .5 0 (.0 5 9 )
4 .1 0 (.1 6 1 )
3 .9 0 (.1 5 3 )
F E E D D IR E C TIO N 1 .8 5 (.0 7 3 )
1 .6 5 (.0 6 5 )
1 .60 (.06 3 )
1 .50 (.05 9 )
1 1 .60 (.4 5 7 )
1 1 .40 (.4 4 9 )
0 .3 6 8 (.0 14 5 )
0 .3 4 2 (.0 13 5 )
15 .4 2 (.60 9 )
15 .2 2 (.60 1 )
2 4 .3 0 (.9 5 7 )
2 3 .9 0 (.9 4 1 )
TRL
10 .9 0 (.42 9 )
10 .7 0 (.42 1 )
1.7 5 (.0 69 )
1.2 5 (.0 49 )
4 .7 2 (.1 3 6)
4 .5 2 (.1 7 8)
1 6 .1 0 ( .6 3 4)
1 5 .9 0 ( .6 2 6)
FE E D D IR E C T IO N
1 3.50 (.5 32)
1 2.80 (.5 04)
2 7.40 (1.07 9)
2 3.90 (.941 )
4
3 30 .00
(1 4.1 73)
M A X.
N O TE S :
1 . CO M FO R M S TO E IA- 418 .
2 . CO N TR O L LIN G D IM EN S IO N : M ILL IM ET E R .
3 . DIM EN S IO N M EA S UR E D @ H UB .
4 . IN C LU D ES F LA N G E D IS T O R T IO N @ O U T ER ED G E.
6 0.00 (2.36 2)
M IN .
26 .40 (1.03 9)
24 .40 (.9 61 )
3
30 .4 0 (1.19 7)
M A X.
4
www.kersemi.com
10