RICHTEK RT9917

RT9917
7 Channel DC/DC Converters
General Description
Features
The RT9917 is a complete power-supply solution for digital
still cameras and other hand-held devices.
z
z
z
It integrates :
z
CH1 : Boost DC-DC converter with load disconnect
controller (SW1).
z
CH2 : Selectable Boost/Buck DC-DC converter
z
CH3 : Step-down DC-DC converter with internal
compensation.
CH4 : Step-down DC-DC converter with internal
compensation.
CH5 : DC/DC converter with HV NMOS, internal
compensation and load disconnect (SW5) for CCD positive
supply.
z
z
z
z
1 Channel Boost/Buck Selectable by SEL Pin
2 Selectable On/Off Sequence Set by SEQ Pin
4 Channels with Internal Compensation
Provide Charge Pump Voltage to Enhance NMOS
Gate Driving Capability for Alkaline Battery Input
All Power Switches Integrated
Syn Step-Down DC/DC Converter
` Up to 95% Efficiency
` 100% (MAX) Duty Cycle
Syn Step-Up DC/DC Converter
` Adjustable Output Voltage
` Up to 95% Efficiency
Open LED Protection
Transformerless Inverting Converter for CCD
Fixed 1MHz Switching Frequency
Compact 40-Lead WQFN Package
RoHS Compliant and 100% Lead (Pb)-Free
CH6 : DC/DC converter with HV PMOS for CCD negative
supply.
z
CH7 : WLED driver with HV NMOS, internal compensation
and allow for PWM dimming.
Applications
z
z
SW1 : Load disconnect controller for CH1.
z
SW5 : Load disconnect switch for CH5.
z
Ordering Information
Digital Still Camera
PDA
Portable Device
Pin Configurations
(TOP VIEW)
Package Type
QW : WQFN-40L 5x5 (W-Type)
Lead Plating System
P : Pb Free
G : Green (Halogen Free and Pb Free)
Note :
Richtek products are :
`
RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
`
Suitable for use in SnPb or Pb-free soldering processes.
LX1
EN134
COMP1
FB1
OK134
VOUT1
FB2
COMP2
EN2
LX2
RT9917
40 39 38 37 36 35 34 33 32 31
PVDD1
LX6
PVDD6
CP
CN
CPO
FB6
FB4
COMP6
LX4
1
30
2
29
3
28
4
27
5
6
26
GND
25
7
24
8
23
41
9
22
21
10
PVDD2
VDDM
CFB7
GND
LX7
LX5
VOUT7
FB3
EN7
LX3
PVDD4
EN5
SW5O
SW5I
FB5
VREF
SEL
SEQ
EN6
PVDD3
11 12 13 14 15 16 17 18 19 20
WQFN-40L 5x5
DS9917-03 April 2011
www.richtek.com
1
RT9917
Typical Application Circuit
For Li-ion : CH2 3.3V is from VOUT of CH1
VBAT
C24
10uF
L1
2.2uH
VBAT
1uF
40 LX1
LX5
25
1 PVDD1
5V
C1
10uF x 2
R1
37
150k
C16 R15
560pF 39k
R14
88.7k
5V
C3
10uF
3.3V
C17
10uF
L4
4.7uH
R16
470k
C18
10pF
R17
150k
C19 R18
2.2nF 15k
31 LX2
C20
10uF
L2
4.7uH
2.5V
C4
22pF
C5
10uF
R3
768k
RT9917
34
33
FB2
COMP2
23
C9
1nF
R8
75k
LX6 2
27
FB6 7
R11 C13
10.5k 0.1uF
VREF 16
COMP6
PVDD6
R12
75k
9
C11
47pF
3
C26
1uF
FB3
L6
10uH
C14
1nF
VBAT
C27
1uF
11
VBAT
L3
4.7uH
C7
10uF
R5
470k
R6
374k
-8V
C12
4.7uF/16V
R10
68k
R4
360k
C21 1.8V
10uF
C6
33pF
R7
887k
L7
10uH
PVDD3
21 LX3
C24
10uF/25V
FB5 15
GND
20
VBAT
SW5O 13
SW5I 14
FB1
38 COMP1
36
OK134
35
VOUT1
30
PVDD2
16V
C8
10uF/25V
C15
4.7pF
R13
470k
C25
1uF
L5
10uH
29
VDDM
10 LX4
ON
OFF
Dimming
LX7
26
D1
VOUT7 24
D2
D3
8
Power On
PVDD4
39
32
12
19
22
FB4
EN134
EN2
EN5
EN6
EN7
VBAT
28
CFB7
4
CP
CN 5
CPO 6
18
SEQ
17
SEL
C10
1uF/16V
D4
R9
10
VBAT
Timing Diagram
Power On Sequence : CH1 Boost 5V → CH3 Buck 2.5V → CH4 Buck 1.8V → CH2 Buck 3.3V
Power Off Sequence : CH2 Buck 3.3V → CH4 Buck 1.8V → CH3 Buck 2.5V → CH1 Boost 5V
VDDM
EN134, EN2
CH1 VOUT 5V
CH3 VOUT 2.5V
CH4 VOUT 1.8V
CH2 VOUT 3.3V
www.richtek.com
2
User define
3.5ms
3.5ms
3.5ms
3.5ms
IC shutdown
Wait until FB3 < 0.1V
Wait until FB4 < 0.1V
Wait until FB2 < 0.1V
DS9917-03 April 2011
RT9917
For Li-ion : CH2 3.3V is from VBAT
VBAT
C24
10uF
VBAT
1uF
L1
2.2uH
40
LX1
C25
1uF
L5
10uH
29
VDDM
LX5
25
16V
1 PVDD1
5V
C1
10uF x 2
R1
150k
C15
4.7pF
R13
470k
VBAT
C3
10uF
3.3V
C17
10uF
L4
4.7uH
R16
470k
C18
10pF
R17
150k
C19 R18
2.2nF 15k
FB1
38 COMP1
36
OK134
35
VOUT1
30
PVDD2
31 LX2
VBAT
L2
4.7uH
2.5V
C4
22pF
C5
10uF
R3
768k
RT9917
34
33
FB2
COMP2
23
11
C21 1.8V
10uF
C6
33pF
L3
4.7uH
C7
10uF
R5
470k
R6
374k
ON
OFF
Dimming
R8
75k
27
R11 C13
10.5k 0.1uF
VREF 16
COMP6
-8V
C12
4.7uF/16V
R10
68k
FB6 7
PVDD6
R12
75k
9
C11
47pF
C14
1nF
3
VBAT
C26 L6
1uF 10uH
FB3
VBAT
C27
1uF
PVDD4
10 LX4
LX7
26
D1
VOUT7 24
D2
D3
8
Power On
R7
887k
LX6 2
R4
360k
VBAT
C9
1nF
L7
10uH
PVDD3
21 LX3
C24
10uF/25V
FB5 15
GND
20
C20
10uF
SW5O 13
SW5I 14
37
C16 R15
560pF 39k
R14
88.7k
C8
10uF/25V
39
32
12
19
22
FB4
EN134
EN2
EN5
EN6
EN7
28
CFB7
4
CP
CN 5
6
CPO
18
SEQ
17
SEL
C10
1uF/16V
D4
R9
10
VBAT
Timing Diagram
Power On Sequence : CH1 Boost 5V → CH3 Buck 2.5V → CH4 Buck 1.8V → CH2 Buck 3.3V
Power Off Sequence : CH2 Buck 3.3V → CH4 Buck 1.8V → CH3 Buck 2.5V → CH1 Boost 5V
VDDM
EN134, EN2
CH1 VOUT 5V
CH3 VOUT 2.5V
CH4 VOUT 1.8V
CH2 VOUT 3.3V
DS9917-03 April 2011
User define
3.5ms
3.5ms
3.5ms
3.5ms
IC shutdown
Wait until FB3 < 0.1V
Wait until FB4 < 0.1V
Wait until FB2 < 0.1V
www.richtek.com
3
RT9917
For 2AA
VBAT
C24
10uF L1
2.2uH
3.3V
VOUT
3.3V
1uF
40 LX1
AO3415
C1
10uF
1
R1
1M
Q1
R13
470k
C17
4.7pF
R14
150k
C18 R15
560pF 39k
37
L4
2.2uH
VBAT
5V
C19
10uF
VBAT
R16
470k
C3
10uFx2
33
L2
4.7uH
2.5V
C5
10uF
R3
768k
25
RT9917
FB2
COMP2
PVDD3
C23
10uF
L3
4.7uH
1.8V
C7
10uF
27
R5
470k
C6
33pF
-8V
C12
4.7uF/16V
R10
68k
R11 C13
10.5k 0.1uF
VREF 16
PVDD6
10 LX4
R8
75k
FB6 7
23
PVDD4
R7
887k
LX6 2
R12
75k
9
C14
1nF
C11
47pF
3
VBAT
C26
L6
1uF 10uH
R4
360k
3.3V
C9
1nF
L7
10uH
COMP6
FB3
C24
10uF/25V
FB5 15
21 LX3
11
16V
C8
10uF/25V
SW5O 13
SW5I 14
FB1
31 LX2
30
PVDD2
20
3.3V
C4
22pF
LX5
GND
C21
560pF R18
39k
C25
1uF
L5
10uH
PVDD1
38 COMP1
36
OK134
35
VOUT1
34
R17
88.7k
C22
10uF
29
VDDM
VBAT
C27
1uF
LX7
26
D1
VOUT7 24
D2
D3
8
R6
374k Power On
ON
OFF
39
32
12
19
22
Dimming
FB4
EN134
EN2
EN5
EN6
EN7
28
CFB7
4
CP
CN 5
CPO 6
18
SEQ
17
SEL
C10
1uF/16V
D4
R9
10
C15
0.1uF
VBAT
C16
1uF
Note : A schottky diode connect from LX1 to PVDD1 is required for low-voltage start up.
Timing Diagram
Power On Sequence : CH1 Boost 3.3V→ CH3 Buck 2.5V → CH4 Buck 1.8V → (CH2 Boost 5V and SW1 3.3V)
Power Off Sequence : (CH2 Boost 5V and SW1 3.3V)→ CH4 Buck 1.8V → CH3 Buck 2.5V → CH1 Boost 3.3V
VDDM
EN134, EN2
CH1 VOUT 3.3V
CH3 VOUT 2.5V
CH4 VOUT 1.8V
VOUT1 3.3V
CH2 VOUT 5V
www.richtek.com
4
User define
3.5ms
3.5ms
3.5ms
3.5ms
3.5ms
IC shutdown
Wait until FB3 < 0.1V
Wait until FB4 < 0.1V
Wait until VOUT1 < 0.4V
Depends on loading
DS9917-03 April 2011
RT9917
Channel
CH3
Formula
VOUT = (1+R3/R4) x 0.8
VOUT (V)
2.5
1.8
1.3
1.2
1.0
L(uH)
4.7
4.7
4.7
4.7
4.7
R3(kΩ)
768
470
237
187
23.2
R4(kΩ)
360
374
374
374
93.1
C4(pF)
22
33
68
82
47
COUT (uF)
10
10
10
10
10
Channel
CH4
Formula
VOUT = (1+R5/R6) x 0.8
VOUT (V)
2.5
1.8
1.3
1.2
1.0
L(uH)
4.7
4.7
4.7
4.7
4.7
R5(kΩ)
768
470
237
187
23.2
R6(kΩ)
360
374
374
374
93.1
C6(pF)
22
33
68
82
47
COUT (uF)
10
10
10
10
10
Channel
CH5
Formula
VOUT = (1+R7/R8) x 1.25
VOUT (V)
12
13
15
15.5
16
L(uH)
10
10
10
10
10
R7(kΩ)
820
820
1000
820
886
R8(kΩ)
95.3
86.6
90.9
71.5
75
C9(pF)
1000
1000
1000
1000
1000
COUT (uF)
10/16V
10/16V
10/25V
10/25V
10/25V
Channel
CH6
Formula
VOUT = (R10/R11)*(-1.25)
* R10+R11 <90k
VOUT (V)
-6
-6.3
-7
-7.5
-8
L(uH)
10
10
10
10
10
R10(kΩ)
57.6
69.8
63.4
68
68
R11(kΩ)
12
13.7
11.3
11.3
10.5
COUT (uF)
10/16V
10/16V
4.7/16V
4.7/16V
4.7/16V
R12(kΩ)
47
47
75
75
75
C11(pF)
47
47
47
47
47
C14(pF)
1000
1000
1000
1000
1000
DS9917-03 April 2011
www.richtek.com
5
RT9917
Functional Pin Description
Pin No.
Pin Name
Pin Function
1
PVDD1
Power Input Pin for CH1.
2
LX6
Switch Node of CH6. High impedance in shutdown.
3
PVDD6
Power Input Pin for CH6.
4
CP
Charge Pump External Driver Pin.
5
CN
Charge Pump External Driver Pin.
6
CPO
Output Pin for Charge Pump.
7
8
FB6
FB4
Feedback Input Pin for CH6. High impedance in shutdown.
Feedback Input Pin for CH4. High impedance in shutdown.
9
COMP6
Compensation Pin for CH6. Pull to GND in shutdown.
10
LX4
Switch Node for CH4. High impedance in shutdown.
11
PVDD4
Power Input Pin for CH4.
12
EN5
Enable Pin for CH5.
13
SW5O
Output Pin for CH5 Load Disconnect.
14
15
16
17
SW5I
FB5
VREF
SEL
18
SEQ
19
EN6
Input Pin for CH5 Load Disconnect.
Feedback Input Pin for CH5. High impedance in shutdown.
1.25V Reference Output Pin.
CH2 Boost/Buck Select Pin. Logic state can’t be changed during operation.
CH1, CH3, CH4 Power On/Off Sequence Setting Pin. Logic state can’t be changed
during operation.
Enable Pin for CH6.
20
PVDD3
Power Input Pin for CH3
21
LX3
Switch Node for CH3. High impedance in shutdown.
22
EN7
Enable Pin for CH7.
23
FB3
Feedback Input Pin for CH3. High impedance in shutdown.
24
VOUT7
Sense Pin for CH7 Output Voltage.
25
LX5
Switch Node for CH5. High impedance in shutdown.
26
LX7
27,
GND
41 (Exposed Pad)
28
CFB7
29
VDDM
30
31
32
33
34
35
36
37
38
39
40
PVDD2
LX2
EN2
COMP2
FB2
VOUT1
OK134
FB1
COMP1
EN134
LX1
www.richtek.com
6
Switch Node for CH7. High impedance in shutdown.
Analog GND Pin. The exposed pad must be soldered to a large PCB and
connected to GND for maximum thermal dissipation.
Feedback Input Pin for CH7.
IC analog Input Power Pin. This voltage is also used to drive power NMOS gate of
CH5 and CH7.
Power Input Pin for CH2.
Switch Node for CH2. High impedance in shutdown.
Enable Pin for CH2
Compensation Pin for CH2
Feedback Input Pin for CH2. High impedance in shutdown.
Sense Pin for CH1 Output Voltage. High impedance in shutdown.
External Switch Control Pin. High impedance in shutdown.
Feedback Input Pin for CH1. High impedance in shutdown.
Compensation Pin for CH1. Pull to GND in shutdown.
Enable Pin for CH1, CH3, CH4, SW 1.
Switch Node for CH1. High impedance in shutdown.
DS9917-03 April 2011
RT9917
Function Block Diagram
VDDM
PVDD1
LX5
CH5
C-Mode
Step-Up
PWM
SW5I
CH1
C-Mode
Step-Up
LX1
SW5O
FB5
+
COMP1
FB1
-
1.25V
REF
+
0.8V
REF
PVDD6
PVDD2
CH6
C-Mode
Inverting
CH2
C-Mode
Step-Up or
Step-Down
LX6
COMP6
FB6
LX2
+
-
COMP2
FB2
-
LX7
+
CH7
C-Mode
Step-Up
PWM
VOUT7
EN7
CFB7
0.8V
REF
PVDD3
-
CH3
C-Mode
Step-Down
+
0.25V
REF
Enable
Mode
Sequence
SEQ
SEL
LX3
FB3
+
EN134
EN2
EN5
EN6
CP
CN
CPO
OK134
0.8V
REF
PVDD4
Charge
Pump
SW1
Controller
CH4
C-Mode
Step-Down
LX4
REF
FB4
+
+
-
VOUT1
VREF
1.25V
REF
Oscillator
Soft
Start
Thermal
Protect
0.8V
REF
GND
Timing Diagram
CH5 and CH6 Timing Diagram
EN5
max 18ms
SW5I
Depends on loading
SW5O
(to CCD +)
Depends on loading
EN6
CH6 VOUT
DS9917-03 April 2011
max 18ms
Depends on loading
www.richtek.com
7
RT9917
Absolute Maximum Ratings
z
z
z
z
z
z
z
z
z
(Note 1)
Supply Voltage, VDDM ------------------------------------------------------------------------------- 0.3V to 7V
Power Input PVDD1, PVDD2, PVDD3, PVDD4, PVDD6 ------------------------------------ −0.3V to 7V
Switch node :
LX1, LX2, LX3, LX4 ----------------------------------------------------------------------------------- −0.3V to 7V
LX5, LX7, SW5I, SW5O, VOUT7 ----------------------------------------------------------------- −0.3V to 21V
LX6 ------------------------------------------------------------------------------------------------------- (PVDD6 − 14V) to (PVDD6 + 0.3V)
The Other Pins ---------------------------------------------------------------------------------------- −0.3V to 7V
Power Dissipation, PD @ TA = 25°C
WQFN 40L 5x5 ---------------------------------------------------------------------------------------- 2.778W
Package Thermal Resistance (Note 2)
WQFN 40L 5x5, θJA ---------------------------------------------------------------------------------- 36°C/W
WQFN 40L 5x5, θJC ---------------------------------------------------------------------------------- 7°C/W
Junction Temperature -------------------------------------------------------------------------------- 150°C
Lead Temperature (Soldering, 10 sec.) ---------------------------------------------------------- 260°C
Storage Temperature Range ----------------------------------------------------------------------- −65°C to 150°C
ESD Susceptibility (Note 3)
HBM (Human Body Mode) ------------------------------------------------------------------------- 2kV
MM (Machine Mode) --------------------------------------------------------------------------------- 200V
Recommended Operating Conditions
z
z
z
z
(Note 4)
Supply Voltage, VDDM ------------------------------------------------------------------------------- 2.7V to 5.5V
EN7 Dimming Control Frequency Range for CH7 --------------------------------------------- 1kHz to 100kHz
(avoid 2k to 20kHz for audio noise)
Junction Temperature Range ----------------------------------------------------------------------- −40°C to 125°C
Ambient Temperature Range ----------------------------------------------------------------------- −40°C to 85°C
Electrical Characteristics
(VDDM = 3.3V, TA = 25°C, unless otherwise specified)
Parameter
Symbol
Test Condition
Min
Typ
Max
Units
--
--
1.6
V
5.6
6
6.5
V
--
--
0.6
V
--
1
10
uA
Supply Voltage
VDDM Minimum Startup Voltage
V ST
VDDM Over Voltage Protection
VDDM Over Voltage Protection
Hysteresis
Supply Current
Shutdown Supply Current into VDDM
CH1 (Syn-Boost) + SW1 : Supply
Current into VDDM
CH2 (Syn-Boost or Syn-Buck) : Supply
Current into VDDM
CH3 (Syn-Buck) :
Supply Current into VDDM
I OFF
EN134 = EN2 = EN5 = EN6 =
EN7 = 0V
I Q1
Non Switching, EN134 = 3.3V
--
--
800
uA
I Q2
Non Switching, EN2 = 3.3V
--
--
800
uA
I Q3
Non Switching, EN134 = 3.3V
--
--
800
uA
To be continued
www.richtek.com
8
DS9917-03 April 2011
RT9917
Parameter
CH4 (Syn-Buck) :
Supply Current into VDDM
CH5 (Asyn-Boost) + SW5 :
Supply Current into VDDM
CH6 (Inverting) + Charge pump
Supply Current into VDDM
CH7 (WLED):
Supply Current into VDDM
Symbol
IQ4
IQ5
IQ6
IQ7
Test Condition
Non Switching, EN134 =
3.3V
Non Switching, EN5 = 3.3V
Non Switching, EN6 = 3.3V
PVDD6 = 3.3V
Non Switching, EN7 = 3.3V
Min
Typ
Max
Units
--
--
800
uA
--
--
800
uA
--
--
800
uA
--
--
800
uA
900
1000
1100
kHz
Oscillator
CH1,2,3,4,5,6,7 Operating Frequency fOSC
CH1 Maximum Duty Cycle (Boost)
VFB1 = 0.7V
80
83
86
%
CH2 Maximum Duty Cycle (Boost)
VFB2 = 0.7V
80
83
86
%
CH2 Maximum Duty Cycle (Buck)
VFB2 = 0.7V
--
--
100
%
CH3 Maximum Duty Cycle (Buck)
VFB3 = 0.7V
--
--
100
%
CH4 Maximum Duty Cycle (Buck)
VFB4 = 0.7V
--
--
100
%
CH5 Maximum Duty Cycle (Boost)
VFB5 = 1.15V
91
94
97
%
CH6 Maximum Duty Cycle (Inverting)
VFB6 = 0.1V
91
94
97
%
CH7 Maximum Duty Cycle (WLED)
CFB7 = 0.15V
91
94
97
%
0.788
0.8
0.812
V
Feedback Regulation Voltage @ FB5
1.237
1.25
1.263
V
Feedback Regulation Voltage @ FB6
-15
0
15
mV
0.237
0.25
0.263
V
--
140
--
uA
1.237
1.25
1.263
V
0μA < IREF < 200μA
--
--
10
mV
P-MOSFET, PVDD1 = 3.3V
--
150
--
mΩ
N-MOSFET, PVDD1 = 3.3V
--
150
--
mΩ
N-MOSFET, PVDD1 = 3.3V
--
3
--
A
P-MOSFET, PVDD2 = 3.3V
--
150
--
mΩ
N-MOSFET, PVDD2 = 3.3V
--
150
--
mΩ
CH2 Current Limitation (Buck)
P-MOSFET, PVDD2 = 3.3V
--
1.5
--
A
CH2 Current Limitation (Boost)
N-MOSFET, PVDD2 = 3.3V
--
3
--
A
P-MOSFET, PVDD3 = 3.3V
--
200
--
mΩ
N-MOSFET, PVDD3 = 3.3V
--
200
--
mΩ
P-MOSFET, PVDD3 = 3.3V
--
1.5
--
A
Feedback Regulation Voltage
Feedback Regulation Voltage @ FB1,
FB2, FB3, FB4
Feedback Regulation Voltage @ CFB7
OK134 Sink Current
OK134 = 1V
Reference
VREF Output Voltage
V REF
VREF Load Regulation
Power Switch
CH1 On Resistance of MOSFET
RDS(ON)
CH1 Current Limitation (Boost)
CH2 On Resistance of MOSFET
CH3 On Resistance of MOSFET
CH3 Current Limitation (Buck)
RDS(ON)
R DS(ON)
To be continued
DS9917-03 April 2011
www.richtek.com
9
RT9917
Parameter
Test Condition
Min
Typ
Max
Units
P-MOSFET, PVDD4 = 3.3V
--
200
--
mΩ
N-MOSFET, PVDD4 = 3.3V
--
200
--
mΩ
CH4 Current Limitation (Buck)
P-MOSFET, PVDD4 = 3.3V
--
1.5
--
A
CH5 Load Disconnect MOSFET
P-MOSFET, SW5I = 3.3V
--
0.5
--
Ω
CH5 On Resistance of MOSFET
N-MOSFET, VDDM = 3.3V
--
0.5
--
Ω
CH5 Current Limitation
N-MOSFET, VDDM = 3.3V
--
1.5
--
A
CH6 On Resistance of MOSFET
P-MOSFET, PVDD6 = 3.3V
--
1
--
Ω
CH6 Current Limitation
P-MOSFET, PVDD6 = 3.3V
--
1.5
--
A
CH7 On Resistance of MOSFET
N-MOSFET, VDDM = 3.3V
--
0.5
--
Ω
CH7 Current Limitation
N-MOSFET, VDDM = 3.3V
--
0.8
--
A
Over Voltage Protection of PVDD1
--
6
--
V
Over Voltage Protection of PVDD2
--
6
--
V
Under Voltage Protection of VOUT1
--
1.75
--
V
Over Voltage Protection of SW5I
--
19
--
V
CH4 On Resistance of MOSFET
Symbol
R DS(ON)
Protection
Over Voltage Protection of VOUT7
--
19
--
V
CH5 Load Disconnect UVP of SW5O
--
0.4
--
V
--
0.8
1.3
V
0.4
0.8
--
V
--
2
6
uA
SEQ SEL Input High Level Threshold
1.3
--
--
V
SEQ SEL Input Low Level Threshold
--
--
0.4
V
Control
EN134, EN2, EN5, EN6, EN7 Input
High Level Threshold
EN134, EN2, EN5, EN6, EN7 Input
Low Level Threshold
EN134, EN2, EN5, EN6, EN7 Sink
Current
SEQ SEL Sink Current
EN134 or EN2 or EN5 or
EN6 or EN7 = 3.3V
--
6
18
uA
SEQ SEL Sink Current
EN134 = EN2 = EN5 = EN6
= EN7 = 0V
--
0
0.1
uA
125
160
--
°C
--
20
--
°C
Thermal Protection
Thermal Shutdown
TSD
Thermal Shutdown Hysteresis
ΔTSD
Note 1. Stresses listed as the above “ Absolute Maximum Ratings” may cause permanent damage to the device. These
are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated
in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions
for extended periods may remain possibility to affect device reliability.
Note 2. θJA is measured in the natural convection at TA = 25°C on a high effective four layers thermal conductivity test
board of JEDEC 51-7 thermal measurement standard.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.
www.richtek.com
10
DS9917-03 April 2011
RT9917
Typical Operating Characteristics
CH2 Boost Efficiency vs. Output Current
100
90
90
80
80
70
VIN =
VIN =
VIN =
VIN =
VIN =
VIN =
60
50
40
4.5V
4.2V
3.3V
2.5V
2.0V
1.8V
Efficiency (%)
Efficiency (%)
CH1 Boost Efficiency vs. Output Current
100
30
20
VIN =
VIN =
VIN =
VIN =
VIN =
VIN =
70
60
50
40
30
20
10
10
VOUT = 5V, L = 2.2μH, COUT = 10μFx2
0
10
100
VOUT = 3.3V, L = 2.2μH, COUT = 10μFx2
0
1000
10
100
Output Current (mA)
100
90
90
80
80
70
70
VIN =
VIN =
VIN =
VIN =
VIN =
VIN =
50
40
30
20
Efficiency (%)
Efficiency (%)
CH4 Buck Efficiency vs. Output Current
100
60
3.0V
3.3V
3.6V
3.9V
4.2V
4.5V
10
10
60
VIN =
VIN =
VIN =
VIN =
VIN =
VIN =
50
40
30
20
100
2.0V
2.5V
3.0V
3.3V
4.2V
4.5V
10
VOUT = 2.5V, L = 4.7μH, COUT = 10μF
0
1000
Output Current (mA)
CH3 Buck Efficiency vs. Output Current
VOUT = 1.8V, L = 4.7μH, COUT = 10μF
0
1000
10
100
Output Current (mA)
1000
Output Current (mA)
CH6 Inverting Efficiency vs. Output Current
CH5 Boost Efficiency vs. Output Current
100
100
90
90
80
80
VIN =
VIN =
VIN =
VIN =
VIN =
VIN =
70
60
50
40
4.5V
4.2V
3.3V
2.5V
2.0V
1.8V
Efficiency (%)
Efficiency (%)
3.0V
2.7V
2.5V
2.2V
2.0V
1.8V
30
20
70
60
VIN =
VIN =
VIN =
VIN =
VIN =
VIN =
50
40
30
20
10
VOUT = 15V, L = 10μH, COUT = 10μF
0
1
10
Output Current (mA)
DS9917-03 April 2011
100
10
4.5V
4.2V
1.8V
2.0V
3.3V
2.5V
VOUT = −8V, L = 10μH, COUT = 10μF
0
1
10
100
Output Current (mA)
www.richtek.com
11
RT9917
CH7 Efficiency vs. Input Voltage
CH1, CH2, CH3 and CH4 Power On
100
90
Efficiency (%)
80
VOUT_CH1
(2V/Div)
70
60
VOUT_CH2
(2V/Div)
50
40
VOUT_CH3
(2V/Div)
30
20
10
VOUT_CH4
(1V/Div)
IOUT = 20mA, L = 10μH, COUT = 1μF
SEQ = High, VIN = 3.6V
0
1.5
2
2.5
3
3.5
4
4.5
5
Time (2.5ms/Div)
Input Voltage (V)
CH1, CH2, CH3 and CH4 Power Off
CH1, CH2, CH3 and CH4 Power On
CH1
VOUT_CH1
(5V/Div)
SW1_3.3V
(2V/Div)
VOUT_CH2
(2V/Div)
SW1
CH2
VOUT_CH1
(1V/Div)
VOUT_CH3
(2V/Div)
VOUT_CH4
(2V/Div)
SEQ = High, VIN = 3.6V
VOUT_CH2
(2V/Div)
VOUT_CH3
(2V/Div)
VOUT_CH4
(1V/Div)
CH3
CH4
SEQ = High, VIN = 3.0V
Time (5ms/Div)
Time (2.5ms/Div)
CH1, CH2, CH3 and CH4 Power Off
CH1 Output Voltage Ripple
VIN = 3V, VOUT = 5V, IOUT = 300mA
L = 2.2μH, COUT = 10μF x 2
CH1
VOUT_CH1
(2V/Div)
SW1_3.3V
(2V/Div)
VOUT_CH2
(2V/Div)
CH2
SW1
VOUT_CH3
(2V/Div)
CH3
VOUT_CH4
(2V/Div)
CH4
VOUT_ac
(5mV/Div)
SEQ = High, VIN = 3.0V
Time (2.5ms/Div)
www.richtek.com
12
LX1
(2V/Div)
Time (500ns/Div)
DS9917-03 April 2011
RT9917
CH2 Output Voltage Ripple
CH3 Output Voltage Ripple
VIN = 2.7V, VOUT = 3.3V, IOUT = 300mA
L = 2.2μH, COUT = 10μF x 2
VIN = 4.2V, VOUT = 2.5V, IOUT = 300mA
L = 4.7μH, COUT = 10μF
LX2
(2V/Div)
LX3
(2V/Div)
VOUT_ac
(5mV/Div)
VOUT_ac
(5mV/Div)
Time (500ns/Div)
Time (500ns/Div)
CH4 Output Voltage Ripple
CH5 Output Voltage Ripple
VIN = 3.3V, VOUT = 1.8V, IOUT = 300mA
L = 4.7μH, COUT = 10μF
LX5
(5V/Div)
LX4
(1V/Div)
VOUT_ac
(5mV/Div)
VOUT_ac
(2mV/Div)
VIN = 1.8V, VOUT = 15V, IOUT = 30mA
L = 10μH, COUT = 10μF
Time (500ns/Div)
Time (500ns/Div)
CH6 Output Voltage Ripple
CH7 Output Voltage Ripple
LX6
(5V/Div)
LX7
(5V/Div)
VOUT_ac
(5mV/Div)
VOUT_ac
(50mV/Div)
VIN = 1.8V, VOUT = -8V, IOUT = 50mA
L = 10μH, COUT = 10μF
VIN = 1.8V, IOUT = 25mA (4 x WLED)
L = 10μH, COUT = 1μF
Time (500ns/Div)
Time (2.5ms/Div)
DS9917-03 April 2011
www.richtek.com
13
RT9917
CH2 Boost Output Voltage vs. Output Current
5.06
3.39
5.05
3.38
5.04
3.37
Output Voltage (V)
Output Voltage (V)
CH1 Boost Output Voltage vs. Output Current
5.03
5.02
5.01
5.00
4.99
3.36
3.35
3.34
3.33
3.32
3.31
4.98
4.97
3.30
VIN = 3.0V
VIN = 2.5V
3.29
4.96
0
50
0
100 150 200 250 300 350 400 450 500
50
100 150 200 250 300 350 400 450 500
Output Current (mA)
Output Current (mA)
CH4 Buck Output Voltage vs. Output Current
CH3 Buck Output Voltage vs. Output Current
2.57
1.84
2.56
1.83
Output Voltage (V)
Output Voltage (V)
2.55
2.54
2.53
2.52
2.51
2.50
2.49
1.82
1.81
1.8
1.79
1.78
1.77
2.48
VIN = 3.3V
VIN = 3.7V
2.47
0
1.76
0
50 100 150 200 250 300 350 400 450 500 550 600
50 100 150 200 250 300 350 400 450 500 550 600
Output Current (mA)
Output Current (mA)
CH6 Inverting Output Voltage vs. Output Current
CH5 Boost Output Voltage vs. Output Current
-8.03
15.20
-8.02
15.10
Output Voltage (V)
Output Voltage (V)
15.15
15.05
15.00
14.95
14.90
-8.01
-8
-7.99
-7.98
14.85
VIN = 3.7V
14.80
0
10
20
30
40
50
60
70
Output Current (mA)
www.richtek.com
14
80
90
100
VIN = 3.7V
-7.97
-100 -90 -80
-70
-60
-50
-40
-30
-20
-10
0
Output Current (mA)
DS9917-03 April 2011
RT9917
Application information
The RT9917 includes the following seven DC/DC converter
channels to build a multiple-output power-supply system.
CH1 : Step-up synchronous current mode DC/DC
converter with internal power MOSFETs. The
output voltage could be load disconnected by a
switch controller and an external PMOS.
CH2 : Selectable step-up or step-down synchronous
current mode DC/DC converter with internal power
MOSFETs.
CH3 : Step-down synchronous current mode DC/DC
converter with internal power MOSFETs and
internal compensation network.
CH4 : Step-down synchronous current mode DC/DC
converter with internal power MOSFETs and
internal compensation network.
CH5 : Step-up asynchronous current mode DC/DC
converter with internal power MOSFET and internal
compensation network. The output voltage could
be load disconnected by an internal PMOS.
CH6 : Inverting current mode DC/DC converter with
internal power MOSFET.
CH7 : Current mode WLED driver with internal power
MOSFET and internal compensation network.
Also provides open LED protection.
SW1 : Load disconnect controller for CH1.
SW5 : Load disconnect switch for CH5
All converters operate in PWM mode with 1MHz constant
frequency under moderate to heavy loading. The RT9917
also provides two different on/off sequences by setting
“SEQ” pin.
CH1 : Step-Up Converter
Step-up : The converter operates at fixed frequency PWM
mode and continuous current mode (CCM) with internal
MOSFET and synchronous rectifier for up to 95%
efficiency.
Add a SBD between LX1 and PVDD1 for 2AA battery
application.
DS9917-03 April 2011
CH2 : Selectable Step-Up or Step-Down Converter
Step-up : The converter operates at fixed frequency PWM
mode and continuous current mode (CCM) with internal
MOSFET and synchronous rectifier for up to 95%
efficiency.
Step-down : The converter operates at fixed frequency
PWM mode and continuous current mode (CCM) with
internal MOSFET and synchronous rectifier for up to 95%
efficiency. While the input voltage is close to the output
voltage, the converter enters low dropout mode. The duty
could be as long as 100% to extend battery life.
CH3 : Step-Down DC/DC Converter
The converter operates at fixed frequency PWM mode,
CCM and integrated internal compensation. While the
input voltage is close to the output voltage, the converter
could enter low dropout mode with low output ripple. The
duty could be as long as 100% to extend the battery life.
CH4 : Step-Down DC/DC Converter
The converter operates at fixed frequency PWM mode,
CCM and integrated internal compensation. While the
input voltage is close to the output voltage, the converter
could enter low dropout mode with low output ripple. The
duty could be as long as 100% to extend the battery life.
CH5 : Step-Up DC/DC Converter
It integrates asynchronous boost with an internal
MOSFET, internal compensation and an external schottky
diode to provide CCD positive power supply. The converter
is inactive until the SW5 soft start procedure is finished.
This feature provides load disconnect function and
effectively limits the inrush current at start up.
CH6 : INV DC/DC Controller
This controller integrates an internal P-MOSFET and an
external schottky diode to provide CCD negative power
supply. The output voltage is set as
VOUT = (R10/R11) x (-1.25) (R10, R11 refer to Typical
Application Circuit).
www.richtek.com
15
RT9917
CH7 : WLED Driver
Mode and sequence setting
It is an asynchronous DC/DC converter with an internal
MOSFET, internal compensation and an external schottky
diode to drive up to 4 WLED. This channel also features
PWM dimming control from EN7 pin and open diode
protection. The current through WLED is set as
Please refer to “Electrical Characteristics” for level of
logic high or low.
Table 1. Mode setting
I (mA) = [250mV/R(Ω)] x Duty (%)
SEL
CH2
High
Boost
Low
Buck
R : Current sense resistor from CFB7 to GND.
For CH2, Mode setting is decided by “SEL” pin. The
Duty : PWM dimming by EN7 pin. Dimming frequency
range is from 1kHz to 100kHz but it is recommended to
avoid 2kHz to 20kHz for audio noise. Hold EN7 low for
more than 15ms will turn off CH7.
CH2 of RT9917 features flexible boost or buck topology
setting for either 1x Li-ion or 2 x AA application by one
pin.
Table 2. Sequence setting
SEQ
Power ON Sequence
SW1
High
CH1 -> CH3 -> CH4 -> (SW1 and CH2)
SW1 is an open drain controller to drive an external PMOS
Low
CH3 -> CH4 -> CH1 -> (SW1 and CH2)
SEQ
Power OFF Sequence
High
(SW1 and CH2) -> CH4 -> CH3 -> CH1
Low
(SW1 and CH2) -> CH1 -> CH4 -> CH3
and then functions as a load disconnect switch for CH1.
This switch features soft start, Power On/Off Sequence
and under voltage protection functions. OK134 is an open
drain control pin. Once CH1, CH3 and CH4's soft start
are completed, SW1 is on. The OK134 pin is slowly pulled
low and controlled with soft start to suppress the inrush
current. VOUT1 is used for SW1 soft start and under
voltage protection. If SW1 is not used, connect a resistor
to VOUT1 (Refer to Typical Application Circuit for Li-ion).
SW5
SW5 is an internal switch enabled by EN5 and functions
as a load disconnection for CH5. This switch features soft
start, Powe On Sequence, over voltage (for SW5I) and
under voltage (for SW5O) protection functions.
Sequence setting is decided by “SEQ” pin.Please note
that the logic state can not be changed during operation.
SEQ = High
The Power On Sequence is :
` While EN134 goes high, CH1 will be turned on to wait
for the completion of CH1's soft start.
` After that, CH3 will be turned on to wait for the completion
of CH3's soft start.
Charge Pumps
` And then, CH4 will be turned on to wait for the completion
of CH4's soft start.
The charge pump function is enabled while battery type
is alkaline battery. This channel provides pump voltage to
` Then, SW1 will be turned on and CH2 is allowed to be
turned on by EN2 at any time.
enhance MOS gate driving capability. This function is not
necessary while battery is Li-ion type.
` Finally, SW1's soft start will be completed.
Reference Voltage
The RT9917 provides a precise 1.25V reference voltage
with sourcing capability 100μA. Connect a 0.1μF ceramic
capacitor from VREF pin to GND. Reference voltage is
enabled by connecting EN6 to logic high. Furthermore,
this reference voltage is internally pulled to GND in
shutdown.
www.richtek.com
16
The Power-Off Sequence is :
` At first, while EN134 goes low, (SW1 is showdown and
internally pulled low, CH2 must be turned off by EN2)
SW1 (note 1) and CH2 (note 2) will be shutdown.
` After that, CH4 will be turned off and internally pulled
low to wait for the completion of CH4's shutdown.
` And then, CH3 will be turned off and internally pulled
low to wait for CH3's shutdown completion.
DS9917-03 April 2011
RT9917
` Then, CH1 will be turned off and internally pulled low
(note 3) to wait for CH1's shutdown completion.
` Finally, the whole IC will be shutdown (if EN5, EN6 and
EN7 already go low).
of CH1's soft start.
` Then, SW1 will be turned on and CH2 is allowed to be
turned on by EN2 at any time.
` Finally, SW1's soft start will be completed.
Note 1 : The SW1 is designed for CH1.
The Power-Off Sequence is :
Note 2 : If CH2 is configured as a Boost, then the CH2 will
not be internally pulled low and the completion of
shutdown will not be checked.
` At first, while EN134 goes low, (SW1 is showdown and
internally pulled low, CH2 must be turned off by EN2)
SW1 (note 1) and CH2 (note 2) will be shutdown.
Note3 : CH1 is configured as a Boost, so the CH1 will not
be internally pulled low and the completion of
shutdown will not be checked.
` Then, CH1 will be turned off and internally pulled low
(note 3) to wait for CH1's shutdown completion.
SEQ = Low
The Power On Sequence is :
` While EN134 goes high, CH3 will be turned on to wait
for the completion of CH3's soft start.
` After that, CH4 will be be turned on to wait for the
completion of CH4's soft start.
` After that, CH4 will be turned off and internally pulled
low to wait for the completion of CH4's shutdown.
` And then, CH3 will be turned off and internally pulled
low to wait for CH3's shutdown completion.
` Finally, the whole IC will be shutdown (if EN5, EN6 and
EN7 already go low).
` And then, CH1 will be turned on to wait for the completion
Protection
VDDM
CH1:Boost
CH2:Boost
Protection Threshold (typical)
Protection methods
type
Refer to Electrical spec
Over Voltage
Disable all channels
VDDM > 6V
Protection
(except CH7)
Restart if VDDM < 5.6V (with
hysteresis)
Current Limit NMOS current> 3A
NMOS off, PMOS on
Automatic reset at next clock cycle
PVDD1 OVP PVDD1 > 6V
IC shutdown (except CH7) VDDM power reset
Current Limit NMOS current> 3A
NMOS off, PMOS on
PVDD2 OVP PVDD2 > 6V
IC shutdown (except CH7) VDDM power reset
Reset m ethod
Automatic reset at next clock cycle
CH2:Buck OCP
PMOS current > 1.5A
IC shutdown (except CH7) VDDM power reset
CH3:Buck OCP
PMOS current > 1.5A
IC shutdown (except CH7) VDDM power reset
CH4:Buck OCP
PMOS current > 1.5A
IC shutdown (except CH7) VDDM power reset
CH5:
OCP
NMOS current > 1.5A
NMOS off
CH6:
OCP
PMOS current > 1.5A
IC shutdown (except CH7) VDDM power reset
OCP
NMOS current > 0.8A
NMOS off
Automatic reset at next clock cycle
OVP
VOUT7 > 19V
Shutdown CH7
Reset by toggling EN7
CH7:WLED
SW1
UVP
OVP
SW5
Thermal
UVP
Thermal
shutdown
DS9917-03 April 2011
Automatic reset at next clock cycle
VOUT1 < 1.75V
IC shutdown (except CH7) VDDM power reset
after SW1 soft start end
SW5I > 19V
IC shutdown (except CH7) VDDM power reset
SW5O < 0.4V
IC shutdown (except CH7) VDDM power reset
after SW5 soft start end
All channels stop
Temperature > 160°C
Temperature < 140°C
switching
www.richtek.com
17
RT9917
Thermal Considerations
Layout Consideration
For continuous operation, do not exceed absolute
maximum operation junction temperature. The maximum
power dissipation depends on the thermal resistance of
IC package, PCB layout, the rate of surroundings airflow
and temperature difference between junction to ambient.
The maximum power dissipation can be calculated by
following formula :
` All the traces of the compensation components should
be short to reduce the parasitic connection resistance
and isolated from other noisy device traces. The ground
traces must be connected to ground plane
independently.
PD(MAX) = ( TJ(MAX) - TA ) / θJA
` All the traces of the feedback components should be
short to reduce the parasitic connection resistance and
isolated from other noisy device traces. The ground
traces must be connected to ground plane
independently. Output sense trace must be kept away
from the noisy device (inductor).
Where T J(MAX) is the maximum operation junction
temperature 125°C, TA is the ambient temperature and
the θJA is the junction to ambient thermal resistance.
For recommended operating conditions specification,
where TJ(MAX) is the maximum junction temperature of the
die (125°C) and TA is the ambient temperature. The junction
to ambient thermal resistance θJA is layout dependent.
For WQFN-40L 5x5 packages, the thermal resistance θJA
is 36°C/W on the standard JEDEC 51-7 four layers thermal
test board. The maximum power dissipation at TA = 25°C
can be calculated by following formula :
PD(MAX) = (125°C − 25°C) / (36°C/W) = 2.778W for
WQFN-40L 5x5 packages
The maximum power dissipation depends on operating
ambient temperature for fixed T J(MAX) and thermal
resistance θJA. For RT9917 package, the Figure 1 of
derating curves allows the designer to see the effect of
rising ambient temperature on the maximum power
allowed.
Maximum Power Dissipation (W)
3.6
Four Layers PCB
3.2
Compensative parts: R15, C16, R18, C19, R12, C11,
C14.
Feedback parts:
R13, R14, C15 for CH1. R16, R17, C18 for CH2. R3,
R4, C4 for CH3.
R5, R6, C6 for CH4. R7, R8, C9 for CH5.
R10, R11, C13for CH6. R9 for CH7.
` All the traces of connecting inductor must be as wide
as possible.
Inductor: L1, L2, L3, L4, L5, L6, L7.
` Output Capacitor should be placed close to Vout and
connected to ground plane to reduce noise coupling.
Output capacitor: C1, C5, C7, C8, C10, C12, C17 and
C24.
` Input capacitor should be placed close to Vbat and
connected to ground plane.
Input capacitor: C2, C3, C20, C21, C26, C27 and C28.
2.8
` The GND (Pin 27) and Exposed Pad should be
connected to a strong ground plane for heat sinking
and noise protection.
2.4
2.0
1.6
` The EN7 pin is used for dimming control. Keep the FB3
trace away from the EN7.
1.2
0.8
0.4
0.0
0
15
30
45
60
75
90
105
120
135
Ambient Temperature (°C)
Figure 1. Derating Curves for RT9917 Packages
www.richtek.com
18
DS9917-03 April 2011
RT9917
LX should be connected to inductor by
wide and short trace, keep sensitive
components away from this trace.
VOUT1
Place the feedback and compensation
components as close as possible to the FB and
COMP pin and keep away from noisy devices.
VOUT2
GND
C15
GND
VBAT
GND
R16
C17
C18
R13
C16
C19
R1
R15
L1
C1
C6
R5
R6
C14
PVDD1
LX6
D2 PVDD6
CP
R10 CN
CPO
R11
FB6
FB4
COMP6
R12
LX4
2
29
3
28
4
27
5
25
24
7
8
23
41
9
22
21
10
11 12 13 14 15 16 17 18 19 20
L3
C20
C21
GND
26
GND
6
C7
VOUT4
30
1
VBAT
C11
D3
C3
C24
R8
C9
R7
PVDD2
VDDM
CFB7
GND
LX7
LX5
VOUT7
FB3
EN7
LX3
C25
R9
VBAT
D2
D1
D3
L6
WLED+
VBAT
C26
L5
C27
VBAT
D1
C10
GND
VOUT5
C8
R4
R3
C4
L2
GND
C5
VOUT3
VBAT
C13
D4
40 39 38 37 36 35 34 33 32 31
GND
VOUT6
C12
WLED-
LX1
EN134
COMP1
FB1
OK134
VOUT1
FB2
COMP2
EN2
LX2
C2
L7
L4
R17
PVDD4
EN5
SW5O
SW5I
FB5
VREF
SEL
SEQ
EN6
PVDD3
Input/Output
capacitors must
be placed as close
as possible to the
Input/Output pins.
R18
R14
GND
GND VOUT5
Connect the Exposed Pad
to a ground plane.
Figure 2
DS9917-03 April 2011
www.richtek.com
19
RT9917
Outline Dimension
D
SEE DETAIL A
D2
L
1
E
E2
e
b
1
1
2
2
DETAIL A
Pin #1 ID and Tie Bar Mark Options
A
A3
A1
Note : The configuration of the Pin #1 identifier is optional,
but must be located within the zone indicated.
Symbol
Dimensions In Millimeters
Dimensions In Inches
Min
Max
Min
Max
A
0.700
0.800
0.028
0.031
A1
0.000
0.050
0.000
0.002
A3
0.175
0.250
0.007
0.010
b
0.150
0.250
0.006
0.010
D
4.950
5.050
0.195
0.199
D2
3.250
3.500
0.128
0.138
E
4.950
5.050
0.195
0.199
E2
3.250
3.500
0.128
0.138
e
L
0.400
0.350
0.016
0.450
0.014
0.018
W-Type 40L QFN 5x5 Package
Richtek Technology Corporation
Richtek Technology Corporation
Headquarter
Taipei Office (Marketing)
5F, No. 20, Taiyuen Street, Chupei City
5F, No. 95, Minchiuan Road, Hsintien City
Hsinchu, Taiwan, R.O.C.
Taipei County, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611
Tel: (8862)86672399 Fax: (8862)86672377
Email: [email protected]
Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit
design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be
guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.
www.richtek.com
20
DS9917-03 April 2011