RT9919 - Richtek

RT9919
7 Channel DC/DC Converters
General Description
Features
The RT9919 is a complete power supply solution for digital
still cameras and other hand held devices. The RT9919 is
a multi-channel DC/DC converter including two step-up
DC/DC converters, two step-down DC/DC converters, one
selectable step-up/step-down DC/DC converter, one
inverting DC/DC converter and one WLED driver.
l
l
l
l
l
l
The RT9919 is designed to fulfill the applications for DSC
just as follows :
l
CH1 is a synchronous step-up output for motor or DSC
system I/O power
CH2 is a selectable synchronous step-up/step-down
output for motor or DSC system I/O power
CH3 and CH4 are synchronous step-down outputs for DSP
core and memory power supply
l
l
l
l
l
CH5 is a high voltage step-up output for CCD bias power
supply
CH6 is an inverting output for negative CCD bias power
supply
CH7 is a high voltage step-up output for driving WLED
l
l
1 Channel Syn Boost/Buck Selectable
2AA/Li Application Topologies Set by SEL Pin
Preset On/Off Sequence
5 Channels with Internal Compensation
All Power Switches Integrated
Syn Step-Down DC/DC Converter :
} Up to 95% Efficiency
} 100% (max) Duty Cycle
Syn Step-Up DC/DC Converter :
} Adjustable Output Voltage
} Up to 95% Efficiency
Open LED Protection
Transformerless Inverting Converter for CCD
Fixed 2MHz Switching Frequency at CH1 to CH4
Fixed 1MHz Switching Frequency at CH5 to CH7
RTC_LDO/SW1 Selectable by CN Pin
40-Lead WQFN Package
RoHS Compliant and Halogen Free
Applications
Digital Still Camera
PDA
Portable Device
l
For the selectable step-up/step-down converter, the Boost/
Buck can be selected by the SEL pin. Among all channels,
there are 5 channels with the built -in i nternal
com pensation. The RT9919 al so prov ides a
l
transformerless inverting converter for supplying the CCD
power. For the synchronous step-up and step down
RT9919
l
Ordering Information
Package Type
QW : WQFN-40L 5x5 (W-Type)
Lead Plating System
G : Green (Halogen Free and Pb Free)
converters, the efficiency can be up to 95%. The IC provides
load disconnection for channel 1 and channel 5. The IC
has selectable RTC_LDO/SW1 that can be determined
by the CN pin.
Note :
Richtek products are :
The RT9919 is able to support Li+ and 2AA battery
applications. The RT9919 provides WLED open protection,
current limit, thermal shutdown protection, over voltage
and under voltage protection to achieve complete
protection. The RT9919 is available in WQFN-40L 5x5
package.
DS9919-01 April 2011
}
RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
}
Suitable for use in SnPb or Pb-free soldering processes.
www.richtek.com
1
RT9919
Pin Configurations
EN1234
LX2
COMP2
COMP1
FB1
OK
VOUT1
FB2
LX1
SYS_R
(TOP VIEW)
40 39 38 37 36 35 34 33 32 31
PVDD1
LX6
PVDD6
CP
CN
PNEG
FB6
FB4
EN6
LX4
1
30
2
29
3
28
4
27
5
26
GND
6
25
7
24
8
23
41
9
22
21
10
PVDD2
VDDM
CFB7
GND
LX7
LX5
VOUT7
FB3
EN7
LX3
RTC_PWR
PVDD3
SEL
RTC_R
FB5
VREF
SW5O
SW5I
EN5
PVDD4
11 12 13 14 15 16 17 18 19 20
WQFN-40L 5x5
www.richtek.com
2
DS9919-01 April 2011
RT9919
Typical Application Circuit
For 2AA
3.3V
VBAT
C23
1uF
L1
1.2uH
VBAT
VOUT_CH1
3.3V
40 LX1
Q1
C1
10uF
1
R19
50k
37
C3
R3
560pF 40k
R2
150k
L2 1.2uH
VBAT
PVDD1
RT9919
38
COMP1
36 OK
35 VOUT1
3.3V
L3
2.2uH
VOUT_CH3
2.5V
R7
76.8k
C9
10uF
LX6 2
33
R12
90.9k
VBAT
C25
1uF
VOUT_CH6
-7V
D4
VREF 16
VBAT
C26
1uF
21 LX3
LX7
23 FB3
C19
0.1uF
L7
10uH
20 PVDD3
C10
220pF
C18
10uF/16V x 2
C17
1nF
FB6 7
R14
11.3k
COMP2
R8
36k
26
WLED
D5
D1
VOUT7 24
C20
1uF/16V
D2
CFB7 28
3.3V
VOUT_CH4
1.8V
C11
10uF
C12
10uF
R11
1000k
L6
10uH
PVDD2
34 FB2
C7
R6
560pF 40k
VOUT_CH5
15V
C16
10uF/25V
15V
C15
1nF
R13
63.4k
R4
470k
R5
88.7k
C8
10uF
FB5 15
PVDD6 3
31 LX2
30
C14
10uF/25V
FB1
C4
10uF
VOUT_CH2
5V
D3
SW5O 13
SW5I 14
C27
10uF x 2
C2
4.7pF
R1
470k
C5
10uFx2
LX5 25
C22
10uF
C24
1uF
L5
10uH
29
VDDM
L4
2.2uH
11 PVDD4
RTC_R
10 LX4
C13
33pF
R9
470k
RTC_PWR
8
R10
374k
ON
OFF
18
32
12
9
17
FB4
EN1234
EN5
EN6
SEL
22 EN7
27, Exposed Pad (41)
SYS_R
R15
10
R16
10k
RTC 3.05V
39
SYS Reset
R17
100k
CP 4
CN 5
PNEG
GND
19
RTC Reset
3.3V
C28
0.1uF
6
C29
1uF
Note :
(1) SEL = High, CH2 is Boost, CN Connect to CAP
(2) VBAT = 1.8V to 3.2V
Timing Diagram
Power On Sequence : CH1 Boost 3.3V→ CH3 Buck 2.5V→ CH4 Buck 1.8V→ (CH2 Boost 5V and SW1 3.3V)
Power Off Sequence : (CH2 Boost 5V and SW1 3.3V)→ CH4 Buck 1.8V → CH3 Buck 2.5V → CH1 Boost 3.3V
VDDM
EN1234
CH1 V OUT 3.3V
CH3 V OUT 2.5V
CH4 V OUT 1.8V
V OUT1 3.3V
CH2 V OUT 5V
DS9919-01 April 2011
User define
3.5ms
3.5ms
3.5ms
3.5ms
3.5ms
IC shutdown
Wait until FB3 < 0.1V
Wait until FB4 < 0.1V
Wait until V OUT1 < 0.4V
Depends on loading
www.richtek.com
3
RT9919
For Li-ion
5V
L1
1.2uH
VBAT
40 LX1
LX5 25
1 PVDD1
C1
10uF x 2
R1
470k
C3
560pF
R2
88.7k
R3
40k
VBAT
RTC 3.05V
C21
0.22uF
VBAT
or 5V
L2
1uH
36 OK
35 VOUT1
C7
R6
2200pF 15k
R5
150k
VBAT
C8
10uF
L3
2.2uH
VOUT_CH3
2.5V
C9
10uF
PVDD2
34 FB2
33
COMP2
PVDD6 3
LX6 2
C25
1uF
23 FB3
R12
90.9k
L6
10uH
D4
R13
63.4k
R14
11.3k
VREF 16
C17
1nF
VOUT_CH6
-7V
C18
10uF/16V x 2
C19
0.1uF
L7
10uH
VBAT
C26
1uF
LX7
VOUT_CH5
15V
R11
1000k
VBAT
FB6 7
21 LX3
R8
36k
26
WLED
D5
D1
VOUT7 24
D2
C20
1uF/16V
CFB7 28
VBAT
VOUT_CH4
1.8V
C11
10uF
C12
10uF
FB5 15
20 PVDD3
C10
220pF
R7
76.8k
RT9919
C16
10uF/25V
15V
C15
1nF
31 LX2
C6
10pF
R4
470k
C14
10uF/25V
FB1
38 COMP1
30
VOUT_CH2
3.3V
C4
10uF
C5
10uF
D3
SW5O 13
SW5I 14
C2
4.7pF
37
C24
1uF
L5
10uH
29
VDDM
C22
10uF
VOUT_CH1
5V
VBAT
C23
1uF
L4
2.2uH
11 PVDD4
10 LX4
C13
33pF
R9
470k
8
R10
374k
ON
OFF
32
12
9
17
18
RTC_PWR
19
SYS_R
EN1234
EN5
EN6
SEL
RTC Reset
R15
10
R16
10k
RTC 3.05V
39
FB4
22 EN7
27, Exposed Pad (41)
RTC_R
SYS Reset
R17
100k
CP 4
CN
PNEG
5
3.3V
R18
10k
VBAT
6
GND
Note :
(1) SEL = Low, CH2 is Buck, CN Pull High
(2) VBAT = 2.7V to 4.2V
Timing Diagram
Power On Sequence : CH1 Boost 5V →CH3 Buck 2.5V→ CH4 Buck 1.8V→ CH2 Buck 3.3V
Power Off Sequence : CH2 Buck 3.3V→ CH4 Buck 1.8V→ CH3 Buck 2.5V→ CH1 Boost 5V
VDDM
EN1234
CH1 V OUT 5V
CH3 V OUT 2.5V
CH4 V OUT 1.8V
CH2 V OUT 3.3V
www.richtek.com
4
User define
3.5ms
3.5ms
3.5ms
3.5ms
IC shutdown
Wait until FB3 < 0.1V
Wait until FB4 < 0.1V
Wait until FB2 < 0.1V
DS9919-01 April 2011
RT9919
Table 1
Channel
CH3
Formula
V OUT = (1+R7/R8) x 0.8
VOUT (V)
2.5
1.8
1.5
1.3
1.2
1.0
L3 (uH)
2.2
2.2
2.2
2.2
2.2
2.2
R7 (kΩ)
768
470
330
237
187
23.2
R 8 (kΩ)
360
374
374
374
374
93.1
C10 (pF)
22
33
47
68
82
47
COUT (uF)
10
10
10
10
10
10
Channel
CH 4
Application
V OUT = (1+R9/R10) x 0.8
V OUT (V)
2.5
1.8
1.5
1.3
1.2
1.0
L4 (uH)
2.2
2.2
2.2
2.2
2.2
2.2
R9 (kΩ)
768
470
330
237
187
23.2
R 10 (kΩ)
360
374
374
374
374
93.1
C13 (pF)
22
33
47
68
82
47
COUT (uF)
10
10
10
10
10
10
Channel
CH5
Formula
VO UT = (1+R11/R12) x 1.25
VOUT (V)
12
13
14
15
15.5
16
L5 (uH)
10
10
10
10
10
10
R11 (kΩ)
820
820
953
1000
820
887
R12 (kΩ)
95.3
86.6
93.1
90.9
71.5
75
C15 (pF)
1000
1000
1000
1000
1000
1000
C OUT (uF)
10/16V
10/16V
10/25V
10/25V
10/25V
10/25V
Channel
CH6
Form ula
V OUT = (R 13/R14) x (-1.25)
* R13+R14 <90k
V OUT (V)
-6
-6.3
-7
-7.5
-8
L6 (uH)
10
10
10
10
10
R13 (kΩ)
57.6
69.8
63.4
68
68
R14 (kΩ)
12
13.7
11.3
11.3
10.5
C17 (pF)
1000
1000
1000
1000
1000
COUT (uF)
10 x 2pcs
10 x 2pcs
10 x 2pcs
10 x 2pcs
10 x 2pcs
DS9919-01 April 2011
www.richtek.com
5
RT9919
Functional Pin Description
Pin No.
Pin Name
Pin Function
1
PVDD1
Power Input pin of CH1.
2
3
LX6
PVDD6
Switch Node of CH6. High impedance in shutdown.
Power Input Pin of CH6.
4
5
CP
CN
Charge Pump External Driver Pin.
Charge Pump External Driver Pin.
6
PNEG
Negative Output Pin of Charge Pump.
7
FB6
Feedback Input Pin of CH6. High impedance in shutdown.
8
FB4
Feedback Input Pin of CH4. High impedance in shutdown.
9
EN6
Enable Pin of CH6.
10
LX4
Switch Node of CH4. High impedance in shutdown.
11
PVDD4
Power Input Pin of CH4.
12
13
EN5
SW5O
Enable Pin of CH5.
Output Pin of CH5 Load Disconnect.
14
15
SW5I
FB5
Input Pin of CH5 Load Disconnect.
Feedback Input Pin of CH5. High impedance in shutdown.
16
VREF
1.25V Reference Output Pin.
17
SEL
Li or 2AA Select Pin. Logic state can not be changed during operation.
18
RTC_R
RTC Reset Output Pin.
19
RTC_PWR
Power Input Pin of RTC-Reset.
20
PVDD3
Power Input Pin of CH3
21
LX3
Switch Node of CH3. High impedance in shutdown.
22
EN7
Enable Pin of CH7.
23
FB3
Feedback Input Pin of CH3. High impedance in shutdown.
24
VOUT7
Sense Pin for CH7 Output Voltage.
25
LX5
Switch Node of CH5. High impedance in shutdown.
26
LX7
27,
GND
41 (Exposed Pad)
28
CFB7
Switch Node of CH7. High impedance in shutdown.
Ground Pin. The exposed pad must be soldered to a large PCB and connected
to GND for maximum thermal dissipation.
Feedback Input Pin of CH7.
29
VDDM
IC analog Input Power Pin.
30
31
PVDD2
LX2
Power Input Pin of CH2.
Switch Node of CH2. High impedance in shutdown.
32
EN1234
Enable Pin of CH1, CH2, CH3 and CH4.
33
34
COMP2
FB2
Compensation Pin of CH2.
Feedback input pin of CH2. High impedance in shutdown.
35
VOUT1
Sense Pin for CH1 Output Voltage. High impedance in shutdown.
36
OK
External Switch Control Pin. High impedance in shutdown.
37
FB1
Feedback Input Pin of CH1. High impedance in shutdown.
38
COMP1
Compensation Pin of CH1. Pull to GND in shutdown.
39
SYS_R
System Reset Output Pin.
40
LX1
Switch Node of CH1. High impedance in shutdown.
www.richtek.com
6
DS9919-01 April 2011
RT9919
Function Block Diagram
VDDM
PVDD1
LX5
CH5
C-Mode
Step-Up
PWM
CH1
C-Mode
Step-Up
LX1
+
FB5
1.25V
REF
SW5
SW5I
SW5O
COMP1
FB1
+
0.8V
REF
PVDD6
PVDD2
CH6
C-Mode
Inverting
CH2
C-Mode
Step-Up or
Step-Down
LX6
FB6
+
-
LX7
0.8V
REF
PVDD3
+
CFB7
VDDM
0.25V
REF
VREF
CH3
C-Mode
Step-Down
Enable
Mode
Sequence
1.25V
REF
EN1234
EN5
EN6
SEL
LX3
PVDD3
+
CP
CN
PNEG
OK
VOUT1
COMP2
FB2
+
CH7
C-Mode
Step-Up
PWM
VOUT7
EN7
LX2
FB3
0.8V
REF
Negative
Charge
Pump
PVDD4
RTC
LDO
SW1
CH4
C-Mode
Step-Down
RTC_PWR
RTC_R
LX4
PVDD4
RTC
Reset
CN = High, select FB2
CN = Other, select VOUT1
SYS_R
System
Reset
Select
VOUT1
FB2
+
FB4
0.8V
REF
FB3
GND
Timing Diagram
CH5 and CH6 Timing Diagram
EN5
10ms
SW5I
Depends on loading
SW5O
(to CCD +)
Depends on loading
EN6
CH6 V OUT
DS9919-01 April 2011
10ms
Depends on loading
www.richtek.com
7
RT9919
Absolute Maximum Ratings
(Note 1)
Supply Voltage, VDDM ------------------------------------------------------------------------------ 0.3V to 7V
Power Switch :
LX1, LX2, LX4 ---------------------------------------------------------------------------------------- −0.3V to 6.5V
LX5, LX7, SW5I, SW5O, VOUT7 ---------------------------------------------------------------- −0.3V to 21V
LX6 ----------------------------------------------------------------------------------------------------- (PVDD6 − 14V) to (PVDD6 + 0.3V)
l The Other Pins -------------------------------------------------------------------------------------- −0.3V to 6.5V
l Power Dissipation, PD @ TA = 25°C
WQFN 40L 5x5 -------------------------------------------------------------------------------------- 2.778W
l Package Thermal Resistance (Note 2)
WQFN 40L 5x5, θJA --------------------------------------------------------------------------------- 36°C/W
WQFN 40L 5x5, θJC -------------------------------------------------------------------------------- 7°C/W
l Junction Temperature ------------------------------------------------------------------------------ 150°C
l Lead Temperature (Soldering, 10 sec.) --------------------------------------------------------- 260°C
l Storage Temperature Range ---------------------------------------------------------------------- −65°C to 150°C
l ESD Susceptibility (Note 3)
HBM (Human Body Mode) ------------------------------------------------------------------------ 2kV
MM (Machine Mode) ------------------------------------------------------------------------------- 200V
l
l
Recommended Operating Conditions
l
l
(Note 4)
Junction Temperature Range --------------------------------------------------------------------- −40°C to 125°C
Ambient Temperature Range --------------------------------------------------------------------- −40°C to 85°C
Electrical Characteristics
(VDDM = 3.3V, TA = 25°C, unless otherwise specified)
Parameter
Symbol
T est Condition
Min
Typ
Max
Units
Supply Voltage
VDDM Operating Voltage
V DDM
2.7
--
5.5
V
VDDM Minimum Startup Voltage
VDDM Over Voltage Protection
V ST
1.5
5.6
-6
-6.5
V
V
Supply Current
Shutdown Supply Current into VDDM
CH1 (Syn-Boost) : Supply Current into
VDDM
CH2 (Syn-Boost or Syn-Buck) : Supply
Current into VD DM
CH3 (Syn-Buck) :
Supply Current into VDDM
CH4 (Syn-Buck) :
Supply Current into VDDM
CH5 (Asyn-Boost) :
Supply Current into VDDM
CH6 (Inverting) + Charge pump :
Supply Current into VDDM
CH7 (WLED):
Supply Current into VDDM
I OFF
All EN = 0, CN = 3.3V
--
1
10
uA
I Q1
Non Switching, EN1234 = 3.3V
--
--
800
uA
I Q2
Non Switching, EN1234 = 3.3V
--
--
800
uA
I Q3
Non Switching, EN1234 = 3.3V
--
--
800
uA
I Q4
Non Switching, EN1234 = 3.3V
--
--
800
uA
I Q5
Non Switching, EN5 = 3.3V
--
--
800
uA
IQ6
Non Switching, EN6 = 3.3V
PVDD 6 = 3.3V
--
--
800
uA
IQ7
Non Switching, EN7 = 3.3V
--
--
800
uA
To be continued
www.richtek.com
8
DS9919-01 April 2011
RT9919
Parameter
Oscillator
CH1,2,3,4 Operating Frequency
CH5, 6, 7 Operating Frequency
Symbol
Test Condition
f OSC
f OSC2
Min
Typ
Max
Units
1800
900
2000
1000
2200
1100
kHz
kHz
CH1 Maximum Duty Cycle (Boost)
CH2 Maximum Duty Cycle (Boost)
VFB1 = 0.7V
VFB2 = 0.7V
80
80
83
83
86
86
%
%
CH2 Maximum Duty Cycle (Buck)
CH3 Maximum Duty Cycle (Buck)
CH4 Maximum Duty Cycle (Buck)
VFB2 = 0.7V
VFB3 = 0.7V
VFB4 = 0.7V
----
----
100
100
100
%
%
%
CH5 Maximum Duty Cycle (Boost)
CH6 Maximum Duty Cycle (Inverting)
CH7 Maximum Duty Cycle (WLED)
VFB5 = 1.15V
VFB6 = 0.1V
CFB 7 = 0.15V
91
91
91
94
94
94
97
97
97
%
%
%
0.788
0.8
0.812
V
1.237
1.25
1.263
V
-15
0
15
mV
0.237
0.25
0.263
V
60
--
--
uA
1.237
1.25
1.263
V
--
--
10
mV
3.9
3.4
4.1
4
3.6
4.5
4.2
3.8
4.9
V
V
V
P-MOSFET, PVDD 1 = 3.3V
--
150
--
mΩ
N-MOSFET, PVDD1 = 3.3V
--
150
--
mΩ
Feedback Regulation Voltage
Feedback Regulation Voltage @ FB1,
FB2, FB3, FB4
Feedback Regulation Voltage @ FB5
Feedback Regulation Voltage @ FB6
(Inverting)
Feedback Regulation Voltage @
CFB7
OK Sink Current
Reference
VREF Output Voltage
OK = 1V
V REF
VREF Load Regulation
Negative Charge Pump
0uA < IREF < 200uA
PVDD6 High Threshold to Stop Pump
PVDD6 Low Threshold to Stop Pump
(PVDD6 − PNEG) Clamped Voltage
PVDD6 = 3.3V
Power Switch
CH1 On Resistance of MOSFET
RDS(ON)
CH1 Current Limitation (Boost)
CH2 On Resistance of MOSFET
RDS(ON)
--
3
--
A
P-MOSFET, PVDD 2 = 3.3V
--
150
--
mΩ
N-MOSFET, PVDD2 = 3.3V
--
150
--
mΩ
--
1.5
--
A
CH2 Current Limitation (Buck)
CH2 Current Limitation (Boost)
CH3 On Resistance of MOSFET
R DS(ON)
--
3
--
A
P-MOSFET, PVDD 3 = 3.3V
--
200
--
mΩ
N-MOSFET, PVDD3 = 3.3V
--
200
--
mΩ
P-MOSFET, PVDD 4 = 3.3V
---
1.5
200
---
A
mΩ
N-MOSFET, PVDD4 = 3.3V
--
200
--
mΩ
--
1.5
--
A
CH3 Current Limitation (Buck)
CH4 On Resistance of MOSFET
R DS(ON)
CH4 Current Limitation (Buck)
CH5 Load Disconnect MOSFET
P-MOSFET , SW5I = 3.3V
--
0.5
--
Ω
CH5 On Resistance of MOSFET
N-MOSFET
--
0.5
--
Ω
CH5 Current Limitation
N-MOSFET
--
1.2
--
A
To be continued
DS9919-01 April 2011
www.richtek.com
9
RT9919
Parameter
Symbol
Test Condition
Min
Typ
Max
Units
CH6 On Resistance of MOSFET
P-MOSFET, PVDD6 = 3.3V
--
1
--
Ω
CH6 Current Limitation
P-MOSFET
--
1.5
--
A
CH7 On Resistance of MOSFET
N-MOSFET
--
0.5
--
Ω
CH7 Current Limitation
N-MOSFET
--
0.8
--
A
5.5
6
6.5
V
--
--
0.6
V
Under Voltage Protection of VOUT1
--
1.75
--
V
Over Voltage Protection of SW5I
18
--
21
V
Over Voltage Protection of VOUT7
12
--
16
V
0.35
0.4
0.45
V
Under Voltage Protection of FB2
--
0.4
--
V
Under Voltage Protection of FB3
--
0.4
--
V
Under Voltage Protection of FB4
--
0.4
--
V
Protection Fault Delay
--
100
--
ms
1.3
--
--
V
--
--
0.4
V
--
2
6
uA
Protection
Over Voltage Protection of PVD D1 and
PVDD2
Over Voltage Protection Hysteresis of
PVDD1 and PVDD2
CH5 Load Disconnect UVP of SW5O
Control
EN1234, EN5, EN6, EN7 Input High
Level Threshold
EN1234, EN5, EN6, EN7 Input Low
Level Threshold
EN1234, EN5, EN6, EN7 Sink Current
SEL Input H igh Level Threshold
1.3
--
--
V
SEL Input Low Level Threshold
--
--
0.4
V
SEL Sink C urrent
SEL = 3.3V
--
3
9
uA
SEL Sink C urrent
All EN = 0
--
0
--
uA
125
160
--
°C
--
20
--
°C
0.709
0.72
0.731
V
Thermal Protection
Thermal Shutdown
TS D
Thermal Shutdown Hysteresis
ΔTSD
System Reset
FB2 Regulation Threshold
CN = 3.3V
Hysteresis
--
40
--
mV
0.709
0.72
0.731
V
--
40
--
mV
2.95
3.0
3.05
V
Hysteresis
--
0.15
--
V
SYS_R Rising Delay Time
--
10
--
ms
4
--
--
mA
FB3 Regulation Threshold
Hysteresis
VOUT1 Regulation Threshold
SYS_R Sink Capability
SYS_R = 0.5V
To be continued
www.richtek.com
10
DS9919-01 April 2011
RT9919
Parameter
Symbol
Test Condition
Min
Typ
Max
Units
1.57
1.6
1.63
V
---
16
2
-4
mV
uA
35
55
75
ms
4
--
--
mA
VIN = 4.2V
---
-5
5.5
8
V
uA
IOUT = 0mA
--
3.05
--
V
VIN = 4.2V
60
--
--
mA
IOUT = 20mA
--
--
200
mV
RTC Reset
RTC_PWR Reset Threshold
Hysteresis
Standby Current
RTC_PWR = 3V
RTC_R Rising Delay Time
RTC_R = 0.5V,
RTC_PWR = 1.6V
RTC_R Sink Capability
RTC LDO, CN = High
Input Voltage Range
Standby Current
VIN
Output Voltage
VOUT
Maximum Output Current
Dropout Voltage
VDROP
Note 1. Stresses listed as the above “ Absolute Maximum Ratings” may cause permanent damage to the device. These
are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated
in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions
for extended periods may remain possibility to affect device reliability.
Note 2. θJA is measured in the natural convection at TA = 25°C on a high effective four layers thermal conductivity test
board of JEDEC 51-7 thermal measurement standard. The case point of θJC is on the expose pad for the
package.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.
DS9919-01 April 2011
www.richtek.com
11
RT9919
Typical Operating Characteristics
CH1 Boost Efficiency vs. Output Current
CH1 Boost Efficiency vs. Output Current
100
100
90
90
80
VBAT
VBAT
VBAT
VBAT
VBAT
VBAT
70
60
50
40
=
=
=
=
=
=
3V
2.7V
2.5V
2.2V
2V
1.8V
30
Efficiency (%)
Efficiency (%)
80
VBAT
VBAT
VBAT
VBAT
VBAT
VBAT
70
60
50
40
=
=
=
=
=
=
4.5V
4.2V
3.9V
3.6V
3.3V
3V
30
20
20
10
10
VOUT = 3.3V, L = 1.2uH, COUT = 10uF x 2
VOUT = 5V, L = 1.2uH, COUT = 10uF x 2
0
0
10
100
10
1000
100
CH2 Buck Efficiency vs. Output Current
100
90
90
80
80
VBAT
VBAT
VBAT
VBAT
VBAT
VBAT
VBAT
60
50
40
30
=
=
=
=
=
=
=
3.3V
3V
2.7V
2.5V
2.2V
2V
1.8V
Efficiency (%)
Efficiency (%)
CH2 Boost Efficiency vs. Output Current
100
70
VBAT
VBAT
VBAT
VBAT
VBAT
70
60
50
=
=
=
=
=
3.4V
3.6V
3.9V
4.2V
4.5V
40
30
20
20
10
10
VOUT = 3.3V, L = 1uH, COUT = 10uF
VOUT = 5V, L = 1.2uH, COUT = 10uF x 2
0
0
10
100
10
1000
100
1000
Output Current (mA)
Output Current (mA)
CH3 Buck Efficiency vs. Output Current
CH4 Buck Efficiency vs. Output Current
100
100
90
90
80
80
VBAT
VBAT
VBAT
VBAT
VBAT
VBAT
VBAT
70
60
50
40
=
=
=
=
=
=
=
2.7V
3V
3.3V
3.6V
3.9V
4.2V
4.5V
Efficiency (%)
Efficiency (%)
1000
Output Current (mA)
Output Current (mA)
30
70
VBAT
VBAT
VBAT
VBAT
VBAT
VBAT
VBAT
60
50
40
30
=
=
=
=
=
=
=
1.8V
2.5V
3V
3.3V
3.6V
4.2V
4.5V
20
20
10
VOUT = 2.5V, L = 2.2uH, COUT = 10uF
10
VOUT = 1V, L = 2.2uH, COUT = 10uF
0
0
10
100
Output Current (mA)
www.richtek.com
12
1000
10
100
1000
Output Current (mA)
DS9919-01 April 2011
RT9919
CH6 Inverting Efficiency vs. Output Current
CH5 Boost Efficiency vs. Output Current
100
100
90
90
Efficiency (%)
80
70
60
=
=
=
=
=
4.5V
4.2V
3.9V
3.6V
3.4V
50
40
30
80
Efficiency (%)
VBAT
VBAT
VBAT
VBAT
VBAT
VBAT
VBAT
VBAT
VBAT
VBAT
70
60
4.5V
4.2V
3.9V
3.6V
3.4V
50
40
30
20
20
10
10
VOUT = 16V, L = 10uH, COUT = 10uF
VOUT = −8V, L = 10uH, COUT = 10uF x 2
0
0
1
10
1
100
10
100
Output Current (mA)
Output Current (mA)
CH7 Efficiency vs. Input Voltage
CH1 Boost Output Voltage vs. Output Current
100
5.10
90
5.09
80
5.08
Output Voltage (V)
Efficiency (%)
=
=
=
=
=
70
60
50
40
30
5.07
5.06
5.05
5.04
5.03
5.02
20
10
IOUT = 25mA, L = 10uH, COUT = 1uF
5.01
VBAT = 3V, VOUT = 5V
5.00
0
3.4 3.5 3.6 3.7 3.8 3.9
4
0
4.1 4.2 4.3 4.4 4.5
100
Input Voltage (V)
200
300
400
500
600
Output Current (mA)
CH2 Buck Output Voltage vs. Output Current
CH3 Buck Output Voltage vs. Output Current
2.7
3.50
3.45
2.6
Output Voltage (V)
Output Voltage (V)
3.40
3.35
3.30
3.25
3.20
3.15
2.5
2.4
2.3
2.2
3.10
2.1
3.05
VBAT = 4.5V, VOUT = 3.3V
3.00
VBAT = 3V, VOUT = 2.5V
2
0
100
200
300
400
Output Current (mA)
DS9919-01 April 2011
500
600
0
100
200
300
400
500
600
Output Current (mA)
www.richtek.com
13
RT9919
CH5 Boost Output Voltage vs. Output Current
CH4 Buck Output Voltage vs. Output Current
16.50
1.10
16.45
1.05
Output Voltage (V)
Output Voltage (V)
16.40
1.00
0.95
0.90
0.85
0.80
16.35
16.30
16.25
16.20
16.15
16.10
0.75
16.05
VBAT = 3.4V, VOUT = 16V
VBAT = 3V, VOUT = 1V
0.70
16.00
0
100
200
300
400
500
600
0
Output Current (mA)
10
20
30
40
50
60
70
80
90
100
Output Current (mA)
CH6 Inverting Output Voltage vs. Output Current
CH1, CH2, CH3 and CH4 Power On
Output Voltage (V)
-8.00
-8.05
VOUT_CH1
(5V/Div)
-8.10
VOUT_CH2
(2V/Div)
-8.15
VOUT_CH3
(2V/Div)
-8.20
VOUT_CH4
(1V/Div)
-8.25
VBAT = 3.4V, VOUT = −8V
-8.30
0
10
20
30
40
50
60
70
80
90
VBAT = 3.6V, SEL = Low
100
Time (5ms/Div)
Output Current (mA)
CH1, CH2, CH3 and CH4 Power Off
CH1, CH2, CH3 and CH4 Power On
VOUT_CH1
(5V/Div)
VOUT_CH1
(5V/Div)
VOUT_CH2
(5V/Div)
VOUT_CH2
(5V/Div)
VOUT_CH3
(2V/Div)
VOUT_CH3
(2V/Div)
VOUT_CH4
(1V/Div)
VOUT_CH4
(1V/Div)
VBAT = 3.6V, SEL = Low
Time (2.5ms/Div)
www.richtek.com
14
VOUT_SW1
(2V/Div)
VBAT = 3V, SEL = High
Time (2.5ms/Div)
DS9919-01 April 2011
RT9919
CH1 Output Voltage Ripple
CH1, CH2, CH3 and CH4 Power Off
VOUT_CH1
(5V/Div)
VOUT_CH2
(5V/Div)
VOUT_CH3
(2V/Div)
LX1
(2V/Div)
VOUT_CH4
(1V/Div)
VOUT_ac
(10mV/Div)
VOUT_SW1
(2V/Div)
VBAT = 3.6V, VOUT = 5V, IOUT = 300mA,
L = 1.2uH, COUT = 10uF x 2
VBAT = 3V, SEL = High
Time (2.5ms/Div)
Time (250ns/Div)
CH2 Output Voltage Ripple
CH3 Output Voltage Ripple
LX2
(2V/Div)
LX3
(2V/Div)
VOUT_ac
(5mV/Div)
VOUT_ac
(5mV/Div)
VBAT = 3.6V, VOUT = 2.5V, IOUT = 300mA,
L = 2.2uH, COUT = 10uF
VBAT = 4.2V, VOUT = 3.3V, IOUT = 300mA,
L = 1uH, COUT = 10uF
Time (250ns/Div)
Time (250ns/Div)
CH4 Output Voltage Ripple
CH5 Output Voltage Ripple
LX4
(2V/Div)
LX5
(5V/Div)
VOUT_ac
(5mV/Div)
VOUT_ac
(10mV/Div)
VBAT = 3.6V, VOUT = 1V, IOUT = 300mA,
L = 2.2uH, COUT = 10uF
Time (250ns/Div)
DS9919-01 April 2011
VBAT = 3.6V, VOUT = 16V, IOUT = 30mA,
L = 10uH, COUT = 10uF
Time (250ns/Div)
www.richtek.com
15
RT9919
CH6 Output Voltage Ripple
CH7 Output Voltage Ripple
LX6
(5V/Div)
LX7
(5V/Div)
VOUT_ac
(5mV/Div)
VOUT_ac
(20mV/Div)
VBAT = 3.6V, VOUT = −8V, IOUT = 30mA,
L = 10uH, COUT = 10uF x 2
VBAT = 3V, VOUT = 10V, IOUT = 3LEDs,
L = 10uH, COUT = 1uF
Time (250ns/Div)
Time (250ns/Div)
CH1 Load Transient Response
CH3 Load Transient Response
VBAT = 3.7V, VOUT = 2.5V, IOUT = 50mA to 300mA,
L = 2.2uH, COUT = 10uF
VBAT = 3.7V, VOUT = 5V, IOUT = 50mA to 300mA,
L = 1.2uH, COUT = 10uF x 2
I LOAD
(200mA/Div)
I LOAD
(200mA/Div)
VOUT_ac
(50mV/Div)
VOUT_ac
(50mV/Div)
Time (1ms/Div)
Time (1ms/Div)
CH5 Load Transient Response
CH6 Load Transient Response
I LOAD
(20mA/Div)
I LOAD
(20mA/Div)
VOUT_ac
(50mV/Div)
VOUT_ac
(50mV/Div)
VBAT = 3.7V, VOUT = 16V, IOUT = 10mA to 30mA,
L = 10uH, COUT = 10uF
Time (1ms/Div)
www.richtek.com
16
VBAT = 3.7V, VOUT = −8V, IOUT = 15mA to 50mA,
L = 10uH, COUT = 10uF x 2
Time (1ms/Div)
DS9919-01 April 2011
RT9919
Application information
The RT9919 includes the following seven DC/DC converter
channels to build a multiple-output power-supply system.
CH1 : Step-up synchronous current mode DC/DC converter
with internal power MOSFETs. The output voltage could
be load disconnected by a switch controller and an
external P-MOSFET.
CH2 : Selectable Step-Up or Step-Down Converter
Step-up : The converter operates at fixed frequency PWM
mode, continuous current mode (CCM), and discontinuous
current mode (DCM) with internal MOSFET and
synchronous rectifier for up to 95% efficiency.
CH2 : Selectable step-up or step-down synchronous
current mode DC/DC converter with internal power
MOSFETs.
Step-down : The converter operates at fixed frequency
PWM mode and continuous current mode (CCM) with
internal MOSFET and synchronous rectifier for up to 95%
efficiency.
CH3 : Step-down synchronous current mode DC/DC
converter with internal power MOSFETs and internal
compensation network.
While the input voltage is close to the output voltage, the
converter enters low dropout mode. The duty could be as
long as 100% to extend battery life.
CH4 : Step-down synchronous current mode DC/DC
converter with internal power MOSFETs and internal
compensation network.
CH5 : Step-up asynchronous current mode DC/DC
converter with internal power MOSFET and internal
compensation network. The output voltage could be load
disconnected by an internal P-MOSFET.
CH6 : Inverting current mode DC/DC converter with internal
power MOSFET and internal compensation network.
CH7 : Current mode WLED driver with internal power
MOSFET and internal compensation network. This channel
also provides open LED protection.
CH3 : Step-Down DC/DC Converter
The converter operates at fixed frequency PWM mode,
CCM and integrated internal compensation. While the
input voltage is close to the output voltage, the converter
could enter low dropout mode with low output ripple. The
duty could be as long as 100% to extend battery life.
CH4 : Step-Down DC/DC Converter
The converter operates at fixed frequency PWM mode,
CCM and integrated internal compensation. While the
input voltage is close to the output voltage, the converter
could enter low dropout mode with low output ripple. The
duty could be as long as 100% to extend battery life.
SW1 : Load disconnect controller.
SW5 : Load disconnect switch for CH5
CH1 to CH4 operate in PWM mode with 2MHz and CH5
to CH7 operate in PWM mode with 1MHz constant
frequency under moderate to heavy loading.
RTC_LDO : Low quiescent current, high output voltage
accuracy LDO for Real Time Clock.
RTC_Reset : Accurate voltage detector for RTC LDO.
System_Reset : Accurate voltage detector for power
sequence.
CH1 : Step-Up Converter
Step-up : The converter operates at fixed frequency PWM
mode, continuous current mode (CCM), and discontinuous
current mode (DCM) with internal MOSFET and
synchronous rectifier for up to 95% efficiency.
DS9919-01 April 2011
CH5 : Step-Up DC/DC Converter
It integrates asynchronous boost with an internal
MOSFET, internal compensation and an external schottky
diode to provide CCD positive power supply. The converter
is inactive until the SW5 soft start procedure is finished.
This feature provides load disconnect function and
effectively limits inrush current at start up.
CH6 : INV DC/DC Controller
This controller integrates an internal P-MOSFET and an
external schottky diode to provide CCD negative power
supply. The output voltage is set as
VOUT = (R13/R14) x (−VREF)
where R13 and R14 are the feedback resisters connected
to FB6, VREF equals to 1.25V in typical.
www.richtek.com
17
RT9919
CH7 : WLED Driver
RTC LDO
It is an asynchronous DC/DC converter with an internal
MOSFET, internal compensation and an external schottky
diode to drive up to 3 WLED. This channel also features
PWM dimming control from EN7 pin and open diode
protection. The current through WLED is set as
The RT9919 provides a LDO for real time clock. LDO
function has features of low quiescent current (5uA) and
high output voltage accuracy since this LDO is running all
the time, even when the system is shutdown. In addition,
LDO share “OK” and “VOUT1” pin with SW1 and function
is decided by “CN” pin. Following table is used to select
LDO or SW1.
I (mA) = [250mV/R(Ω)] x Duty (%)
R : Current sense resistor from CFB7 to GND.
Table1. RTC LDO Setting
Duty: PWM dimming by EN7 pin. Dimming frequency
range is from 30kHz to 100kHz.
Hold EN7 low for more than 64us will turn off CH7.
CN
Function
High
RTC LDO
Low
SW1
SW1
SW1 is an open drain controller to drive an external
P-MOSFET and then functions as a load disconnect
switch for CH1. This switch features soft start, Power On/
Off Sequence and under voltage protection functions. OK
is an open drain control pin. Once CH1, CH3, CH4 and
CH2's soft start finish, SW1 is on. The OK pin is slowly
pulled low and controlled with soft start to suppress the
inrush current. VOUT1 is used for SW1 soft start and
under voltage protection.
SW5
SW5 is an internal switch enabled by EN5 and functions
as a load disconnection for CH5. This switch features soft
start, Powe On Sequence, over voltage (for SW5I) and
under voltage (for SW5O) protection functions.
Charge Pumps
The charge pump function is enabled while the PVDD6
voltage is lower than 3.6V. This channel provides pump
voltage to enhance MOSFET gate driving capability. This
function is not necessary while battery is Li-ion type.
Reference Voltage
The RT9919 provides a precise 1.25V reference voltage
with souring capability of 100uA. Connect a 0.1uF ceramic
capacitor from VREF pin to GND. Reference voltage is
enabled by connecting EN6 to logic high. Furthermore,
this reference voltage is internally pulled to GND at
shutdown.
www.richtek.com
18
RTC Reset
The RT9919 provides an accurate voltage detector for RTC
LDO voltage detection. It is used to detect whether RTC
LDO output voltage is ready or not. Its power pin is
RTC_PWR and output pin is RTC_R. The output pin is an
open drain N-MOSFET and the sink capability is above
4mA. Once the RTC_PWR pin reach 1.6V, it will count
about 55ms, then the RTC_R go high.
System Reset
The RT9919 provides an accurate voltage detector. It is
enabled by EN1234 and used to detect whether VOUT1
(SW1)/VOUT2 and VOUT3 output voltage are ready or
not. Its output pin (SYS_R) is an open drain N-MOSFET
and the sink capability is above 4mA.
Once Vout1 (SW1) voltage reaches 3V and FB3 voltage
reaches 0.72V (90% of 0.8V), it will count about 10ms,
then SYS_R go high for alkaline battery application.
Once the FB2 and FB3 voltage reach 0.72V, it will count
about 10ms, then the SYS_R go high for Li-Ion battery
application.
Mode Setting
Please refer to “Electrical Characteristics” for level of
logic high or low.
Table 3. Mode Setting
SEL
CH2
High
Boost
Low
Buck
DS9919-01 April 2011
RT9919
Power on/off sequence
The Power On Sequence is :
While EN1234 goes high, CH1 will be turned on to wait
for the completion of CH1's soft start. After that, CH3 will
be turned on to wait for the completion of CH3's soft start.
And then, CH4 will be turned on to wait for the completion
of CH4's soft start. Then, SW1 and CH2 will be turned on
at the same time. Finally, SW1's soft start will be
completed.
The Power-Off Sequence is :
At first, while EN1234 goes low, SW1 and CH2 (note 1)
will be shutdown. After that, CH4 will be turned off and
internally pulled low to wait for the completion of CH4's
shutdown. And then, CH3 will be turned off and internally
pulled low to wait for CH3's shutdown completion. Then,
CH1 will be turned off and internally pulled low (note 2) to
wait for CH1's shutdown completion. Finally, the whole IC
will be shutdown (if EN5, EN6 and EN7 already go low).
Note 1 : If CH2 is configured as a Boost, then the CH2 will
not be internally pulled low and the completion of shutdown
will not be checked.
Note 2 : CH1 is configured as a Boost, so the CH1 will
not be internally pulled low and the completion of shutdown
will not be checked.
Table 4. Power On/Off Sequence
Power Sequence
On
CH1 → CH3 → CH4 → (SW1 and CH2)
Off
(SW1 and CH2) → CH4 → CH3 → CH1
Thermal Considerations
For continuous operation, do not exceed absolute
maximum operation junction temperature. The maximum
power dissipation depends on the thermal resistance of
IC package, PCB layout, the rate of surroundings airflow
and temperature difference between junction to ambient.
The maximum power dissipation can be calculated by
following formula :
PD(MAX) = (TJ(MAX) − TA ) / θJA
Where T J(MAX) is the maximum operation junction
temperature, TA is the ambient temperature and the θJA is
the junction to ambient thermal resistance.
For recommended operating conditions specification of
RT9919, The maximum junction temperature is 125°C.
The junction to ambient thermal resistance θJA is layout
dependent. For WQFN-40L 5x5 packages, the thermal
resistance θJA is 36°C/W on the standard JEDEC 51-7
four layers thermal test board. The maximum power
dissipation at TA = 25°C can be calculated by following
formula :
PD(MAX) = (125°C − 25°C) / (36°C/W) = 2.778W for
WQFN-40L 5x5 packages
The maximum power dissipation depends on operating
ambient temperature for fixed T J(MAX) and thermal
resistance θJA. For RT9919 packages, the Figure 1 of
derating curves allows the designer to see the effect of
rising ambient temperature on the maximum power
allowed.
Maximum Power Dissipation (W)
Mode setting is decided by the “SEL” pin. The CH2 of
RT9919 features flexible boost or buck topology setting
for either 1 x Li-ion or 2 x AA application by one pin. Please
note that the logic state can not be changed during
operation.
3.0
2.8
2.6
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
Four Layers PCB
WQFN-40L 5x5
0
25
50
75
100
125
Ambient Temperature (°C)
Figure 1. Derating Curves for RT9919 Packages
DS9919-01 April 2011
www.richtek.com
19
RT9919
For the best performance of the RT9919, the following
PCB layout guidelines must be strictly followed.
} Place the feedback components as close as possible
to the FB pin and keep these components away from
the noisy devices.
} Place the input and output capacitors as close as
possible to the input and output pins respectively for
good filtering.
} Place the compensative components as close as
possible to the COMP pin and keep these components
away from the noisy devices.
} Keep the main power traces as wide and short as
possible.
} Connect the GND and Exposed Pad to a strong ground
plane for maximum thermal dissipation and noise
Layout Considerations
protection.
} The switching node area connected to LX and inductor
should be minimized for lower EMI.
Place the feedback and compensation
components as close as possible to the FB and
COMP pin and keep away from noisy devices.
LX should be connected to inductor by
wide and short trace, keep sensitive
components away from this trace.
VOUT1_CH1
GND
GND
VBAT
VOUT2_CH2
C2 R1
GND
C6 R4
C5
C3
C7
R3
R2
C21
R5
R6
L1
LX1
SYS_R
COMP1
FB1
OK
VOUT1
FB2
COMP2
EN1234
LX2
C22
C1
C18
C19
C13
R9
R10
40 39 38 37 36 35 34 33 32 31
2
29
3
28
4
27
5
6
25
7
24
8
23
41
9
21
11 12 13 14 15 16 17 18 19 20
VBAT
C11
C16
R15
VBAT
D1
C23
D5
L7
WLED+
VBAT
C10
C26
L5
C24
D3
VBAT
GND
C14
R8
R7
C10
L3
GND
VOUT3_CH3
C9
C8
C15 R11
GND
GND
PVDD2
VDDM
CFB7
GND
LX7
LX5
VOUT7
FB3
EN7
LX3
R16
R12
VOUT4_CH4
22
10
L4
C12
26
GND
D2
C4
30
1
VBAT
VOUT6_CH6
L6
PVDD1
LX6
D4
PVDD6
C25
VBAT CP
CN
C17
PNEG
R13
FB6
R14
FB4
EN6
LX4
WLED-
PVDD4
EN5
SW5O
SW5I
FB5
VREF
SEL
RTC_R
RTC_PWR
PVDD3
Input/Output
capacitors must
be placed as close
as possible to the
Input/Output pins.
L2
GND
GND VOUT5_CH5
Connect the Exposed Pad
to a ground plane.
Figure 2. PCB Layout Guideline for Li-ion Application
www.richtek.com
20
DS9919-01 April 2011
RT9919
Table 5. Protection Items
Protection
Threshold (typical)
Protection methods
type
Refer to Electrical spec
Over Voltage
Automatic reset at
VDDM
VDDM > 6V
Protection
V DDM < 5.4V
NMOS off, PMOS off,
Current Limit NMOS current > 3A
Automatic reset at next
CH1
clock cycle
Boost
NMOS off, PMOS off,
PVDD1 OVP PVDD1 > 6V
Automatic reset at PVDD1
< 5.4V
NMOS off, PMOS off,
Current Limit NMOS current > 3A
Automatic reset at next
CH2
clock cycle
Boost
NMOS off, PMOS off,
PVDD2 OVP PVDD2 > 6V
Automatic reset at PVDD2
< 5.4V
NMOS off, PMOS off,
CH2
Current Limit PMOS current > 1.5A
Automatic reset at next
Buck
clock cycle
NMOS off, PMOS off,
CH3
Current Limit PMOS current > 1.5A
Automatic reset at next
Buck
clock cycle
NMOS off, PMOS off,
CH4
Current Limit PMOS current > 1.5A
Automatic reset at next
Buck
clock cycle
NMOS off
CH5
Current Limit NMOS current > 1.2A
Automatic reset at next
Asyn Boost
clock cycle
PMOS off
CH6
Current Limit PMOS current > 1.5A
Automatic reset at next
Inverting
clock cycle
NMOS off
Current Limit NMOS current > 0.8A
Automatic reset at next
CH7
clock cycle
WLED
OVP
VOUT7 > 14V
Shutdown CH7
IC Shutdown
Delay time
100ms
V DDM power reset
100ms
V DDM power reset
100ms
V DDM power reset
100ms
V DDM power reset
100ms
V DDM power reset
100ms
V DDM power reset
100ms
V DDM power reset
100ms
V DDM power reset
100ms
V DDM power reset
100ms
V DDM power reset
Not
Applicable
Automatic reset at
next clock cycle
Not
Applicable
Reset by toggling
EN7
100ms
V DDM power reset
100ms
V DDM power reset
100ms
V DDM power reset
UVP
VOUT1 < 1.75V after
SW1 soft start end
OVP
SW5I > 18V
UVP
SW5O < 0.4V after
SW5 soft start end
Automatic reset at
VOUT1 > 1.75V
NMOS off
Automatic reset at
SW5I < 18V
Automatic reset at
SW5O > 0.4V
Thermal
Thermal
shutdown
Temperature > 160°C
All channels stop switching No-delay
CH2
Buck
UVP
CH3
Buck
UVP
CH4
Buck
UVP
SW1
SW5
DS9919-01 April 2011
NMOS off, PMOS off,
FB2 < 0.4V after CH2 soft
Automatic reset at FB2 >
start
0.4V
NMOS off, PMOS off,
FB3 < 0.4V after CH3 soft
Automatic reset at FB3 >
start
0.4V
NMOS off, PMOS off,
FB4 < 0.4V after CH4 soft
Automatic reset at FB4 >
start
0.4V
Reset method
Temperature <
140°C
100ms
V DDM power reset
100ms
V DDM power reset
100ms
V DDM power reset
www.richtek.com
21
RT9919
Outline Dimension
D
SEE DETAIL A
D2
L
1
E2
E
e
b
1
1
2
2
DETAIL A
Pin #1 ID and Tie Bar Mark Options
A
A3
A1
Symbol
Note : The configuration of the Pin #1 identifier is optional,
but must be located within the zone indicated.
Dimensions In Millimeters
Dimensions In Inches
Min
Max
Min
Max
A
0.700
0.800
0.028
0.031
A1
0.000
0.050
0.000
0.002
A3
0.175
0.250
0.007
0.010
b
0.150
0.250
0.006
0.010
D
4.950
5.050
0.195
0.199
D2
3.250
3.500
0.128
0.138
E
4.950
5.050
0.195
0.199
E2
3.250
3.500
0.128
0.138
e
L
0.400
0.350
0.016
0.450
0.014
0.018
W-Type 40L QFN 5x5 Package
Richtek Technology Corporation
Richtek Technology Corporation
Headquarter
Taipei Office (Marketing)
5F, No. 20, Taiyuen Street, Chupei City
5F, No. 95, Minchiuan Road, Hsintien City
Hsinchu, Taiwan, R.O.C.
Taipei County, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611
Tel: (8862)86672399 Fax: (8862)86672377
Email: [email protected]
Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit
design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be
guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.
www.richtek.com
22
DS9919-01 April 2011