SILABS CC1812

Si3226/7
Si3208/9
D U A L P R O S L I C ® W I T H DC-DC C O N T R O L L E R
Features
Performs all BORSCHT functions
Ideal for short- or long-loop applications
Internal balanced or unbalanced ringing
Low power consumption
Software-programmable parameters:
Ringing frequency, amplitude,
cadence, and waveshape
Two-wire ac impedance
Transhybrid balance
DC current loop feed (10–45 mA)
Loop closure and ring trip thresholds
Ground key detect threshold
Integrated dc-dc controller
Wideband CODEC (Si3227)
Low-power sleep mode
On-hook transmission
Loop or ground start operation
Smooth polarity reversal
DTMF generator/decoder
A-Law/µ-Law companding,
linear PCM
PCM and SPI bus digital interfaces
with programmable interrupts
GCI/IOM-2 mode support
3.3 V operation
GR-909 loop diagnostics
Audio diagnostics with loopback
Pb-free/RoHS-compliant packaging
Applications
Customer Premises Equipment (CPE)
Optical Network Terminals (ONT)
Private Branch Exchange (PBX)
Cable EMTAs, ATAs, VoIP
Gateways
Description
The Dual ProSLIC® is a family of low-voltage CMOS devices that integrate both
SLIC and CODEC functionality into a single IC. In combination with a linefeed IC
(LFIC), they provide a complete two-channel analog telephone interface in
accordance with all relevant LSSGR, ITU, and ETSI specifications. The Dual
ProSLIC devices (Si3226/7) operate from a single 3.3 V supply and interface to
standard PCM/SPI or GCI bus digital interfaces. The LFICs (Si3208/9) perform all
high-voltage functions and operate from a 3.3 V supply as well as high-voltage
battery supplies. The Si3208 is rated for –110 V, and the Si3209 is rated for –
135 V. The Dual ProSLIC devices are available in a 64-pin thin quad flat package
(TQFP), and the LFICs are available in a 40-pin, quad flat no-lead package
(QFN).
Ordering Information
See page 33.
Patents pending
Functional Block Diagram
Caller ID
CS
SDI
SDO
SCLK
INT
SPI
Control
Interface
Ringing
Generator
DSP
CODEC
SLIC
ADC
Linefeed
Control
DAC
Linefeed
Monitor
CODEC
SLIC
ADC
Linefeed
Control
Line Diagnostics
RST
PCLK
DTMF &
Tone Gen
DC-DC
DC-DCControllers
Controller
PLL
DAC
Linefeed
Monitor
TIP
Linefeed
DTX
PCM/
GCI
Interface
Si3206
Si3208/9
Channel 1
Linefeed
FSYNC
DRX
Programmable
Programmable
AC
ACImpedance
Impedance
and Hybrid
Si3226
Si3226/7
Channel 2
RING
TIP
RING
VBAT
VDC
Preliminary Rev. 0.33 6/07
DC-DC BOM
Copyright © 2007 by Silicon Laboratories
Si3226/7 Si3208/9
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Si3226/7
Si3208/9
2
Preliminary Rev. 0.33
Si3226/7
Si3208/9
TA B L E O F C O N T E N TS
Section
Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2. Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3. Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1. DC Feed Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2. Linefeed Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3. Line Voltage and Current Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4. Power Monitoring and Power Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5. Thermal Overload Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.6. Power Dissipation Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
4.7. Loop Closure Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.8. Ground Key Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.9. Ringing Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.10. Polarity Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.11. Two-Wire Impedance Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.12. Transhybrid Balance Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.13. Tone Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.14. DTMF Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.15. DC-DC Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.16. Wideband Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.17. SPI Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.18. PCM Interface and Companding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.19. General Circuit Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.20. Metallic Loop Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5. Pin Descriptions: Si3226/7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6. Pin Descriptions: Si3208/9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8. Package Outline: 64-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
9. Package Outline: 40-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Preliminary Rev. 0.33
3
Si3226/7
Si3208/9
1. Electrical Specifications
Table 1. Absolute Maximum Ratings and Thermal Information1
Parameter
Operating Temperature Range
Storage Temperature Range
Thermal Resistance, Typical2
TQFP-64
Symbol
Test Condition
Value
Unit
TA
–40 to 85
°C
TSTG
–55 to 150
°C
θJA
25
°C/W
1.6
W
32
°C/W
1.7
W
VDD1 – VDD4
–0.5 to 4.0
V
VIND
–0.3 to 3.6
V
–0.5 to 4.0
V
Continuous
+0.4 to –110
V
Pulse < 10 µs
+0.4 to –118
V
±100
mA
–0.5 to 4.0
V
Continuous
+0.4 to –135
V
Pulse < 10 µs
+0.4 to –143
V
±100
mA
Continuous Power Dissipation3
TQFP-64
PD
Thermal Resistance, Typical2
QFN-40
θJA
Continuous Power Dissipation4
QFN-40
PD
TA = 85 °C
TA = 85 °C
Si3226/7
Supply Voltage
Digital Input Voltage
Si3208
Supply Voltage
Battery Supply Voltage5
TIP, RING Current
VDD
VBAT
ITIP, IRING
Si3209
Supply Voltage
VDD
High Battery Supply Voltage5
VBAT
TIP, RING Current
ITIP, IRING
Notes:
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be
restricted to the conditions as specified in the operational sections of this data sheet.
2. The thermal resistance of an exposed pad package is assured when the recommended printed circuit board layout
guidelines are followed correctly. The specified performance requires that the exposed pad be soldered to an exposed
copper surface of at least equal size and that multiple vias are added to enable heat transfer between the top-side
copper surface and a large internal/bottom copper plane.
3. Operation of the Si3226 or Si3227 above 125 °C junction temperature may degrade device reliability.
4. Si3208 and Si3209 are equipped with on-chip thermal limiting circuitry that shuts down the circuit when the junction
temperature exceeds the thermal shutdown threshold. The thermal shutdown threshold should normally be set to 145
°C; when in the ringing state the thermal shutdown may be set to 200 °C. For optimal reliability long term operation of
the Si3208/Si3209 above 150 °C junction temperature should be avoided.
5. The dv/dt of the voltage applied to the VBAT pins must be limited to 10 V/µs.
4
Preliminary Rev. 0.33
Si3226/7
Si3208/9
Table 2. Recommended Operating Conditions
Parameter
Ambient Temperature
Symbol
Test
Condition
Min*
Typ
Max*
Unit
TA
F-grade
0
25
70
o
C
–40
25
85
oC
VDD1–VDD4
3.13
3.3
3.47
V
Supply Voltage, Si3208/Si3209
VDD
3.13
3.3
3.47
V
Battery Voltage, Si3208
VBAT
–9
—
–110
V
Battery Voltage, Si3209
VBAT
–9
—
–135
V
Ambient Temperature
TA
Supply Voltage, Si3226/7
G-grade
*Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.
Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise stated.
Table 3. 3.3 V Power Supply Characteristics1
(VDD = 3.3 V, TA = 0 to 70 ºC for F-Grade, –40 to 85 ºC for G-Grade)
Parameter
High Impedance,
Reset
High Impedance,
Open Current
Forward/Reverse Sleep,
On-hook Current
Forward/Reverse Active,
On-hook Current
Forward/Reverse Active,
Off-hook Current
Forward/Reverse OHT,
On-hook Current
Tip/Ring Open,
On-hook Current
Ringing Current
Symbol
Test Condition
Min
Typ
Max
Unit
IDD
VT and VR = Hi-Z
RST = 0
—
2.4
—
mA
—
0
—
mA
VT and VR = Hi-Z
—
9.7
—
mA
—
0.6
—
mA
—
15
—
mA
—
1.2
—
mA
—
24
—
mA
—
1.2
—
mA
—
43
—
mA
IVBAT
ILOOP = 30 mA
RLOAD = 50 Ω
—
3.1 + ILOOP
—
mA
IDD
VTR = –48 V
—
43
—
mA
—
1.6
—
mA
—
23
—
mA
—
0.6
—
mA
—
26
—
mA
—
2.3 + IAVE
—
mA
IVBAT
IDD
IVBAT
IDD
VTR = –48 V
IVBAT
IDD
VTR = –48 V
IVBAT
IDD
IVBAT
IDD
IVBAT
IDD
IVBAT
VT or VR = –48 V
VR or VT = Hi-Z
VTR = 55 VRMS + 0 VDC
balanced, sinusoidal, f = 20 Hz
RLOAD = 5 REN = 1400 Ω
Notes:
1. All specifications are for a single channel of Si3226/7 using Si3208/9 linefeed IC and based on measurements with all
channels in the same operating state.
2. ILOOP is the dc current in the subscriber loop during the off-hook state.
3. IAVE is the average of the full-wave rectified current in the subscriber loop during ringing (IAVE = IPEAK x 2/π).
Preliminary Rev. 0.33
5
Si3226/7
Si3208/9
Table 4. AC Characteristics
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade)
Parameter
Test Condition
Min
Typ
Max
Unit
2.5
Figure 6
—
—
—
—
—
—
–65
VPK
—
—
–65
dB
Figure 5
—
—
46
—
—
dB
—
—
–41
dB
–0.2
—
0.2
dB
TX/RX Performance
Overload Level
Overload Compression
Single Frequency Distortion1
Signal-to-(Noise + Distortion)
Ratio2
Audio Tone Generator Signal-toDistortion Ratio2
Intermodulation Distortion
Gain Accuracy2
Attenuation Distortion vs. Freq.
Group Delay vs. Frequency
Gain Tracking3
Round-Trip Group Delay
Crosstalk between channels
TX or RX to TX
TX or RX to RX
2-Wire Return Loss4
Transhybrid Balance4
Idle Channel Noise5
PSRR from VDD1–VDD4
2-Wire – PCM
2-Wire – PCM or PCM – 2-Wire:
200 Hz to 3.4 kHz
PCM – 2-Wire – PCM:
200 Hz – 3.4 kHz,
16-bit Linear mode
200 Hz to 3.4 kHz
D/A or A/D 8-bit
Active off-hook, and OHT, any ZT
0 dBm0, Active off-hook, and
OHT, any ZT
2-Wire to PCM or PCM to 2-Wire
1014 Hz, Any gain setting
VDD1 – VDD4 = 3.3 V ± 5%
0 dBm 0
1014 Hz sine wave,
reference level –10 dBm
Signal level:
3 dB to –37 dB
–37 dB to –50 dB
–50 dB to –60 dB
1014 Hz, Within same time-slot
0 dBm0,
300 Hz to 3.4 kHz
300 Hz to 3.4 kHz
200 Hz to 3.4 kHz
300 Hz to 3.4 kHz
Noise Performance
C-Message weighted
Psophometric weighted
RX and TX, dc to 3.4 kHz
dB
See AN317
—
—
—
—
—
—
—
—
—
—
—
450
0.25
0.5
1.0
500
dB
dB
dB
µs
—
—
26
26
—
—
30
30
–75
–75
—
—
dB
dB
dB
dB
—
—
40
8
–80
—
12
–78
—
dBrnC
dBmP
dB
Notes:
1. The input signal level should be 0 dBm0 for frequencies greater than 100 Hz. For 100 Hz and below, the level should
be –10 dBm0. The output signal magnitude at any other frequency is smaller than the maximum value specified.
2. Analog signal measured as VTIP – VRING. Assumes ideal line impedance matching.
3. The quantization errors inherent in the µ/A-law companding process can generate slightly worse gain tracking
performance in the signal range of 3 to –37 dB for signal frequencies that are integer divisors of the 8 kHz PCM
sampling rate.
4. VDD1–VDD4 = 3.3 V, VBAT = –52 V, no fuse resistors; RL = 600 Ω, ZS = 600 Ω synthesized using RS register
coefficients.
5. The level of any unwanted tones within the bandwidth of 0 to 4 kHz does not exceed –55 dBm.
6
Preliminary Rev. 0.33
Si3226/7
Si3208/9
Table 4. AC Characteristics (Continued)
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade)
Parameter
Longitudinal to Metallic/PCM
Balance (forward or reverse)
Metallic/PCM to Longitudinal Balance
Longitudinal Impedance
Longitudinal Current per Pin
DC Current
Test Condition
Min
Typ
Max
Unit
Longitudinal Performance
200 Hz to 1 kHz
1 kHz to 3.4 kHz
200 Hz to 3.4 kHz
58
53
40
60
58
—
—
—
—
dB
dB
dB
200 Hz to 3.4 kHz at TIP or RING
—
50
—
Ω
Active off-hook
200 Hz to 3.4 kHz
—
—
30
mA
Differential
—
—
45
mA
Common Mode
—
—
30
mA
Differential + Common Mode
—
—
45
mA
Notes:
1. The input signal level should be 0 dBm0 for frequencies greater than 100 Hz. For 100 Hz and below, the level should
be –10 dBm0. The output signal magnitude at any other frequency is smaller than the maximum value specified.
2. Analog signal measured as VTIP – VRING. Assumes ideal line impedance matching.
3. The quantization errors inherent in the µ/A-law companding process can generate slightly worse gain tracking
performance in the signal range of 3 to –37 dB for signal frequencies that are integer divisors of the 8 kHz PCM
sampling rate.
4. VDD1–VDD4 = 3.3 V, VBAT = –52 V, no fuse resistors; RL = 600 Ω, ZS = 600 Ω synthesized using RS register
coefficients.
5. The level of any unwanted tones within the bandwidth of 0 to 4 kHz does not exceed –55 dBm.
Preliminary Rev. 0.33
7
Si3226/7
Si3208/9
Table 5. Linefeed Characteristics
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
RLOOP
RDC,MAX = 430 Ω
ILOOP = 18 mA, VBAT = –52V
—
—
2000
Ω
ILIM = 18 mA
—
—
10
%
Active Mode; VOC = 48 V,
VTIP – VRING
—
—
4
V
RDO
ILOOP < ILIM
160
—
640
Ω
DC On-Hook Voltage
Accuracy—Ground Start
VOHTO
IRING<ILIM; VRING wrt ground,
VRING = –51 V
—
—
4
V
DC Output
Resistance—Ground Start
RROTO
IRING<ILIM; RING to ground
160
—
640
Ω
DC Output Resistance—
Ground Start
RTOTO
TIP to ground
400
—
—
kΩ
Loop Closure Detect
Threshold Accuracy
ITHR = 13 mA
—
—
10
%
Ground Key Detect
Threshold Accuracy
ITHR = 13 mA
—
—
10
%
Ring Trip
Threshold Accuracy
AC detection,
VRING = 70 Vpk, no offset,
ITH = 80mA
—
—
4
mA
DC detection,
20 V dc offset, ITH = 13 mA
—
—
1
mA
DC Detection,
48 V DC offset, Rloop = 1500 Ω
—
—
3
mA
Open circuit, VBAT = –110 V
108
—
—
VPK
5 REN load, RLOOP = 0 Ω,
VBAT = –110 V, RDO = 160 Ω
99
—
—
VPK
Open Circuit, VBAT = –135 V
133
—
—
VPK
5 REN load, RLOOP = 0 Ω,
VBAT = –130 V, RDO = 160 Ω
121
—
—
VPK
—
2
—
%
f = 16 Hz to 100 Hz
—
—
1
%
Accuracy of ON/OFF times
—
—
50
ms
↑CAL to ↓CAL bit
—
—
TBD
ms
Accuracy of boundaries for
each output Code;
VTIP – VRING = 48 V
—
2
4
%
Maximum Loop Resistance
DC Loop Current Accuracy
DC Open Circuit Voltage
Accuracy
DC Differential Output
Resistance
Ringing Amplitude
Sinusoidal Ringing Total
Harmonic Distortion
Ringing Frequency Accuracy
Ringing Cadence Accuracy
Calibration Time
Loop Voltage Sense
Accuracy
VRING
RTHD
*Note: Ringing amplitude is set for 93 V peak and measured at TIP-RING using no series protection resistance.
8
Preliminary Rev. 0.33
Si3226/7
Si3208/9
Table 5. Linefeed Characteristics (Continued)
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Loop Current
Sense Accuracy
Accuracy of boundaries for
each output code;
ILOOP = 18 mA
—
7
10
%
Power Alarm
Threshold Accuracy
Power Threshold = 300 mW
—
—
25
%
*Note: Ringing amplitude is set for 93 V peak and measured at TIP-RING using no series protection resistance.
Table 6. Monitor ADC Characteristics
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Differential Nonlinearity
(8-bit resolution)
DNLE
—
—
1
LSB
Integral Nonlinearity
(8-bit resolution)
INLE
—
—
1
LSB
—
—
5
%
Gain Error
Table 7. Si3208/Si3209 Characteristics
(VDD = 3.13 to 3.47 V, VBAT = –15 to –130 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade)
Parameter
TIP/RING Pull-down Transistor
Saturation Voltage
TIP/RING Pull-up Transistor
Saturation Voltage
OPEN State TIP/RING Leakage Current
Symbol
Test Condition
Min
Typ
Max
Unit
VCM
VRING – VBAT (Forward)
VTIP – VBAT (Reverse)
VAC = 2.5 VPK
IOUT = 22 mA
IOUT = 60 mA
⎯
⎯
3
⎯
⎯
3.5
V
V
GND – VTIP (Forward)
GND – VRING (Reverse)
VAC = 2.5 VPK
IOUT = 22 mA
IOUT = 60 mA
⎯
⎯
3
⎯
⎯
3.5
V
V
RL = 0Ω
⎯
⎯
150
µA
VOV
ILKG
Preliminary Rev. 0.33
9
Si3226/7
Si3208/9
Table 8. DC Characteristics
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade)
Parameter
Symbol
High Level Input Voltage
Test Condition
Min
Typ
Max
Unit
VIH
0.7 x VDD
—
5.25
V
Low Level Input Voltage
VIL
—
—
0.3 x VDD
V
High Level Output
Voltage
VOH
IO = 4 mA
VDD – 0.6
—
—
V
Low Level Output
Voltage
VOL
DTX, SDO, INT,
SDITHRU:
IO = –4 mA
—
—
0.4
V
GPIO1 a/b, GPIO2 a/b:
IO = –40 mA
—
—
0.72
35
50
—
kΩ
SDITHRU internal pullup
resistance
Relay Driver Source
Impedance
Relay Driver Sink
Impedance
ROUT
VDD1–VDD4 = 3.13 V
IO < 28 mA
—
63
—
Ω
RIN
VDD1–VDD4 = 3.13 V
IO < 85 mA
—
11
—
Ω
—
—
10
µA
Input Leakage Current
IL
Table 9. Switching Characteristics—General Inputs1
(VDD = 3.13 to 5.25 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade, CL = 20 pF)
Parameter
Rise Time, RESET
RESET Pulse Width, GCI Mode2,3
RESET Pulse Width, SPI Daisy Chain Mode
3
Symbol
Min
Typ
Max
Unit
tr
—
—
5
ns
trl
33/PCLK
—
—
µs
trl
33/PCLK
—
—
µs
Notes:
1. All timing (except Rise and Fall time) is referenced to the 50% level of the waveform. Input test levels are
VIH = VDD – 0.4 V, VIL = 0.4 V. Rise and Fall times are referenced to the 20% and 80% levels of the waveform.
2. The minimum RESET pulse width assumes the SDITHRU pin is tied to ground via a pulldown resistor no greater than
10 kΩ per device.
3. The minimum RESET pulse width is 33/PCLK frequency (i.e. 33/8.192 MHz = 4 µs).
10
Preliminary Rev. 0.33
Si3226/7
Si3208/9
Table 10. Switching Characteristics—SPI
(VDDA = 3.13 to 5.25 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade, CL = 20 pF)
Parameter
Symbol
Test Conditions
Min
Typ
Max
Unit
Cycle Time SCLK
tc
62
—
—
ns
Rise Time, SCLK
tr
—
—
25
ns
Fall Time, SCLK
tf
—
—
25
ns
Delay Time, SCLK Fall to SDO Active
td1
—
—
20
ns
Delay Time, SCLK Fall to SDO
Transition
td2
—
—
20
ns
Delay Time, CS Rise to SDO Tri-state
td3
—
—
20
ns
Setup Time, CS to SCLK Fall
tsu1
25
—
—
ns
Hold Time, CS to SCLK Rise
th1
20
—
—
ns
Setup Time, SDI to SCLK Rise
tsu2
25
—
—
ns
Hold Time, SDI to SCLK Rise
th2
20
—
—
ns
Delay Time between Chip Selects
tcs
220
—
—
ns
SDI to SDITHRU Propagation Delay
td4
—
4
10
ns
Note: All timing is referenced to the 50% level of the waveform. Input test levels are VIH = VDDD –0.4 V, VIL = 0.4 V
tr
tc
tf
SCLK
tsu1
th1
CS
tcs
tsu2
th2
SDI
td1
td3
td2
SDO
td4
SDITHRU
Figure 1. SPI Timing Diagram
Preliminary Rev. 0.33
11
Si3226/7
Si3208/9
Table 11. Switching Characteristics—PCM Highway Interface
(VDD = 3.13 to 5.25 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade, CL = 20 pF)
Parameter
PCLK Period
Symbol
Test
Conditions
tp
Valid PCLK Inputs
Min1
Typ1
Max1
Units
122
—
3906
ns
—
—
—
—
—
—
—
—
512
768
1.024
1.536
1.544
2.048
4.096
8.192
—
—
—
—
—
—
—
—
kHz
kHz
MHz
MHz
MHz
MHz
MHz
MHz
FSYNC Period2
tfs
—
125
—
µs
PCLK Duty Cycle Tolerance
tdty
40
50
60
%
FSYNC Jitter Tolerance
tjitter
—
—
±120
ns
Rise Time, PCLK
tr
—
—
25
ns
Fall Time, PCLK
tf
—
—
25
ns
Delay Time, PCLK Rise to DTX Active
td1
—
—
20
ns
Delay Time, PCLK Rise to DTX
Transition
td2
—
—
20
ns
Delay Time, PCLK Rise to DTX
Tristate3
td3
—
—
20
ns
Setup Time, FSYNC to PCLK Fall
tsu1
25
—
—
ns
Hold Time, FSYNC to PCLK Fall
th1
20
—
—
ns
Setup Time, DRX to PCLK Fall
tsu2
25
—
—
ns
Hold Time, DRX to PCLK Fall
th2
20
—
—
ns
FSYNC Pulse Width
twfs
tp
—
125 µs–tp
Notes:
1. All timing is referenced to the 50% level of the waveform. Input test levels are VIH – VI/O – 0.4 V, VIL = 0.4 V.
2. FSYNC source is assumed to be 8 kHz under all operating conditions.
3. Spec applies to PCLK fall to DTX tristate when that mode is selected.
12
Preliminary Rev. 0.33
Si3226/7
Si3208/9
tr
tp
tf
PCLK
th1
twfs
tsu1
FSYNC
tfs
tsu2
th2
DRX
td1
td2
td3
DTX
Figure 2. PCM Highway Interface Timing Diagram
Table 12. Switching Characteristics—GCI Highway Serial Interface
(VDD = 3.13 to 5.25 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade)
Parameter1
Symbol
Test
Conditions
Min
Typ
Max
Units
PCLK Period (2.048 MHz PCLK Mode)
tp
—
488
—
ns
PCLK Period (4.096 MHz PCLK Mode)
tp
—
244
—
ns
tfs
—
125
—
µs
PCLK Duty Cycle Tolerance
tdty
40
50
60
%
FSYNC Jitter Tolerance
tjitter
—
—
±120
ns
Rise Time, PCLK
tr
—
—
25
ns
Fall Time, PCLK
tf
—
—
25
ns
Delay Time, PCLK Rise to DTX Active
td1
—
—
20
ns
Delay Time, PCLK Rise to DTX Transition
td2
—
—
20
ns
Delay Time, PCLK Rise to DTX Tristate3
td3
—
—
20
ns
Setup Time, FSYNC Rise to PCLK Fall
tsu1
25
—
—
ns
Hold Time, PCLK Fall to FSYNC Fall
th1
20
—
—
ns
Setup Time, DRX Transition to PCLK Fall
tsu2
25
—
—
ns
Hold Time, PCLK Falling to DRX Transition
th2
20
—
—
ns
FSYNC Pulse Width
twfs
tp/2
—
—
ns
FSYNC Period
2
Notes:
1. All timing is referenced to the 50% level of the waveform. Input test levels are VIH = VO – 0.4 V and VIL = 0.4 V.
Rise and fall times are referenced to the 20% and 80% levels of the waveform.
2. FSYNC source is assumed to be 8 kHz under all operating conditions.
3. Specification applies to PCLK fall to DTX tristate when that mode is selected.
Preliminary Rev. 0.33
13
Si3226/7
Si3208/9
tr
tp
tf
PCLK
th1
tsu1
tfs
FSYNC
tsu2
th2
Frame 0,
Bit 0
DRX
td1
td2
td3
Frame 0,
Bit 0
DTX
Figure 3. GCI Highway Interface Timing Diagram (2.048 MHz PCLK Mode)
tr
tf
tc
PCLK
th1
tfs
tsu1
FSYNC
tsu2
DRX
td1
DTX
th2
Frame 0,
Bit 0
td2
td3
Frame 0,
Bit 0
Figure 4. GCI Highway Interface Timing Diagram (4.096 MHz PCLK Mode)
14
Preliminary Rev. 0.33
Si3226/7
Si3208/9
Acceptable
Figure 5. Transmit and Receive Path SNDR
9
8
7
6
Fundamental
Output Power 5
(dBm0)
Acceptable
Region
4
3
2.6
2
1
0
1
2
3
4
5
6
7
8
9
Fundamental Input Power (dBm0)
Figure 6. Overload Compression Performance
Preliminary Rev. 0.33
15
SDCH
SDCL
VOUT
PCLK
FSYNC
DTX
DRX
VBATa
R16
GND
VCC
x
GND
GND
Preliminary Rev. 0.33
VCC
/RESET
/INT
PCM MODE
GCI MODE - 2x PCLK
(4.096 MHz)
R15
10K
SDCH
SDCL
DCFF
DCDRV
VIN
R19
10K
R16
10K
±1%
VOUT
VCC_JUMPER
825K
R200
DCDC
SVBATb
SDCHb
SDCLb
DCFFb
DCDRVb
GCI MODE - 1x PCLK
(2.048 MHz)
MODE SELECT
PCM MODE SELECT
SCLK
/CS
SDO
SDI
SDITHRU
R15
SPI BUS
PCM BUS
825K
R100 ±1%
DCDC
SVBATa
SDCHa
SDCLa
GND
DCFF
DCDRV
VIN
GND
DCFFa
DCDRVa
GPIO1b
GPIO2b
GPIO1a
GPIO2a
C8
49.9K
R2
R13
10K
±10%
4.7nF
VBATb
±0.5%
VCC
SVDC
GPIO1b/STIPCb
GPIO2b/SRINGCb
C3
C7
0.1uF
CAPMb
CAPPb
DCDRVb
DCFFb
SDCHb
SDCLb
SVBATb
UTIPb
DTIPb
URINGb
DRINGb
STIPACb
SRINGACb
STIPDCb
SRINGDCb
IBIASb
PWROb
HVDATA
HVCLKa
HVCLKb
ISNS
CAPMa
CAPPa
DCDRVa
DCFFa
SDCHa
SDCLa
SVBATa
UTIPa
DTIPa
URINGa
DRINGa
STIPACa
SRINGACa
STIPDCa
SRINGDCa
IBIASa
PWROa
VDDREG
L1
10uF
10uF
C1
C200
0.1uF
±10%
0.1uF
C4
C5
DCDRVb
DCFFb
SDCHb
SDCLb
SVBATb
C100
±10%
0.1uF
C6
10uF
C2
0.1uF
VDDA
VDDC
VDDD
DC/DC Converter B
DC/DC Converter A
0.1uF
DCDRVa
DCFFa
SDCHa
SDCLa
SVBATa
10uH
180mA
Figure 7. Si3226/7 (2 Lines)
RESETB
INTB
CAPLB
VCC
SI3226
GPIO1a/STIPCa
GPIO2a/SRINGCa
IREF
QGND
SCLK
CSB
SDO
SDI
SDITHRU
DTXENB
PCLK
FSYNC
DTX
DRX
R17
137K
±1%
VIN
VDDC
VDDC
DCDC2
TIPa
RINGa
UTIPb
DTIPb
URINGb
DRINGb
STIPACb
SRINGACb
STIPDCb
SRINGDCb
IBIASb
HVDATA
HVCLKa
HVCLKb
ISNS
TIPb
RINGb
LINE INTERFACE
UTIPa
DTIPa
URINGa
DRINGa
STIPACa
SRINGACa
STIPDCa
SRINGDCa
IBIASa
LFI
VBATa
DC/DC Converter B
VCC
VCC
VIN
VBATb
VBATa
DCDC1
GNDA
VBATa
Protection
TIP
RING
Protection
TIP
RING
VBAT
DC/DC Converter A
VDDD
VDDA
VDDD
VDDA
GNDD
PROT1
GPIO1a
PROT2
GPIO1b
GPIO2a
TIP_ext
RING _ext
VBATb
GPIO2b
TIP_ext
RING _ext
VBAT
VBATb
GND
VBRNG
VBRNG
EGND
VBRNG
VBRNG
16
EGND
VIN
1.58M
R206
R207
1.58M
1.58M
R107
1.58M
R106
6
5
4
3
2
1
6
5
4
3
2
1
J1
RJ-11
6
5
4
3
2
1
J2
RJ-11
6
5
4
3
2
1
Si3226/7
Si3208/9
2. Typical Application Circuits
Preliminary Rev. 0.33
R125
R124
C128
C127
R123
2
5
Vin
Notes:
1) Component values and ratings are shown in the bill of materials.
2) Vin and Vout are defined in the bill of materials.
GND
SDCL
SDCH
DCDRV
Vin
4
3
6
1
MOSFET DRIVER
Q121A
Q121B
R126
C121
R121
Q120
L120
C122
Figure 8. DC-DC Converter (A)
C126
C120
D121
D122
C123
R127
+
Vin
C124
R122
C125
VOUT
Si3226/7
Si3208/9
17
Preliminary Rev. 0.33
R225
R224
C228
C227
R223
2
5
Vin
Notes:
1) Component values and ratings are shown in the bill of materials.
2) Vin and Vout are defined in the bill of materials.
GND
SDCL
SDCH
DCDRV
Vin
4
3
6
18
1
MOSFET DRIVER
Q221A
Q221B
R226
C221
R221
Q220
L220
C222
Figure 9. DC-DC Converter (B)
C226
C220
D221
D222
C223
R22
R227
+
Vin
C224
R222
C225
VOUT
Si3226/7
Si3208/9
Preliminary Rev. 0.33
STIPDCb
SRINGDCb
STIPACb
SRINGACb
TIPb
RINGb
TIPa
RINGa
SRINGACa
STIPACa
SRINGDCa
±10%
C203
10nF
±10% C204
10nF
±10%
±10%
10nF
C104
10nF
C103
R201
681K
R202
681K
590K
R205
681K
R102
R105
590K
±10%
±10%
R203
301K
R204
301K
301K
R104
301K
R103
C201
10nF
C202
10nF
±10%
C102
10nF
HW
PCB3
HW_epad
TIP_2
RING_2
TIP_1
RING_1
U100
SI3208
Si3208/QFN32
HVDATA
HVCLK_1
HVCLK_2
ISNS
ITIPP_2
ITIPN_2
IRINGP_2
IRINGN_2
IBIAS_2
ITIPP_1
ITIPN_1
IRINGP_1
IRINGN_1
IBIAS_1
0.1uF
C107
VCC
All Resistors are 1% unless otherwise noted.
Figure 10. Linefeed (2 Lines)
C101
10nF
VBATb
VBAT_2
±10%
VBATa
681K
AGND
VBAT_1
R101
VDD
DGND
STIPDCa
0.1uF
VBATa
HVDATA
HVCLKa
HVCLKb
ISNS
UTIPb
DTIPb
URINGb
DRINGb
IBIASb
UTIPa
DTIPa
URINGa
DRINGa
IBIASa
C105
VBATb
VBATb
GND
VBATa
VBATa
VCC
Global Port Connections
C205
VCC
0.1uF
VBATb
Si3208 VBAT decoupling
Si3226/7
Si3208/9
19
20
Preliminary Rev. 0.33
C1, C6
C100, C200
C2, C4, C5, C7
C3*
C8
L1*
R2
R13, R15, R16, R19
R17
R100, R200
R106*, R107*, R206*, R207*
U1
2
2
4
1
1
1
1
4
1
2
4
1
*Note: Denotes optional component.
Reference
Quantity
Si3226
1.58 MΩ
825 kΩ
137 kΩ
10 kΩ
49.9 kΩ
10 µH
4.7 nF
10µF
0.1µF
0.1 µF
10 µF
Value
Table 13. Bill of Materials for Si3226/7 (2 Lines)
3. Bill of Materials
1/10 W, 100 V
1/10 W, 100 V
1/16 W
1/10 W
1/16 W
180 mA
6.3 V
6.3 V
6.3 V
6.3 V
6.3 V
Rating
±5%
±1%
±1%
±5%
±0.5%
±10%
±10%
±20%
±20%
±10%
±20%
Tolerance
X7R
Y5V
X7R
X7R
Y5V
Dielectric
TQFP64
RC0805
RC0805
RC0603
RC0603
RC0603
IND-NLC3225
CC0603
CC1210
CC0603
CC0603
CC1210
PCB Footprint
SiLabs
Venkel
Venkel
Venkel
Venkel
Venkel
TDK
Venkel
Venkel
Venkel
Venkel
Venkel
Manufacturer
Si3226/7
Si3208/9
Preliminary Rev. 0.33
Q121, Q221
R121, R221
R122, R222
R123, R223
R124, R224
R125, R225
R126, R226
R127, R227
C107
2
2
2
2
2
2
2
2
1
*Note: Denotes optional component.
Q120, Q220
2
C123, C223
2
L120, L220
C122, C222
2
2
C125*, C225*
2
D121, D221
C124, C224
2
2
C126, C226
2
D122, D222
C121, C221
2
2
C220*
1
C127, C128, C227, C228
C120
1
4
Reference
Quantity
VIN = +12 V nominal, |Vout| < 90 V
25 V
1/8 W
2Ω
0.1 µF
1/16 W
1/16 W
1/16 W
100 kΩ
150 kΩ
1 kΩ
1/16 W
220 Ω
±10%
±5%
±5%
±5%
±5%
±5%
CC0603
RC0402
RC0402
RC0402
RC0402
RC0402
RC1206
1/4 W
15 Ω
±5%
RC1210
SOT-223
CDR74
DO-214AC
SOD-323
CC0402
C2.5X6.3MM-RAD
CC1812
CC1210
CC1210
CC0603
CC0603
CC1210
CC1210
PCB Footprint
1/4 W
X7R
X7R
Al
X7R
X7R
X7R
X7R
X7R
X7R
X7R
Dielectric
0.1 Ω
±1%
±10%
±20%
±20%
±20%
±20%
±20%
±10%
±20%
±20%
Tolerance
SOT-363
100 V, 2 W
150 V, 2.0 A
250 V,200 mA
25 V
100 V
100 V
100 V
100 V
25 V
25 V
25 V
25 V
Rating
MMDT3946
FQT7N10
15 µH
STPS2150A
BAS21HT1
470 pF
3.3 µF
0.22 µF
0.1 µF
0.1 µF
0.1 µF
0.1 µF
10 µF
10 µF
Value
Table 14. Bill of Materials for Linefeed and DC-DC Converters with |VOUT| < 90 V (2 Lines)
Venkel
Venkel
Venkel
Venkel
Venkel
Venkel
Venkel
Venkel
Diodes Inc.
Fairchild
SUMIDA
STMicro
ON SEMI
Venkel
Panasonic
Venkel
Venkel
Venkel
Venkel
Venkel
Venkel
Venkel
Manufacturer
Si3226/7
Si3208/9
21
22
C101, C102, C201, C202
C103, C104, C203, C204
C105, C205
R101, R102, R201, R202
R103, R104, R203, R204
R105, R205
U100
4
4
2
4
4
2
1
*Note: Denotes optional component.
Reference
Quantity
VIN = +12 V nominal, |Vout| < 90 V
Si3208 or
Si3209
590 kΩ
301 kΩ
681 kΩ
0.1 µF
10 nF
10 nF
Value
1/10 W, 150 V
1/16 W, 75 V
1/10 W, 150 V
100 V
100 V
100 V
Rating
±1%
±1%
±1%
±20%
±10%
±10%
Tolerance
X7R
X7R
X7R
Dielectric
QFN-40
RC0805
RC0603
RC0805
CC1210
CC0805
CC0805
PCB Footprint
Table 14. Bill of Materials for Linefeed and DC-DC Converters with |VOUT| < 90 V (2 Lines) (Continued)
Silicon Laboratories
Venkel
Venkel
Venkel
Venkel
Venkel
Venkel
Manufacturer
Si3226/7
Si3208/9
Preliminary Rev. 0.33
Preliminary Rev. 0.33
Q121, Q221
R121, R221
R122, R222
R123, R223
R124, R224
R125, R225
R126, R226
R127, R227
C107
2
2
2
2
2
2
2
2
1
*Note: Denotes optional component.
Q120, Q220
2
C123,C223
2
L120, L220
C122,C222
2
2
C125*,C225*
2
D121, D221
C124,C224
2
2
C126,C226
2
D122, D222
C121,C221
2
2
C220*
1
C127, C128, C227, C228
C120
1
4
Reference
Quantity
VIN = +12 V nominal, |Vout| < 135 V
25 V
1/8 W
2Ω
0.1 µF
1/16 W
1/16 W
1/16 W
100 kΩ
150 kΩ
1 kΩ
1/16 W
220 Ω
±10%
±5%
±5%
±5%
±5%
±5%
CC0603
RC0402
RC0402
RC0402
RC0402
RC0402
RC1206
1/4 W
15 Ω
±5%
RC1210
D-PAK
CDRH125
DO-214AC
SOD-323
CC0402
C2.5X6.3MM-RAD
CC1812
CC1210
CC1210
CC0603
CC0603
CC1210
CC1210
PCB Footprint
1/4 W
X7R
X7R
Al
X7R
X7R
X7R
X7R
X7R
X7R
X7R
Dielectric
0.1 Ω
±1%
±10%
±20%
±20%
±20%
±20%
±20%
±10%
±20%
±20%
Tolerance
SOT-363
200 V, 2.5 W
150 V, 2.0 A
250 V,200 mA
25 V
160 V
200 V
200 V
200 V
25 V
25 V
25 V
25 V
Rating
MMDT3946
FQD7N20L
15 µH
STPS2150A
BAS21HT1
470 pF
3.3 µF
0.22 µF
0.1 µF
0.1 µF
0.1 µF
0.1 µF
10 µF
10 µF
Value
Table 15. Bill of Materials for Linefeed and DC-DC Converters with |VOUT| < 135 V (2 Lines)
Venkel
Venkel
Venkel
Venkel
Venkel
Venkel
Venkel
Venkel
Diodes Inc.
Fairchild
SUMIDA
STMicro
ON SEMI
Venkel
Panasonic
Venkel
Venkel
Venkel
Venkel
Venkel
Venkel
Venkel
Manufacturer
Si3226/7
Si3208/9
23
24
C101, C102, C201, C202
C103, C104, C203, C204
C105, C205
R101, R102, R201, R202
R103, R104, R203, R204
R105, R205
U100
4
4
2
4
4
2
1
*Note: Denotes optional component.
Reference
Quantity
VIN = +12 V nominal, |Vout| < 135 V
Si3209
590 kΩ
301 kΩ
681 kΩ
0.1 µF
10 nF
10 nF
Value
1/10 W, 150 V
1/16 W, 75 V
1/10 W, 150 V
200 V
100 V
200 V
Rating
±1%
±1%
±1%
±20%
±10%
±10%
Tolerance
X7R
X7R
X7R
Dielectric
QFN-40
RC0805
RC0603
RC0805
CC1210
CC0805
CC0805
PCB Footprint
Venkel
Venkel
Venkel
Venkel
Venkel
Venkel
Manufacturer
Silicon Laboratories
Table 15. Bill of Materials for Linefeed and DC-DC Converters with |VOUT| < 135 V (2 Lines) (Continued)
Si3226/7
Si3208/9
Preliminary Rev. 0.33
Si3226/7
Si3208/9
The Dual ProSLIC® chipset includes the Si3226/7 lowvoltage IC and the Si3208/9 high-voltage linefeed IC.
The Dual ProSLIC provides all SLIC, codec, DTMF
detection, and signal generation functions needed for
two complete analog telephone interfaces. The Dual
ProSLIC performs all battery, over-voltage, ringing,
supervision, codec, hybrid, and test (BORSCHT)
functions; it also supports extensive metallic loop testing
capabilities.
The Si3226 provides a standard voice-band (200 Hz–
3.4 kHz) audio codec. The Si3227 provides an audio
CODEC with both wideband (50 Hz–7 kHz) and
standard voice-band (200 Hz– 3.4 kHz) modes. The
wideband mode provides an expanded audio band with
a 16 kHz sample rate for enhanced audio quality while
the standard voice-band mode provides standard
telephony audio compatibility. The Si3226/7 provides
two independent, programmable, dc-dc converter
controllers, each of which reacts to line conditions to
provide the optimal battery voltage required for each
line-state.
The linefeed chips (Si3208/9) provide programmable
on-hook voltage, programmable off-hook loop current,
reverse battery operation, loop or ground start
operation, and on-hook transmission. Loop current and
voltage are continuously monitored using an A/D
converter in the Si3226/7. The Si3208 supports battery
voltages up to 110 V, sufficient for most ringing signals.
The Si3209 supports battery voltages up to 130 V for
higher-voltage ringing applications.
The Dual ProSLIC supports balanced 5 REN ringing
with or without a programmable dc offset. The available
offset, frequency, waveshape, and cadence options are
designed to ring the widest variety of terminal devices
and to reduce external controller requirements.
A complete audio transmit and receive path is
integrated, including ac impedance and hybrid gain.
These features are software-programmable, allowing a
single hardware design to meet global requirements.
Digital voice data transfer occurs over a standard PCM
bus. Control data is transferred using a standard SPI.
The Si3226/7 is available in a 64-pin TQFP; the Si3208
is available in a 32-pin QFN, and the Si3209 is available
in a 40-pin QFN or a 48-pin eTQFP.
4.1. DC Feed Characteristics
Dual ProSLIC internal linefeed circuitry provides
completely programmable dc feed characteristics.
Linefeed characteristics for each channel are
independently configurable.
When in the active state, each ProSLIC channel
operates in one of three dc linefeed operating regions: a
constant-voltage region, a constant-current region, or a
resistive region, as shown in Figure 11. The constantvoltage region has a low resistance, typically 160 Ω.
The constant-current region approximates infinite
resistance.
I_VLIM
I_RFEED
I_ILIM
I LOOP (mA)
Constant I Region
4. Functional Description
V_ILIM
Resistive Region
V_RFEED
V_VLIM
Constant V Region
V TR(V)
Figure 11. Dual ProSLIC DC Feed
Characteristics
4.2. Linefeed Operating States
The linefeed interface includes eight different registerprogrammable operating states as listed in Table 16.
The Open state is the default condition in the absence
of any preloaded register settings. The device may also
automatically enter the open state in the event of a
linefeed fault condition.
4.3. Line Voltage and Current Monitoring
The Dual ProSLIC continuously monitors the TIP, RING,
and battery voltages and currents via an on-chip ADC
and stores the resulting values in individual register
addresses. Additionally, the loop voltage (VTIP–VRING),
loop current, and longitudinal current values are
calculated based on the TIP and RING measurements
and are stored in unique register locations for further
processing. The ADC updates all registers at a rate of
2 kHz or greater.
4.4. Power Monitoring and Power Fault
Detection
The Dual ProSLIC's line monitoring functions are used
to continuously protect the linefeed IC (LFIC) against
excessive power conditions. The LFIC contains an onchip, analog sensing diode that provides real-time
temperature data to the Si3226/7 and turns off the LFIC
when a preset threshold is exceeded. The LFIC status
is reflected in a Si3226/7 register bit.
Preliminary Rev. 0.33
25
Si3226/7
Si3208/9
If the Si3226/7 detects a fault condition or overpower
condition on any channel, it automatically sets that
channel to the open state and generates a "power
alarm" interrupt. The interrupt can be masked, but the
automatic transition to open cannot be masked. The
various power alarms and linefeed faults supporting
automatic intervention are described below.
1. LFIC total power exceeded.
2. Power exceeded in one or more transistors of a LFIC
internal transistor group (if capable of measuring
individual power consumption).
4.5. Thermal Overload Shutdown
If the LFIC die temperature exceeds the maximum
junction temperature threshold, TJmax, of 145 °C or
200 ºC or other programmed temperature threshold
range, the LFIC has the ability to shut itself down to a
low-power state without any assistance from the
Si3226/7. The thermal shutdown circuit contains a
sufficient amount of hysteresis and/or turn-on delay time
so as to remain shut down during a power cross event,
where 50 Hz or 60 Hz, 600 V, is connected to TIP and/
or RING.
3. Excessive foreign current or voltage on TIP and/or
RING.
4. LFIC thermal shutdown event; this event is
automatically performed, and no intervention by the
Si3226/7 is required.
Table 16. Linefeed Operating States
Linefeed State
Description
Open
Output is high-impedance, and all line supervision functions are powered down. Audio is
powered down. This is the default state after powerup or following a hardware reset. This
state can also be used in the presence of line fault conditions and to generate open switch
intervals (OSIs). This state is used in line diagnostics mode as a high-Z state during linefeed testing. A power fault condition may also force the device into the open state.
Forward Active
Reverse Active
Linefeed circuitry and audio are active. In Forward Active state, the TIP lead is more positive than the RING lead; in Reverse Active state, the RING lead is more positive than the
TIP lead. Loop closure and ground key detect circuitry are active.
Forward OHT
Reverse OHT
Provides data transmission during an on-hook loop condition (e.g., transmitting caller ID
data between ringing bursts). Linefeed circuitry and audio are active. In Forward OHT
state, the TIP lead is more positive than the RING lead; in Reverse OHT state, the RING
lead is more positive than the TIP lead.
TIP Open
Provides an active linefeed on the RING lead and sets the TIP lead to high impedance
(>400 kΩ) for ground start operation in forward polarity. Loop closure and ground key
detect circuitry are active.
RING Open
Provides an active linefeed on the TIP lead and sets the RING lead to high impedance
(>400 kΩ) for ground start operation in reverse polarity. Loop closure and ground key
detect circuitry are active.
Ringing
Drives programmable ringing signal onto TIP and RING leads with or without dc offset.
Line Diagnostics
The channel selected is put into diagnostic mode. In this mode, the selected channel has
special diagnostic resources available.
4.6. Power Dissipation Considerations
4.7. Loop Closure Detection
The Dual ProSLIC is designed to source loops up to
20 kft as well as short loop applications. The LFIC
provides all battery sourcing functions and is, therefore,
the determining factor regarding power dissipation in a
specific application. The Dual ProSLIC provides an onchip dc-dc controller that can dynamically reduce the
battery supply to ideally match the required line feed
voltage.
The Dual ProSLIC provides a completely programmable
loop closure detection mechanism. The loop closure
detection scheme provides two unique thresholds to
allow hysteresis, and also includes a programmable
debounce filter to eliminate false detection. A loop
closure detect status bit provides continuous status, and
a maskable interrupt bit is also provided.
26
Preliminary Rev. 0.33
Si3226/7
Si3208/9
4.8. Ground Key Detection
4.13. Tone Generators
The Dual ProSLIC provides a ground key detect
mechanism using a programmable architecture similar
to the loop closure scheme. The ground key detect
scheme provides two unique thresholds to allow
hysteresis and also includes a programmable debounce
filter to eliminate false detection. A ground key detect
status bit provides continuous status, and a maskable
interrupt bit is also provided.
The Dual ProSLIC includes two digital tone generators
that allow a wide variety of single- or dual-tone
frequency and amplitude combinations. Each tone
generator has its own set of registers that hold the
desired frequency, amplitude, and cadence to allow
generation of DTMF and call progress tones for different
requirements. The tones can be directed to either
receive or transmit paths.
4.9. Ringing Generation
4.14. DTMF Detection
The Dual ProSLIC provides the ability to generate a
programmable sinusoidal or trapezoidal ringing
waveform, with or without dc offset. The ringing
frequency, wave shape, cadence, and offset are all
register-programmable. Using a balanced ringing
scheme, the ringing signal is applied to both the TIP and
RING leads using dual ringing waveforms that are 180°
out of phase with each other. The resulting ringing
signal seen across TIP-RING is twice the amplitude of
the ringing waveform on either the TIP or RING lead,
which allows the ringing circuitry to be forced to
withstand only half the total ringing amplitude seen
across TIP-RING.
In DTMF, two tones generate a DTMF digit. One tone is
chosen from the four possible row tones, and one tone
is chosen from the four possible column tones. The sum
of these tones constitutes one of 16 possible DTMF
digits. The Dual ProSLIC performs DTMF detection
using an algorithm to compute the DFT for each of the
eight DTMF frequencies and their second harmonics. At
the end of the DFT computation, the squared
magnitudes of the DFT results for the 8 DTMF
fundamental tones are computed. The row and column
results are sorted to determine the strongest tones, and
checks are made to determine if the strongest row and
column tones constitute a DTMF digit.
4.10. Polarity Reversal
4.15. DC-DC Controller
The Dual ProSLIC supports polarity reversal for
message waiting and various other signaling modes.
The ramp rate can be programmed for a smooth or
abrupt transition to accommodate different application
requirements.
The controller converts a single positive dc input voltage
into an independent negative battery voltage for each
channel. The controller operates a dc-dc converter
circuit that converts a single positive dc input voltage
into an independent negative battery voltage for each
channel. In addition to eliminating external high-voltage
power supplies, the dc-dc controller allows the Dual
ProSLIC to dynamically control the battery voltage to
the minimum required for any given operating state
according to the programmed linefeed parameters.
4.11. Two-Wire Impedance Synthesis
The ac two-wire impedance synthesis is generated onchip using a DSP-based scheme to optimally match the
output impedance of the Dual ProSLIC to the
impedance of the subscriber loop and minimize the
receive path signal reflected back onto the transmit
path. Most real or complex two-wire impedances can be
generated by using the coefficient generator software to
simulate the desired line conditions and generate the
required register coefficients.
4.12. Transhybrid Balance Filter
The trans-hybrid balance function is implemented onchip using a DSP-based scheme to effectively cancel
the reflected receive path signal from the transmit path.
The coefficient generator software is used to optimize
the filter coefficients.
4.16. Wideband Audio
The Si3226 supports a narrowband (200 Hz–3.4 kHz)
audio codec. The Si3227 supports a softwareselectable wideband (50 Hz–7 kHz) and narrowband
(200 Hz–3.4 kHz) audio codec. The Si3227 wideband
mode provides an expanded audio band at a 16-bit,
16 kHz sample rate for enhanced audio quality while
maintaining standard telephony audio compatibility.
Wideband audio samples are transmitted and received
on the PCM interface using two consecutive 8 kHz
frames.
Preliminary Rev. 0.33
27
Si3226/7
Si3208/9
4.17. SPI Control Interface
4.20. Metallic Loop Testing
The controller interface to the Dual ProSLIC is a 4-wire
interface modeled after microcontroller and serial
peripheral devices. The interface consists of a clock
(SCLK), chip select (CS), serial data input (SDI), and
serial data output (SDO). In addition, the Dual ProSLIC
devices feature a serial data through output (SDITHRU)
to support operation of up to eight devices (up to 16
channels) using a single chip select line. The device
operates with both 8-bit and 16-bit SPI controllers.
The Dual ProSLIC includes the ability to detect multiple
fault conditions within the line card as well as on the T/R
pair.
4.18. PCM Interface and Companding
The Dual ProSLIC contains a flexible, programmable
interface for the transmission and reception of digital
PCM samples. PCM data transfer is controlled by the
PCM clock (PCLK) and frame sync (FSYNC) inputs as
well as the PCM Mode Select, PCM Transmit Start, and
PCM Receive Start settings.
The interface can be configured to support from four to
128 8-bit time slots in each 125 µs frame,
corresponding to a PCM clock (PCLK) frequency range
of 256 kHz to 8.192 MHz. 1.544 MHz is also supported.
The Dual ProSLIC supports both µ-255 Law (µ-Law)
and A-law companding formats in addition to 16-bit
linear data mode with no companding.
4.19. General Circuit Interface
The
Dual
ProSLIC
supports
an
alternative
communication interface to the SPI and PCM control
and data interface. The General Circuit Interface (GCI)
is used for transmission and reception of both control
and data information onto a GCI bus. The PCM and GCI
interfaces are both 4-wire interfaces and share the
same pins. In GCI mode, the four-wire SPI control
interface is used as hard-wired channel selector pins.
The selection between PCM and GCI modes is
performed when coming out of reset using the
SDITHRU pin.
1. Hazardous Potential Test—This test checks for ac
voltage >50 Vrms or dc voltage >135 V on T-G or RG. If a hazardous voltage is encountered, test access
MUST release within two seconds of the time when it
was initiated using a preset threshold.
2. Foreign ElectroMotive Force Test—Checks T-G or
R-G for ac voltage >10 Vrms, dc voltage >6 V. Uses
same threshold as for hazardous voltage test.
3. Resistive Faults Test—Checks for dc resistance from
T-R, T-G or R-G. Any measurement <150 kΩ is
considered a resistive fault.
4. Receiver-Off-Hook Test—Distinguishes between a
T-R resistive fault and an off-hook condition.
5. Ringers Test—Checks for the presence of REN
across T-R. Result are >0.175REN and <5REN for a
valid load.
6. AC Line Impedance (line length)—T-R, T-G, and
R-G. Generate a tone at several specific frequencies
(audio band) and measure the reflected signal
amplitude (complex spectrum) that comes back (with
transhybrid balance filter disabled). The reflected
signal is then used to calculate the line impedance
based on certain assumptions of wire gauge, etc.
7. Line Capacitance—T-R, T-G, R-G. Generate a linear
ramp function with polarity reversal, and measure
the time constant.
8. Ringer Capacitance—This test uses the same
procedure as the ringer test above but also
measures the V/I phase relationship of the received
signal (dc path) and then subtracts the delay to
calculate the ringer capacitance.
9. Ringing Voltage Verification—Uses current voltage
sensing capability.
10.Test-In Diagnostics—The Dual ProSLIC can switch
in a preset load impedance to test the SLIC/codec
functionality using a known set of conditions.
28
Preliminary Rev. 0.33
Si3226/7
Si3208/9
5. Pin Descriptions: Si3226/7
Table 17. Si3226/7 Pin Descriptions
Pin
Number
Symbol
I/O
Description
1
SRINGDCa
I
RING DC Sense Input.
2
SRINGACa
I
RING AC Sense Input.
3
STIPACa
I
TIP AC Sense Input.
4
STIPDCa
I
TIP DC Sense Input.
5
CAPPa
I/O
Metallic Loop Filter Capacitor-Positive Terminal.
6
CAPMa
I/O
Metallic Loop Filter Capacitor-Negative Terminal.
7
SVBATa
I
Battery Sensing Input.
8
SVDC
I
DC-DC Input Power Rail Sensor.
9
GPIO3a / PWROa
I/O
General Purpose I/O / Power Offloading Output.
10
GPIO2a / SRINGCa /
TRD2a
I/O
General Purpose I/O / TIP Course Sense Input / Test Relay
Driver.
11
GPIO1a / STIPCa / TRD1a
I/O
General Purpose I/O / TIP Course Sense Input / Test Relay
Driver.
12
CS
I
Chip Select Input.
13
FSYNC
I
Frame Sync Clock Input.
14
SDI
I
Serial Port Data Input.
15
HVCLKa
O
Line-Driver IC Clock Output.
16
SCLK
I
Serial Port Bit Clock Input.
17
HVDATA
O
Line-Driver IC Data Output
18
SDITHRU
O
Serial Data Daisy Chain Output.
19
SDO
O
Serial Port Data Output.
20
DCFFa
I/O
DC-DC BJT Drive Monitor.
21
SDCHa
I
DC-DC Current Monitor Input-High Terminal.
22
SDCLa
I
DC-DC Current Monitor Input-Low Terminal.
23
DCDRVa
I/O
24
VDDC
PWR
25
DCDRVb
O
DC-DC Drive Output.
26
SDCLb
I
DC-DC Current Monitor Input-Low Terminal.
27
SDCHb
I
DC-DC Current Monitor Input-High Terminal.
28
DCFFb
I/O
29
GNDD
GND
Digital Ground.
30
VDDD
PWR
Digital Supply Voltage.
31
PCLK
I
PCM Bus Clock Input.
32
HVCLKb
O
Line-Driver IC Clock Output.
DC-DC Drive Output.
DC-DC Switch Driver Power Supply.
DC-DC BJT Drive Monitor.
Preliminary Rev. 0.33
29
Si3226/7
Si3208/9
Table 17. Si3226/7 Pin Descriptions (Continued)
Pin
Number
Symbol
I/O
33
DTXEN
O
Transmit PCM Enable Output.
34
DTX
O
Transmit PCM Data Output.
35
DRX
I
Receive PCM Data Input.
36
INT
O
Interrupt Output.
37
RST
I
Reset Input.
38
VDDREG
I/O
Regulated Core Power Supply.
39
GPIO1b / STIPCb / TRD1b
I/O
General Purpose I/O / TIP Course Sense Input / Test Relay
Driver.
40
GPIO2b / SRINGCb /
TRD2b
I/O
General Purpose I/O / TIP Course Sense Input / Test Relay
Driver.
41
GPIO3b / PWROb
I/O
General Purpose I/O / Power Offloading Output.
42
SVBATb
I
43
CAPMb
I/O
Differential Loop Filter Capacitor-Negative Term.
44
CAPPb
I/O
Differential Loop Filter Capacitor-Positive Term.
45
STIPDCb
I
TIP DC Sense Input.
46
STIPACb
I
TIP AC Sense Input.
47
SRINGACb
I
RING AC Sense Input.
48
SRINGDCb
I
RING DC Sense Input.
49
DRINGb
O
RING Pull-Down Current Driver Output.
50
URINGb
O
RING Pull-Up Current Driver Output.
51
DTIPb
O
TIP Pull-Down Current Driver Output.
52
UTIPb
O
TIP Pull-Up Current Driver Output.
53
IBIASb
O
Line Driver IC Bias Current Output.
54
CAPLB
O
Longitudinal Balance Calibration Capacitor.
55
IREF
I
Current Reference Input.
56
QGND
I
Quiet Ground Reference Input.
57
GNDA
GND
Analog Ground.
58
VDDA
PWR
Analog Supply Voltage.
59
ISNS
I/O
Line Current Sense Input.
60
IBIASa
O
Line Driver IC Bias Current Output.
61
UTIPa
O
TIP Pull-Up Current Driver Output.
62
DTIPa
O
TIP Pull-Down Current Driver Output.
63
URINGa
O
RING Pull-Up Current Driver Output.
64
DRINGa
O
RING Pull-Down Current Driver Output.
30
Description
Battery Sensing Input.
Preliminary Rev. 0.33
Si3226/7
Si3208/9
6. Pin Descriptions: Si3208/9
Table 18. Si3208/9 Pin Descriptions
QFN Pin #
Symbol
I/O
1
IC
Internal connection; leave to float.
2
NC
No Connect.
3
RING_1
4
NC
5
TIP_1
6
NC
No Connect.
7
IC
Internal connection; leave to float.
8
IRINGN_1
I
Negative Ring Current Control Channel 1 Input.
9
IRINGP_1
I
Positive Ring Current Control Channel 1 Input.
10
ITIPN_1
I
Negative Tip Current Control Channel 1 Input.
11
ITIPP_1
I
Positive Tip Current Control Channel 1 Input.
12
IBIAS_1
I
Current Bias Channel 1 Input.
13
ISNS
O
Current Sense Output.
14
VDD
I
IC Supply Voltage Input.
15
HVCLK_1
I
High-Voltage IC Clock Channel 1 Input.
16
HVDATA
I/O
17
HVCLK_2
I
High-Voltage IC Clock Channel 2 Input.
18
DGND
I
Digital Ground.
19
IBIAS_2
I
Current Bias Channel 2 Input.
20
ITIPP_2
I
Positive Tip Current Control Channel 1 Input.
21
ITIPN_2
I
Negative Tip Current Control Channel 2 Input.
22
IRINGP_2
I
Positive Ring Current Control Channel 2 Input.
23
IRINGN_2
I
Negative Ring Current Control Channel 2 Input.
24
IC
Internal connection; leave to float.
25
NC
No Connect.
26
TIP_2
27
NC
28
RING_2
29
NC
No Connect.
30
IC
Internal connection; leave to float.
31
IC
Internal connection; leave to float.
32
VBAT_2
33
NC
No Connect.
34
IC
Internal connection; leave to float.
I/O
Description
Ring Channel 1 Input/Output.
No Connect.
I/O
I/O
Tip Channel 1 Input/Output.
High-Voltage IC Data Input/Output.
Tip Channel 2 Input/Output.
No Connect.
I/O
I
Ring Channel 2 Input/Output.
Operating Battery Voltage Channel 2 Input.
Preliminary Rev. 0.33
31
Si3226/7
Si3208/9
Table 18. Si3208/9 Pin Descriptions (Continued)
QFN Pin #
Symbol
35
NC
36
AGND
37
IC
Internal connection; leave to float.
38
IC
Internal connection; leave to float.
39
VBAT_1
40
IC
epad
32
I/O
Description
No Connect.
I
I
Analog Ground.
Operating Battery Voltage Channel 1 Input.
Internal connection; leave to float.
Exposed Die Attach Paddle.
For adequate thermal management, the exposed die paddle
should be soldered to a printed circuit board pad that is connected
to an electrically-isolated low-impedance inner layer and/or backside thermal plane(s) using multiple thermal vias. Do not connect
this pad to ground.
Preliminary Rev. 0.33
Si3226/7
Si3208/9
7. Ordering Guide
Device
Description
Wideband
Audio
Package
Temp Range
Si3226-X-FQ
Dual ProSLIC
No
TQFP-64
0 to 70 °C
Si3226-X-GQ
Dual ProSLIC
No
TQFP-64
–40 to 85 °C
Si3227-X-FQ
Dual ProSLIC
Yes
TQFP-64
0 to 70 °C
Si3227-X-GQ
Dual ProSLIC
Yes
TQFP-64
–40 to 85 °C
Si3208-X-FM
110 V Dual LFIC
—
QFN-40
0 to 70 °C
Si3208-X-GM
110 V Dual LFIC
—
QFN-40
–40 to 85 °C
Si3209-X-FM
135 V Dual LFIC
—
QFN-40
0 to 70 °C
Si3209-X-GM
135 V Dual LFIC
—
QFN-40
–40 to 85 °C
Notes:
1. All devices are lead-free and RoHS compliant.
2. “X” denotes product revision (A, B, C, etc.).
3. Add an R at the end of the device to denote tape and reel options.
Preliminary Rev. 0.33
33
Si3226/7
Si3208/9
8. Package Outline: 64-Pin TQFP
Figure 12 illustrates the package details for the Si3226/7. Table 19 lists the values for the dimensions shown in the
illustration.
Figure 12. 64-Pin Thin Quad Flat Package (TQFP)
34
Preliminary Rev. 0.33
Si3226/7
Si3208/9
Table 19. 64-Pin TQFP Package Dimensions
Dimension
Min
Nom
Max
A
—
—
1.20
A1
0.05
—
0.15
A2
0.95
1.00
1.05
b
0.17
0.22
0.27
c
0.09
—
0.20
D
12.00 BSC.
D1
10.00 BSC.
e
0.50 BSC.
E
12.00 BSC.
E1
10.00 BSC.
L
0.45
0.60
0.75
aaa
—
—
0.20
bbb
—
—
0.20
ccc
—
—
0.08
ddd
—
—
0.08
Q
0°
3.5°
7°
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.
3. This package outline conforms to JEDEC MS-026, variant ACD.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C
specification for small body components.
Preliminary Rev. 0.33
35
Si3226/7
Si3208/9
9. Package Outline: 40-Pin QFN
Figure 13 illustrates the package details for the Si3208/9. Table 20 lists the values for the dimensions shown in the
illustration.
Figure 13. 40-Pin QFN Package
Table 20. 40-Pin QFN Package Dimensions
Dimension
Min
Nom
Max
Dimension
Min
Nom
Max
A
0.80
0.90
1.00
E2
4.10
4.30
4.40
A1
0.00
0.02
0.05
L
0.30
0.40
0.50
b
0.18
0.25
0.30
L1
0.03
0.05
0.08
aaa
—
—
0.10
bbb
—
—
0.10
D
D2
6.00 BSC.
4.10
4.30
4.40
e
0.50 BSC.
ccc
—
—
0.08
E
6.00 BSC.
ddd
—
—
0.10
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC outline MO-220, variation VJJD-2.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for small body components.
36
Preliminary Rev. 0.33
Si3226/7
Si3208/9
DOCUMENT CHANGE LIST
Revision 0.2 to Revision 0.32
Added Si3208 and Si3209.
Removed Si3203, Si3205, and Si3206.
Added pin-outs and package drawings for Si3208
and Si3209.
Updated pin-out for Si3226.
Updated bill of materials.
Updated “2. Typical Application Circuits” and added
dc-dc converter schematics.
Updated tables.
Revision 0.32 to Revision 0.33
Changed package type for Si3208.
Deleted QFN-32 drawing.
Updated dc-dc converter schematic.
Updated bills of materials.
Updated max VBAT values.
Updated thermal shutdown thresholds.
Updated Si3208/9 pin descriptions.
Preliminary Rev. 0.33
37
Si3226/7
Si3208/9
CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: [email protected]
Internet: www.silabs.com
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.
Silicon Laboratories, Silicon Labs, and ProSLIC are trademarks of Silicon Laboratories Inc.
Other products or brand names mentioned herein are trademarks or registered trademarks of their respective holders.
38
Preliminary Rev. 0.33