BYD13D THRU BYD13M Controlled avalanche rectifiers 200V-1000V 0.750A-1.4A FEATURES • Glass passivated • High maximum operating temperature • Low leakage current • Excellent stability • Guaranteed avalanche energy absorption capability • Available in ammo-pack. MECHANICAL DATA • • Cavity free cylindrical glass package through Implotec(1) technology. • This package is hermetically sealed and fatigue free as coefficients of expansion of all used parts are matched. • MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS SYMBOL IF(AV) PARAMETER average forward current CONDITIONS MIN. MAX. UNIT Ttp = 55 °C; lead length = 10 mm; averaged over any 20 ms period; see Figs 2 and 4 − 1.40 A Tamb = 65 °C; PCB mounting (see Fig.9); averaged over any 20 ms period; see Figs 3 and 4 − 0.75 A IFSM non-repetitive peak forward current t = 10 ms half sinewave; Tj = Tj max prior to surge; VR = VRRMmax − 20 ERSM non-repetitive peak reverse avalanche energy L = 120 mH; Tj = Tj max prior to surge; inductive load switched off − 7 mJ Tstg storage temperature −65 +175 °C Tj junction temperature −65 +175 °C see Fig.5 A ELECTRICAL CHARACTERISTICS Tj = 25 °C; unless otherwise specified. SYMBOL VF V(BR)R IR PARAMETER CONDITIONS MIN. TYP. MAX. UNIT IF = 1 A; Tj = Tj max; see Fig.6 − − 0.93 V IF = 1 A; see Fig.6 − − 1.05 V BYD13D 225 − − V BYD13G 450 − − V BYD13J 650 − − V BYD13K 900 − − V BYD13M 1 100 − − V VR = VRRMmax; see Fig.7 − − 1 µA VR = VRRMmax; Tj = 165 °C; see Fig.7 − − 100 µA forward voltage reverse avalanche breakdown voltage reverse current IR = 0.1 mA trr reverse recovery time when switched from IF = 0.5 A to IR = 1 A; measured at IR = 0.25 A; see Fig.10 − 3 − µs Cd diode capacitance VR = 0 V; f = 1 MHz; see Fig.8 − 21 − pF E-mail: [email protected] 1 of 3 Web Site: www.taychipst.com BYD13D THRU BYD13M 200V-1000V Controlled avalanche rectifiers RATINGS AND CHARACTERISTIC CURVES 0.750A-1.4A BYD13D THRU BYD13M 1.0 IF(AV) 2.0 IF(AV) handbook, halfpage handbook, halfpage (A) (A) 1.6 0.8 1.2 0.6 0.8 0.4 0.4 0.2 0 0 0 40 80 120 0 200 160 Ttp (oC) a = 1.57; VR = VRRMmax; δ = 0.5. Lead length 10 mm. Fig.2 40 80 120 160 200 Tamb (oC) a = 1.57; VR = VRRMmax; δ = 0.5. Device mounted as shown in Fig.9. Maximum permissible average forward current as a function of tie-point temperature (including losses due to reverse leakage). Fig.3 2.5 handbook, halfpage Maximum permissible average forward current as a function of ambient temperature (including losses due to reverse leakage). 200 handbook, halfpage P (W) 2.0 a = 3 2.5 Tj 1.57 2 ( oC) 1.42 150 1.5 100 1.0 D G J K M 50 0.5 0 0 0.4 0.8 1.2 I F(AV) 0 1.6 (A) 0 400 800 1200 VR, VRRM (V) a = IF(RMS)/IF(AV); VR = VRRMmax; δ = 0.5. Fig.4 Solid line = VR. Dotted line = VRRM; δ = 0.5. Maximum steady state power dissipation (forward plus leakage current losses, excluding switching losses) as a function of average forward current. E-mail: [email protected] Fig.5 2 of 3 Maximum permissible junction temperature as a function of reverse voltage. Web Site: www.taychipst.com BYD13D THRU BYD13M 200V-1000V Controlled avalanche rectifiers 0.750A-1.4A 3 10halfpage handbook, 6 handbook, halfpage I R (µA) IF (A) 4 10 2 2 10 0 1 1 0 2 VF (V) 0 Solid line: Tj = 25 °C. Dotted line: Tj = 175 °C. Fig.6 40 80 120 160 200 T (oC) j VR = VRRMmax. Forward current as a function of forward voltage; maximum values. Fig.7 Reverse current as a function of junction temperature; maximum values. 10 2 handbook, halfpage C d (pF) 10 1 1 10 102 V R (V) 103 f = 1 MHz; Tj = 25 °C. Fig.8 Diode capacitance as a function of reverse voltage; typical values. E-mail: [email protected] 3 of 3 Web Site: www.taychipst.com