BYV26 series Fast soft-recovery 200V-1400V controlled avalanche rectifiers 0.65A-1.05 k FEATURES 28 min • Glass passivated 4.57 max • High maximum operating temperature • Low leakage current • Excellent stability • Guaranteed avalanche energy absorption capability • Available in ammo-pack. 28 min 3.81 max a 0.81 max MBC880 SOD57 MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS LIMITING VALUES SYMBOL PARAMETER CONDITIONS repetitive peak reverse voltage BYV26A VRRM = VR IF(AV) MAX. UNIT − 200 V BYV26B − 400 V BYV26C − 600 V BYV26D − 800 V BYV26E − 1000 V BYV26F − 1200 V BYV26G − 1400 V − 1.00 A − 1.05 A average forward current Ttp = 85 °C; lead length = 10 mm; BYV26A to E see Figs 2 and 3; averaged over any 20 ms period; see also Figs 10 and 11 BYV26F and G average forward current IF(AV) MIN. BYV26A to E BYV26F and G Tamb = 60 °C; PCB mounting (see Fig.19); see Figs 4 and 5; averaged over any 20 ms period; see also Figs 10 and 11 − 0.65 A − 0.68 A − 10.0 A − 9.6 A repetitive peak forward current IFRM BYV26A to E Ttp = 85 °C; see Figs 6 and 7 BYV26F and G SYMBOL IFRM PARAMETER repetitive peak forward current CONDITIONS MIN. MAX. UNIT Tamb = 60 °C; see Figs 8 and 9 BYV26A to E − 6.0 A BYV26F and G − 6.4 A IFSM non-repetitive peak forward current t = 10 ms half sine wave; Tj = Tj max prior to surge; VR = VRRMmax − 30 A ERSM non-repetitive peak reverse avalanche energy − 10 mJ Tstg storage temperature −65 +175 °C Tj junction temperature −65 +175 °C E-mail: [email protected] IR = 400 mA; Tj = Tj max prior to surge; inductive load switched off see Figs 12 and 13 1 of 7 Web Site: www.taychipst.com BYV26 series Fast soft-recovery 200V-1400V controlled avalanche rectifiers 0.65A-1.05 ELECTRICAL CHARACTERISTICS Tj = 25 °C unless otherwise specified. SYMBOL VF PARAMETER forward voltage CONDITIONS IF = 1 A; Tj = Tj max; see Figs 14 and 15 BYV26A to E BYV26F and G VF forward voltage IF = 1 A; see Figs 14 and 15 BYV26A to E BYV26F and G V(BR)R reverse avalanche breakdown voltage trr − − 1.3 V − − 1.3 V − − 2.50 V − − 2.15 V 300 − − V 500 − − V 700 − − V BYV26D 900 − − V BYV26E 1100 − − V BYV26F 1300 − − V BYV26G 1500 − − V reverse current reverse recovery time VR = VRRMmax; see Fig.16 − − 5 µA VR = VRRMmax; Tj = 165 °C; see Fig.16 − − 150 µA when switched from IF = 0.5 A to IR = 1 A; measured at IR = 0.25 A; see Fig.20 − − 30 ns − − 75 ns − − 150 ns − 45 − pF BYV26D and E − 40 − pF BYV26F and G − 35 − pF MIN. TYP. − − BYV26F and G diode capacitance f = 1 MHz; VR = 0 V; see Figs 17 and 18 BYV26A to C dI R -------dt UNIT BYV26B BYV26A to C SYMBOL MAX. BYV26C BYV26D and E Cd TYP. IR = 0.1 mA BYV26A IR MIN. PARAMETER CONDITIONS maximum slope of reverse recovery when switched from IF = 1 A to VR ≥ 30 V and current dI F/dt = −1 A/µs; BYV26A to C see Fig.21 BYV26D and E BYV26F and G MAX. 7 UNIT A/µs − − 6 A/µs − − 5 A/µs THERMAL CHARACTERISTICS SYMBOL PARAMETER CONDITIONS Rth j-tp thermal resistance from junction to tie-point lead length = 10 mm Rth j-a thermal resistance from junction to ambient note 1 VALUE UNIT 46 K/W 100 K/W Note 1. Device mounted on an epoxy-glass printed-circuit board, 1.5 mm thick; thickness of Cu-layer ≥40 µm, see Fig.19. For more information please refer to the “General Part of associated Handbook”. E-mail: [email protected] 2 of 7 Web Site: www.taychipst.com BYV26 series Fast soft-recovery 200V-1400V controlled avalanche rectifiers RATINGS AND CHARACTERISTIC CURVES 0.65A-1.05 BYV26 series 2 1 handbook, halfpage handbook, halfpage 20 15 10 lead length (mm) I F(AV) I F(AV) (A) (A) lead length 10 mm 1 0.5 0 0 0 100 T tp ( oC) 0 200 Fig.1 Maximum average forward current as a function of tie-point temperature (including losses due to reverse leakage). 100 T tp ( oC) 200 Fig.2 Maximum average forward current as a function of tie-point temperature (including losses due to reverse leakage). 1 1 handbook, halfpage handbook, halfpage I F(AV) I F(AV) (A) (A) 0.5 0.5 0 0 0 100 o 200 0 amb ( C) losses due to reverse Tleakage). Fig.3 Maximum average forward current as a function of ambient temperature (including E-mail: [email protected] 100 o 200 losses due to reverse leakage). Fig.4 Maximum average forward current as a function of ambient temperature (including 3 of 7 Web Site: www.taychipst.com BYV26 series Fast soft-recovery 200V-1400V controlled avalanche rectifiers 0.65A-1.05 12 I FRM (A) 10 δ = 0.05 8 6 0.1 4 0.2 0.5 2 1 0 10 2 10 1 1 10 10 2 10 3 t p (ms) 10 4 BYV26A to E. Ttp = 85°C; Rth j-tp = 46 K/W. VRRMmax during 1 − δ; curves include derating for Tj max at VRRM = 1000 V. Fig.5 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor. 10 I FRM (A) δ = 0.05 8 6 0.1 4 0.2 0.5 2 1 0 10 2 10 1 1 10 10 2 10 3 t p (ms) 10 4 BYV26F and G. Ttp = 85°C; Rth j-tp = 46 K/W. VRRMmax during 1 − δ; curves include derating for Tj max at VRRM = 1400 V. Fig.6 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor. E-mail: [email protected] 4 of 7 Web Site: www.taychipst.com BYV26 series Fast soft-recovery 200V-1400V controlled avalanche rectifiers 6 I FRM (A) 0.65A-1.05 δ = 0.05 5 4 0.1 3 0.2 2 0.5 1 1 0 10 2 10 1 1 10 10 2 10 3 t p (ms) 10 4 BYV26A to E Tamb = 60 °C; Rth j-a = 100 K/W. VRRMmax during 1 − δ; curves include derating for Tj max at VRRM = 1000 V. Fig.7 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor. 8 I FRM (A) δ = 0.05 6 0.1 4 0.2 2 0.5 1 0 10 2 10 1 1 10 10 2 10 3 t p (ms) 10 4 BYV26F and G Tamb = 60 °C; Rth j-a = 100 K/W. VRRMmax during 1 − δ; curves include derating for Tj max at VRRM = 1400 V. Fig.8 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor. E-mail: [email protected] 5 of 7 Web Site: www.taychipst.com BYV26 series Fast soft-recovery 200V-1400V controlled avalanche rectifiers 3 0.65A-1.05 3 P (W) P (W) a = 3 2.5 2 1.57 2 a=3 2 2.5 2 1.57 1.42 1.42 1 1 0 0 0 0.5 I F(AV) (A) 1 0 0.5 I F(AV) (A) 1 BYV26A to E a = IF(RMS)/IF(AV); VR = VRRMmax; δ = 0.5. BYV26F and G a = IF(RMS)/IF(AV); VR = VRRMmax; δ = 0.5. Fig.9 Maximum steady state power dissipation (forward plus leakage current losses, excluding switching losses) as a function of average forward current. Fig.10 Maximum steady state power dissipation (forward plus leakage current losses, excluding switching losses) as a function of average forward current. 200 200 handbook, halfpage handbook, halfpage Tj ( oC) Tj ( oC) 100 100 A B C D F E 0 0 400 800 V R (V) 0 1200 BYV26A to E Solid line = VR. Dotted line = VRRM; δ = 0.5. 1000 VR (V) 2000 BYV26F and G Solid line = VR. Dotted line = VRRM; δ = 0.5. Fig.11 Maximum permissible junction temperature as a function of reverse voltage. E-mail: [email protected] 0 G Fig.12 Maximum permissible junction temperature as a function of reverse voltage. 6 of 7 Web Site: www.taychipst.com BYV26 series Fast soft-recovery 200V-1400V controlled avalanche rectifiers 8 0.65A-1.05 8 handbook, halfpage handbook, halfpage IF (A) IF (A) 6 6 4 4 2 2 0 0 0 2 4 6 VF (V) 8 0 BYV26A to E Dotted line: Tj = 175 °C. Solid line: Tj = 25 °C. 2 4 VF (V) 6 BYV26F and G Dotted line: Tj = 175 °C. Solid line: Tj = 25 °C. Fig.13 Forward current as a function of forward voltage; maximum values. 103 handbook, halfpage Fig.14 Forward current as a function of forward voltage; maximum values. 10 2 handbook, halfpage IR (µA) Cd (pF) 102 BYV26A,B,C 10 BYV26D,E 10 1 1 0 100 Tj (°C) 1 200 102 V R (V) 103 BYV26A to E f = 1 MHz; Tj = 25 °C. VR = VRRMmax. Fig.15 Reverse current as a function of junction temperature; maximum values. E-mail: [email protected] 10 Fig.16 Diode capacitance as a function of reverse voltage, typical values. 7 of 7 Web Site: www.taychipst.com