TAYCHIPST BYV26C

BYV26 series
Fast soft-recovery
200V-1400V
controlled avalanche rectifiers
0.65A-1.05
k
FEATURES
28 min
• Glass passivated
4.57
max
• High maximum operating temperature
• Low leakage current
• Excellent stability
• Guaranteed avalanche energy absorption capability
• Available in ammo-pack.
28 min
3.81
max
a
0.81
max
MBC880
SOD57
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
LIMITING VALUES
SYMBOL
PARAMETER
CONDITIONS
repetitive peak reverse voltage
BYV26A
VRRM = VR
IF(AV)
MAX.
UNIT
−
200
V
BYV26B
−
400
V
BYV26C
−
600
V
BYV26D
−
800
V
BYV26E
−
1000
V
BYV26F
−
1200
V
BYV26G
−
1400
V
−
1.00
A
−
1.05
A
average forward current
Ttp = 85 °C; lead length = 10 mm;
BYV26A to E
see Figs 2 and 3;
averaged over any 20 ms period;
see also Figs 10 and 11
BYV26F and G
average forward current
IF(AV)
MIN.
BYV26A to E
BYV26F and G
Tamb = 60 °C; PCB mounting (see
Fig.19); see Figs 4 and 5;
averaged over any 20 ms period;
see also Figs 10 and 11
−
0.65
A
−
0.68
A
−
10.0
A
−
9.6
A
repetitive peak forward current
IFRM
BYV26A to E
Ttp = 85 °C; see Figs 6 and 7
BYV26F and G
SYMBOL
IFRM
PARAMETER
repetitive peak forward current
CONDITIONS
MIN.
MAX.
UNIT
Tamb = 60 °C; see Figs 8 and 9
BYV26A to E
−
6.0
A
BYV26F and G
−
6.4
A
IFSM
non-repetitive peak forward current t = 10 ms half sine wave; Tj = Tj max
prior to surge; VR = VRRMmax
−
30
A
ERSM
non-repetitive peak reverse
avalanche energy
−
10
mJ
Tstg
storage temperature
−65
+175
°C
Tj
junction temperature
−65
+175
°C
E-mail: [email protected]
IR = 400 mA; Tj = Tj max prior to
surge; inductive load switched off
see Figs 12 and 13
1 of 7
Web Site: www.taychipst.com
BYV26 series
Fast soft-recovery
200V-1400V
controlled avalanche rectifiers
0.65A-1.05
ELECTRICAL CHARACTERISTICS
Tj = 25 °C unless otherwise specified.
SYMBOL
VF
PARAMETER
forward voltage
CONDITIONS
IF = 1 A; Tj = Tj max;
see Figs 14 and 15
BYV26A to E
BYV26F and G
VF
forward voltage
IF = 1 A;
see Figs 14 and 15
BYV26A to E
BYV26F and G
V(BR)R
reverse avalanche breakdown
voltage
trr
−
−
1.3
V
−
−
1.3
V
−
−
2.50
V
−
−
2.15
V
300
−
−
V
500
−
−
V
700
−
−
V
BYV26D
900
−
−
V
BYV26E
1100
−
−
V
BYV26F
1300
−
−
V
BYV26G
1500
−
−
V
reverse current
reverse recovery time
VR = VRRMmax; see Fig.16
−
−
5
µA
VR = VRRMmax;
Tj = 165 °C; see Fig.16
−
−
150
µA
when switched from
IF = 0.5 A to IR = 1 A;
measured at IR = 0.25 A;
see Fig.20
−
−
30
ns
−
−
75
ns
−
−
150
ns
−
45
−
pF
BYV26D and E
−
40
−
pF
BYV26F and G
−
35
−
pF
MIN.
TYP.
−
−
BYV26F and G
diode capacitance
f = 1 MHz; VR = 0 V;
see Figs 17 and 18
BYV26A to C
dI R
-------dt
UNIT
BYV26B
BYV26A to C
SYMBOL
MAX.
BYV26C
BYV26D and E
Cd
TYP.
IR = 0.1 mA
BYV26A
IR
MIN.
PARAMETER
CONDITIONS
maximum slope of reverse recovery when switched from
IF = 1 A to VR ≥ 30 V and
current
dI
F/dt = −1 A/µs;
BYV26A to C
see Fig.21
BYV26D and E
BYV26F and G
MAX.
7
UNIT
A/µs
−
−
6
A/µs
−
−
5
A/µs
THERMAL CHARACTERISTICS
SYMBOL
PARAMETER
CONDITIONS
Rth j-tp
thermal resistance from junction to tie-point
lead length = 10 mm
Rth j-a
thermal resistance from junction to ambient
note 1
VALUE
UNIT
46
K/W
100
K/W
Note
1. Device mounted on an epoxy-glass printed-circuit board, 1.5 mm thick; thickness of Cu-layer ≥40 µm, see Fig.19.
For more information please refer to the “General Part of associated Handbook”.
E-mail: [email protected]
2 of 7
Web Site: www.taychipst.com
BYV26 series
Fast soft-recovery
200V-1400V
controlled avalanche rectifiers
RATINGS AND CHARACTERISTIC CURVES
0.65A-1.05
BYV26 series
2
1
handbook, halfpage
handbook, halfpage
20 15
10 lead length (mm)
I F(AV)
I F(AV)
(A)
(A)
lead length 10 mm
1
0.5
0
0
0
100
T tp ( oC)
0
200
Fig.1 Maximum average forward current as a
function of tie-point temperature (including
losses due to reverse leakage).
100
T tp ( oC)
200
Fig.2 Maximum average forward current as a
function of tie-point temperature (including
losses due to reverse leakage).
1
1
handbook, halfpage
handbook, halfpage
I F(AV)
I F(AV)
(A)
(A)
0.5
0.5
0
0
0
100
o
200
0
amb ( C)
losses due to reverse Tleakage).
Fig.3 Maximum average forward current as a
function of ambient temperature (including
E-mail: [email protected]
100
o
200
losses due to reverse leakage).
Fig.4 Maximum average forward current as a
function of ambient temperature (including
3 of 7
Web Site: www.taychipst.com
BYV26 series
Fast soft-recovery
200V-1400V
controlled avalanche rectifiers
0.65A-1.05
12
I FRM
(A)
10
δ = 0.05
8
6
0.1
4
0.2
0.5
2
1
0
10 2
10 1
1
10
10 2
10 3
t p (ms)
10 4
BYV26A to E.
Ttp = 85°C; Rth j-tp = 46 K/W.
VRRMmax during 1 − δ; curves include derating for Tj max at VRRM = 1000 V.
Fig.5 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.
10
I FRM
(A)
δ = 0.05
8
6
0.1
4
0.2
0.5
2
1
0
10 2
10 1
1
10
10 2
10 3
t p (ms)
10 4
BYV26F and G.
Ttp = 85°C; Rth j-tp = 46 K/W.
VRRMmax during 1 − δ; curves include derating for Tj max at VRRM = 1400 V.
Fig.6 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.
E-mail: [email protected]
4 of 7
Web Site: www.taychipst.com
BYV26 series
Fast soft-recovery
200V-1400V
controlled avalanche rectifiers
6
I FRM
(A)
0.65A-1.05
δ = 0.05
5
4
0.1
3
0.2
2
0.5
1
1
0
10 2
10 1
1
10
10 2
10 3
t p (ms)
10 4
BYV26A to E
Tamb = 60 °C; Rth j-a = 100 K/W.
VRRMmax during 1 − δ; curves include derating for Tj max at VRRM = 1000 V.
Fig.7 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.
8
I FRM
(A)
δ = 0.05
6
0.1
4
0.2
2
0.5
1
0
10 2
10 1
1
10
10 2
10 3
t p (ms)
10 4
BYV26F and G
Tamb = 60 °C; Rth j-a = 100 K/W.
VRRMmax during 1 − δ; curves include derating for Tj max at VRRM = 1400 V.
Fig.8
Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.
E-mail: [email protected]
5 of 7
Web Site: www.taychipst.com
BYV26 series
Fast soft-recovery
200V-1400V
controlled avalanche rectifiers
3
0.65A-1.05
3
P
(W)
P
(W)
a = 3 2.5
2
1.57
2
a=3
2
2.5
2
1.57
1.42
1.42
1
1
0
0
0
0.5
I F(AV) (A)
1
0
0.5
I F(AV) (A)
1
BYV26A to E
a = IF(RMS)/IF(AV); VR = VRRMmax; δ = 0.5.
BYV26F and G
a = IF(RMS)/IF(AV); VR = VRRMmax; δ = 0.5.
Fig.9 Maximum steady state power dissipation
(forward plus leakage current losses,
excluding switching losses) as a function of
average forward current.
Fig.10 Maximum steady state power dissipation
(forward plus leakage current losses,
excluding switching losses) as a function of
average forward current.
200
200
handbook, halfpage
handbook, halfpage
Tj
( oC)
Tj
( oC)
100
100
A
B
C
D
F
E
0
0
400
800
V R (V)
0
1200
BYV26A to E
Solid line = VR.
Dotted line = VRRM; δ = 0.5.
1000
VR (V)
2000
BYV26F and G
Solid line = VR.
Dotted line = VRRM; δ = 0.5.
Fig.11 Maximum permissible junction temperature
as a function of reverse voltage.
E-mail: [email protected]
0
G
Fig.12 Maximum permissible junction temperature
as a function of reverse voltage.
6 of 7
Web Site: www.taychipst.com
BYV26 series
Fast soft-recovery
200V-1400V
controlled avalanche rectifiers
8
0.65A-1.05
8
handbook, halfpage
handbook, halfpage
IF
(A)
IF
(A)
6
6
4
4
2
2
0
0
0
2
4
6
VF (V)
8
0
BYV26A to E
Dotted line: Tj = 175 °C.
Solid line: Tj = 25 °C.
2
4
VF (V)
6
BYV26F and G
Dotted line: Tj = 175 °C.
Solid line: Tj = 25 °C.
Fig.13 Forward current as a function of forward
voltage; maximum values.
103
handbook, halfpage
Fig.14 Forward current as a function of forward
voltage; maximum values.
10 2
handbook, halfpage
IR
(µA)
Cd
(pF)
102
BYV26A,B,C
10
BYV26D,E
10
1
1
0
100
Tj (°C)
1
200
102
V R (V)
103
BYV26A to E
f = 1 MHz; Tj = 25 °C.
VR = VRRMmax.
Fig.15 Reverse current as a function of junction
temperature; maximum values.
E-mail: [email protected]
10
Fig.16 Diode capacitance as a function of reverse
voltage, typical values.
7 of 7
Web Site: www.taychipst.com