Rev.1.0 MINI-ANALOG SERIES CMOS SINGLE OPERATIONAL AMPLIFIER S-8944XA Series The mini-analog series is a family of standard analog circuits mounted in ultra-small packages. The S-8944XA series is a CMOS operational amplifier with a built-in phase compensation circuit. The S-8944XA series is suitable for applications in battery powered compact portable devices due to its lower operation voltage and lower current consumption compared to bipolar operational amplifiers. ■ Features • • • • • • ■ Applications Low operation voltage: Low current consumption: Wide input/output voltage range: Low input offset voltage: Internal phase compensation Small package (SC-88A) VDD= 0.9 to 5.5 V IDD= 0.5 µA (typ) VSS to VDD 5.0 mV max. No external parts 2.0 mm × 2.1 mm) • • • • • Cellular phone PDA Note PC Digital camera Digital video camera Pin Assignment 5-pin SC-88A Top View VDD OUT 5 1 IN(+) 4 2 VSS Pin No. 1 2 3 4 5 Symbol IN(+) VSS IN(–) OUT VDD Functions Non-invert input pin GND pin Invert input pin Output pin Positive power pin 3 IN(-) (S-8944XANC) Figure 1 Package • SC-88A (PKG code: NP005-B) Seiko Instruments Inc. 1 MINI-ANALOG SERIES CMOS SINGLE OPERATIONAL AMPLIFIER S-8944XA Series Rev.1.0 ■ Selection Guide Off-set voltage VIO = 10 mV max. VIO = 5 mV max. Product Name S-89440ANC–HBX–TF S-89441ANC–HBY–TF ■ Absolute Maximum Ratings Table 1 Parameter Power voltage Input voltage Differential input voltage Allowable loss Operating temperature Storage temperature Symbol VDD VIN VIND PD Topr Tstg Ratings 7.0 0 to 7.0 ±5.5 200 −40 to 85 −55 to +125 ■ Recommended Operation Voltage Range Table 2 Parameter Operation voltage range 2 Symbol VDDope Range 0.9 to 5.5 V Seiko Instruments Inc. Unit V V V mW °C °C MINI-ANALOG SERIES CMOS SINGLE OPERATIONAL AMPLIFIER S-8944XA Series Rev.1.0 ■ Electrical Characteristics A difference between the S-89440ANC and S-894411ANC is only offset voltage. The other specifications are the same. 1. VDD=3.0 V DC Characteristic (VDD=3.0 V) Table 3 (Ta=25 °C unless otherwise specified) Item Supply current Offset voltage Input offset current Input vias current Common mode input voltage Voltage gain (Open loop) Maximum output amplitude voltage Common mode input signal rejection rate Power supply rejection ratio Source current (*1) Sink current Symbol IDD VIO Conditions VCM=VOUT=1.5V S-89440ANC VCM=1.5V S-89441ANC VCM=1.5V IIO IBIAS VCMR AVOL VSS+0.1V ≤VOUT ≤VDD-0.1V; VCM=1.5V, RL=1MΩ VOH RL=100kΩ VOL RL=100kΩ CMRR VSS ≤ VCM ≤ VDD VSS ≤ VCM ≤ VDD-0.1V PSRR VDD=0.9 to 5.5V ISOURCE VOUT=VDD-0.1V VOUT=0V ISINK VOUT=0.1V VOUT=VDD Min. Typ. Max. 0.5 0.9 5 10 3 5 1 1 0 3.0 70 80 Unit µA mV mV pA pA V dB Test circuit 0.05 65 65 80 500 6000 550 6000 V V dB dB dB µA µA µA µA Figure 5 Figure 6 Figure 4 2.95 45 50 70 400 4800 400 4800 Figure 7 Figure 3 Figure 4 Figure 11 Figure 2 Figure 8 Figure 9 AC Characteristic (VDD=3.0 V) Table 4 (Ta=25 °C unless otherwise specified) Item Slew rate (*2) Cut-off frequency (*3) Maximum load capacitance (*4) Symbol SR fT CL Conditions RL=1.0MΩ, CL=15pF CL=0pF Min. (*1) Use the device within the range under 7 mA of the source current. (*2)(*3)(*4) 100% inspection is not performed. Seiko Instruments Inc. Typ. Max. Unit Test circuit 5.0 V/ms Figure 10 4.8 kHz 47 pF 3 MINI-ANALOG SERIES CMOS SINGLE OPERATIONAL AMPLIFIER S-8944XA Series Rev.1.0 2. VDD=1.8 V DC Characteristic (VDD=1.8 V) Table 5 (Ta=25 °C unless otherwise specified) Item Supply current Offset voltage Input offset current Input vias current Common mode input voltage Voltage gain (Open loop) Maximum output amplitude voltage Common mode input signal rejection rate Power supply rejection ratio Source current (*1) Sink current Symbol IDD VIO Conditions VCM=VOUT=1.5 V S-89440ANC:VCM=0.9 V S-89441ANC:VCM=1.5 V IIO IBIAS VCMR AVOL VSS+0.1V ≤VOUT ≤VDD-0.1V; VCM=0.9V, RL=1MΩ VOH RL=100 kΩ VOL RL=100 kΩ CMRR VSS ≤ VCM ≤ VDD VSS ≤ VCM ≤ VDD-0.3 V PSRR VDD=0.9 to 5.5 V ISOURCE VOUT=VDD-0.1 V VOUT=0 V ISINK VOUT=0.1 V VOUT=VDD Unit µA mV mV pA pA V Test circuit 75 dB Figure 11 1.75 0.05 35 55 45 60 70 80 220 300 1200 1800 220 300 1200 1800 V V dB dB dB µA µA µA µA Figure 5 Figure 6 Figure 4 Min. 0 66 Typ. Max. 0.5 0.9 5 10 3 5 1 1 1.8 Figure 7 Figure 3 Figure 4 Figure 2 Figure 8 Figure 9 AC Characteristic (VDD=1.8 V) Table 6 (Ta=25 °C unless otherwise specified) Item Slew rate (*1) Cut-off frequency (*2) Maximum load capacitance (*3) (*1)(*2)(*3) 4 Symbol SR fT CL Conditions RL=1.0MΩ, CL=15pF CL=0pF 100% inspection is not performed. Seiko Instruments Inc. Min. Typ. Max. Unit Test circuit 4.5 V/ms Figure 10 5.0 kHz 47 pF MINI-ANALOG SERIES CMOS SINGLE OPERATIONAL AMPLIFIER S-8944XA Series Rev.1.0 3. VDD=0.9 V DC Characteristic (VDD=0.9 V) Table 7 (Ta=25 °C unless otherwise specified) Item Supply current Offset voltage Input offset current Input vias current Common mode input voltage Voltage gain (Open loop) Maximum output amplitude voltage Common mode input signal rejection rate Power supply rejection ratio Source current (*1) Sink current Symbol IDD VIO Conditions Min. Typ. Max. VCM=VOUT=0.45 V 0.5 0.9 S-89440ANC:VCM=0.45 V 5 10 S-89441ANC:VCM=0.45 V 3 5 IIO 1 IBIAS 1 VCMR 0 0.9 AVOL VSS+0.1V ≤VOUT ≤VDD-0.1V; 60 75 VCM=0.45V, RL=1MΩ VOH 0.85 RL=100 kΩ VOL 0.05 RL=100 kΩ CMRR 25 55 VSS ≤ VCM ≤ VDD 40 60 VSS ≤ VCM ≤ VDD-0.35 V PSRR VDD=0.9 to 5.5 V 70 80 ISOURCE VOUT=VDD-0.1 V 25 65 VOUT=0 V 40 140 ISINK VOUT=0.1 V 10 65 VOUT=VDD 12 120 Unit µA mV mV pA pA V Test circuit dB Figure 11 V V dB dB dB µA µA µA µA Figure 5 Figure 6 Figure 4 Figure 7 Figure 3 Figure 4 Figure 2 Figure 8 Figure 9 AC Characteristic (VDD=0.9 V) Table 8 (Ta=25 °C unless otherwise specified) Item Slew rate (*1) Cut-off frequency (*2) Maximum load capacitance (*3) (*1)(*2)(*3) Symbol SR fT CL Conditions RL=1.0MΩ, CL=15pF CL=0pF Min. Typ. Max. Unit Test circuit 4.0 V/ms Figure 10 5.0 kHz 47 pF 100% inspection is not performed. Seiko Instruments Inc. 5 MINI-ANALOG SERIES CMOS SINGLE OPERATIONAL AMPLIFIER S-8944XA Series Rev.1.0 ■ Test Circuits 1. Power supply rejection ratio • Power supply rejection ratio (PSRR) Measure VOUT when power supply voltage is VDD. Calculate a power supply rejection ratio (PSRR) by the following formula: VDD RF RS + RS VOUT RF Test Conditions: When VDD=0.9 V; VDD=VDD1, VOUT=VOUT1 When VDD=5.5 V; VDD=VDD2, VOUT=VOUT2 Rs VOUT1 − VOUT2 × VDD1 − VDD2 RF + RS 0.45V PSRR = −20log Figure 2 2. Off-set voltage • Off-set voltage (VIO) VDD RF VIO = VOUT − RS + RS VOUT RF VDD/2 Figure 3 6 Seiko Instruments Inc. VDD Rs × 2 RF + RS MINI-ANALOG SERIES CMOS SINGLE OPERATIONAL AMPLIFIER S-8944XA Series Rev.1.0 3. Common mode input signal rejection ratio, Common mode input voltage • Common mode input signal rejection ratio (CMRR) Measure VOUT for each VIN. Calculate a common mode rejection ratio (CMRR) by the following formula: VDD RF RS - VOUT + RS VIN Test Conditions: When VIN = VCMR (MAX); VIN= VIN1, VOUT=VOUT1 When VIN = VCMR (MAX); VIN= VIN2, VOUT=VOUT2 RF VIN1 − VIN2 (RF + RS) × RS VOUT1 − VOUT2 VDD/2 CMRR = 20log Figure 4 • Common mode input voltage(VCMR) An Input voltage range in which VOUT satisfies the standard for a common mode input signal rejection ratio when changing VIN. 4. Maximum output amplitude voltage • Maximum output amplitude voltage (VOH) Test Conditions: VDD VIN1 = + VIN1 VOH - 0.1V 2 VDD + 0.1V 2 RL=100kΩ RL VIN2 VIN2 = VDD VDD/2 Figure 5 • Maximum output amplitude voltage (VOL) VDD Test Conditions: VDD/2 VIN1 = VIN1 + 0.1V 2 RL + VDD VOL VIN2 = VDD - 0.1V 2 RL=100kΩ VIN2 Figure 6 Seiko Instruments Inc. 7 MINI-ANALOG SERIES CMOS SINGLE OPERATIONAL AMPLIFIER S-8944XA Series 5. Supply current • Supply current (IDD) VDD A + VIN=VDD/2 Figure 7 6. Source current • Source current (ISOURCE) VDD VOUT Test Condition: VOUT=VDD-0.1V or VOUT=0V A + VIN1 VIN1 = VDD - 0.1V 2 VIN2 VIN2 = VDD + 0.1V 2 Figure 8 7. Sink current VDD • Sink current (ISINK) Test Condition: VOUT=0.1V or VOUT=VDD + VIN1 = VIN2 VOUT VIN2 = VDD 2 Figure 9 8 + 0.1V 2 A VIN1 VDD Seiko Instruments Inc. - 0.1V Rev.1.0 MINI-ANALOG SERIES CMOS SINGLE OPERATIONAL AMPLIFIER S-8944XA Series Rev.1.0 8. Slew rate (SR) tR= tF=1µs (0V to VDD) IN(+)=VDD Falling: SR = VOH −VOL t THL IN(+)=0V tTHL VOH VOUT Rising: SR = VOL t VOUT VOH −VOL t TLH TLH Figure 10 VOH=2.7 V (at VDD=3.0 V), 1.62 V (at VDD=1.8 V), 0.81 V (at VDD=0.9 V) VOL=0.3 V (at VDD=3.0 V), 0.18 V (at VDD=1.8 V), 0.09 V (at VDD=0.9 V) 9. Voltage gain (Open loop) • Voltage gain (Open loop) (AVOL) Measure VOUT for each VM. Calculate the voltage gain (AVOL) by the following fomula: RF VDD NVDD RS − + D.U.T + RS RF VOUT NULL − 1MΩ Test Conditions: When VM = VDD-0.1 V; VM=VM1 VOUT=VOUT1 VM VDD/2 VDD/2 VDD/2 Figure 11 When VM = 0.1 V; VM=VM2 VOUT=VOUT2 NVSS VM1 - VM2 (RF + RS) × RS VOUT1 − VOUT2 AVOL = 20log Seiko Instruments Inc. 9 MINI-ANALOG SERIES CMOS SINGLE OPERATIONAL AMPLIFIER S-8944XA Series Rev.1.0 ■ Typical Performance Characteristics 1. Current consumption vs Supply voltage IDD VDD VSS=0V 1.0 IDD(µA) 0.8 85°C 25°C 0.6 0.4 Ta=-40°C 0.2 0.0 0 1 2 3 4 5 6 VDD(V) 2. Voltage gain vs Frequency Gain f VDD=1.8V, VSS=0V Gain f VDD=3V, VSS=0V 100 100 Ta=-40°C 25°C GAIN(dB) GAIN(dB) 60 Ta=-40°C 80 80 85°C 40 20 60 25°C 20 0 1.E-02 1.E+00 1.E+02 1.E+04 0 1.E-02 f(Hz) Ta=-40°C GAIN(dB) 80 25°C 85°C 40 20 0 1.E-02 1.E+00 1.E+02 1.E+04 f(Hz) 10 1.E+00 1.E+02 f(Hz) Gain f VDD=0.9V, VSS=0V 100 60 85°C 40 Seiko Instruments Inc. 1.E+04 MINI-ANALOG SERIES CMOS SINGLE OPERATIONAL AMPLIFIER S-8944XA Series Rev.1.0 3. Output current 3-1. ISOURCE vs Supply voltage ISINK vs Supply voltage ISOURCE VDD ISINK VDD VOH=VDD - 0.1V 1500 Ta=-40°C Ta=-40°C 1000 ISINK(µA) ISOURCE(µA) VOL=0.1V 1500 25°C 500 1000 25°C 500 85°C 85°C 0 0 0 1 2 3 4 5 6 0 1 VDD(V) 2 3 4 5 6 VDD(V) 3-2. Output voltage (VOH) vs ISOURCE ISOURCE VOH VDD=1.8V, VSS=0V ISOURCE VOH VDD=3.0V, VSS =0V 3.0 2.5 VOH(V) Ta=-40°C 2.0 85°C 1.5 25°C 1.0 VOH(V) 0.5 0.0 0 500 1000 I SOURCE(µA) 1500 2000 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 Ta=-40°C 25°C 85°C 0 500 1000 1500 2000 ISOURCE(µA) VOH(V) ISOURCE VOH VDD=0.9V, VSS=0V 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 85°C Ta=-40°C 25°C 0 50 100 150 200 ISOURCE(µA) Seiko Instruments Inc. 11 MINI-ANALOG SERIES CMOS SINGLE OPERATIONAL AMPLIFIER S-8944XA Series Rev.1.0 3-3. Output voltage (VOL) vsISINK ISINK VOL VDD=3.0V, VSS=0V ISINK VOL VDD=1.8V, VSS=0V 3.0 2.0 VOL(V) VOL(V) 2.5 85°C 1.5 25°C 1.0 Ta=-40°C 0.5 0.0 0 500 1000 1500 2000 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 85°C 25°C Ta=-40°C 0 ISINK(µA) VOL(V) Ta=-40°C 85°C 25°C 0 50 100 150 200 ISINK(µA) 12 1000 ISINK(µA) ISINK VOL VDD=0.9V, VSS=0V 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 500 Seiko Instruments Inc. 1500 2000 NP005-B 990929 SC-88A Unit mm Dimensions 2.0±0.2 1.3±0.1 4 5 1 2 3 0.65 0.65 +0.1 0.15 -0.05 0.2 +0.1 -0.05 Taping Specifications 4.0±0.1 2.0±0.1 Reel Specifications 1.1±0.1 1.75±0.1 1.55±0.1 3000 pcs./reel. 0.2±0.05 12.5max. 2.25±0.1 3.5±0.1 8.0±0.2 4.0±0.1 (2.4) ø60 +1 -0 1.05±0.1 +0 ø180 -3 (2.25) 2.05±0.1 0.3 9.0±0.3 ø13.0±0.2 10.5±0.4 2±0.2 (60°) (60°) • • • • • • The information described herein is subject to change without notice. Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design. When the products described herein are regulated products subject to the Wassenaar Arrangement or other agreements, they may not be exported without authorization from the appropriate governmental authority. Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Seiko Instruments Inc. is strictly prohibited. The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc. Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.