NSBC114EPDXV6T1, NSBC114EPDXV6T5 Preferred Devices Dual Bias Resistor Transistors NPN and PNP Silicon Surface Mount Transistors with Monolithic Bias Resistor Network http://onsemi.com (3) The BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base−emitter resistor. These digital transistors are designed to replace a single device and its external resistor bias network. The BRT eliminates these individual components by integrating them into a single device. In the NSBC114EPDXV6T1 series, two complementary BRT devices are housed in the SOT−563 package which is ideal for low power surface mount applications where board space is at a premium. • • • • • (2) R1 (1) R2 Q1 Q2 R2 R1 (4) (5) 6 Simplifies Circuit Design Reduces Board Space Reduces Component Count Available in 8 mm, 7 inch Tape and Reel Lead Free Solder Plating (6) 54 1 23 SOT−563 CASE 463A PLASTIC MARKING DIAGRAM MAXIMUM RATINGS (TA = 25°C unless otherwise noted, common for Q1 and Q2, − minus sign for Q1 (PNP) omitted) Symbol Value Unit Collector-Base Voltage VCBO 50 Vdc Collector-Emitter Voltage VCEO 50 Vdc IC 100 mAdc Symbol Max Unit PD 357 (Note 1) 2.9 (Note 1) mW Rating Collector Current THERMAL CHARACTERISTICS Characteristic (One Junction Heated) Total Device Dissipation TA = 25°C Derate above 25°C Thermal Resistance Junction-to-Ambient Characteristic (Both Junctions Heated) Total Device Dissipation TA = 25°C 350 (Note 1) °C/W Symbol Max Unit PD 500 (Note 1) 4.0 (Note 1) mW RJA Derate above 25°C Thermal Resistance Junction-to-Ambient Junction and Storage Temperature mW/°C xx D xx = Specific Device Code (see table on page 2) D = Date Code ORDERING INFORMATION Device Package Shipping NSBC114EPDXV6T1 SOT−563 4 mm pitch 4000/Tape & Reel NSBC114EPDXV6T5 SOT−563 2 mm pitch 8000/Tape & Reel DEVICE MARKING INFORMATION mW/°C RJA 250 (Note 1) °C/W TJ, Tstg −55 to +150 °C See specific marking information in the device marking table on page 2 of this data sheet. Preferred devices are recommended choices for future use and best overall value. 1. FR−4 @ Minimum Pad Semiconductor Components Industries, LLC, 2004 January, 2004 − Rev. 3 1 Publication Order Number: NSBC114EPDXV6/D NSBC114EPDXV6T1, NSBC114EPDXV6T5 DEVICE MARKING AND RESISTOR VALUES Device Package Marking R1 (k) R2 (k) NSBC114EPDXV6T1 SOT−563 11 10 10 NSBC124EPDXV6T1 SOT−563 12 22 22 NSBC144EPDXV6T1 SOT−563 13 47 47 NSBC114YPDXV6T1 SOT−563 14 10 47 NSBC114TPDXV6T1 (Note 2) SOT−563 15 10 ∞ NSBC143TPDXV6T1 (Note 2) SOT−563 16 4.7 ∞ NSBC113EPDXV6T1 (Note 2) SOT−563 30 1.0 1.0 NSBC123EPDXV6T1 (Note 2) SOT−563 31 2.2 2.2 NSBC143EPDXV6T1 (Note 2) SOT−563 32 4.7 4.7 NSBC143ZPDXV6T1 (Note 2) SOT−563 33 4.7 47 NSBC124XPDXV6T1 (Note 2) SOT−563 34 22 47 NSBC123JPDXV6T1 (Note 2) SOT−563 35 2.2 47 ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted, common for Q1 and Q2, − minus sign for Q1 (PNP) omitted) Symbol Min Typ Max Unit Collector-Base Cutoff Current (VCB = 50 V, IE = 0) ICBO − − 100 nAdc Collector-Emitter Cutoff Current (VCE = 50 V, IB = 0) ICEO − − 500 nAdc Emitter-Base Cutoff Current (VEB = 6.0 V, IC = 0) IEBO − − − − − − − − − − − − − − − − − − − − − − − − 0.5 0.2 0.1 0.2 0.9 1.9 4.3 2.3 1.5 0.18 0.13 0.2 mAdc Collector-Base Breakdown Voltage (IC = 10 A, IE = 0) V(BR)CBO 50 − − Vdc Collector-Emitter Breakdown Voltage (Note 3) (IC = 2.0 mA, IB = 0) V(BR)CEO 50 − − Vdc hFE 35 60 80 80 160 160 3.0 8.0 15 80 80 80 60 100 140 140 350 350 5.0 15 30 200 150 140 − − − − − − − − − − − − VCE(sat) − − 0.25 Characteristic OFF CHARACTERISTICS NSBC114EPDXV6T1 NSBC124EPDXV6T1 NSBC144EPDXV6T1 NSBC114YPDXV6T1 NSBC114TPDXV6T1 NSBC143TPDXV6T1 NSBC113EPDXV6T1 NSBC123EPDXV6T1 NSBC143EPDXV6T1 NSBC143ZPDXV6T1 NSBC124XPDXV6T1 NSBC123JPDXV6T1 ON CHARACTERISTICS (Note 3) DC Current Gain (VCE = 10 V, IC = 5.0 mA) NSBC114EPDXV6T1 NSBC124EPDXV6T1 NSBC144EPDXV6T1 NSBC114YPDXV6T1 NSBC114TPDXV6T1 NSBC143TPDXV6T1 NSBC113EPDXV6T1 NSBC123EPDXV6T1 NSBC143EPDXV6T1 NSBC143ZPDXV6T1 NSBC124XPDXV6T1 NSBC123JPDXV6T1 Collector-Emitter Saturation Voltage (IC = 10 mA, IB = 0.3 mA) (IC = 10 mA, IB = 5 mA) NSBC113EPDXV6T1/NSBC123EPDXV6T1 (IC = 10 mA, IB = 1 mA) NSBC114TPDXV6T1/NSBC143TPDXV6T1 NSBC143EPDXV6T1/NSBC143ZPDXV6T1/NSBC124XPDXV6T1 2. New resistor combinations. Updated curves to follow in subsequent data sheets. 3. Pulse Test: Pulse Width < 300 s, Duty Cycle < 2.0% http://onsemi.com 2 Vdc NSBC114EPDXV6T1, NSBC114EPDXV6T5 ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted, common for Q1 and Q2, − minus sign for Q1 (PNP) omitted) Characteristic Symbol Min Typ Max Unit − − − − − − − − − − − − − − − − − − − − − − − − 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 VOH 4.9 − − Vdc R1 7.0 15.4 32.9 7.0 7.0 3.3 0.7 1.5 3.3 3.3 15.4 1.54 10 22 47 10 10 4.7 1.0 2.2 4.7 4.7 22 2.2 13 28.6 61.1 13 13 6.1 1.3 2.9 6.1 6.1 28.6 2.86 k R1/R2 0.8 0.17 − 0.8 0.055 0.38 0.038 1.0 0.21 − 1.0 0.1 0.47 0.047 1.2 0.25 − 1.2 0.185 0.56 0.056 ON CHARACTERISTICS (Note 3) Output Voltage (on) (VCC = 5.0 V, VB = 2.5 V, RL = 1.0 k) (VCC = 5.0 V, VB = 3.5 V, RL = 1.0 k) Output Voltage (off) (VCC = 5.0 V, VB = 0.5 V, RL = 1.0 k) (VCC = 5.0 V, VB = 0.050 V, RL = 1.0 k) (VCC = 5.0 V, VB = 0.25 V, RL = 1.0 k) Input Resistor VOL NSBC114EPDXV6T1 NSBC124EPDXV6T1 NSBC114YPDXV6T1 NSBC114TPDXV6T1 NSBC143TPDXV6T1 NSBC113EPDXV6T1 NSBC123EPDXV6T1 NSBC143EPDXV6T1 NSBC143ZPDXV6T1 NSBC124XPDXV6T1 NSBC123JPDXV6T1 NSBC144EPDXV6T1 Vdc NSBC113EPDXV6T1 NSBC114TPDXV6T1 NSBC143TPDXV6T1 NSBC143ZPDXV6T1 NSBC114EPDXV6T1 NSBC124EPDXV6T1 NSBC144EPDXV6T1 NSBC114YPDXV6T1 NSBC114TPDXV6T1 NSBC143TPDXV6T1 NSBC113EPDXV6T1 NSBC123EPDXV6T1 NSBC143EPDXV6T1 NSBC143ZPDXV6T1 NSBC124XPDXV6T1 NSBC123JPDXV6T1 Resistor Ratio NSBC114EPDXV6T1/NSBC124EPDXV6T1/NSBC144EPDXV6T1 NSBC114YPDXV6T1 NSBC114TPDXV6T1/NSBC143TPDXV6T1 NSBC113EPDXV6T1/NSBC123EPDXV6T1/NSBC143EPDXV6T1 NSBC143ZPDXV6T1 NSBC124XPDXV6T1 NSBC123JPDXV6T1 2. New resistor combinations. Updated curves to follow in subsequent data sheets. 3. Pulse Test: Pulse Width < 300 s, Duty Cycle < 2.0% http://onsemi.com 3 NSBC114EPDXV6T1, NSBC114EPDXV6T5 PD, POWER DISSIPATION (mW) 300 250 200 150 100 50 0 −50 RJA = 490°C/W 0 50 100 TA, AMBIENT TEMPERATURE (°C) Figure 1. Derating Curve http://onsemi.com 4 150 NSBC114EPDXV6T1, NSBC114EPDXV6T5 1 1000 IC/IB = 10 hFE , DC CURRENT GAIN (NORMALIZED) VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS) TYPICAL ELECTRICAL CHARACTERISTICS − NSBC114EPDXV6T1 NPN TRANSISTOR TA=−25°C 25°C 0.1 75°C 0.01 0.001 0 20 40 IC, COLLECTOR CURRENT (mA) VCE = 10 V TA=75°C 25°C −25°C 100 10 50 1 10 IC, COLLECTOR CURRENT (mA) Figure 2. VCE(sat) versus IC Figure 3. DC Current Gain 100 IC, COLLECTOR CURRENT (mA) 2 1 0 0 10 20 30 40 VR, REVERSE BIAS VOLTAGE (VOLTS) 25°C 75°C f = 1 MHz IE = 0 V TA = 25°C 1 0.1 0.01 VO = 5 V 0.001 50 TA=−25°C 10 0 1 2 3 4 5 6 7 Vin, INPUT VOLTAGE (VOLTS) 10 VO = 0.2 V TA=−25°C 25°C 75°C 1 0.1 0 10 8 9 Figure 5. Output Current versus Input Voltage Figure 4. Output Capacitance V in , INPUT VOLTAGE (VOLTS) Cob , CAPACITANCE (pF) 4 3 100 20 30 IC, COLLECTOR CURRENT (mA) 40 Figure 6. Input Voltage versus Output Current http://onsemi.com 5 50 10 NSBC114EPDXV6T1, NSBC114EPDXV6T5 1000 1 IC/IB = 10 hFE , DC CURRENT GAIN (NORMALIZED) VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS TYPICAL ELECTRICAL CHARACTERISTICS − NSBC114EPDXV6T1 PNP TRANSISTOR TA=−25°C 0.1 25°C 75°C 0.01 0 20 25°C 100 10 −25°C 10 IC, COLLECTOR CURRENT (mA) Figure 7. VCE(sat) versus IC Figure 8. DC Current Gain 50 1 100 3 IC, COLLECTOR CURRENT (mA) f = 1 MHz lE = 0 V TA = 25°C 2 1 0 10 20 30 40 VR, REVERSE BIAS VOLTAGE (VOLTS) TA=−25°C 10 1 0.1 0.01 0.001 50 100 VO = 5 V 0 1 2 6 7 3 4 5 Vin, INPUT VOLTAGE (VOLTS) VO = 0.2 V TA=−25°C 25°C 75°C 1 0 10 8 9 Figure 10. Output Current versus Input Voltage 10 0.1 100 25°C 75°C Figure 9. Output Capacitance V in , INPUT VOLTAGE (VOLTS) Cob , CAPACITANCE (pF) TA=75°C IC, COLLECTOR CURRENT (mA) 40 4 0 VCE = 10 V 20 30 IC, COLLECTOR CURRENT (mA) 40 Figure 11. Input Voltage versus Output Current http://onsemi.com 6 50 10 NSBC114EPDXV6T1, NSBC114EPDXV6T5 1000 1 hFE, DC CURRENT GAIN (NORMALIZED) VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS) TYPICAL ELECTRICAL CHARACTERISTICS − NSBC124EPDXV6T1 NPN TRANSISTOR IC/IB = 10 25°C TA=−25°C 0.1 75°C 0.01 0.001 0 20 −25°C 100 1 100 10 IC, COLLECTOR CURRENT (mA) IC, COLLECTOR CURRENT (mA) Figure 12. VCE(sat) versus IC Figure 13. DC Current Gain 4 100 3 IC, COLLECTOR CURRENT (mA) f = 1 MHz IE = 0 V TA = 25°C 2 1 75°C 25°C TA=−25°C 10 1 0.1 0.01 VO = 5 V 0 0 10 20 30 40 VR, REVERSE BIAS VOLTAGE (VOLTS) 0.001 50 Figure 14. Output Capacitance 0 2 4 6 Vin, INPUT VOLTAGE (VOLTS) VO = 0.2 V TA=−25°C 10 25°C 75°C 1 0.1 0 10 8 10 Figure 15. Output Current versus Input Voltage 100 V in , INPUT VOLTAGE (VOLTS) Cob , CAPACITANCE (pF) TA=75°C 25°C 10 50 40 VCE = 10 V 20 30 40 IC, COLLECTOR CURRENT (mA) Figure 16. Input Voltage versus Output Current http://onsemi.com 7 50 NSBC114EPDXV6T1, NSBC114EPDXV6T5 1000 10 hFE , DC CURRENT GAIN (NORMALIZED) VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS) TYPICAL ELECTRICAL CHARACTERISTICS − NSBC124EPDXV6T1 PNP TRANSISTOR IC/IB = 10 1 25°C TA=−25°C 75°C 0.1 0.01 0 20 IC, COLLECTOR CURRENT (mA) 40 TA=75°C 10 1 Figure 18. DC Current Gain 100 IC, COLLECTOR CURRENT (mA) 2 1 0 10 20 30 40 VR, REVERSE BIAS VOLTAGE (VOLTS) TA=−25°C 10 1 0.1 0.01 0.001 50 Figure 19. Output Capacitance 100 25°C 75°C f = 1 MHz lE = 0 V TA = 25°C V in , INPUT VOLTAGE (VOLTS) Cob , CAPACITANCE (pF) 4 0 VO = 5 V 0 1 2 3 4 5 6 7 Vin, INPUT VOLTAGE (VOLTS) VO = 0.2 V 10 25°C 75°C 1 0 10 8 9 Figure 20. Output Current versus Input Voltage TA=−25°C 0.1 100 IC, COLLECTOR CURRENT (mA) Figure 17. VCE(sat) versus IC 3 25°C −25°C 100 10 50 VCE = 10 V 20 30 IC, COLLECTOR CURRENT (mA) 40 50 Figure 21. Input Voltage versus Output Current http://onsemi.com 8 10 NSBC114EPDXV6T1, NSBC114EPDXV6T5 10 1000 IC/IB = 10 hFE , DC CURRENT GAIN (NORMALIZED) VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS) TYPICAL ELECTRICAL CHARACTERISTICS − NSBC144EPDXV6T1 NPN TRANSISTOR 1 25°C TA=−25°C 75°C 0.1 0.01 0 TA=75°C 25°C −25°C 100 10 50 20 40 IC, COLLECTOR CURRENT (mA) VCE = 10 V 10 IC, COLLECTOR CURRENT (mA) 1 Figure 22. VCE(sat) versus IC 1 100 IC, COLLECTOR CURRENT (mA) 0.4 0.2 0 0 25°C 75°C 0.6 TA=−25°C 10 1 0.1 0.01 VO = 5 V 0.001 50 10 20 30 40 VR, REVERSE BIAS VOLTAGE (VOLTS) 0 2 4 6 Vin, INPUT VOLTAGE (VOLTS) 100 VO = 0.2 V TA=−25°C 10 25°C 75°C 1 0.1 0 10 8 10 Figure 25. Output Current versus Input Voltage Figure 24. Output Capacitance V in , INPUT VOLTAGE (VOLTS) Cob , CAPACITANCE (pF) Figure 23. DC Current Gain f = 1 MHz IE = 0 V TA = 25°C 0.8 100 20 30 40 50 IC, COLLECTOR CURRENT (mA) Figure 26. Input Voltage versus Output Current http://onsemi.com 9 NSBC114EPDXV6T1, NSBC114EPDXV6T5 1 1000 IC/IB = 10 TA=−25°C 25°C 75°C 0.1 0.01 hFE , DC CURRENT GAIN (NORMALIZED) VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS) TYPICAL ELECTRICAL CHARACTERISTICS − NSBC144EPDXV6T1 PNP TRANSISTOR 0 10 20 30 IC, COLLECTOR CURRENT (mA) TA=75°C 25°C −25°C 100 10 40 1 10 IC, COLLECTOR CURRENT (mA) Figure 27. VCE(sat) versus IC Figure 28. DC Current Gain 1 IC, COLLECTOR CURRENT (mA) 0.6 0.4 0.2 0 0 −25°C 1 0.1 0.01 Figure 29. Output Capacitance VO = 5 V 1 0 2 3 4 5 6 7 Vin, INPUT VOLTAGE (VOLTS) VO = 0.2 V TA=−25°C 25°C 75°C 1 0.1 0 10 8 9 Figure 30. Output Current versus Input Voltage 100 10 25°C TA=75°C 10 0.001 50 10 20 30 40 VR, REVERSE BIAS VOLTAGE (VOLTS) V in , INPUT VOLTAGE (VOLTS) Cob , CAPACITANCE (pF) 100 f = 1 MHz lE = 0 V TA = 25°C 0.8 100 20 30 IC, COLLECTOR CURRENT (mA) 40 50 Figure 31. Input Voltage versus Output Current http://onsemi.com 10 10 NSBC114EPDXV6T1, NSBC114EPDXV6T5 1 300 IC/IB = 10 hFE, DC CURRENT GAIN (NORMALIZED) VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS) TYPICAL ELECTRICAL CHARACTERISTICS − NSBC114YPDXV6T1 NPN TRANSISTOR TA=−25°C 25°C 0.1 75°C 0.01 0.001 0 20 40 60 IC, COLLECTOR CURRENT (mA) TA=75°C VCE = 10 250 25°C 200 −25°C 150 100 50 0 80 2 1 4 6 Figure 32. VCE(sat) versus IC 100 f = 1 MHz lE = 0 V TA = 25°C 3 TA=75°C IC, COLLECTOR CURRENT (mA) 3.5 2.5 2 1.5 1 0.5 0 2 4 6 8 10 15 20 25 30 35 VR, REVERSE BIAS VOLTAGE (VOLTS) 40 45 25°C −25°C 10 VO = 5 V 1 50 Figure 34. Output Capacitance 0 2 4 6 Vin, INPUT VOLTAGE (VOLTS) VO = 0.2 V TA=−25°C 25°C 75°C 1 0.1 0 10 8 Figure 35. Output Current versus Input Voltage 10 V in , INPUT VOLTAGE (VOLTS) Cob , CAPACITANCE (pF) 90 100 Figure 33. DC Current Gain 4 0 8 10 15 20 40 50 60 70 80 IC, COLLECTOR CURRENT (mA) 20 30 IC, COLLECTOR CURRENT (mA) 40 Figure 36. Input Voltage versus Output Current http://onsemi.com 11 50 10 NSBC114EPDXV6T1, NSBC114EPDXV6T5 1 180 IC/IB = 10 hFE , DC CURRENT GAIN (NORMALIZED) VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS) TYPICAL ELECTRICAL CHARACTERISTICS − NSBC114YPDXV6T1 PNP TRANSISTOR TA=−25°C 25°C 0.1 75°C 0.01 0.001 0 20 40 60 IC, COLLECTOR CURRENT (mA) TA=75°C VCE = 10 V 160 25°C 140 −25°C 120 100 80 60 40 20 0 80 2 1 4 6 Figure 37. VCE(sat) versus IC 100 TA=75°C 3.5 IC, COLLECTOR CURRENT (mA) f = 1 MHz lE = 0 V TA = 25°C 4 3 2.5 2 1.5 1 0.5 0 2 4 6 8 10 15 20 25 30 35 40 VR, REVERSE BIAS VOLTAGE (VOLTS) 45 10 VO = 5 V 0 2 4 6 Vin, INPUT VOLTAGE (VOLTS) VO = 0.2 V 25°C TA=−25°C 75°C 1 0 10 8 10 Figure 40. Output Current versus Input Voltage 10 0.1 25°C −25°C 1 50 Figure 39. Output Capacitance V in , INPUT VOLTAGE (VOLTS) Cob , CAPACITANCE (pF) 80 90 100 Figure 38. DC Current Gain 4.5 0 8 10 15 20 40 50 60 70 IC, COLLECTOR CURRENT (mA) 20 30 IC, COLLECTOR CURRENT (mA) 40 50 Figure 41. Input Voltage versus Output Current http://onsemi.com 12 NSBC114EPDXV6T1, NSBC114EPDXV6T5 TYPICAL ELECTRICAL CHARACTERISTICS − NSBC114TPDXV6T1 HFE, DC CURRENT GAIN (NORMALIZED) 1000 HFE, DC CURRENT GAIN (NORMALIZED) 1000 TA = 25°C VCE = 10 V VCE = 5.0 V 100 1.0 10 IC, COLLECTOR CURRENT (mA) 100 100 TA = 25°C VCE = 10 V VCE = 5.0 V 1.0 Figure 42. DC Current Gain − PNP 10 IC, COLLECTOR CURRENT (mA) 100 Figure 43. DC Current Gain − NPN TYPICAL ELECTRICAL CHARACTERISTICS − NSBC143TPDXV6T1 HFE, DC CURRENT GAIN (NORMALIZED) 1000 HFE, DC CURRENT GAIN (NORMALIZED) 1000 TA = 25°C VCE = 10 V VCE = 5.0 V 100 1.0 10 IC, COLLECTOR CURRENT (mA) 100 100 TA = 25°C VCE = 10 V VCE = 5.0 V 1.0 Figure 44. DC Current Gain − PNP 10 IC, COLLECTOR CURRENT (mA) Figure 45. DC Current Gain − NPN http://onsemi.com 13 100 NSBC114EPDXV6T1, NSBC114EPDXV6T5 PACKAGE DIMENSIONS SOT−563, 6 LEAD CASE 463A−01 ISSUE O A −X− 5 6 1 2 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. C K MILLIMETERS MIN MAX 1.50 1.70 1.10 1.30 0.50 0.60 0.17 0.27 0.50 BSC 0.08 0.18 0.10 0.30 1.50 1.70 4 B −Y− 3 D G J 5 PL 6 0.08 (0.003) STYLE 1: PIN 1. 2. 3. 4. 5. 6. DIM A B C D G J K S S M X Y STYLE 2: PIN 1. 2. 3. 4. 5. 6. EMITTER 1 BASE 1 COLLECTOR 2 EMITTER 2 BASE 2 COLLECTOR 1 STYLE 3: PIN 1. 2. 3. 4. 5. 6. EMITTER 1 EMITTER2 BASE 2 COLLECTOR 2 BASE 1 COLLECTOR 1 CATHODE 1 CATHODE 1 ANODE/ANODE 2 CATHODE 2 CATHODE 2 ANODE/ANODE 1 STYLE 4: PIN 1. 2. 3. 4. 5. 6. INCHES MIN MAX 0.059 0.067 0.043 0.051 0.020 0.024 0.007 0.011 0.020 BSC 0.003 0.007 0.004 0.012 0.059 0.067 COLLECTOR COLLECTOR BASE EMITTER COLLECTOR COLLECTOR SOLDERING FOOTPRINT* 0.3 0.0118 0.45 0.0177 1.35 0.0531 1.0 0.0394 0.5 0.5 0.0197 0.0197 SCALE 20:1 mm inches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Phone: 81−3−5773−3850 http://onsemi.com 14 For additional information, please contact your local Sales Representative. NSBC114EPDXV6/D