ETC GIGAPHY-SD

GigaPHY(TM) -SD Device
GDPHYSD_1B
Eval Board
Gigabit Ethernet PHY Solutions
Users Manual
GigaPHY-SD
Gphysd_1b
Gigabit Evaluation Board
GigaPHY(TM) -SD Device
Physical Layer 10-Bit Transceiver for Gigabit Ethernet
Last Updated 11/04/97
 1997 Advanced Micro Devices
Trademark Information
1 of 7
GigaPHY(TM) -SD Device
GDPHYSD_1B
Eval Board
Features
•
•
•
•
•
•
•
Evaluation System for use in studying the GigaPHY™ Am79761.
Switches for Driving Control Lines.
LED’s for Monitoring Control Lines.
On Board Generation of 3.3V from External 5V through 12V supply.
Internal or External Clock Source.
10-bit Transmit Data Provided From Switches or onboard PAL or from a Pattern Generator.
10-bit Receive Data Monitored on LED’s or Through a Logic Analyzer Pod.
Block Diagram
SW
Shutdown
3.3 Voltage Regulator
OSC
INT.
EXT.
SMA
SMA
SW
SEL[0]
SW
SEL[1]
PAL
Or
Switch
TXD[9:0]
Logic
Analyzer/Pattern
Pod
AM79761
GigaPHY™
Ethernet PHY
SW
EWRAP
SW
EN_CDET
RXD[9:0]
Logic
Analyzer
Pod
Last Updated 11/04/97
 1997 Advanced Micro Devices
Trademark Information
2 of 7
B
U
F
F
E
R
S
RXD[9:0]
L
E
D
S
GigaPHY(TM) -SD Device
GDPHYSD_1B
Eval Board
General Description
The GigaPHY™ GPHYSD_1B Board, provides a low cost, easy-to-use tool to evaluate the Gigabit
Transceiver, AM79761, with regard to signal quality and performance. It is intended that the GigaPHY™
board be a self-contained Evaluation Unit. In its simplest form, the switches on the GPHYSD_1B can be
used to set the transmit data and control lines while monitoring received data and status lines with LED’s.
A pre-programmed PAL in addition to the switch settings can generate simple word patterns.
More in-depth evaluations can be implemented by connecting a Pattern Generator (10-bits at
125MHz) to pods on the board in order to generate transmit data and control signals. A logic analyzer can
also be connected to pods on the board in order to monitor receive data and status signals. With this
setup 8B/10B data can be sent to the transmitter on the Evaluation Unit to generate Gigabit data and
monitored on the Logic Analyzer.
Other useful features of the board include the presence of an on-board, removable oscillator with Tristate (normally at 125MHz) in a DIP, half DIP or Surface Mount form. An on-board voltage regulator is
used to provide 3.3V to the board with a shutdown switch used to turn off power to all components.
Scope of this Document
It is intended that the AM79761 datasheet be used for reference in understanding the device function.
Additionally, the following items are enclosed in this document:
1.
2.
3.
4.
Schematics for the board
Artwork for the board (copies of each layer)
Fabrication drawing for the board
Bill of materials for the board.
Operation and Switch Settings
HP1
HP2
LED0
LED1
LED2
LED3
LED4
LED5
LED6
LED7
LED8
LED9
LED10
LED11
LED12
LED13
LED14
LED15
LED16
LED17
P1
P2
P3
TXD
Logic Analyzer/Pattern input
RXD
Logic Analyzer
RXD[0] Status
RXD[1] Status
RXD[2] Status
RXD[3] Status
RXD[4] Status
RXD[5] Status
RXD[6] Status
RXD[7] Status
RXD[8] Status
RXD[9] Status
COMDET
Comma Character Status
+5POS External Power Supply Input indicator
+3.3 Power Supply Input indicator
/SHDN Status for Voltage Regulator if
[ON] Shutdown [OFF] Enabled
SEL[0]
SEL[1]
EWRAP
EN_CDET
/SHDN
[H] Voltage Regulator is [ON] Power to DUT
[L] Shuts down the Voltage Regulator[OFF] No
power to DUT.
SEL[0]
SEL[1]
P4
P5
PWR1
PWR2
SMA1
EWRAP
EN_CDET
Ext. Lab bench +5V DC supply
Ext. Wallmount +5V DC supply
External 125Mhz Clock
Install [0]ohm
resistor R2 and W1[to Tristate Clock Crystal].
SMA2
TX[+] Output
SMA3
TX[-] Output
SMA4
RX[+] Output
SMA5
RX[-] Output
SMA6
RCLKN Output
SMA7
RCLK Output
SW1
Manual Setting to TXD[0:9]
U1
AM79761
U2
PAL for TXD[0:9] inputs
U3
Buffer to LED’s
U4
Buffer to LED’s
VR1
+5POS to +3.3POS Voltage Regulator with
Shutdown.
W1
TRI-STATE Jumper to Tri-State Clock Crystal
output.
X1
125 MHz Clock Crystal.
ZTP1
VDDIN [+5 volt power supply].
ZTP2
+5POS going to Voltage regulator.
ZTP3,5,6,7
DVSS
ZTP4
DVSS
Last Updated 11/04/97
 1997 Advanced Micro Devices
Trademark Information
3 of 7
GigaPHY(TM) -SD Device
GDPHYSD_1B
Eval Board
Operation
The GigaPHY™ eval board provides potential customers with a simple, easy-to-use evaluation tool
for understanding the function and performance of the AM79761 10-bit Gigabit Transceiver.
A 125MHz 3.3V crystal oscillator provides a reference clock (REFCLK) to the AM79761. The clock
trace has been minimized to provide the best signal quality possible. Since REFCLK is used to latch data
into the AM79761, the trace length between the REFCLK clock and the TXD[0-9] data should be kept
somewhat similar (i.e. within 1”) so as to maximize the timing margin for the chip generating the transmit
data. The recovered clocks, RCLK and RCLKN, can be monitored through the SMA connectors.
The TEST pins of the AM79761 are tied HIGH for manual switch operation. The EN_CDET pin, which
is set by a switch, allows SYNC detection and framing. When EN_CDET is enabled, the detection of
COMMA will generate a COM_DET, which is monitored by an LED. In order to select loopback mode, the
EWRAP must be HIGH which will cause the parallel input data TXD[0-9] be wrapped around inside the
AM79761 and outputed as RXD[0-9] and the TX[+/-] outputs will be held high.
The on board 125 MHz oscillator generates the transmit clock for the AM79761 (REFCLK). TXD[0-9]
is latched into the AM79761 on every rising edge of this clock. The AM79761 recovers the data with the
word-oriented clock (RBC-) at 62.5MHz.
An on-board diagnostic path is provided to allow testing of the board. The input parallel data can be
generated by a 10-bit switch or by a pre-programmed PAL. The 10-bit switch only allows a static 10 bit
word pattern but the PAL can be used to generate a longer repetitious word patterns. A more
sophisticated word pattern can be generated from a Pattern Generator through the pod connector. If nonloopback mode is selected, the parallel, TXD[0-9], will be serialized by the AM79761 and pumped out
through the TX[+/-]. Then, the high-speed serial data is received through the RX[+/-] into the AM79761
and is deserialized to a 10-bit parallel data bus, RXD[0-9]. LED’s or a logic analyzer through the on-board
pod can monitor the RXD[0-9].
For a 50 ohm environment, the AM79761 transmitters PECL outputs drive 50 ohm traces with a 182
ohm current sinking resistor and an AC-coupled 0.01uF capacitor to the 50-ohm SMA connectors labeled
TX[+] (SMA1) and TX[-] (SMA2). The resistor-capacitor termination circuit are needed to supply current
and decouple the 3.3V-referenced PECL outputs of the AM79761 from the PECL-levels required on the
coaxial cable. The AM79761 receives differential PECL serial data from the coax cable on the 50-ohm
SMA connectors labeled RX+/-. This input is immediately AC-coupled through a 0.01uF capacitor and
terminated with 182-ohm pull-down resistors. The AM79761 provides internal resistors to set the DC Bias
to Vdd/2. The termination resistors and AC coupling caps are located as near as possible to the input pins
on the AM79761 to maximize signal quality.
The Evaluation board has voltage regulator that supplies the board with 3.3Volts. The input to the
voltage regulator can be from 5 volts DC to 12 volts DC from either a lab bench supply through PWR1 or
from a wall mounted supply through PWR2. The voltage regulator output can be shutdown with the
shutdown a switch [P1]. When LED13 is ON the regulator output is OFF.
PAL and Manual Switch Pattern Generator Settings
SEL[0] L SEL[1] L
Undetermined Undetermined
SEL[0] L SEL[1] H
Pseudorandom
SEL[0] H SEL[1] L
00111100xx
Repeating 00111100xx
SEL[0] H SEL[1] H
Alternating
Alternating +/- K28.5
Note; for the PAL to output the right data the Manual switch setting SW1 all have to be off.
Note; for the Manual Switch to work , the PAL has to be removed.
Last Updated 11/04/97
 1997 Advanced Micro Devices
Trademark Information
4 of 7
GigaPHY(TM) -SD Device
GDPHYSD_1B
Eval Board
Layout Considerations
The board has been designed in a simple, straightforward manner in which highest priority was given
to properly routing of high-speed signals. This four layer, controlled impedance PCB contains signal
layers on the top and bottom of the board with internal Power (Vdd=3.3V) and GND planes. Components
are mounted on both sides of the board so that passives may be placed as close as possible to their ideal
location regardless of which side of the board the part is placed. The PCB accommodates a special
socket for the AM79761 so placement of passives on the topside near the pins was not possible.
The 1Gb/s transmit and receive signals between the chipset and the connector were the first priority.
Since they form a differential PECL pair these traces were of minimal and equal length and, in this
example, have characteristic impedance of 50 ohm. The passive components should be packed as
closely as possible to minimize stub lengths and maximize signal quality. On the receiver inputs,
minimization of trace length between the AC Coupling Caps (C28/C29), the input pins (RX[+],RX[-]) and
the 182 ohm termination resistors are very important since the terminator resistors act as the virtual end
of the line. Stubs on these lines will cause degradation of signal quality into the receivers due to
reflections.
Diagonal corners were used so as to avoid the impedance mismatches found in right angle traces.
The same considerations as other high-speed signals apply here.
Transmit data jitter is generated through two main factors: Power Supply Noise and TBC jitter. Proper
layout of the REFCLK traces is essential to minimize REFCLK jitter into the part. Curved traces are used
to minimize reflections. Generous bypassing of the power supplies and separate isolation and decoupling
for each sensitive supply type is one easy method to eliminate much of this noise.
In general, common layout/placement techniques developed for lower speed PCBs apply here and
should lead to first-pass success.
Last Updated 11/04/97
 1997 Advanced Micro Devices
Trademark Information
5 of 7
GigaPHY(TM) -SD Device
GDPHYSD_1B
Eval Board
Table 1: Bill of Materials
Part Number
Manufacture
Reference Number
1)
Item
2
Qty. Device Description
Straight .1”x.1” 20 pin Low Profile Header
2520-6002UG
3M
HP1-2
2)
1
Gigabit Ethernet Transceiver
AM79761
AMD
U1
3)
1
2 pin jumper
103240-1
AMP
W1
4)
1
Shunt
15-38-1024
MOLEX
W1
5)
1
Euro Terminal Block 2 PIN
5LEV-02
Augot
PWR1
6)
1
Augot/Alcoswitch
SW1
7)
5
10 Position Surface Mount Extended Actuator Dip ADE10S
Switch
Surface Mount Toggle Switch SPDT
GT11MSCKE
C&K
P1-5
8)
7
P.C. Pin
10-8025-2-03
Concord
ZTP1-7
9)
1
Power Supply Jack
PJ-002
Cui/Stack Inc.
PWR2
10)
1
49.9 ohm Resistor
CRCW080549R9F
DALE
R1
11)
1
0 ohm Resistor
CRCW1206000J
DALE
R3
12)
5
0 ohm Resistor
CRCW0805000J
DALE
R4,R6,R31-33
13)
4
182 ohm Resistor
CRCW12061820F
DALE
R5,R7,R34-35
14)
5
10K ohm Resistor
CRCW08051002F
DALE
R8,R11,R14,R26,R29
15)
16
301 ohm Resistor
CRCW08053010F
DALE
16)
1
1K ohm Resistor
CRCW08051001F
DALE
R9,R13,R25,R27,R30,R3646
R10
17)
1
619 ohm Resistor
CRCW08056190F
DALE
R12
18)
10
4.75K ohm Resistor
CRCW08054751F
DALE
R15-24
19)
1
750 ohm Resistor
CRCW08057500F
DALE
R28
20)
3
Straight PC mount Jack Receptacle
142-0701-201
E-F-Johnson
SMA1,SMA6-7
21)
4
End Launch PC mount Jack Receptacle
142-0701-801
E-F-Johnson
SMA2-5
22)
1
Wound Bead
29-43-666681
Fair-Rite
FB1
23)
6
0.01MF COG Ceramic Capacitor
C1812C103J5GAC
Kemet
C6-9,C30-31
24)
1
0.1MF X7R Ceramic Capacitor
C1206C104K5RAC
Kemet
C10
25)
1
1000pf X7R Ceramic Capacitor
C0805C102J5RAC
Kemet
C32
26)
1
High Performance EECMOS PLD 3.3volt
GAL22LV10D-4LJ
Lattice
U2
27)
1
28 pin PLCC SMT socket
822066-4
AMP
U2
28)
10
"ULTRA Yellow" Surface Mount LED
SML10Y4B-TR
LEDTRONICS
LED0-9
29)
7
"HI-EFF Green" Surface Mount LED
SML10G4B-TR
LEDTRONICS
LED10-12,LED14-17
30)
1
"ULTRA Red" Surface Mount LED
'SML10R6C-TR
LEDTRONICS
LED13
31)
1
LT1529CT-3.3
Linear Technology VR1
32)
1
Thermalloy
4880
VR1
33)
1
.+3.3V Low Dropout Micropower Voltage
Regulator 3A
TO-220
Mounting Kit
Heat Sink for To-220
Thermalloy
6078B
VR1
34)
1
SMF Omni-Blok Fuse Block with 750MA Fuse
154750
LittleFuse
F1
36)
1
H3390-125
MF Electronics
X1
37)
6
125 MHz Half-size Clock Crystal 3.3Volt with
TRI_STATE
Mini Spring Socket
50935-1
AMP
X1
38)
1
Empty do not stuff
N/A
N/A
R2
39)
2
Low Voltage Octal Buffer/Line Driver
74LCX540WM
U3-4
40)
20
0.01MF X7R Ceramic Capacitor
ECU-V1H103KBG
National
Semiconductor
Panasonic
41)
3
33MF Tantalum Chip Capacitor 16WV
293D336X9016D2T
Sprague
C1,C3,C22
35)
Last Updated 11/04/97
 1997 Advanced Micro Devices
Trademark Information
6 of 7
C4-5,C11-21,C23-29
GigaPHY(TM) -SD Device
GDPHYSD_1B
Eval Board
Item Qty. Device Description
Part Number
Manufacture
Reference Number
42)
1
100MF Electrolytic Capacitor
518D107M016AX7S
Sprague
C2
43)
1
Ferrite Bead inductor
TDKBC50-1206
TDK
FB2
44)
6
ASMCO
ZM1-6
45)
6
ASMCO
ZM1-6
46)
1
NYLON Slotted Round Head Machine Screw
112508
Thread 6-32 Length 3/8”
Nylon Threaded Spacer, Thread 6-32 Length ½” 1530 H – N -.500 - 1
Lab Bench Power Supply Cable
12” Hookup wire for power supply Red
M16878/5-BGE-2
47)
1
12” Hookup wire for power supply Black
Anixter
48)
2
Plastic tiedowns 3-3/4”
49)
1
Switching Power Supply
M16878/5BGE-0
4200
Wall Power Supply
DSA-0301-05
Last Updated 11/04/97
 1997 Advanced Micro Devices
Trademark Information
7 of 7
Anixter
ASMCO
DVE
A
B
C
D
1
1
Gigabit Transceiver
Section
REFCLK
LEDS
LED[10:0]
REFCLK
REFCLK
LED[10:0]
LED[10:0]
SYSTEM CLK
2
2
LED.1
SYSCLK.1
Page 5
Page 6
GIGABIT.1
Pages 2 to 4
EXTERNAL
POWER
3
3
SUPPLY
PWRSUPLY.1
Page 7
ADVANCED MICRO DEVICES
COPYRIGHT 1997 AMD
SCHEMATIC DIAGRAM
APPROVED BY:
Gigabit Ethernet Transceiver
1000Base-X Eval. Brd.
DATE
4
MODULE
SHEET
1
GPHYSD_1B
DRAWN BY
Steve Cooper
A
B
ENGINEER
Robert Hartman
C
SIZE
DWG. NO.
D
GPHYSD_1B
DATE
4
BRD. NO.
B
GPHYSD_1B
PAGE
10-23-1997_14:48
D
REV
1 of 7
A
C
B
EWRAP
D
HP2
HP1
LOW Normal operation.
High internal loopback
H.P. 100K OHM TERMINATION
EN_CDET
LOW Current word alignment.
HIGH Enables COM_DET
HIGH Enables word resynchronization.
01650-63203
01650-63203
1
D15 4
D14 5
D13 6
D12 7
D8 11
D11 8
D10 9
D9 10
D7 12
D6 13
D5 14
D4 15
D3 16
D2 17
D1 18
D0 19
CLK1 3
CLK2 2
+5V 1
GND 20
D15 4
D14 5
D13 6
D12 7
D8 11
D11 8
D10 9
D9 10
D7 12
D6 13
D5 14
D4 15
D3 16
D2 17
D1 18
D0 19
CLK1 3
CLK2 2
+5V 1
GND 20
1
ADAPTER
(OUTPUT)
(OUTPUT)
LOW disables COM_DET
20PSHEAD
20PHEAD
H.P. 100K OHM TERMINATION
ADAPTER
20PSHEAD
20PHEAD
DVSS
4
TXD[3]
TXD[3]
6
TXD[4]
TXD[4]
7
TXD[5]
TXD[5]
8
TXD[6]
TXD[6]
TXD[7]
TXD[7]
11
TXD[8]
TXD[8]
12
TXD[9]
TXD[9]
13
9
2
REFCLK
EWRAP
22
EWRAP
19
EN_CDET
24
1
3
REFCLK
TXD[1]
RXD[1]
TXD[2]
RXD[2]
TXD[3]
RXD[3]
RXD[4]
TXD[4]
RXD[9]
RXD[8]
RXD[7]
RXD[6]
RXD[5]
RXD[4]
RXD[3]
RXD[2]
RXD[1]
RXD[0]
EN_CDET
EWRAP
COM_DET
RXD[0]
RXD[0]
44
RXD[1]
RXD[1]
43
RXD[2]
RXD[2]
41
RXD[3]
RXD[3]
40
RXD[4]
RXD[4]
39
RXD[5]
RXD[5]
TXD[5]
RXD[5]
TXD[6]
RXD[6]
38
RXD[6]
RXD[6]
TXD[7]
RXD[7] 36
RXD[7]
RXD[7]
35
RXD[8]
RXD[8]
34
RXD[9]
RXD[9]
TXD[8]
RXD[8]
TXD[9]
RXD[9]
REFCLK
RCLK
EWRAP
RCLKN
EN_CDET
COM_DET
30
RCLKN
47
COM_DET
1
3
23
26
DVDD
2
DVSS
SMA7
TEST[1]
TEST[2]
TX[+]
SMA_STR
SMA_STR
TEST[4]
TX[-]
DVSS
RX[+]
R32
RC0805
0.01MF
61
TX[-]
54
RX[+]
52
RX[-]
DVSS
SMA6
DVDD
RCLKN
1
SMA_STR
2
SMA_STR
R33
RX[-]
DVSS
DVSS
1 of 2
0R
RC0805
DVSS
1
AM79761
R31
C14
RCLK
TX[+]
62
TEST[3]
2
20
EN_CDET
2
COM_DET
2
18
RXD[9:0]
RCLK
31
DVSS
P5
SPDT
SPDT
A1
IN
5
3
TXD[2]
45
4
TXD[1]
TXD[2]
RXD[0]
3
TXD[1]
TXD[0]
5
LED16
2
2
4
R29
10K
RC0805
R26
10K
RC0805
1
LED17
GRN_LED
LED1206
1
GRN_LED
LED1206
TXD[0]
2
P4
SPDT
SPDT
RCLK
RCLKN
TXD[9]
TXD[8]
TXD[7]
TXD[6]
U1
TXD[0]
3
R27
301
RC0805
R30
301
RC0805
A1
IN
TXD[5]
TXD[9:0]
TXD[4]
DVDD
TXD[3]
DVDD
TXD[2]
DVDD
TXD[1]
REFCLK
DVDD
TXD[0]
DVSS
AM79761A
NC=16,17,27,48,49,64
OZ64PQFP
3
3
AM79761
4
5
DVSS
SMA3
1
SMA_JEL
SMA_JEL
DVSS
DVSS
DVSS
R7
R5
182
RC0805
182
RC0805
R35
182
RC0805
R34
182
RC0805
DVSS
5
0R
RC0805
5
4
2
R6
SMA_JEL
3
C5
0.01MF
RC0805
TX[-]
SMA_JEL
2
SMA_JEL
DVSS
SMA5
DVSS
SMA_JEL
DVSS
1
RX[-]
1
0R
RC0805
5
4
3
2
DVSS
SMA2
TX[+]
SMA_JEL
3
SMA_JEL
4
1
C29
0.01MF
RC0805
C4
0.01MF
RC0805
R4
3
RX[+]
SMA4
2
C28
0.01MF
RC0805
DVSS
ADVANCED MICRO DEVICES
COPYRIGHT 1997 AMD
4
C24
RC0805
0.01MF
C18
RC0805
0.01MF
DVSS
SCHEMATIC DIAGRAM
APPROVED BY:
DATE
Gigabit Ethernet Transceiver
1000Base-X Eval. Brd.
DVSS
MODULE
SHEET
SIZE
GIGABIT
1
D
DRAWN BY
Steve Cooper
A
4
B
C
ENGINEER
Robert Hartman
DWG. NO.
BRD. NO.
QPHYSD_1B
QPHYSD_1B
DATE
PAGE
2 of 7
10-21-1997_9:52
D
REV
B
A
C
B
D
U3
74LCX540
From 10-bit receive outputs.
RXD[9:0]
A1
IN
1
20PSOLIC
DVDD;20
DVSS;10
A2
RXD[0]
RXD[0]
2
A3
RXD[1]
RXD[1]
3
A4
RXD[2]
RXD[2]
4
A5
RXD[3]
RXD[3]
5
A6
RXD[4]
RXD[4]
6
A7
RXD[5]
RXD[5]
7
A8
RXD[6]
RXD[6]
8
A9
RXD[7]
RXD[7]
9
A1
Y1
A2
Y2
A3
Y3
A4
Y4
A5
Y5
A6
Y6
A7
Y7
A8
1G
Y8
LED[10:0]
A1
IN
18
LED[0]
LED[0]
A2
17
LED[1]
LED[1]
A3
16
LED[2]
LED[2]
A4
15
LED[3]
LED[3]
A5
14
LED[4]
LED[4]
A6
13
LED[5]
LED[5]
A7
12
LED[6]
LED[6]
A8
11
LED[7]
LED[7]
A9
18
LED[8]
LED[8]
A2
17
LED[9]
LED[9]
A3
16
LED[10]
LED[10]
A4
To LED Block
1
2G
1
19
DVSS
U4
74LCX540
A1
IN
20PSOLIC
DVDD;20
DVSS;10
A2
RXD[8]
RXD[8]
2
A3
RXD[9]
RXD[9]
3
COM_DET
4
DVDD
A1
5
6
7
DVDD
8
R9
301
RC0805
2
9
DVDD
DVDD
Y1
A2
Y2
A3
Y3
A4
Y4
A5
Y5
A6
Y6
A7
Y7
A8
1G
Y8
A1
IN
15
14
13
2
12
11
2G
DVDD
R11
R8
4
3
REFCLK
SEL[0],SEL[1]=[1,0]....Repeating 00111100xx
2
SEL[0],SEL[1]=[0,0]....Not definded
R24
2
6
5
SEL[0],SEL[1]=[0,1]....Pseudo-random
R23
1
3
9
SEL[0],SEL[1]=[1,1]....Alternating +/- K28.5
R22
10
DVSS
R21
2
2
11
SEL[1]
To 10-bit transmitt inputs.
I10
12
P3
SPDT
SPDT
R20
I11
R19
13
R18
16
SEL[1]
1
3
LED15
SEL[0]
R17
SEL[0]
DVSS
R16
2
1
GRN_LED
LED1206
4.75K
RC0805
U2
GAL22LV10
R15
10K
RC0805
10K
RC0805
LED14
P2
SPDT
SPDT
7
3
19
DVSS
1
GRN_LED
LED1206
R13
301
RC0805
1
I9
IO9
I8
IO8
I7
IO7
I6
IO6
I5
IO5
I4
IO4
I3
IO3
I2
IO2
I1
IO1
CLK/IO
IO0
27
TXD[0]
TXD[0]
26
TXD[1]
TXD[1]
25
TXD[2]
TXD[2]
24
TXD[3]
TXD[3]
23
TXD[4]
TXD[4]
21
TXD[5]
TXD[5]
20
TXD[6]
TXD[6]
19
TXD[7]
TXD[7]
18
TXD[8]
TXD[8]
17
TXD[9]
TXD[9]
TXD[9:0]
3
GAL22LV10
AMP28PLCC
NC=1,8,15,22
DVSS;14
DVDD;28
SW1
DIP SWITCH
1
2
3
4
5
20
TXD[0]
TXD[0]
A2
B2
19
TXD[1]
TXD[1]
A3
B3
18
TXD[2]
TXD[2]
A4
B4
17
TXD[3]
TXD[3]
B5
16
TXD[4]
TXD[4]
TXD[5]
TXD[5]
A5
A6
B6
15
7
A7
B7
14
TXD[6]
TXD[6]
B8
13
TXD[7]
TXD[7]
B9
12
TXD[8]
TXD[8]
B10
11
TXD[9]
TXD[9]
9
DVDD
B1
A1
6
8
DVDD
A1
IN
A8
A9
10
A10
DVSS
DVDD
A1
IN
ADVANCED MICRO DEVICES
COPYRIGHT 1997 AMD
4
ADE10S
ADE10S
C30
C7
RC1812
0.01MF
RC1812
0.01MF
RC1812
0.01MF
DVSS
C31
DVSS
Manual Transmitt inputs.
SCHEMATIC DIAGRAM
APPROVED BY:
DATE
Gigabit Ethernet Transceiver
1000Base-X Eval. Brd.
DVSS
MODULE
BOARD
DRAWN BY
Steve Cooper
A
B
4
C
SHEET
SIZE
2
D
ENGINEER
Robert Hartman
DWG. NO.
BRD. NO.
QPHYSD_1B
QPHYSD_1B
DATE
PAGE
10-15-1997_13:36
D
3 of 7
REV
B
A
B
C
D
1
1
DVDD
DVDD
DVDD
DVDD
DVDD
DVDD
DVDD
U1
5
10
28
50
C12
0.01MF
RC0805
55
C25
0.01MF
RC0805
59
C19
0.01MF
RC0805
2
15
21
25
51
56
DVSS
VDDD[4]
VDDD[5]
VSSA
2
SM_BEAD
RC1206
C17
0.01MF
RC0805
VDDD[3]
58
VDDD[6]
DVSS
VDDP[1]
14
DVSS
1
57
VDDD[2]
C16
0.01MF
RC0805
1
DVSS
VDDA
DVDD
C20
0.01MF
RC0805
C11
0.01MF
RC0805
FB2
VDDD[1]
DVSS
DVSS
DVSS
VSSD[1]
VDDP[2]
VSSD[2]
VDDP[3]
VSSD[3]
VDDT[1]
VSSD[4]
VDDT[2]
VSSD[5]
VDDT[3]
DVDD
2 of 2
VSST[3]
DVDD
63
2
29
37
42
C26
0.01MF
RC0805
C27
0.01MF
RC0805
VSST[1]
DVDD
60
VSSD[7]
VSST[2]
DVDD
53
VSSD[6]
AM79761
Power
DVDD
C23
0.01MF
RC0805
C13
0.01MF
RC0805
C15
0.01MF
RC0805
C21
0.01MF
RC0805
32
33
46
DVSS
AM79761B
DVSS
DVSS
DVSS
DVSS
DVSS
NC=16,17,27,48,49,64
OZ64PQFP
AM79761
DVDD
3
3
1
+
2
C22
33MF
[D]7343
DVSS
ADVANCED MICRO DEVICES
COPYRIGHT 1997 AMD
SCHEMATIC DIAGRAM
APPROVED BY:
Gigabit Ethernet Transceiver
1000Base-X Eval. Brd.
DATE
4
MODULE
SHEET
BOARD
DRAWN BY
Steve Cooper
A
B
3
ENGINEER
Robert Hartman
C
SIZE
DWG. NO.
D
GPHYSD_1B
DATE
4
BRD. NO.
GPHYSD_1B
PAGE
10-6-1997_14:03
D
4 of 7
REV
B
A
B
DVDD
C
DVDD
DVDD
DVDD
DVDD
D
DVDD
DVDD
DVDD
DVDD
DVDD
DVDD
1
1
R46
301
RC0805
R45
301
RC0805
R44
301
RC0805
R43
301
RC0805
R42
301
RC0805
R41
301
RC0805
R40
301
RC0805
R39
301
RC0805
R38
301
RC0805
R37
301
RC0805
R36
301
RC0805
1
LED10
LED9
GRN_LED
LED1206
1
LED8
YEL_LED
LED1206
1
LED7
YEL_LED
LED1206
1
LED6
LED5
YEL_LED
LED1206
1
YEL_LED
LED1206
1
LED4
YEL_LED
LED1206
1
LED3
YEL_LED
LED1206
1
LED2
YEL_LED
LED1206
1
LED1
YEL_LED
LED1206
1
LED0
YEL_LED
LED1206
1
YEL_LED
LED1206
2
2
2
2
2
2
2
2
2
2
2
2
2
LED[10:0]
A1
IN
A1
IN
3
A2
LED[0]
A3
LED[1]
A4
LED[2]
A5
LED[3]
A6
LED[4]
A7
LED[5]
A8
LED[6]
A9
LED[7]
A2
LED[8]
A3
LED[9]
A4
LED[10]
R[0]
R[1]
R[2]
R[3]
R[4]
R[5]
R[6]
R[7]
R[8]
3
R[9]
COM_DET
ADVANCED MICRO DEVICES
COPYRIGHT 1997 AMD
SCHEMATIC DIAGRAM
APPROVED BY:
Gigabit Ethernet Transceiver
1000Base-X Eval. Brd.
DATE
4
MODULE
LEDS
DRAWN BY
Steve Cooper
A
B
SHEET
1
ENGINEER
Robert Hartman
C
SIZE
DWG. NO.
D
GPHYSD_1B
DATE
10-22-1997_10:48
4
BRD. NO.
GPHYSD_1B
PAGE
D
5 of 7
REV
B
A
B
C
D
1
1
DVDD
DVDD
R10
C6
1K
RC0805
0.01MF
RC1812
C32
DVSS
1000pF
RC0805
P8 +3.3V ENABLES CLK OUTPUT
DVDD
P8 DVSS DISABLE CLK OUTPUT
X1
2
2
W1
1
1
DVSS
TRI
14
VCC
4
HDR2
JUMPER2
2
11
R3
7
DVSS
GND
8
CLK
125_OSC_CLKA
REFCLK
REFCLK
0R
RC1206
125MHZ_TR
XSTAL_XX
EMPTY
RC1206
R2
SMA1
SMA_STR
1
125_EXT_CLK
SMA_STR
49R9
RC0805
DVSS
2
3
DVSS
4
5
3
R1
3
DVSS
ADVANCED MICRO DEVICES
COPYRIGHT 1997 AMD
SCHEMATIC DIAGRAM
APPROVED BY:
Gigabit Ethernet Transceiver
1000Base-X Eval. Brd.
DATE
4
MODULE
SHEET
1
SYSCLK
DRAWN BY
Steve Cooper
A
B
ENGINEER
Robert Hartman
C
SIZE
DWG. NO.
D
GPHYSD_1B
DATE
4
BRD. NO.
B
GPHYSD_1B
PAGE
10-15-1997_13:38
D
REV
6 of 7
A
B
C
D
From +5Volt Regulated External Power Supply
ZTP1
PWR2
1
3
VDDIN
1
5POS
5.5V External
2 VDDIN_A
750MA
EXTPWR
PJ002
ZTP2
FB1
F1
2
1
SMF154
1
3
2
4
1
C9
0.01MF
RC1812
FB3
W_BEAD
+
C10
0.1MF
RC1206
C2
100MF
AECAP-D
DVSS
PWR1
SYSGND
1
+V_IN
2
-V_IN
PWRCON2
2POS_PWR
SYSGND
5POS
5POS
DVDD
2
R28
C3
33MF
[D]7343
1
[ON] Output OFF
2
2
DVSS
+
1529CT33
TO220-5
ZTP4
2
5
IN
OUT
1
1
3
SD
SENSE
GND1
3
2
DVSS
DVSS
DVSS
ZTP7
C1
33MF
[D]7343
+
4
3.3V Internal
ZTP3
1
2
2
Supply Indicator
ZTP6
ZTP5
DVDD
3.3V Internal
DVSS
GND2
6
C8
RC1812
0.01MF
3
+5POS External
VR1
1
P1
SPDT
SPDT
2
DVSS
10K
RC0805
LED12
URED_LED
ULED1206
[OFF] Output ON
LED13
1
GRN_LED
LED1206
5POS
R14
GRN_LED
LED1206
1
R25
301
RC0805
R12
619
RC0805
LED11
750
RC0805
2
DVSS
3
DVSS
DVSS
3.3V Internal Shutdown Switch
[LOW] The Output is turned off.
DVSS
DVSS
DVSS
[HIGH] The Output is turned on.
DVSS
ADVANCED MICRO DEVICES
COPYRIGHT 1997 AMD
ZM3
ZM1
TP1
MBMT
ZM6
TP1
MBMT
ZM4
ZM5
TP1
MBMT
ZM2
TP1
MBMT
TP1
MBMT
TP1
MBMT
SCHEMATIC DIAGRAM
APPROVED BY:
Gigabit Ethernet Transceiver
1000Base-X Eval. Brd.
DATE
4
ZZ3
FIDUCIAL
ZZ2
FIDUCIAL
ZZ1
FIDUCIAL
1
1
1
T3
T3
T3
MODULE
Steve Cooper
B
1
PWRSUPL
DRAWN BY
A
SHEET
ENGINEER
Robert Hartman
C
SIZE
DWG. NO.
D
GPHYSD_1B
DATE
10-23-1997_14:32
4
BRD. NO.
B
GPHYSD_1B
PAGE
D
REV
7 of 7