DATA SHEET BIPOLAR ANALOG INTEGRATED CIRCUIT µ PC37Mxx Series TWO-OUTPUT POSITIVE VOLTAGE REGULATORS ★ DESCRIPTION The µ PC37Mxx series is a series regulator with two outputs, OUTPUT1: 1 A and OUTPUT2: 0.5 A, built in a single package. OUTPUT1 outputs 3.3 V or 2.5 V, and OUTPUT2 outputs 1.8 V or 2.5 V. This series can be used to realize set miniaturization and component reduction due to the use of on MP-3 or MP-3Z package. FEATURES PIN CONFIGURATION (Marking Side) ★ • Two-output series regulator built in a single package • Output voltage accuracy: ±2% MP-3Z (5-pin), MP-3 (5-pin) • Peak output current: OUTPUT1: 1 A, OUTPUT2: 0.5 A 1: INPUT 2: NC 3: GND 4: OUTPUT1 5: OUTPUT2 6: GND (Fin) • On-chip saturation protector at low input voltage 6 • On-chip overcurrent limiter • On-chip thermal protection 1 2 3 4 5 ★ ORDERING INFORMATION Part Number Package Marking Packing Type µ PC37MxxTJ SC-98 (5-pin MP-3Z) 37Mxx • Bag stuffing µ PC37MxxTJ-E1 SC-98 (5-pin MP-3Z) 37Mxx • Embossed-type taping (16 mm tape) • Pin 1 on drawout side • 2000 pcs/reel µ PC37MxxTJ-E2 SC-98 (5-pin MP-3Z) • Embossed-type taping (16 mm tape) 37Mxx • Pin 1 on takeup side • 2000 pcs/reel µ PC37MxxHB SC-99 (5-pin MP-3) • Bag stuffing 37Mxx "xx" in the part number and marking columns indicates the following. Example Output Voltage Part Number Marking 1.8 V µ PC37M21TJ 37M21 3.3 V 1.8 V µ PC37M31TJ 37M31 3.3 V 2.5 V µ PC37M32TJ 37M32 OUTPUT1 OUTPUT2 2.5 V The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information. Document No. G16444EJ2V0DS00 (2nd edition) Date Published April 2003 NS CP(K) Printed in Japan The mark ★ shows major revised points. 2002 2 + − Error Amp. Data Sheet G16444EJ2V0DS Saturation protector Saturation protector Overcurrent limiter Reference voltage − Drive circuit Error Amp. Drive circuit Thermal protection + Overcurrent limiter Thermal protection Start-up circuit µPC37Mxx Series ★ BLOCK DIAGRAM INPUT OUTPUT1 GND OUTPUT2 µPC37Mxx Series ABSOLUTE MAXIMUM RATINGS (TA = 25°C, unless otherwise specified.) Parameter Input Voltage Symbol VIN Rating Unit −0.3 to +8 V 10 Note Internal Power Dissipation (TC = 25°C) PT W Operating Ambient Temperature TA −40 to +85 °C Operating Junction Temperature TJ −40 to +150 °C Storage Temperature Tstg −55 to +150 °C Thermal Resistance (junction to case) Rth(J-C) 12.5 °C/W Thermal Resistance (junction to ambient) Rth(J-A) 125 °C/W Note Internally limited. When the operating junction temperature rises over 150°C, the internal circuit shuts down the output voltage. Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. TYPICAL CONNECTION D 12 D 11 OUTPUT1 µ PC37Mxx Series INPUT CIN OUTPUT2 + + COUT1 COUT2 D21 D22 CIN: 0.1 µF or higher. Set this value according to the length of the line between the regulator and INPUT pin. Be sure to connect CIN to prevent parasitic oscillation. Use of a film capacitor or other capacitor with excellent voltage and temperature characteristics is recommended. If using a laminated ceramic capacitor, it is necessary to ensure that CIN is 0.1 µF or higher for the voltage and temperature range to be used. COUT1, COUT2: 10 µF or higher. Be sure to connect COUT1 and COUT2 to prevent oscillation and improve excessive load regulation. Place CIN, COUT1 and COUT2 as close as possible to the IC pins (within 2 cm). Also, use an electrolytic capacitor with low impedance characteristics if considering use at sub-zero temperatures. D11, D12: If the OUTPUT1 pin or OUTPUT2 pin has a higher voltage than the INPUT pin, connect a diode. D21, D22: If the OUTPUT1 pin or OUTPUT2 pin has a lower voltage than the GND pin, connect a Schottky barrier diode. Caution Make sure that no voltage is applied to the OUTPUT1 pin or OUTPUT2 pin from external. Data Sheet G16444EJ2V0DS 3 µPC37Mxx Series ★ RECOMMENDED OPERATING CONDITIONS Parameter Input Voltage Symbol VIN Output Current 1 IO1 Type Number MIN. µ PC37M21 TYP. MAX. Unit 3.2 5.0 V µ PC37M31 4.5 6.0 µ PC37M32 4.5 6.0 µ PC37M21 0 0.3 µ PC37M31 0 0.5 µ PC37M32 0 0.5 A Output Current 2 IO2 All 0 0.3 A Operating Ambient Temperature TA All −40 +85 °C Operating Junction Temperature TJ All −40 +125 °C Caution Use of conditions other than the above-listed recommended operating conditions is not a problem as long as the absolute maximum ratings are not exceeded. However, since the use of such conditions diminishes the margin of safety, careful evaluation is required before such conditions are used. Moreover, using the MAX. value for all the recommended operating conditions is not guaranteed to be safe. ★ ELECTRICAL CHARACTERISTICS µ PC37M21 (TJ = 25°C, VIN = 3.3 V, IO1 = 0.3 A, IO2 = 0.3 A, unless otherwise specified.) Parameter Symbol Conditions MIN. TYP. MAX. Unit OUTPUT1 Output Voltage 1 VO1 2.45 2.5 2.55 V (2.5 V) Line Regulation 1 REGIN1 3.2 V ≤ VIN ≤ 5.0 V − 2 9 mV Load Regulation 11 REGL11 5 mA ≤ IO1 ≤ 0.5 A − 17 50 mV Load Regulation 12 REGL12 VIN = 5.0 V, 5 mA ≤ IO1 ≤ 1 A − 20 66 mV Output Noise Voltage 1 Vn1 10 Hz ≤ f ≤ 100 kHz − 60 − µVr.m.s. Ripple Rejection 1 R•R1 f = 120 Hz, 3.2 V ≤ VIN ≤ 5.0 V − 60 − dB Short Circuit Current 1 IOshort1 VIN = 5.0 V − 0.5 − A Peak Output Current 11 IOpeak11 VIN = 3.3 V 0.5 0.8 − A Peak Output Current 12 IOpeak12 VIN = 5.0 V 1.0 1.4 − A Temperature Coefficient of ∆VO1/∆T IO1 = 5 mA, 0°C ≤ TJ ≤ 125°C − − 0.4 − mV/°C 1.764 1.8 1.836 V Output Voltage 1 OUTPUT2 (1.8 V) Output Voltage 2 VO2 Line Regulation 2 REGIN2 3.2 V ≤ VIN ≤ 5.0 V − 2 9 mV Load Regulation 2 REGL2 5 mA ≤ IO2 ≤ 0.5 A − 17 50 mV Output Noise Voltage 2 Vn2 10 Hz ≤ f ≤ 100 kHz − 60 − µVr.m.s. Ripple Rejection 2 R•R2 f = 120 Hz, 3.2 V ≤ VIN ≤ 5.0 V − 60 − dB Short Circuit Current 2 IOshort2 VIN = 5.0 V − 0.3 − A Peak Output Current 21 IOpeak21 VIN = 3.3 V 0.5 0.6 − A Peak Output Current 22 IOpeak22 VIN = 5.0 V 0.5 0.8 − A Temperature Coefficient of ∆VO2/∆T IO2 = 5 mA, 0°C ≤ TJ ≤ 125°C − − 0.4 − mV/°C IBIAS IO1 = 0 A, IO2 = 0 A − 4 8 mA Startup Quiescent Current IBIAS(S) VIN = 1.7 V, IO1 = 0 A, IO2 = 0 A − 7 40 mA Dropout Voltage VDIF1 IO1 = 0.5 A − − 0.6 V Output Voltage 2 Total Quiescent Current (INPUT to OUTPUT1) 4 Data Sheet G16444EJ2V0DS µPC37Mxx Series µ PC37M31 (TJ = 25°C, VIN = 5 V, IO1 = 0.5 A, IO2 = 0.3 A, unless otherwise specified.) Parameter Symbol Conditions MIN. TYP. MAX. Unit 3.234 3.3 3.366 V − 2 9 mV OUTPUT1 Output Voltage 1 VO1 (3.3 V) Line Regulation 1 REGIN1 4.5 V ≤ VIN ≤ 6.0 V Load Regulation 1 REGL1 5 mA ≤ IO1 ≤ 1 A − 20 66 mV Output Noise Voltage 1 Vn1 10 Hz ≤ f ≤ 100 kHz − 76 − µVr.m.s. Ripple Rejection 1 R•R1 f = 120 Hz, 4.5 V ≤ VIN ≤ 6.0 V − 57 − dB Short Circuit Current 1 IOshort1 VIN = 6.0 V − 0.5 − A Peak Output Current 1 IOpeak1 VIN = 5.0 V 1.0 1.4 − A Temperature Coefficient of ∆VO1/∆T IO1 = 5 mA, 0°C ≤ TJ ≤ 125°C − − 0.4 − mV/°C 1.764 1.8 1.836 V Output Voltage 1 OUTPUT2 (1.8 V) Output Voltage 2 VO2 Line Regulation 2 REGIN2 4.5 V ≤ VIN ≤ 6.0 V − 2 9 mV Load Regulation 2 REGL2 5 mA ≤ IO2 ≤ 0.5 A − 17 50 mV Output Noise Voltage 2 Vn2 10 Hz ≤ f ≤ 100 kHz − 60 − µVr.m.s. Ripple Rejection 2 R•R2 f = 120 Hz, 4.5 V ≤ VIN ≤ 6.0 V − 60 − dB Short Circuit Current 2 IOshort2 VIN = 6.0 V − 0.3 − A Peak Output Current 2 IOpeak2 VIN = 5.0 V 0.5 0.8 − A Temperature Coefficient of ∆VO2/∆T IO2 = 5 mA, 0°C ≤ TJ ≤ 125°C − − 0.4 − mV/°C Quiescent Current IBIAS IO1 = 0 A, IO2 = 0 A − 4 8 mA Startup Quiescent Current IBIAS (S) VIN = 1.7 V, IO1 = 0 A, IO2 = 0 A − 7 40 mA Dropout Voltage VDIF1 IO1 = 0.5 A − 0.6 1.0 V Output Voltage 2 Total (INPUT to OUTPUT1) µ PC37M32 (TJ = 25°C, VIN = 5 V, IO1 = 0.5 A, IO2 = 0.3 A, unless otherwise specified.) Parameter OUTPUT1 (3.3 V) Output Voltage 1 Symbol Conditions VO1 MIN. TYP. MAX. Unit 3.234 3.3 3.366 V Line Regulation 1 REGIN1 4.5 V ≤ VIN ≤ 6.0 V − 2 9 mV Load Regulation 1 REGL1 5 mA ≤ IO1 ≤ 1 A − 20 66 mV Output Noise Voltage 1 Vn1 10 Hz ≤ f ≤ 100 kHz − 76 − µVr.m.s. Ripple Rejection 1 R•R1 f = 120 Hz, 4.5 V ≤ VIN ≤ 6.0 V − 57 − dB Short Circuit Current 1 IOshort1 VIN = 6.0 V − 0.5 − A Peak Output Current 1 IOpeak1 VIN = 5.0 V 1.0 1.4 − A Temperature Coefficient of ∆VO1/∆T IO1 = 5 mA, 0°C ≤ TJ ≤ 125°C − − 0.4 − mV/°C 2.45 2.5 2.55 V − 2 9 mV Output Voltage 1 OUTPUT2 Output Voltage 2 VO2 (2.5 V) Line Regulation 2 REGIN2 4.5 V ≤ VIN ≤ 6.0 V Load Regulation 2 REGL2 5 mA ≤ IO2 ≤ 0.5 A − 17 50 mV Output Noise Voltage 2 Vn2 10 Hz ≤ f ≤ 100 kHz − 60 − µVr.m.s. Ripple Rejection 2 R•R2 f = 120 Hz, 4.5 V ≤ VIN ≤ 6.0 V − 60 − dB Short Circuit Current 2 IOshort2 VIN = 6.0 V − 0.3 − A Peak Output Current 2 IOpeak2 VIN = 5.0 V 0.5 0.8 − A Temperature Coefficient of ∆VO2/∆T IO2 = 5 mA, 0°C ≤ TJ ≤ 125°C − − 0.4 − mV/°C IBIAS IO1 = 0 A, IO2 = 0 A − 4 8 mA Startup Quiescent Current IBIAS(S) VIN = 2.4 V, IO1 = 0 A, IO2 = 0 A − 7 40 mA Dropout Voltage VDIF1 IO1 = 0.5 A − 0.6 1.0 V Output Voltage 2 Total Quiescent Current (INPUT to OUTPUT1) Data Sheet G16444EJ2V0DS 5 µPC37Mxx Series ★ TYPICAL CHARACTERISTICS (Reference Values) VO1 vs. VIN ( µ PC37M21) PD vs. TA 3 Wit h in 10 fini te h eat VO1 - OUTPUT1 Output Voltage - V PD - Total Power Dissipation - W 12 sin 8 k 6 4 2 Without h eatsink IO1 = 0.3 A, IO2 = 0.3 A 2 IO1 = 1 A, IO2 = 0 A 1 0 0 0 25 50 75 100 125 150 0 1 2 TA - Operating Ambient Temperature - °C VO2 vs. VIN ( µ PC37M21) 3 VO1 - OUTPUT1 Output Voltage - V VO2 - OUTPUT2 Output Voltage - V IO1 = 0.5 A, IO2 = 0.5 A 0 1 2 3 4 5 6 VIN - Input Voltage - V 7 IO1 = 5 mA, IO2 = 5 mA 4 IO1 = 0.5 A, IO2 = 0.3 A 3 IO1 = 1 A, IO2 = 0 A 2 1 0 8 0 1 2 3 4 5 6 7 5 VO1 - OUTPUT1 Output Voltage - V VO2 - OUTPUT2 Output Voltage - V IO1 = 5 mA, IO2 = 5 mA IO1 = 0.5 A, IO2 = 0.3 A IO1 = 0.5 A, IO2 = 0.5 A 1 1 2 3 4 5 6 7 8 9 10 4 IO1 = 5 mA, IO2 = 5 mA 3 IO1 = 0.5 A, IO2 = 0.3 A IO1 = 1 A, IO2 = 0 A 2 1 0 0 1 2 3 4 5 6 7 VIN - Input Voltage - V VIN - Input Voltage - V 6 10 TJ = 25°C TJ = 25°C 0 9 VO1 vs. VIN ( µ PC37M32) VO2 vs. VIN ( µ PC37M31) 0 8 VIN - Input Voltage - V 3 2 8 TJ = 25°C IO1 = 0.3 A, IO2 = 0.3 A 0 7 VO1 vs. VIN ( µ PC37M31) IO1 = 5 mA, IO2 = 5 mA 1 3 4 5 6 VIN - Input Voltage - V 5 TJ = 25°C 2 TJ = 25°C IO1 = 5 mA, IO2 = 5 mA Data Sheet G16444EJ2V0DS 8 9 10 µPC37Mxx Series VO2 vs. VIN ( µ PC37M32) IBIAS vs. VIN ( µ PC37M21) 100 5 TJ = 25°C IBIAS - Quiescent Current - mA VO2 - OUTPUT2 Output Voltage - V TJ = 25°C 4 3 IO1 = 5 mA, IO2 = 5 mA IO1 = 0.5 A, IO2 = 0.3 A 2 IO1 = 0.5 A, IO2 = 0.5 A 1 80 IO1 = 0.5 A, IO2 = 0.5 A 60 40 IO1 = 0.3 A, IO2 = 0.3 A 20 IO1 = 5 mA, IO2 = 5 mA 0 0 1 2 3 4 5 6 7 8 9 0 10 0 1 2 VIN - Input Voltage - V IBIAS - Quiescent Current - mA TJ = 25°C 80 IO1 = 0.5 A, IO2 = 0.3 A IO1 = 1 A, IO2 = 0 A 60 40 20 80 IO1 = 0.5 A, IO2 = 0.3 A 60 IO1 = 1 A, IO2 = 0 A 40 20 IO1 = 5 mA, IO2 = 5 mA IO1 = 5 mA, IO2 = 5 mA 0 1 2 3 4 5 6 7 8 9 0 10 0 R•R vs. f (µPC37M21) 2 3 100 OUTPUT2 70 60 OUTPUT1 50 5 6 7 8 9 10 40 30 20 TJ = 25°C VIN = 4.5 to 6.0 V IO1 = 0.5 A, IO2 = 0.3 A 90 R.R - Ripple Rejection - dB TJ = 25°C VIN = 3.2 to 5.0 V IO1 = 0.5 A, IO2 = 0.3 A 80 4 R.R vs. f ( µ PC37M31) 100 R•R - Ripple Rejection - dB 1 VIN - Input Voltage - V VIN - Input Voltage - V 90 8 100 TJ = 25°C 0 7 IBIAS vs. VIN ( µ PC37M32) IBIAS vs. VIN ( µ PC37M31) 100 IBIAS - Quiescent Current - mA 3 4 5 6 VIN - Input Voltage - V 80 OUTPUT2 70 60 50 OUTPUT1 40 30 20 10 10 0 0 10 100 1000 10000 100000 10 100 1000 10000 100000 f - Frequency - Hz f - Frequency - Hz Data Sheet G16444EJ2V0DS 7 µPC37Mxx Series R•R vs. IO1, IO2 (µ PC37M21) R.R vs. f ( µ PC37M32) 100 80 80 OUTPUT2 70 60 50 OUTPUT1 40 30 20 10 0 TJ = 25°C VIN = 3.2 to 5.0 V f = 120 Hz 90 R•R - Ripple Rejection - dB 90 R.R - Ripple Rejection - dB 100 TJ = 25°C VIN = 4.5 to 6.0 V IO1 = 0.5 A, IO2 = 0.3 A IO2 70 60 IO1 50 40 30 20 10 0 10 100 1000 10000 100000 0 f - Frequency - Hz 0.2 80 70 60 IO1 40 30 20 10 60 50 IO1 40 30 20 10 0 0 0.2 0.4 0.6 0.8 1 0 IO1, IO2 - OUTPUT1, OUTPUT2 Output Current - A VDIF1 vs. IO1 1 TJ = 25°C 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 IO1 - OUTPUT1 Output Current - A 1 0.2 0.4 0.6 0.8 1 IO1, IO2 - OUTPUT1, OUTPUT2 Output Current - A ∆VO1, ∆VO2 - Temperature Coefficient of Output Voltage - mV VDIF1 - Dropout Voltage (INPUT to OUTPUT1) - V IO2 70 0 8 TJ = 25°C VIN = 4.5 to 6.0 V f = 120 Hz 90 IO2 50 1 100 R•R - Ripple Rejection - dB R•R - Ripple Rejection - dB 80 0.8 R•R vs. IO1, IO2 (µ PC37M32) TJ = 25°C VIN = 4.5 to 6.0 V f = 120 Hz 90 0.6 IO1, IO2 - OUTPUT1, OUTPUT2 Output Current - A R•R vs. IO1, IO2 (µ PC37M31) 100 0.4 ∆VO1, ∆VO2 vs. TJ ( µ PC37M21) 75 VIN = 3.3 V IO1 = IO2 = 5 mA 50 25 OUTPUT1 0 OUTPUT2 –25 –50 –75 –100 Data Sheet G16444EJ2V0DS –50 0 50 100 TJ - Operating Junction Temperature - °C 150 VIN = 5.0 V IO1 = IO2 = 5 mA 25 OUTPUT1 0 OUTPUT2 −25 −50 −50 0 50 100 150 TJ - Operating Junction Temperature - °C VDIF1 vs. TJ ( µ PC37M21) 1 IO1 = 0.5 A 0.8 0.6 0.4 0.2 0 –25 0 25 50 75 100 ∆VO1, ∆VO2 - Temperature Coefficient of Output Voltage - mV ∆VO1, ∆VO2 vs. TJ ( µ PC37M31) 50 VDIF1 - Dropout Voltage (INPUT to OUTPUT1) - V VDIF1 - Dropout Voltage (INPUT to OUTPUT1) - V ∆VO1, ∆VO2 - Temperature Coefficient of Output Voltage - mV µPC37Mxx Series 125 150 ∆VO1, ∆VO2 vs. TJ ( µ PC37M32) 50 VIN = 5.0 V IO1 = IO2 = 5 mA 25 OUTPUT1 0 OUTPUT2 −25 −50 −50 IO1 = 0.5 A 0.8 0.6 0.4 0.2 IO1 = 0.5 A 0.8 0.6 0.4 0.2 0 −25 75 100 125 0 25 50 75 100 125 150 IOpeak1 vs. VDIF1 ( µ PC37M21) TJ = 25°C 1.5 1 0.5 0 50 150 VDIF1 vs. TJ ( µ PC37M31) 1 2 IOpeak1 - OUTPUT1 Peak Output Current - A VDIF1 - Dropout Voltage (INPUT to OUTPUT1) - V VDIF1 vs. TJ ( µ PC37M32) 25 100 TJ - Operating Junction Temperature - °C 1 0 50 TJ - Operating Junction Temperature - °C TJ - Operating Junction Temperature - °C 0 −25 0 150 TJ - Operating Junction Temperature - °C 0 1 2 3 4 5 VDIF1 - Dropout Voltage (INPUT to OUTPUT1) - V Data Sheet G16444EJ2V0DS 9 IOpeak1 vs. VDIF1 ( µ PC37M31) 2 IOpeak1 - OUTPUT1 Peak Output Current - A IOpeak1 - OUTPUT1 Peak Output Current - A µPC37Mxx Series TJ = 25°C 1.5 1 0.5 0 0 1 2 3 4 5 IOpeak1 vs. VDIF1 ( µ PC37M32) 2 TJ = 25°C 1.5 1 0.5 0 0 VDIF1 - Dropout Voltage (INPUT to OUTPUT1) - V 10 Data Sheet G16444EJ2V0DS 1 2 3 4 5 VDIF1 - Dropout Voltage (INPUT to OUTPUT1) - V µPC37Mxx Series ★ PACKAGE DRAWINGS (Unit: mm) SC-98 (5-pin MP-3Z) 2.3±0.2 0.5±0.1 0.9 MAX. 0.5 2.0 MIN. 1.0 MIN. 1.5 TYP. 10.0 MAX. 5.5±0.2 4.3 MAX. 5.0±0.2 1.5+0.2 −0.1 6.5±0.2 0.8 MAX. 1.27 1.27 0.8 SC-99 (5-pin MP-3) +0.2 0.5±0.1 13.7 MIN. 7.0 MIN. 1.6±0.2 5.5±0.2 5.0±0.2 2.3±0.2 1.5 −0.1 6.5±0.2 1.27 1.27 0.5 +0.2 −0.1 0.5 +0.2 −0.1 0.75 1.1±0.1 Data Sheet G16444EJ2V0DS 11 µPC37Mxx Series ★ RECOMMENDED MOUNTING CONDITIONS The following conditions must be met for mounting conditions of the µPC37Mxx series. For more details, refer to the Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html). Please consult with our sales offices in case other mounting process is used, or in case the mounting is done under different conditions. Type of Surface Mount Device µ PC37MxxTJ: SC-98 (5-pin MP-3Z) Process Infrared Ray Reflow Conditions Peak temperature: 235°C or below (Package surface temperature), Symbol IR35-00-3 Reflow time: 30 seconds or less (at 210°C or higher), Maximum number of reflows processes: 3 times or less. Vapor Phase Soldering Peak temperature: 215°C or below (Package surface temperature), VP15-00-3 Reflow time: 40 seconds or less (at 200°C or higher), Maximum number of reflows processes: 3 times or less. Wave Soldering Solder temperature: 260°C or below, Flow time: 10 seconds or less, WS60-00-1 Maximum number of flow processes: 1 time, Pre-heating temperature: 120°C or below (Package surface temperature). Partial Heating Method Pin temperature: 300°C or below, – Heat time: 3 seconds or less (Per each side of the device). Caution Apply only one kind of soldering condition to a device, except for "partial heating method", or the device will be damaged by heat stress. Type of Through-hole Device µ PC37MxxHB: SC-99 (5-pin MP-3) Process Conditions Wave Soldering Solder temperature: 260°C or below, (only to leads) Flow time: 10 seconds or less Partial Heating Method Pin temperature: 300°C or below, Heat time: 3 seconds or less (Per each pin). Caution For through-hole device, the wave soldering process must be applied only to leads, and make sure that the package body does not get jet soldered. 12 Data Sheet G16444EJ2V0DS µPC37Mxx Series ★ CAUTION ON USE When the µ PC37Mxx series is used with an input voltage that is lower than the value indicated in the recommended operating conditions, a large quiescent current flows through the device due to saturation of the transistor of the output stage. (Refer to the IBIAS (IBIAS(S)) vs. VIN curves in TYPICAL CHARACTERISTICS). These products have saturation protector, but a current of up to 40 mA MAX. may flow through the device. Thus, the power supply on the input side must have sufficient capacity to allow this quiescent current to pass when the device starts up. REFERENCE DOCUMENTS Document Name ★ Document No. Usage of Three-Terminal Regulators User’s Manual G12702E Voltage Regulator of SMD Information G11872E Semiconductor Device Mount Manual Information http://www.necel.com/pkg/en/mount/ index.html SEMICONDUCTOR SELECTION GUIDE - Products and Packages- Data Sheet G16444EJ2V0DS X13769X 13 µPC37Mxx Series • The information in this document is current as of April, 2003. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information. • No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document. • NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others. • Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. • While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features. • NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application. "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots. "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support). "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc. The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application. (Note) (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries. (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above). M8E 02. 11-1