7MBR75U2B060 a 1. Outline Drawing ( Unit : mm ) LABEL shows theoretical dimension. ) shows reference dimension. ( 2. Equivalent Circuit [ Converter ] [ Brake ] 21(P) 2(S) 18(Gv) 3(T) 7(B) 14(Gb) 23(N) [ Thermistor ] 22(P1) 20(Gu) 1(R) [ Inverter ] 19(Eu) 13(Gx) 4(U) 17(Ev) 12(Gy) 8 16(Gw) 5(V) 15(Ew) 9 6(W) 11(Gz) 10(En) 24(N1) MS6M 0801 3 a 15 H04-004-03a 3.Absolute Maximum Ratings ( at Tc= 25°C unless otherwise specified ) Items Inverter Collector-Emitter voltage Gate-Emitter voltage Collector current -Ic -Ic pulse Brake Collector-Emitter voltage Pc VCES Gate-Emitter voltage VGES Repetitive peak reverse Voltage (Diode) Ic Icp Pc VRRM Repetitive peak reverse Voltage VRRM Collector current Collector Power Dissipation Average Output Current Surge Current (Non-Repetitive) 2 It (Non-Repetitive) Junction temperature ( except Thyristor ) Storage temperature Isolation between terminal and copper base *1 voltage between thermistor and others *2 Screw Torque Mounting *3 Conditions Io Maximum Ratings Units 600 VCES VGES Ic Icp Collector Power Dissipation Converter Symbols 1ms ±20 75 150 1ms 75 150 Continuous 1 device V V A W 255 600 ±20 Continuous 1ms 1 device 50Hz/60Hz sine wave V V 30 60 133 A 600 W V 800 V 75 A IFSM Tj=150°C, 10ms 525 A 2 half sine wave 1378 As 150 -40 ~ +125 °C 2500 VAC 1.7 Nm It Tj Tstg Viso AC : 1min. - 2 (*1) All terminals should be connected together when isolation test will be done. (*2) Two thermistor terminals should be connected together, each other terminals should be connected together and shorted to base plate when isolation test will be done. (*3) Recommendable Value : 1.3~1.7 Nm (M4) MS6M 0801 4 a 15 H04-004-03a 4. Electrical characteristics ( at Tj= 25°C unless otherwise specified) Items Zero gate voltage Collector current ICES Gate-Emitter leakage current IGES Gate-Emitter threshold voltage Inverter Collector-Emitter saturation voltage Input capacitance Turn-on time Turn-off time Forward on voltage Brake Reverse recovery time VGE = 0V VCE = 600V VCE = 0V Characteristics typ. max. Units 1.0 mA - - 200 nA 6.2 6.7 7.7 V Tj= 25°C Tj=125°C Tj= 25°C Ic = 75A Tj=125°C VCE=10V,VGE=0V,f=1MHz - 2.20 2.40 2.50 - - 1.85 - 2.15 5.4 - Vcc = 300V - 0.42 1.20 tr tr (i) Ic = 75A VGE=±15V - 0.24 0.05 toff tf Rg = 47 Ω - 0.60 1.20 VGE(th) VCE(sat) (terminal) VCE(sat) (chip) Cies ton VF (terminal) VF (chip) trr Gate-Emitter leakage current IGES Turn-off time min. - ICES Collector-Emitter saturation voltage Conditions - Zero gate voltage Collector current Turn-on time Thermistor Converter Symbols VGE=±20V VCE = 20V Ic = 75mA VGE=15V VGE=0V IF = 75A - Tj=125°C Tj= 25°C - 2.00 1.60 Tj=125°C - 1.65 - - 0.35 µs - - 1.0 mA - - 200 nA - 2.00 2.30 1.85 2.15 2.30 - IF = 75A VGE = 0V VCE = 600V VCE = 0V VGE=±20V Tj= 25°C Tj=125°C VCE(sat) (chip) Ic = 30A Tj= 25°C Tj=125°C 0.45 2.30 - ton Vcc = 300V - 0.42 tr toff tf Ic = 30A VGE=±15V Rg = 120 Ω - 0.24 0.42 0.03 0.60 1.20 0.45 VR=600V - - - 1.20 1.10 - 1.0 1.50 465 3305 5000 495 3375 VFM Reverse current IRRM VGE=0V IF = 75A VR=800V Resistance R T = 25°C T =100°C B value B T = 25/50°C terminal chip MS6M 0801 V - 1.20 Forward on voltage µs Tj= 25°C VGE=15V IRRM nF 0.42 0.03 1.95 VCE(sat) (terminal) Reverse current V V µs mA V 1.0 mA 520 Ω 3450 K 5 a 15 H04-004-03a 5. Thermal resistance characteristics Items Symbols Thermal resistance(1device) Rth(j-c) Contact Thermal resistance(1device) Rth(c-f) Characteristics Conditions Inverter IGBT Inverter FWD Brake IGBT Converter Diode with Thermal Compound (*) min. - typ. - max. 0.49 0.79 - - 0.94 0.66 - 0.05 - Units °C/W * This is the value which is defined mounting on the additional cooling fin with thermal compound. 6. Indication on module Logo of production 7MBR75U2B060 75A 600V Lot.No. Place of manufacturing (code) 7.Applicable category This specification is applied to IGBT Module named 7MBR75U2B060 . 8.Storage and transportation notes ・ The module should be stored at a standard temperature of 5 to 35°C and humidity of 45 to 75% . ・ Store modules in a place with few temperature changes in order to avoid condensation on the module surface. ・ Avoid exposure to corrosive gases and dust. ・ Avoid excessive external force on the module. ・ Store modules with unprocessed terminals. ・ Do not drop or otherwise shock the modules when transporting. ~ ~ 9. Definitions of switching time 90% 0V 0V V GE L trr Irr 0V 0A V CE Ic 90% Ic 90% 10% 10% ~ ~ RG ~ ~ VCE Vcc 10% VCE tr(i) V GE Ic tf tr toff ton 10. Packing and Labeling Display on the packing box - Logo of production - Type name - Lot No - Products quantity in a packing box a MS6M 0801 6 15 H04-004-03a 11. Reliability test results Reliability Test Items Test categories Test items Reference Number Acceptnorms of ance EIAJ ED-4701 sample number Test methods and conditions (Aug.-2001 edition) 1 Terminal Strength Pull force (Pull test) Test time 2 Mounting Strength Screw torque Test time : : : : 20N 10±1 sec. 2.5 ~ 3.5 N・m (M5) 10±1 sec. Environment Tests Mechanical Tests 3 Vibration Range of frequency : 10 ~ 500Hz Sweeping time : 15 min. Acceleration : 100m/s2 Sweeping direction : Each X,Y,Z axis Test time : 6 hr. (2hr./direction) 4 Shock Maximum acceleration : 5000m/s2 Pulse width : 1.0msec. Direction : Each X,Y,Z axis Test time : 3 times/direction 5 Solderabitlity Solder temp. : 235±5 ℃ Immersion time : 5±0.5sec. Test time : 1 time Each terminal should be Immersed in solder within 1~1.5mm from the body. 6 Resistance to Solder temp. : 260±5 ℃ Soldering Heat Immersion time : 10±1sec. Test time : 1 time Each terminal should be Immersed in solder within 1~1.5mm from the body. 1 High Temperature Storage temp. : 125±5 ℃ Storage Test duration : 1000hr. 2 Low Temperature Storage temp. : -40±5 ℃ Storage Test duration : 1000hr. 3 Temperature Storage temp. : 85±2 ℃ Humidity Relative humidity : 85±5% Storage Test duration : 1000hr. 4 Unsaturated Test temp. : 120±2 ℃ Pressure Cooker Atmospheric pressure : 1.7 × 105 Pa Test humidity : 85±5% Test duration : 96hr. 5 Temperature Cycle Test temp. : Low temp. -40±5 ℃ Test Method 401 MethodⅠ Test Method 402 methodⅡ 5 (0:1) 5 (0:1) Test Method 403 Reference 1 Condition code B 5 (0:1) Test Method 404 Condition code B 5 (0:1) Test Method 303 Condition code A 5 (0:1) Test Method 302 Condition code A 5 (0:1) Test Method 201 5 (0:1) Test Method 202 5 (0:1) Test Method 103 Test code C 5 (0:1) Test Method 103 Test code E 5 (0:1) Test Method 105 5 (0:1) Test Method 307 method Ⅰ Condition code A 5 (0:1) High temp. 125 ±5 ℃ Number of cycles RT 5 ~ 35 ℃ : High ~ RT ~ Low ~ RT 1hr. 0.5hr. 1hr. 0.5hr. : 100 cycles Test temp. : Dwell time 6 Thermal Shock High temp. 100 +0 -5 +5 -0 ℃ Low temp. 0 ℃ Used liquid : Water with ice and boiling water Dipping time : 5 min. par each temp. Transfer time : 10 sec. Number of cycles : 10 cycles MS6M 0801 7 a 15 H04-004-03a Reliability Test Items Endurance Endurance Tests Tests Test categories Test items Reference Number Acceptnorms of ance EIAJ ED-4701 sample number Test methods and conditions (Aug.-2001 edition) 1 High temperature Test temp. Reverse Bias Bias Voltage Bias Method Test duration 2 High temperature Test temp. Bias (for gate) Bias Voltage Bias Method 3 Intermitted Operating Life (Power cycle) ( for IGBT ) Test duration ON time OFF time Test temp. Number of cycles : Ta = 125±5 ℃ (Tj ≦ 150 ℃) : VC = 0.8×VCES : Applied DC voltage to C-E VGE = 0V : 1000hr. : Ta = 125±5 ℃ (Tj ≦ 150 ℃) : VC = VGE = +20V or -20V : Applied DC voltage to G-E VCE = 0V : 1000hr. : 2 sec. : 18 sec. : ∆ Tj=100±5 deg Tj ≦ 150 ℃, Ta=25±5 ℃ : 15000 cycles Test Method 101 5 (0:1) Test Method 101 5 (0:1) Test Method 106 5 (0:1) Failure Criteria Item Characteristic Symbol Electrical Leakage current ICES characteristic ±IGES Gate threshold voltage VGE(th) Saturation voltage VCE(sat) Forward voltage VF Thermal IGBT ∆ VGE resistance or ∆ VCE FWD ∆ VF Isolation voltage Viso Visual Visual inspection inspection Peeling Plating and the others Failure criteria Unit Lower limit Upper limit LSL×0.8 - USL×2 USL×2 USL×1.2 USL×1.2 USL×1.2 USL×1.2 mA µA mA V V mV USL×1.2 Broken insulation mV - The visual sample Note - LSL : Lower specified limit. USL : Upper specified limit. Note : Each parameter measurement read-outs shall be made after stabilizing the components at room ambient for 2 hours minimum, 24 hours maximum after removal from the tests. And in case of the wetting tests, for example, moisture resistance tests, each component shall be made wipe or dry completely before the measurement. MS6M 0801 8 a 15 H04-004-03a Reliability Test Results Test categorie s Test items Mechanical Tests 1 Terminal Strength (Pull test) 2 Mounting Strength Number Reference Number of norms of test failure EIAJ ED-4701 sample (Aug.-2001 edition) sample Test Method 401 5 0 5 0 MethodⅠ Test Method 402 methodⅡ 3 Vibration Test Method 403 5 0 4 Shock Condition code B Test Method 404 5 0 5 0 Condition code B 5 Solderabitlity Test Method 303 Environment Tests Condition code A 6 Resistance to Soldering Heat Test Method 302 5 0 1 High Temperature Storage Condition code A Test Method 201 5 0 2 Low Temperature Storage Test Method 202 5 0 3 Temperature Humidity Storage 4 Unsaturated Pressure Cooker 5 Temperature Cycle Test Method 103 5 0 5 0 Test Method 105 5 0 6 Thermal Shock Test Method 307 5 0 1 High temperature Reverse Bias Test Method 101 5 0 Test Method 101 5 0 Test Method 106 5 0 Test code C Test Method 103 Test code E method Ⅰ Endurance Tests Condition code A 2 High temperature Bias ( for gate ) 3 Intermitted Operating Life (Power cycling) ( for IGBT ) a MS6M 0801 9 15 H04-004-03a [ Inverter ] [ Inverter ] Collector current vs. Collector-Emitter voltage (typ.) Tj= 25°C / chip Collector current vs. Collector-Emitter voltage (typ.) Tj= 125°C / chip 175 175 VGE=20V 15V 12V VGE=20V 15V 12V 150 Collector current : Ic [ A ] Colector current : Ic [ A ] 150 125 100 10V 75 50 25 125 100 10V 75 50 8V 25 8V 0 0 0 1 2 3 4 5 0 1 Collector-Emitter voltage : VCE [ V ] 2 [ Inverter ] Collector current vs. Collector-Emitter voltage (typ.) 5 Tj=25°C / chip 175 10 Tj=25°C Tj=125°C Collector-Emitter voltage : VCE [ V ] 150 125 100 75 50 25 0 8 6 4 Ic=150A Ic=75A Ic=37.5A 2 0 0 1 2 3 4 5 10 Collector-Emitter voltage : VCE [ V ] 15 [ Inverter ] 25 [ Inverter ] Capacitance vs. Collector-Emitter voltage (typ.) VGE=0V, f= 1MHz, Tj= 25°C Dynamic Gate charge (typ.) Vcc=300V, Ic=75A,Tj= 25°C Collector-Emitter voltage : VCE [ V ] 10.00 Cies Coes 1.00 20 Gate-Emitter voltage : VGE [ V ] Cres 0.10 500 25 400 20 300 15 VGE 200 10 100 5 Gate-Emitter voltage : VGE [ V ] Collector current : Ic [ A ] 4 [ Inverter ] Collector-Emitter voltage vs. Gate-Emitter voltage (typ.) VGE=15V / chip Capacitance : Cies, Coes, Cres [ nF ] 3 Collector-Emitter voltage : VCE [ V ] VCE 0 0.01 0 10 20 Collector-Emitter voltage : VCE [ V ] 30 0 0 50 100 150 200 250 300 Gate charge : Qg [ nC ] MS6M 0801 10 a 15 H04-004-03a [ Inverter ] [ Inverter ] Switching time vs. Collector current (typ.) Switching time vs. Collector current (typ.) Vcc=300V, VGE=±15V, Rg=47Ω, Tj= 25°C Vcc=300V, VGE=±15V, Rg=47Ω, Tj=125°C 1000 toff Switching time : ton, tr, toff, tf [ nsec ] Switching time : ton, tr, toff, tf [ nsec ] 1000 ton tr 100 tf toff ton tr 100 tf 10 10 0 40 80 0 120 40 Collector current : Ic [ A ] 80 [ Inverter ] [ Inverter ] Switching time vs. Gate resistance (typ.) Switching loss vs. Collector current (typ.) Vcc=300V, Ic=75A, VGE=±15V, Tj= 25°C Vcc=300V, VGE=±15V, Rg=47Ω 8 Switching loss : Eon, Eoff, Err [ mJ/pulse ] Switching time : ton, tr, toff, tf [ nsec ] 10000 ton toff 1000 tr 100 tf 10 Eon(125°C) Eon(25°C) 6 4 Eoff(125°C) Eoff(25°C) 2 Err(125°C) Err(25° 0 10 100 1000 0 30 60 90 120 150 Collector current : Ic [ A ] Gate resistance : Rg [ Ω ] [ Inverter ] Switching loss vs. Gate resistance (typ.) [ Inverter ] Reverse bias safe operating area (max.) Vcc=300V, Ic=75A, VGE=±15V, Tj= 125°C +VGE=15V,-VGE <= 15V, RG >= 47Ω ,Tj <= 125°C 25 200 Eon 20 Collector current : Ic [ A ] Switching loss : Eon, Eoff, Err [ mJ/pulse ] 120 Collector current : Ic [ A ] 15 10 Eoff 5 150 100 50 Err 0 0 10 100 Gate resistance : Rg [ Ω ] 1000 0 200 400 600 800 Collector - Emitter voltage : VCE [ V ] MS6M 0801 11 a 15 H04-004-03a [ Inverter ] Forward current vs. Forward on voltage (typ.) chip [ Inverter ] Reverse recovery characteristics (typ.) Vcc=300V, VGE=±15V, Rg=47Ω 1000 175 Tj=25°C Tj=125°C Reverse recovery current : Irr [ A ] Reverse recovery time : trr [nsec] Forward current : IF [ A ] 150 125 100 75 50 trr (125°C) 100 trr (25°C) Irr (125°C) Irr (25°C) 10 25 1 0 0.0 0.5 1.0 1.5 2.0 2.5 0 3.0 30 60 90 120 Forward current : IF [ A ] Forward on voltage : VF [ V ] [ Converter ] Forward current vs. Forward on voltage (typ.) chip 175 Forward current : IF [ A ] 150 125 100 75 Tj=125°C 50 Tj=25°C 25 0 0.0 0.5 1.0 1.5 2.0 Forward on voltage : VFM [ V ] [ Thermistor ] Temperature characteristic (typ.) Transient thermal resistance (max.) 100 1.00 Resistance : R [ kΩ ] Thermal resistanse : Rth(j-c) [ °C/W ] 10.00 IGBT[Brake] FWD[Inverter] IGBT[Inverter] 0.10 0.01 0.001 Conv.Diod 10 1 0.1 0.010 0.100 Pulse width : Pw [ sec ] 1.000 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 Temperature [°C ] a MS6M 0801 12 15 H04-004-03a [ Brake ] [ Brake ] Collector current vs. Collector-Emitter voltage (typ.) Collector current vs. Collector-Emitter voltage (typ.) Tj= 25°C / chip Tj= 125°C / chip 80 VGE=20V 60 15V 12V Collector current : Ic [ A ] Collector current : Ic [ A ] 80 40 10V 20 VGE=20V 60 15V 12V 40 10V 20 8V 8V 0 0 1 2 3 4 0 5 0 Collector-Emitter voltage : VCE [ V ] 1 2 5 [ Brake ] Collector-Emitter voltage vs. Gate-Emitter voltage (typ.) VGE=15V / chip Tj=25°C / chip 80 10 Collector - Emitter voltage : VCE [ V ] 60 Tj=25°C Tj=125°C 40 20 8 6 4 Ic=60A Ic=30A Ic=15A 2 0 0 1 2 3 5 4 Collector-Emitter voltage : VCE [ V ] 10 15 20 25 Gate - Emitter voltage : VGE [ V ] [ Brake ] [ Brake ] Capacitance vs. Collector-Emitter voltage (typ.) Dynamic Gate charge (typ.) VGE=0V, f= 1MHz, Tj= 25°C Vcc=300V, Ic=30A,Tj= 25°C Collector-Emitter voltage : VCE [ V ] 10.00 Cies 1.00 Coes Cres 0.10 500 25 400 20 300 15 VGE 200 10 100 5 [V] 0 Gate - Emitter voltage : VGE Collector current : Ic [ A ] 4 Collector-Emitter voltage : VCE [ V ] [ Brake ] Collector current vs. Collector-Emitter voltage (typ.) Capacitance : Cies, Coes, Cres [ nF ] 3 VCE 0.01 0 0 0 10 20 Collector-Emitter voltage : VCE [ V ] 30 0 40 80 120 160 Gate charge : Qg [ nC ] MS6M 0801 13 a 15 H04-004-03a Warnings - This product shall be used within its absolute maximum rating (voltage, current, and temperature). This product may be broken in case of using beyond the ratings. 製品の絶対最大定格(電圧,電流,温度等)の範囲内で御使用下さい。絶対最大定格を超えて使用すると、素子が破壊する 場合があります。 - Connect adequate fuse or protector of circuit between three-phase line and this product to prevent the equipment from causing secondary destruction, such as fire, its spreading, or explosion. 万一の不慮の事故で素子が破壊した場合を考慮し、商用電源と本製品の間に適切な容量のヒューズ又はブレーカーを必ず 付けて火災,爆発,延焼等の2次破壊を防いでください。 - Use this product after realizing enough working on environment and considering of product's reliability life. This product may be broken before target life of the system in case of using beyond the product's reliability life. 製品の使用環境を十分に把握し、製品の信頼性寿命が満足できるか検討の上、本製品を適用して下さい。製品の信頼性寿命 を超えて使用した場合、装置の目標寿命より前に素子が破壊する場合があります。 - When electric power is connected to equipments, rush current will be flown through rectifying diode to charge 2 DC capacitor. Guaranteed value of the rush current is specified as I t (non-repetitive), however frequent rush current through the diode might make it's power cycle destruction occur because of the repetitive power. In application which has such frequent rush current, well consideration to product life time (i.e. suppressing the rush current) is necessary. 電源投入時に整流用ダイオードには、コンデンサーを充電する為の突入電流が流れます。この突入電流に対する保証値は 2 2 I t(非繰返し)として表記されていますが、この突入電流が頻繁に流れるとI t破壊とは別に整流用ダイオードの繰返し負荷に よるパワーサイクル耐量破壊を起こす可能性があります。突入電流が頻繁に流れるようなアプリケーションでは、突入電流値 を抑えるなど、製品寿命に十分留意してご使用下さい。 - If the product had been used in the environment with acid, organic matter, and corrosive gas ( hydrogen sulfide, sulfurous acid gas), the product's performance and appearance can not be ensured easily. 酸・有機物・腐食性ガス(硫化水素,亜硫酸ガス等)を含む環境下で使用された場合、製品機能・外観等の保証はできません。 - Use this product within the power cycle curve (Technical Rep.No. : MT5F12959). Power cycle capability is classified to delta-Tj mode which is stated as above and delta-Tc mode. Delta-Tc mode is due to rise and down of case temperature (Tc), and depends on cooling design of equipment which use this product. In application which has such frequent rise and down of Tc, well consideration of product life time is necessary. 本製品は、パワーサイクル寿命カーブ以下で使用下さい(技術資料No.: MT5F12959)。パワーサイクル耐量にはこのΔTjによる 場合の他に、ΔTcによる場合があります。これはケース温度(Tc)の上昇下降による熱ストレスであり、本製品をご使用する際 の放熱設計に依存します。ケース温度の上昇下降が頻繁に起こる場合は、製品寿命に十分留意してご使用下さい。 - Never add mechanical stress to deform the main or control terminal. The deformed terminal may cause poor contact problem. 主端子及び制御端子に応力を与えて変形させないで下さい。 端子の変形により、接触不良などを引き起こす場合があります。 - Use this product with keeping the cooling fin's flatness between screw holes within 100um at 100mm and the roughness within 10um. Also keep the tightening torque within the limits of this specification. Too large convex of cooling fin may cause isolation breakdown and this may lead to a critical accident. On the other hand, too large concave of cooling fin makes gap between this product and the fin bigger, then, thermal conductivity will be worse and over heat destruction may occur. 冷却フィンはネジ取り付け位置間で平坦度を100mmで100um以下、表面の粗さは10um以下にして下さい。 過大な凸反り があったりすると本製品が絶縁破壊を起こし、重大事故に発展する場合があります。また、過大な凹反りやゆがみ等があると、 本製品と冷却フインの間に空隙が生じて放熱が悪くなり、熱破壊に繋がることがあります。 - In case of mounting this product on cooling fin, use thermal compound to secure thermal conductivity. If the thermal compound amount was not enough or its applying method was not suitable, its spreading will not be enough, then, thermal conductivity will be worse and thermal run away destruction may occur. Confirm spreading state of the thermal compound when its applying to this product. (Spreading state of the thermal compound can be confirmed by removing this product after mounting.) 素子を冷却フィンに取り付ける際には、熱伝導を確保するためのコンパウンド等をご使用ください。又、塗布量が不足したり、 塗布方法が不適だったりすると、コンパウンドが十分に素子全体に広がらず、放熱悪化による熱破壊に繋がる事があります。 コンパウンドを塗布する際には、製品全面にコンパウンドが広がっている事を確認してください。 (実装した後に素子を取りはずすとコンパウンドの広がり具合を確認する事が出来ます。) - It shall be confirmed that IGBT's operating locus of the turn-off voltage and current are within the RBSOA specification. This product may be broken if the locus is out of the RBSOA. ターンオフ電圧・電流の動作軌跡がRBSOA仕様内にあることを確認して下さい。RBSOAの範囲を超えて使用すると素子が破壊 する可能性があります。 a MS6M 0801 14 15 H04-004-03a Warnings - If excessive static electricity is applied to the control terminals, the devices may be broken. Implement some countermeasures against static electricity. 制御端子に過大な静電気が印加された場合、素子が破壊する場合があります。取り扱い時は静電気対策を実施して下さい。 - Never add the excessive mechanical stress to the main or control terminals when the product is applied to equipments. The module structure may be broken. 素子を装置に実装する際に、主端子や制御端子に過大な応力を与えないで下さい。端子構造が破壊する可能性があります。 - In case of insufficient -VGE, erroneous turn-on of IGBT may occur. -VGE shall be set enough value to prevent this malfunction. (Recommended value : -VGE = -15V) 逆バイアスゲート電圧-VGEが不足しますと誤点弧を起こす可能性があります。誤点弧を起こさない為に-VGEは十分な値で 設定して下さい。 (推奨値 : -VGE = -15V) - In case of higher turn-on dv/dt of IGBT, erroneous turn-on of opposite arm IGBT may occur. Use this product in the most suitable drive conditions, such as +VGE, -VGE, RG to prevent the malfunction. ターンオン dv/dt が高いと対抗アームのIGBTが誤点弧を起こす可能性があります。誤点弧を起こさない為の最適なドライブ 条件(+VGE, -VGE, RG等)でご使用下さい。 - This product may be broken by avalanche in case of VCE beyond maximum rating VCES is applied between C-E terminals. Use this product within its absolute maximum voltage. VCESを超えた電圧が印加された場合、アバランシェを起こして素子破壊する場合があります。VCEは必ず絶対定格の範囲内 でご使用下さい。 Cautions - Fuji Electric Device Technology is constantly making every endeavor to improve the product quality and reliability. However, semiconductor products may rarely happen to fail or malfunction. To prevent accidents causing injury or death, damage to property like by fire, and other social damage resulted from a failure or malfunction of the Fuji Electric Device Technology semiconductor products, take some measures to keep safety such as redundant design, spread-fire-preventive design, and malfunction-protective design. 富士電機デバイステクノロジーは絶えず製品の品質と信頼性の向上に努めています。しかし、半導体製品は故障が発生したり、 誤動作する場合があります。富士電機デバイステクノロジー製半導体製品の故障または誤動作が、結果として人身事故・火災 等による財産に対する損害や社会的な損害を起こさないように冗長設計・延焼防止設計・誤動作防止設計など安全確保 のための手段を講じて下さい。 - The application examples described in this specification only explain typical ones that used the Fuji Electric Device Technology products. This specification never ensure to enforce the industrial property and other rights, nor license the enforcement rights. 本仕様書に記載してある応用例は、富士電機デバイステクノロジー製品を使用した代表的な応用例を説明するものであり、 本仕様書によって工業所有権、その他権利の実施に対する保障または実施権の許諾を行うものではありません。 - The product described in this specification is not designed nor made for being applied to the equipment or systems used under life-threatening situations. When you consider applying the product of this specification to particular used, such as vehicle-mounted units, shipboard equipment, aerospace equipment, medical devices, atomic control systems and submarine relaying equipment or systems, please apply after confirmation of this product to be satisfied about system construction and required reliability. 本仕様書に記載された製品は、人命にかかわるような状況下で使用される機器あるいはシステムに用いられることを 目的として設計・製造されたものではありません。本仕様書の製品を車両機器、船舶、航空宇宙、医療機器、原子力 制御、海底中継機器あるいはシステムなど、特殊用途へのご利用をご検討の際は、システム構成及び要求品質に 満足することをご確認の上、ご利用下さい。 If there is any unclear matter in this specification, please contact Fuji Electric Device Technology Co.,Ltd. a MS6M 0801 15 15 H04-004-03a