Low Cost, 24 MHz, Rail-to-Rail, Quad Amplifiers AD8648 APPLICATIONS Barcode scanners Battery-powered instrumentation Multipole filters Sensors ASIC input or output amplifiers Audio Photodiode amplification PIN CONFIGURATIONS OUT A 1 14 OUT D –IN A 2 13 –IN D 12 +IN D 11 V– +IN B 5 10 +IN C –IN B 6 9 –IN C OUT B 7 8 OUT C AD8648 +IN A 3 TOP VIEW (Not to Scale) V+ 4 05890-001 Low offset voltage: 2.5 mV max Single-supply operation: 2.7 V to 5.5 V Low noise: 6 nV/√Hz Wide bandwidth: 24 MHz Slew rate: 12 V/μs High output current: 150 mA No phase reversal Low input bias current: 1 pA Low supply current: 2 mA max Unity-gain stable Figure 1. 14-Lead TSSOP (RU-14) OUT D OUT A 1 14 –IN A 2 13 –IN D +IN A 3 12 +IN D AD8648 TOP VIEW 11 V– (Not to Scale) 10 +IN C V+ 4 +IN B 5 –IN B 6 9 –IN C OUT B 7 8 OUT C 05890-002 FEATURES Figure 2. 14-Lead SOIC (R-14) GENERAL DESCRIPTION The AD8648 is a quad, rail-to-rail, input and output, singlesupply amplifier featuring low offset voltage, wide signal bandwidth, and low input voltage and current noise. The combination of 24 MHz bandwidth, low offset, low noise, and very low input bias current makes these amplifiers useful in a wide variety of applications. Filters, integrators, photodiode amplifiers, and high impedance sensors all benefit from the combination of performance features. AC applications benefit from the wide bandwidth and low distortion. The AD8648 family offers high output drive capability, which is excellent for audio line drivers and other low impedance applications. Applications for the part include portable and low powered instrumentation, audio amplification for portable devices, portable phone headsets, bar code scanners, and multipole filters. The ability to swing rail to rail at both the input and output enables designers to buffer CMOS ADCs, DACs, ASICs, and other wide output swing devices in single-supply systems. Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2006 Analog Devices, Inc. All rights reserved. AD8648 TABLE OF CONTENTS Features .............................................................................................. 1 Absolute Maximum Ratings ............................................................5 Applications....................................................................................... 1 Thermal Resistance .......................................................................5 Pin Configurations ........................................................................... 1 ESD Caution...................................................................................5 General Description ......................................................................... 1 Typical Performance Characteristics ..............................................6 Revision History ............................................................................... 2 Outline Dimensions ....................................................................... 12 Specifications..................................................................................... 3 Ordering Guide .......................................................................... 12 REVISION HISTORY 1/06—Rev 0: Initial Version Rev. 0 | Page 2 of 12 AD8648 SPECIFICATIONS VDD = 5.0 V, VCM = VDD/2, TA = 25oC, unless otherwise noted. Table 1. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Conditions VOS Offset Voltage Drift Input Bias Current ΔVOS/ΔT IB VCM = 0 V to 5 V −40°C < TA < +125°C −40°C < TA < +125°C Min Typ Max Unit 0.7 2.5 3.2 7.5 1 50 550 0.5 50 250 5 mV mV μV/°C pA pA pA pA pA pA V dB V/mV pF pF 2.0 0.2 −40°C < TA < +85°C −40°C < TA < +125°C Input Offset Current IOS 0.1 −40°C < TA < +85°C −40°C < TA < +125°C Input Voltage Range Common-Mode Rejection Ratio Large-Signal Voltage Gain Input Capacitance OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Output Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier VCM CMRR AVO CDIFF CCM VOH VOL ISC ZOUT PSRR ISY VCM = 0 V to 5.0 V RL = 2 kΩ, VO = 0.5 V to 4.5 V IOUT = 1 mA IOUT = 10 mA −40°C < TA < +125°C IOUT = 1 mA IOUT = 10 mA −40°C < TA < +125°C 0 67 160 4.98 4.87 4.70 4.99 4.92 8.4 78 63 80 1.8 −40°C < TA < +125°C DYNAMIC PERFORMANCE Slew Rate Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Peak-to-Peak Noise Voltage Noise Density Channel Separation 20 145 200 ±150 3 At 1 MHz, AV = 1 VDD = 2.7 V to 5.5 V 84 700 2.5 6.7 2.0 2.5 V V V mV mV mV mA Ω dB mA mA SR ts GBP ΦM RL = 2 kΩ To 0.01% 12 0.5 24 74 V/μs μs MHz Degrees en p-p en 0.1 Hz to 10 Hz f = 1 kHz f = 10 kHz f = 10 kHz f = 100 kHz 2.4 8 6 −115 −110 μV nV/√Hz nV/√Hz dB dB CS Rev. 0 | Page 3 of 12 AD8648 VDD = 2.7 V, VCM = VDD/2, TA = 25oC, unless otherwise noted. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Conditions VOS Offset Voltage Drift Input Bias Current ΔVOS/ΔT IB VCM = 0 V to 2.7 V −40°C < TA < +125°C −40°C < TA < +125°C Min Typ Max Unit 0.7 2.5 3.2 7.0 1 50 550 0.5 50 250 2.7 mV mV μV/°C pA pA pA pA pA pA V dB V/mV pF pF 1.8 0.2 −40°C < TA < +85°C −40°C < TA < +125°C Input Offset Current IOS 0.1 −40°C < TA < +85°C −40°C < TA < +125°C Input Voltage Range Common-Mode Rejection Ratio Large-Signal Voltage Gain Input Capacitance OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Output Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier VCM CMRR AVO CDIFF CCM VOH VOL ISC ZOUT PSRR ISY VCM = 0 V to 2.7 V RL = 2 kΩ, VO = 0.5 V to 2.2 V IOUT = 1 mA −40°C < TA < +125°C IOUT = 1 mA −40°C < TA < +125°C 0 62 60 2.65 2.60 2.69 11 63 80 1.7 −40°C < TA < +125°C DYNAMIC PERFORMANCE Slew Rate Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Peak-to-Peak Noise Voltage Noise Density Channel Separation 25 30 ±50 3 At 1 MHz, AV = 1 VDD = 2.7 V to 5.5 V 79 130 2.5 7.8 2.0 2.5 V V mV mV mA Ω dB mA mA SR ts GBP ΦM RL = 2 kΩ To 0.01% 12 0.3 22 52 V/μs μs MHz Degrees en p-p en 0.1 Hz to 10 Hz f = 1 kHz f = 10 kHz f = 10 kHz f = 100 kHz 2.1 8 6 −115 −110 μV nV/√Hz nV/√Hz dB dB CS Rev. 0 | Page 4 of 12 AD8648 ABSOLUTE MAXIMUM RATINGS Table 3. Parameter Supply Voltage Input Voltage Differential Input Voltage Output Short Circuit to GND Storage Temperature Range Operating Temperature Range Lead Temperature (Soldering, 60 sec) Junction Temperature Rating 6V GND to VDD ±3 V Indefinite −65°C to +150°C −40°C to +125°C 300°C 150°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. THERMAL RESISTANCE θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 4. Thermal Resistance Package Type 14-Lead SOIC (R) 14-Lead TSSOP (RU) θJA 120 180 ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Rev. 0 | Page 5 of 12 θJC 36 35 Unit °C/W °C/W AD8648 TYPICAL PERFORMANCE CHARACTERISTICS 140 INPUT BIAS CURRENT (pA) 120 NUMBER OF AMPLIFIERS 1000 V DD = 5V V CM = 2.5V T = 25°C 1400 AMPLIFIERS 100 80 60 40 VDD = 2.7V TO 5V 100 10 1 –1.0 –0.5 0 0.5 1.0 INPUT OFFSET VOLTAGE (mV) 1.5 2.0 0.1 25 45 1000 NUMBER OF AMPLIFIERS OUTPUT SATURATION VOLTAGE (mV) V DD = 5V V CM = 2.5V –40°C < TA < +125°C 25 20 15 10 5 0 1 2 3 4 TCVOS (µV/°C) 5 6 7 10 VOL SINKING 1 0.01 0.1 1 LOAD CURRENT (mA) 10 100 Figure 7. Output Saturation Voltage vs. Load Current 25 OUTPUT SATURATION VOLTAGE (mV) VDD = 5V TA = 25°C 2000 1500 1000 500 0 –500 –1000 –1500 VDD = 5V IOUT = 1mA 20 15 VDD – VOH SOURCING 10 VOL SINKING 5 –2500 0 1 2 3 4 INPUT COMMON-MODE VOLTAGE (V) 5 0 –40 –20 0 20 40 60 TEMPERATURE (°C) 80 100 Figure 8. Output Saturation Voltage vs. Temperature Figure 5. Input Offset Voltage vs. Input Common-Mode Voltage Rev. 0 | Page 6 of 12 120 05890-008 –2000 05890-005 INPUT OFFSET VOLTAGE (µV) VDD – VOH SOURCING 100 Figure 4. VOS Drift (TCVOS) Distribution 2500 125 VDD = 5V T = 25°C 0.1 0.001 05890-004 0 105 Figure 6. Input Bias Current vs. Temperature Figure 3. Input Offset Voltage Distribution 30 65 85 TEMPERATURE (°C) 05890-007 –1.5 05890-003 0 –2.0 05890-006 20 AD8648 90 20 135 ФM = 74° GAIN 0 180 –20 225 –40 10k 100k 1M 270 100M 10M FREQUENCY (Hz) 80 20 1k OUTPUT SWING (V p-p) 4.0 10k 100k 1M 10M FREQUENCY (Hz) Figure 12. Common-Mode Rejection Ratio vs. Frequency 100 VDD = 5V VIN = 4.9V p-p AV = 1 RL = 10kΩ TA = 25°C 4.5 60 40 Figure 9. Open-Loop Gain and Phase vs. Frequency 5.0 VDD = 5V TA = 25°C 05890-012 40 CMRR (dB) 45 PHASE VDD = 5V TA = 25°C PSRR+ 80 3.5 PSRR– PSRR (dB) 3.0 2.5 2.0 60 40 1.5 20 1.0 10M 0 1k 100k 1M Figure 13. Power Supply Rejection Ratio vs. Frequency 1000 VDD = 2.7V TO 5V TA = 25°C VOLTAGE NOISE DENSITY (nV/√Hz) VDD = 5V TA = 25°C 100 AV = 100 AV = 10 1 0.1 1K 10K AV = 1 100K 1M 10M 100M FREQUENCY (Hz) 100 10 1 10 05890-011 10 10M FREQUENCY (Hz) Figure 10. Maximum Output Swing vs. Frequency 1000 10k 100 1k FREQUENCY (Hz) Figure 14. Voltage Noise Density vs. Frequency Figure 11. Closed-Loop Output Impedance vs. Frequency Rev. 0 | Page 7 of 12 10k 05890-014 1M FREQUENCY (Hz) 05890-010 0 100k 05890-013 0.5 ZOUT (Ω) OPEN-LOOP GAIN (dB) 60 100 0 OPEN-LOOP PHASE SHIFT (Degrees) VDD = 5V RL = 1kΩ CL = 10pF 05890-009 80 AD8648 0.1 VDD = 5V VIN = 300mV rms BW = 80kHz RL = 100kΩ VDD = 2.7V TO 5V TA = 25°C 0.0001 20 05890-015 TIME (1s/DIV) 0.001 100 Figure 15. 0.1 Hz to 10 Hz Voltage Noise 20k Figure 18. THD + Noise vs. Frequency 1 VDD = 5V RL = 10kΩ CL = 20pF AV = 1 OUTPUT VOLTAGE (50mV/DIV) 10k 1k FREQUENCY (Hz) 05890-018 VOLTAGE (1µV/DIV) THD + NOISE (%) 0.01 0.01 0.001 0.0001 0.001 05890-016 TIME (40ns/DIV) 0.01 0.1 1 OUTPUT AMPLITUDE (V rms) Figure 16. Small-Signal Transient Response Figure 19. THD + Noise vs. Output Amplitude 70 SMALL-SIGNAL OVERSHOOT (%) VDD = 5V RL = 100kΩ CL = 20pF AV = 1 OUTPUT VOLTAGE (500mV/DIV) VDD = 5V AV = 1 BW = 30kHz RL = 100kΩ f = 1kHz 05890-019 THD + NOISE (%) 0.1 VDD = 5V RL = 10kΩ TA = 25°C 60 50 40 OS+ 30 OS– 20 05890-017 TIME (200ns/DIV) 0 10 100 1000 LOAD CAPACITANCE (pF) Figure 20. Small-Signal Overshoot vs. Load Capacitance Figure 17. Large-Signal Transient Response Rev. 0 | Page 8 of 12 05890-020 10 AD8648 OUTPUT SATURATION VOLTAGE (V) 100 80 60 40 20 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0 INPUT OFFSET VOLTAGE (mV) VDD – VOH SOURCING 10 VOL SINKING 1 0.1 0.001 05890-021 0 –2.0 100 OUTPUT SATURATION VOLTAGE (V) NUMBER OF AMPLIFIERS 25 20 15 10 5 0 1 2 3 4 5 6 7 8 TCVOS (µV/°C) VDD – VOH SOURCING 15 VOL SINKING 10 5 0 –40 –20 0 20 40 60 80 Figure 25. Output Saturation Voltage vs. Temperature 80 2500 VDD = 2.7V RL = 1kΩ CL = 10pF VDD = 2.7V TA = 25°C 2000 120 100 TEMPERATURE (°C) Figure 22. VOS Drift (TCVOS) Distribution 60 OPEN-LOOP GAIN (dB) 1500 1000 500 0 –500 –1000 –1500 0 45 90 40 ФM = 52° 20 135 0 180 –20 225 –2500 0 0.5 1.0 1.5 2.0 2.5 3.0 INPUT COMMON-MODE VOLTAGE (V) –40 10k 100k 1M 10M 270 100M FREQUENCY (Hz) Figure 26. Open-Loop Gain and Phase vs. Frequency Figure 23. Input Offset Voltage vs. Input Common-Mode Voltage Rev. 0 | Page 9 of 12 05890-026 –2000 05890-023 INPUT OFFSET VOLTAGE (µV) VDD = 2.7V ILOAD = 1mA 20 05890-022 0 10 Figure 24. Output Saturation Voltage vs. Load Current VDD = 2.7V VCM = 1.35V –40°C < TA < +125°C 25 1 0.1 LOAD CURRENT (mA) Figure 21. Input Offset Voltage Distribution 30 0.01 05890-024 120 VDD = 2.7V TA = 25°C 05890-025 140 NUMBER OF AMPLIFIERS 1000 VDD = 2.7V VCM = 1.35V TA = 25°C 1400 AMPLIFIERS OPEN-LOOP PHASE SHIFT (Degrees) 160 AD8648 100 3.0 VDD = 2.7V VIN = 2.6V p-p AV = 1 RL = 10kΩ TA = 25°C 80 2.0 60 PSRR (dB) 1.5 40 1.0 10M 1M FREQUENCY (Hz) 0 1k 05890-027 0 100k 10M 1M Figure 30. Power Supply Rejection Ratio vs. Frequency VDD = 2.7V TA = 25°C AV = 10 AV = 1 0.1 1k 10k 100k 1M 10M 100M FREQUENCY (Hz) 05890-028 1 TIME (40ns/DIV) Figure 28. Closed-Loop Output Impedance vs. Frequency 100 Figure 31. Small-Signal Transient Response VDD = 2.7V TA = 25°C VDD = 2.7V RL = 10kΩ CL = 20pF AV = 1 OUTPUT VOLTAGE (500mV/DIV) 80 60 10k 100k 1M FREQUENCY (Hz) 10M 05890-029 40 20 1k 05890-031 AV = 100 10 VDD = 2.7V RL = 10kΩ CL = 20pF AV = 1 OUTPUT VOLTAGE (50mV/DIV) 100 ZOUT (Ω) 100k FREQUENCY (Hz) Figure 27. Maximum Output Swing vs. Frequency 1000 10k 05890-030 20 0.5 CMRR (dB) PSRR– Figure 29. Common-Mode Rejection Ratio vs. Frequency TIME (1µs/DIV) Figure 32. Large-Signal Transient Response Rev. 0 | Page 10 of 12 05890-032 OUTPUT SWING (V p-p) 2.5 VDD = 2.7V TA = 25°C PSRR+ AD8648 2.5 40 OS+ 30 OS– 20 10 0 1 10 1000 100 LOAD CAPACITANCE (pF) Figure 33. Small-Signal Overshoot vs. Load Capacitance 3.0 2.5 VDD = 2.7V VDD = 5.0V 1.5 1.0 0.5 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) 05890-034 SUPPLY CURRENT PER AMPLIFIER (mA) VOUT = VDD/2 3.5 0 –40 2.0 1.5 1.0 0.5 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 SUPPLY VOLTAGE (V) Figure 35. Supply Current per Amplifier vs. Supply Voltage 4.0 2.0 TA = 25°C Figure 34. Supply Current per Amplifier vs. Temperature Rev. 0 | Page 11 of 12 5.0 05890-035 SUPPLY CURRENT PER AMPLIFIER (mA) VDD = 2.7V RL = 10kΩ TA = 25°C 05890-033 SMALL-SIGNAL OVERSHOOT (%) 50 AD8648 OUTLINE DIMENSIONS 5.10 5.00 4.90 14 8 4.50 4.40 4.30 6.40 BSC 1 7 PIN 1 0.65 BSC 1.05 1.00 0.80 1.20 MAX 0.15 0.05 0.30 0.19 0.20 0.09 SEATING COPLANARITY PLANE 0.10 0.75 0.60 0.45 8° 0° COMPLIANT TO JEDEC STANDARDS MO-153-AB-1 Figure 36. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters 8.75 (0.3445) 8.55 (0.3366) 4.00 (0.1575) 3.80 (0.1496) 14 8 1 7 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0039) COPLANARITY 0.10 6.20 (0.2441) 5.80 (0.2283) 1.75 (0.0689) 1.35 (0.0531) 0.51 (0.0201) 0.31 (0.0122) SEATING PLANE 0.50 (0.0197) × 45° 0.25 (0.0098) 8° 0.25 (0.0098) 0° 1.27 (0.0500) 0.40 (0.0157) 0.17 (0.0067) COMPLIANT TO JEDEC STANDARDS MS-012-AB CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 37. 14-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-14) Dimensions shown in millimeters and (inches) ORDERING GUIDE Model AD8648ARZ 1 AD8648ARZ-REEL1 AD8648ARZ-REEL71 AD8648ARUZ1 AD8648ARUZ-REEL1 1 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Package Description 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead TSSOP 14-Lead TSSOP Z = Pb-free part. ©2006 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05890–0–1/06(0) Rev. 0 | Page 12 of 12 Package Option R-14 R-14 R-14 RU-14 RU-14