ETC STPS120

STPS120M
®
POWER SCHOTTKY RECTIFIERS
MAIN PRODUCT CHARACTERISTICS
IF(AV)
1A
VRRM
20 V
Tj (max)
150°C
VF (max)
0.41 V
FEATURES AND BENEFITS
VERY SMALL CONDUCTION LOSSES
NEGLIGIBLE SWITCHING LOSSES
EXTREMELY FAST SWITCHING
LOW FORWARD VOLTAGE DROP FOR
HIGHER
EFFICIENCY
&
EXTENDED
BATTERY LIFE
LOW THERMAL RESISTANCE
AVALANCHE CAPABILITY SPECIFIED
A
■
■
C
■
■
■
ST Mite
(DO-216AA)
■
DESCRIPTION
Single Schottky rectifier suited for switch mode
power supplies and high frequency DC to DC
converters.
Packaged in ST Mite, this device is intended for
use in low voltage, high frequency inverters, free
wheeling and polarity protection applications. Due
to the small size of the package this device fits
battery powered equipment (cellular, notebook,
PDA’s, printers) as well chargers and PCMCIA
cards.
ABSOLUTE RATINGS (limiting values)
Symbol
Value
Unit
VRRM
Repetitive peak reverse voltage
Parameter
20
V
IF(RMS)
RMS forward current
2
A
1
A
50
A
1400
W
- 65 to + 150
°C
150
°C
10000
V/µs
δ = 0.5
IF(AV)
Average forward current
Tc = 140°C
IFSM
Surge non repetitive forward current
tp = 8.3 ms sinusoidal
PARM
Repetitive peak avalanche power
tp = 1µs
Tstg
Tj
dV/dt
* :
Tj = 25°C
Storage temperature range
Maximum operating junction temperature*
Critical rate of rise of reverse voltage (rated Vr, Tj = 25°C)
dPtot
1
thermal runaway condition for a diode on its own heatsink
<
dTj
Rth( j − a )
July 2003 - Ed : 2A
1/5
STPS120M
THERMAL RESISTANCE
Symbol
Parameter
Value
Unit
Rth (j-c)
Junction to case
20
°C/W
Rth (j-a)
Junction to ambient with minimum recommended pad size,
PC board FR4
250
°C/W
STATIC ELECTRICAL CHARACTERISTICS
Value
Symbol
Parameter
Tests conditions
Unit
Min.
IR *
Reverse leakage current
Tj = 25°C
VR = VRRM
Tj = 100°C
Tj = 25°C
VR = 10 V
Tj = 100°C
Tj = 25°C
VR = 5 V
Tj = 100°C
VF *
Forward voltage drop
Tj = 25°C
IF = 1A
Tj = 100°C
Tj = 25°C
IF = 2 A
Tj=100°C
Pulse test :
* tp ≤ 380 µs, δ ≤ 2%
To evaluate the conduction losses use the following equation :
P = 0.34 x IF(AV) + 0.07 IF2(RMS)
2/5
Typ.
Max.
1.3
3.9
275
850
0.6
2.0
145
450
0.4
1.0
105
300
0.44
0.49
0.36
0.41
0.48
0.54
0.42
0.48
µA
V
STPS120M
Fig. 1: Conduction losses versus average current.
Fig. 2: Average forward current versus ambient
temperature (δ = 0.5)
IF(av)(A)
PF(av)(W)
1.2
0.6
δ = 0.2
δ = 0.1
1.1
δ = 0.5
Rth(j-a)=Rth(j-c)
1.0
0.5
δ = 0.05
0.9
0.4
0.8
δ=1
0.7
0.6
0.3
Rth(j-a)=270°C/W
0.5
0.4
0.2
0.3
T
T
0.2
0.1
IF(av)(A)
δ=tp/T
0.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.1
tp
δ=tp/T
0.0
1.1
0
1.2
Fig. 3: Normalized avalanche power derating
versus pulse duration.
25
50
75
100
125
150
Fig. 4: Normalized avalanche power derating
versus junction temperature.
PARM(tp)
PARM(1µs)
1
Tamb(°C)
tp
1.2
PARM(tp)
PARM(25°C)
1
0.1
0.8
0.6
0.01
0.4
0.2
Tj(°C)
tp(µs)
0.001
0
0.01
0.1
1
10
100
0
1000
Fig. 5: Non repetitive surge peak forward current
versus overload duration (maximum values).
25
50
75
100
125
150
Fig. 6: Relative variation of thermal impedance
junction to case versus pulse duration.
Zth(j-c)/Rth(j-c)
IM(A)
22
1.0
20
0.9
18
0.8
16
0.7
14
0.6
Tc=25°C
12
δ = 0.5
0.5
10
Tc=75°C
8
Tc=125°C
4
0.4
0.3
6
IM
2
0
1.E-03
0.1
t(s)
t
δ=0.5
0.2
δ = 0.2
T
δ = 0.1
Single pulse
tp(s)
δ=tp/T
0.0
1.E-02
1.E-01
1.E+00
1.E-04
1.E-03
1.E-02
tp
1.E-01
3/5
STPS120M
Fig. 7: Reverse leakage current versus reverse
voltage applied (typical values).
Fig. 8: Junction capacitance versus reverse voltage
applied (typical values).
C(pF)
IR(mA)
1000
1.E+01
F=1MHz
Vosc=30mV
Tj=25°C
Tj=150°C
1.E+00
Tj=125°C
1.E-01
Tj=100°C
100
Tj=75°C
1.E-02
Tj=50°C
1.E-03
Tj=25°C
VR(V)
VR(V)
10
1.E-04
0
2
4
6
8
10
12
14
16
18
1
20
Fig. 9-1: Forward voltage drop versus forward
current (low level).
10
100
Fig. 9-2: Forward voltage drop versus forward
current (high level)
IFM(A)
IFM(A)
2.0
100.0
1.8
1.6
Tj=100°C
(Maximum values)
1.4
Tj=100°C
(Maximum values)
10.0
1.2
Tj=100°C
(Typical values)
1.0
Tj=100°C
(Typical values)
0.8
Tj=25°C
(Maximum values)
1.0
Tj=25°C
(Maximum values)
0.6
0.4
0.2
VFM(V)
VFM(V)
0.0
0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
Fig. 10: Thermal resistance junction to ambient
versus copper surface under tab (epoxy printed
board FR4, Cu = 35µm).
Rth(j-a)/(°C/W)
300
250
200
150
100
50
S(cm²)
0
0.0
4/5
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
STPS120M
PACKAGE MECHANICAL DATA
ST Mite
L3
D
b2
b
H
L2
L
E
R
C
A
A1
0° to 6°
R1
Note:
DIMENSIONS
REF.
Millimeters
Inches
Min. Typ. Max. Min. Typ. Max.
A
0.85 1.00 1.15 0.033 0.039 0.045
A1
0.10
0.004
b
0.40
0.65 0.016
0.025
b2
0.70
1.00 0.027
0.039
c
0.10
0.25 0.004
0.010
D
1.75 1.90 2.05 0.069 0.075 0.081
E
1.75 1.90 2.05 0.069 0.075 0.081
H
3.60 3.75 3.90 0.142 0.148 0.154
L
0.50 0.63 0.80 0.047 0.025 0.031
L2
1.20 1.35 1.50 0.047 0.053 0.059
L3
0.50 ref (Typ.)
0.019 ref (Typ.)
R
0.07
0.003
R1 0.07
0.003
The anode is connected to the longer tab
The cathode is connected to the shorter tab (heatsink)
FOOTPRINT (dimensions in mm)
2.67
0.762
2.54
1.27
0.635
Type
Marking
Package
Weight
Base qty
Delivery mode
STPS120M
120
ST Mite
15.5 mg
12000
Tape & reel
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of
use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written
approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
© 2003 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore
Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.st.com
5/5