STPS120M ® POWER SCHOTTKY RECTIFIERS MAIN PRODUCT CHARACTERISTICS IF(AV) 1A VRRM 20 V Tj (max) 150°C VF (max) 0.41 V FEATURES AND BENEFITS VERY SMALL CONDUCTION LOSSES NEGLIGIBLE SWITCHING LOSSES EXTREMELY FAST SWITCHING LOW FORWARD VOLTAGE DROP FOR HIGHER EFFICIENCY & EXTENDED BATTERY LIFE LOW THERMAL RESISTANCE AVALANCHE CAPABILITY SPECIFIED A ■ ■ C ■ ■ ■ ST Mite (DO-216AA) ■ DESCRIPTION Single Schottky rectifier suited for switch mode power supplies and high frequency DC to DC converters. Packaged in ST Mite, this device is intended for use in low voltage, high frequency inverters, free wheeling and polarity protection applications. Due to the small size of the package this device fits battery powered equipment (cellular, notebook, PDA’s, printers) as well chargers and PCMCIA cards. ABSOLUTE RATINGS (limiting values) Symbol Value Unit VRRM Repetitive peak reverse voltage Parameter 20 V IF(RMS) RMS forward current 2 A 1 A 50 A 1400 W - 65 to + 150 °C 150 °C 10000 V/µs δ = 0.5 IF(AV) Average forward current Tc = 140°C IFSM Surge non repetitive forward current tp = 8.3 ms sinusoidal PARM Repetitive peak avalanche power tp = 1µs Tstg Tj dV/dt * : Tj = 25°C Storage temperature range Maximum operating junction temperature* Critical rate of rise of reverse voltage (rated Vr, Tj = 25°C) dPtot 1 thermal runaway condition for a diode on its own heatsink < dTj Rth( j − a ) July 2003 - Ed : 2A 1/5 STPS120M THERMAL RESISTANCE Symbol Parameter Value Unit Rth (j-c) Junction to case 20 °C/W Rth (j-a) Junction to ambient with minimum recommended pad size, PC board FR4 250 °C/W STATIC ELECTRICAL CHARACTERISTICS Value Symbol Parameter Tests conditions Unit Min. IR * Reverse leakage current Tj = 25°C VR = VRRM Tj = 100°C Tj = 25°C VR = 10 V Tj = 100°C Tj = 25°C VR = 5 V Tj = 100°C VF * Forward voltage drop Tj = 25°C IF = 1A Tj = 100°C Tj = 25°C IF = 2 A Tj=100°C Pulse test : * tp ≤ 380 µs, δ ≤ 2% To evaluate the conduction losses use the following equation : P = 0.34 x IF(AV) + 0.07 IF2(RMS) 2/5 Typ. Max. 1.3 3.9 275 850 0.6 2.0 145 450 0.4 1.0 105 300 0.44 0.49 0.36 0.41 0.48 0.54 0.42 0.48 µA V STPS120M Fig. 1: Conduction losses versus average current. Fig. 2: Average forward current versus ambient temperature (δ = 0.5) IF(av)(A) PF(av)(W) 1.2 0.6 δ = 0.2 δ = 0.1 1.1 δ = 0.5 Rth(j-a)=Rth(j-c) 1.0 0.5 δ = 0.05 0.9 0.4 0.8 δ=1 0.7 0.6 0.3 Rth(j-a)=270°C/W 0.5 0.4 0.2 0.3 T T 0.2 0.1 IF(av)(A) δ=tp/T 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 tp δ=tp/T 0.0 1.1 0 1.2 Fig. 3: Normalized avalanche power derating versus pulse duration. 25 50 75 100 125 150 Fig. 4: Normalized avalanche power derating versus junction temperature. PARM(tp) PARM(1µs) 1 Tamb(°C) tp 1.2 PARM(tp) PARM(25°C) 1 0.1 0.8 0.6 0.01 0.4 0.2 Tj(°C) tp(µs) 0.001 0 0.01 0.1 1 10 100 0 1000 Fig. 5: Non repetitive surge peak forward current versus overload duration (maximum values). 25 50 75 100 125 150 Fig. 6: Relative variation of thermal impedance junction to case versus pulse duration. Zth(j-c)/Rth(j-c) IM(A) 22 1.0 20 0.9 18 0.8 16 0.7 14 0.6 Tc=25°C 12 δ = 0.5 0.5 10 Tc=75°C 8 Tc=125°C 4 0.4 0.3 6 IM 2 0 1.E-03 0.1 t(s) t δ=0.5 0.2 δ = 0.2 T δ = 0.1 Single pulse tp(s) δ=tp/T 0.0 1.E-02 1.E-01 1.E+00 1.E-04 1.E-03 1.E-02 tp 1.E-01 3/5 STPS120M Fig. 7: Reverse leakage current versus reverse voltage applied (typical values). Fig. 8: Junction capacitance versus reverse voltage applied (typical values). C(pF) IR(mA) 1000 1.E+01 F=1MHz Vosc=30mV Tj=25°C Tj=150°C 1.E+00 Tj=125°C 1.E-01 Tj=100°C 100 Tj=75°C 1.E-02 Tj=50°C 1.E-03 Tj=25°C VR(V) VR(V) 10 1.E-04 0 2 4 6 8 10 12 14 16 18 1 20 Fig. 9-1: Forward voltage drop versus forward current (low level). 10 100 Fig. 9-2: Forward voltage drop versus forward current (high level) IFM(A) IFM(A) 2.0 100.0 1.8 1.6 Tj=100°C (Maximum values) 1.4 Tj=100°C (Maximum values) 10.0 1.2 Tj=100°C (Typical values) 1.0 Tj=100°C (Typical values) 0.8 Tj=25°C (Maximum values) 1.0 Tj=25°C (Maximum values) 0.6 0.4 0.2 VFM(V) VFM(V) 0.0 0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Fig. 10: Thermal resistance junction to ambient versus copper surface under tab (epoxy printed board FR4, Cu = 35µm). Rth(j-a)/(°C/W) 300 250 200 150 100 50 S(cm²) 0 0.0 4/5 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 STPS120M PACKAGE MECHANICAL DATA ST Mite L3 D b2 b H L2 L E R C A A1 0° to 6° R1 Note: DIMENSIONS REF. Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 0.85 1.00 1.15 0.033 0.039 0.045 A1 0.10 0.004 b 0.40 0.65 0.016 0.025 b2 0.70 1.00 0.027 0.039 c 0.10 0.25 0.004 0.010 D 1.75 1.90 2.05 0.069 0.075 0.081 E 1.75 1.90 2.05 0.069 0.075 0.081 H 3.60 3.75 3.90 0.142 0.148 0.154 L 0.50 0.63 0.80 0.047 0.025 0.031 L2 1.20 1.35 1.50 0.047 0.053 0.059 L3 0.50 ref (Typ.) 0.019 ref (Typ.) R 0.07 0.003 R1 0.07 0.003 The anode is connected to the longer tab The cathode is connected to the shorter tab (heatsink) FOOTPRINT (dimensions in mm) 2.67 0.762 2.54 1.27 0.635 Type Marking Package Weight Base qty Delivery mode STPS120M 120 ST Mite 15.5 mg 12000 Tape & reel Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 2003 STMicroelectronics - Printed in Italy - All rights reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com 5/5