TS925 RAIL TO RAIL HIGH OUTPUT CURRENT QUAD OPERATIONAL AMPLIFIER .. .. .. . .. .. . RAIL TO RAIL INPUT AND OUTPUT LOW NOISE : 9nV/√ √Hz LOW DISTORTION HIGH OUTPUT CURRENT : 80mA (able to drive 32Ω loads) HIGH SPEED : 4MHz, 1.3V/µs OPERATING FROM 2.7V TO 12V LOW INPUT OFFSET VOLTAGE : 900µV max. (TS925A) D SO16 (Plastic Micropackage) N DIP16 (Plastic Package) ADJUSTABLE PHANTOM GROUND (VCC/2) STANDBY MODE ESD INTERNAL PROTECTION : 2kV LATCH-UP IMMUNITY MACROMODEL INCLUDED IN THIS SPECIFICATION P TSSOP16 (Thin Shrink Small Outline Package) DESCRIPTION Part Number o -40, +125 C TS925I P • • • 1 16 O utput 4 Inve rting Inp ut 1 2 15 Inve rting Inp u t 4 Non-inve rting Inp ut 1 3 14 Non -inverting Inp u t 4 - + + - - + 4 13 V Non-inve rting Inp ut 2 5 12 Non -inverting Inp u t 3 Inve rting Inp ut 2 6 11 Inve rting Inp u t 3 O utput 2 7 10 O utput 3 P hantom ground 8 9 CC - June 1998 D O utput 1 + Headphone amplifier Soundcard amplifier, piezoelectric speaker MPEG boards, multimedia systems, ... Cordless telephones and portable communication equipment Line driver, buffer Instrumentation with low noise as key factor N PIN CONNECTIONS V APPLICATIONS Package Temperature Range + .. .. .. ORDER CODES - The TS925 is a RAIL TO RAIL quad BiCMOS operational amplifier optimized and fully specified for 3V and 5V operations. It includes a high output current and low impedance PHANTOM GROUND (no external reference requested). The TS925 exhibits a very low noise, low distortion and high output current making this device an excellent choice for high quality, low voltage or battery operated audio/telecom systems. This device is stable when charging the output with capacitive loads up to 500pF. When the STANDBY mode is enabled, the total consumption drops to 6µA (VCC = 3V). CC S tdby 1/16 TS925 ABSOLUTE MAXIMUM RATINGS Symbol VCC Vid Vi Toper Tj Rthja Notes : 1. 2. 3. 4. Parameter Supply Voltage - (note 1) Differential Input Voltage - (note 2) Input Voltage - (note 3) Operating Free Air Temperature Range Maximum Junction Temperation Thermal Resistance Junction to Ambient Output Short-Circuit Duration Value 14 ±1 -0.3 to 14 -40 to +125 150 130 see note 4 Unit V V V o C o C o C/W All voltage values, except differential voltage are with respect to network ground terminal. Differential voltages are the non-inverting input terminal with respect to the inverting input t erminal. The magnitude of input and output voltages must never exceed VCC+ +0.3V. Short-circuits can cause excessive+ heating. Destructive dissipation can result from simultaneous short-circuit on all amplifiers. Do not short circuit outputs to VCC when exceeding 8V : this can induce reliability defects. OPERATING CONDITIONS Symbol VCC Vicm 2/16 Parameter Supply Voltage Common Mode Input Voltage Range VCC Value 2.7 to 12 -0.2 to VCC +0.2 Unit V V TS925 ELECTRICAL CHARACTERISTICS VCC+ = 3V, VCC- = 0V, T amb = 25oC (unless otherwise specified) OPERATIONAL AMPLIFIER Symbol Vio Parameter Test Condition Input OffsetVoltage Tmin. < Tamb. < Tmax. DVio Min. Typ. TS925 TS925A TS925 TS925A Input Offset Voltage Drift Max. Unit 3 0.9 5 1.8 mV µV/oC 2 Iio Input Offset Current Vout = 1.5V 1 30 nA Iib Input Bias Current Vout = 1.5V 15 100 nA VOH High Level Output Voltage RL connected to VCC/2 R L = 10k R L = 600Ω RL = 32Ω VOL Low Level Output Voltage RL connected to VCC/2 R L = 10k R L = 600Ω RL = 32Ω 180 Vout = 2Vpk-pk R L = 10k R L = 600Ω RL = 32Ω 200 35 16 Avd Large Signal Voltage Gain GBP Gain Bandwidth Product CMR Common Mode Rejection Ratio SVR Supply Voltage RejectionRatio 2.90 2.87 2.63 50 100 mV V/mV R L = 600Ω 60 VCC = 2.7V to 3.3V V 4 MHz 80 dB 60 85 dB Output Short-circuit Current 50 80 mA SR Slew Rate 0.7 1.3 V/µs Pm Phase Margin at Unit Gain R L = 600Ω, CL = 100pF 68 Degrees GM Gain Margin R L = 600Ω, CL = 100pF 12 dB 9 nV √ Hz Io en THD Cs Equivalent Input Noise Voltage Total Harmonic Distortion Channel Separation f = 1KHz Vout = 2Vpk-pk, f = 1kHz AV = 1 R L = 600Ω % 0.01 120 dB 3/16 TS925 GLOBAL CIRCUIT Symbol Parameter ICC Total Supply Current Istby Total Supply Current in STANDBY (pin 9 connected to VCC ) Test Condition Min. No load, Vout = VCC/2 Typ. Max. Unit 5 7 mA µA 6 Venstby Pin 9 Voltage to enable the STANDBY mode - (note 1) Tmin. ≤ Tamb ≤ Tmax. Vdistby Pin 9 Voltage to disable the STANDBY mode - (note 1) Tmin. ≤ Tamb ≤ Tmax. 0.3 0.4 1.1 1 V V Note 1 : the STANDBY mode is currently enabled when Pin 9 is GROUNDED and disabled when Pin 9 is left OPEN. PHANTOM GROUND Symbol Parameter Vpg Phantom Ground Output Voltage Ipgsc Phantom Ground Output Short Circuit Current (sourced) Zpg Phantom Ground Impedance Enpg Phantom Ground Output Voltage Noise (f = 1kHz) Ipgsk Phantom Ground Output Short Circuit Current (sinked) Note 2 : Cdec is the decoupling capacitor on Pin 9. 4/16 Test Condition Min. Typ. Max. Unit No Output Current VCC/2 -5% VCC/2 VCC/2 +5% V 12 18 mA DC to 20kHz 3 Ω Cdec = 100pF Cdec = 1nF Cdec = 10nF (note 2) 200 40 17 nV⁄√ Hz mA 12 18 TS925 ELECTRICAL CHARACTERISTICS VCC+ = 5V, VCC- = 0V, T amb = 25oC (unless otherwise specified) OPERATIONAL AMPLIFIER Symbol Vio Parameter Test Condition Input OffsetVoltage Tmin. < Tamb. < Tmax. DVio Min. Typ. TS925 TS925A TS925 TS925A Input Offset Voltage Drift Max. Unit 3 0.9 5 1.8 mV µV/oC 2 Iio Input Offset Current Vout = 2.5V 1 30 nA Iib Input Bias Current Vout = 2.5V 15 100 nA VOH High Level Output Voltage RL connected to VCC/2 R L = 10k R L = 600Ω RL = 32Ω VOL Low Level Output Voltage RL connected to VCC/2 R L = 10k R L = 600Ω RL = 32Ω 300 Vout = 4Vpk-pk R L = 10k R L = 600Ω Vout = 2Vpk-pk, RL = 32Ω 200 40 17 Avd Large Signal Voltage Gain GBP Gain Bandwidth Product CMR Common Mode Rejection Ratio SVR Supply Voltage RejectionRatio 4.9 4.85 4.4 50 120 mV V/mV R L = 600Ω VCC = 3V to 5V V 4 MHz 60 80 dB 60 85 dB Output Short-circuit Current 50 80 mA SR Slew Rate 0.7 1.3 V/µs Pm Phase Margin at Unit Gain RL = 600Ω, CL = 100pF 68 Degrees GM Gain Margin RL = 600Ω, CL = 100pF 12 dB f = 1KHz 9 nV √ Hz Vout = 3Vpk-pk, f= 1kHz AV = 1 R L = 600Ω 0.01 Io en THD Cs Equivalent Input Noise Voltage Total Harmonic Distortion Channel Separation % 120 dB 5/16 TS925 GLOBAL CIRCUIT Symbol Parameter ICC Total Supply Current Istby Total Supply Current in STANDBY (pin 9 connected to VCC ) Test Condition Min. No load, Vout = VCC/2 Typ. Max. Unit 6 8 mA µA 10 Venstby Pin 9 Voltage to enable the STANDBY mode - (note 1) Tmin. ≤ Tamb ≤ Tmax. Vdistby Pin 9 Voltage to disable the STANDBY mode - (note 1) Tmin. ≤ Tamb ≤ Tmax. 0.3 0.4 1.1 1 V V Note 1 : the STANDBY mode is currently enabled when Pin 9 is GROUNDED and disabled when Pin 9 is left OPEN. PHANTOM GROUND Symbol Parameter Min. Typ. Max. Unit No Output Current VCC/2 -5% VCC/2 VCC/2 +5% V 12 18 mA Ω Vpg Phantom Ground Output Voltage Ipgsc Phantom Ground Output Short Circuit Current (sourced) Zpg Phantom Ground Impedance DC to 20kHz 3 Enpg Phantom Ground Output Voltage Noise (f = 1kHz) Cdec = 100pF Cdec = 1nF Cdec = 10nF (note 2) 200 40 17 Ipgsk Phantom Ground Output Short Circuit Current (sinked) Note 2 : Cdec is the decoupling capacitor on Pin 9. 6/16 Test Condition nV⁄√ Hz mA 12 18 TS925 INPUT OFFSET VOLTAGE DISTRIBUTION TOTAL SUPPLY CURRENT VERSUS SUPPLY VOLTAGE WITH NO LOAD 5.5 783 devices from 3 lots - Vcc=0/3V - T=25°C SUPPLY CURRENT (mA) 110 100 90 80 70 60 50 40 4.4 3.3 2.2 30 20 1.1 10 0 -0.55 -0.45 -0.35 -0.25 -0.15 -0.05 0.05 0.15 .25 .35 .45 .55 Vio (mV): average on 4 operators per device 0 12 6 SUP PLY VOLTAGE (V) SUPPLY CURRENT/AMPLIFIER VERSUS TEMPERATURE OUTPUT SHORT CIRCUIT CURRENT VERSUS OUTPUT VOLTAGE 100 80 OUTPUT SHORT-CIRCUIT CURRENT (mA) SUPPLY CURRENT PER AMPLIFIER (mA) 1.4 1.3 VCC = 0/5V 1.2 1.1 1 60 S ink 40 20 0 VCC = 0/12V Ta mb. = 25 C -20 -40 -60 S ource -80 -100 0.9 -55 25 125 0 AMBIENT TEMPERATURE ( C) 100 100 80 80 60 S ink 40 20 0 VCC = 0/5V Ta mb. = 25 C -20 -40 -60 S ource -80 -100 0 60 2 3 4 OUTP UT VOLTAGE (V) S ink 40 20 0 VCC = 0/3V Ta mb. = 25 C -2 0 -40 -60 S ource -80 -100 1 5 12 OUTPUT SHORT CIRCUIT CURRENT VERSUS OUTPUT VOLTAGE OUTPUT SHORT-CIRCUIT CURRENT (mA) OUTPUT SHORT-CIRCUIT CURRENT (mA) OUTPUT SHORT CIRCUIT CURRENT VERSUS OUTPUT VOLTAGE 6 OUTP UT VOLTAGE (V) 0 1.5 3 OUTP UT VOLTAGE (V) 7/16 TS925 OUTPUT SHORT CIRCUIT CURRENT VERSUS TEMPERATURE VOLTAGE GAIN AND PHASE VERSUS FREQUENCY 100 0 40 VCC= 0/5V OPEN LOOP VOLTAGE GAIN (dB) OUTPUT SHORT-CIRCUIT CURRENT (mA) 90 30 S ink 80 S ource 70 60 Pha se 20 90 10 180 0 Ga in -10 270 -20 -30 -40 VCC = 1.5 V C L = 500pF Ta mb. = 25 C -50 1M FREQUENCY (Hz) 100k 50 -55 25 125 10M AMBIENT TEMPERATURE ( C) DISTORSION + NOISE VERSUS FREQUENCY THD + NOISE VERSUS FREQUENCY 0.03 0.02 R L = 2k Vo = 10Vpp VCC = 0/12V G = -1 R L = 2k Vo = 10Vpp VCC = 0/12V Ga in = 1 0.015 THD + NOISE (%) THD + NOISE (%) 0.025 0.02 0.015 0.01 0.01 0.005 0.005 0 0 0.01 0.03 0.1 0.3 1 3 10 0.01 30 0.03 0.1 FREQUENCY (kHz) THD + NOISE VERSUS FREQUENCY 1 3 10 30 THD + NOISE VERSUS FREQUENCY 0.0 4 0.7 R L = 32 Ω Vo = 4Vpp VCC = 0/5V Ga in = 1 R L = 32 Ω Vo = 2Vpp VCC = 0/3V Ga in = 10 0.6 THD + NOISE (%) 0.032 THD + NOISE (%) 0.3 FREQUENCY (kHz) 0.024 0.1 6 0.5 0.4 0.3 0.2 0.008 0.1 0 0.01 0.03 0.1 0.3 1 FR EQUENC Y (kHz) 8/16 3 10 30 0 0 .01 0.03 0.1 0.3 1 FREQUENCY (kHz ) 3 10 30 TS925 EQUIVALENT INPUT NOISE VOLTAGE VERSUS FREQUENCY TOTAL SUPPLY CURRENT VERSUS STANDBY INPUT VOLTAGE 1.5V VCC = 14 R S = 100 Ω Tamb. = 25 C 12 5 VCC = 0/3V TOTAL SUPPLY CURRENT (mA) 16 10 8 6 4 2 4 3 2 1 0 0 0 10 100 1k 10k FREQUENCY (Hz) 0.4 0.8 100k 1.2 1.6 2 V s ta ndby (V) PHANTOM GROUND SHORT CIRCUIT OUTPUT CURRENT VERSUS PHANTOM GROUND OUTPUT VOLTAGE 20 VCC = 0/12V 16 12 I pgsc (mA) en - EQUIVALENT INPUT NOISE VOLTAGE (nv/vHz) 18 8 4 0 -4 -8 -12 -16 -20 0 6 12 9/16 TS925 APPLICATION NOTE PREAMPLIFIER AND SPEAKER DRIVER USING TS925 by F. MARICOURT The TS925 is an input/output rail to rail quad BiCMOS operational amplifier. It is able to operate with low supply voltage (2.7V) and to drive low output loads such as 32Ω. As an illustration of these features, the following technical note is describing the way to use all the advantages of the device in a global audio application. APPLICATION CIRCUIT The figure 1 is showing that two operators (A1, A4) are used in a preamplifier configurationand the two others in a push-pull configuration driving a headset. The phantom ground is used as a common refence level (VCC/2). Figure 1 : Electrical Schematic 10/16 The power supply is delivered with 2 batteries LR6 (2x1.5V nominal). Preamplifier : the operators A1 and A4 are wired with a non inverting gain of respectively : • A1# (R4/(R3+R17)) • A4# R6/R5 With the following values choosen : • R4=22kΩ - R3=50Ω - R17=1.2kΩ • R6=47kΩ - R5=1.2kΩ, the gain of the preamplifier chain is then 58dB. Nevertheless, the gain of A1 can be adjusted by choosing a JFET transistor Q1 instead of R17. TS925 Figure 2 : Frequency Response of the Global Preamplifier Chain 70 Voltage Gain (dB) 60 50 40 30 20 100 Headphone amplifier : the operators A2 and A3 are organized in a push-pull configuration with a gain of 5. The stereo inputs can be connected to a CD-player and TS925 drives directly the headphone speakers.This configuration underscores the ability of the circuit to drive 32Ω load with a maximum output swing and a high fidelity for reproducing sounds and musics. Figure 4 is displaying the available swing at the headset outputs : this is done with TS925 (non distorded curve) and with two other rail to rail competitor parts. Figure 4 : Maximul Output Swing Voltage at Headphone Outputs 1000 10000 100000 1000000 10000000 1.0E+08 frequency (Hz) Figure 3 : Voltage Noise Density versus Frequency at Preamplifier Output 15 13 12 11 Figure 5 : THD+Noise versus Frequency (headphone outputs) 10 9 8 7 10 100 1000 10000 100000 frequency (Hz) 0.4 0.35 0.3 THD+noise (%) Noise Density (nV/sqrt(Hz)) 14 0.25 0.2 0.15 0.1 0.05 0 100 1000 10000 100000 Hz 11/16 TS925 .. . MACROMODEL RAIL TO RAIL INPUT AND OUTPUT LOW NOISE : 9nV√ √Hz LOW DISTORTION ** Standard Linear Ics Macromodels, 1996. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY . S UBCK T T S9 2 5 1 3 2 4 5 (an a lo g ) ********************************************************* .MODEL MDTH D IS=1E-8 KF=2.664234E-16 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 8.125000E+00 RIN 15 16 8.125000E+00 RIS 11 15 2.238465E+02 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 153.5u VOFN 13 14 DC 0 IPOL 13 5 3.200000E-05 CPS 11 15 1e-9 DINN 17 13 MDTH 400E-12 VIN 17 5 -0.100000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 0.400000E+00 FCP 4 5 VOFP 1.865000E+02 FCN 5 4 VOFN 1.865000E+02 FIBP 2 5 VOFP 6.250000E-03 FIBN 5 1 VOFN 6.250000E-03 * GM1 STAGE *************** FGM1P 119 5 VOFP 1.1 FGM1N 119 5 VOFN 1.1 RAP 119 4 2.6E+06 RAN 119 5 2.6E+06 * GM2 STAGE *************** G2P 19 5 119 5 1.92E-02 G2N 19 5 119 4 1.92E-02 12/16 . .. HIGH OUTPUT CURRENT : 50mA min. (able to drive 32Ω loads) HIGH SPEED : 4MHz, 1.3V/µs OPERATING FROM 2.7V TO 12V R2P 19 4 1E+07 R2N 19 5 1E+07 ************************** VINT1 500 0 5 GCONVP 500 501 119 4 19.38 !envoie ds VP, I(VP)=(V119-V4)/2/Ut VP 501 0 0 GCONVN 500 502 119 5 19.38 !envoie ds VN, I(VN)=(V119-V5)/2/Ut VN 502 0 0 ********* orientation isink isource ******* VINT2 503 0 5 FCOPY 503 504 VOUT 1 DCOPYP 504 505 MDTH 400E-9 VCOPYP 505 0 0 DCOPYN 506 504 MDTH 400E-9 VCOPYN 0 506 0 *************************** F2PP 19 5 poly(2) VCOPYP VP 0 0 0 0 0.5 !multiplie I(vout)*I(VP)=Iout*(V119-V4)/2/Ut F2PN 19 5 poly(2) VCOPYP VN 0 0 0 0 0.5 !multiplie I(vout)*I(VN)=Iout*(V119-V5)/2/Ut F2NP 19 5 poly(2) VCOPYN VP 0 0 0 0 1.75 !multiplie I(vout)*I(VP)=Iout*(V119-V4)/2/Ut F2NN 19 5 poly(2) VCOPYN VN 0 0 0 0 1.75 !multiplie I(vout)*I(VN)=Iout*(V119-V5)/2/Ut * COMPENSATION ************ CC 19 119 25p * OUTPUT*********** DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 6.250000E+02 VIPM 28 4 5.000000E+01 HONM 21 27 VOUT 6.250000E+02 VINM 5 27 5.000000E+01 VOUT 3 23 0 ROUT 23 19 6 COUT 3 5 1.300000E-10 DOP 19 25 MDTH 400E-12 VOP 4 25 1.052 DON 24 19 MDTH 400E-12 VON 24 5 1.052 .ENDS TS925 ELECTRICAL CHARACTERISTICS VCC+ = 3V, VCC- = 0V, RL,CL connected to VCC/2, Tamb = 25oC (unless otherwise specified) Symbol Conditions Vio Avd RL = 10kΩ ICC No load, per operator Vicm Value Unit 0 mV 200 V/mV 1.2 mA -0.2 to 3.2 V VOH RL = 10kΩ 2.95 V VOL RL = 10kΩ 25 mV Isink VO = 3V 80 mA Isource VO = 0V 80 mA GBP RL = 600Ω 4 MHz SR RL = 10kΩ, CL = 100pF 1.3 V/µs ∅m RL = 600Ω 68 Degrees 13/16 TS925 PM-DIP16.EPS PACKAGE MECHANICAL DATA 16 PINS - PLASTIC DIP a1 B b b1 D E e e3 F i L Z 14/16 Min. 0.51 0.77 Millimeters Typ. Max. 1.65 0.5 0.25 Min. 0.020 0.030 Inches Typ. Max. 0.065 0.020 0.010 20 8.5 2.54 17.78 0.787 0.335 0.100 0.700 7.1 5.1 3.3 0.280 0.201 0.130 1.27 0.050 DIP16.TBL Dimensions TS925 PM-SO16.EPS PACKAGE MECHANICAL DATA 16 PINS - PLASTIC MICROPACKAGE (SO) A a1 a2 b b1 C c1 D E e e3 F G L M Min. Millimeters Typ. 0.1 0.35 0.19 Max. 1.75 0.2 1.6 0.46 0.25 Min. Inches Typ. 0.004 0.014 0.007 0.5 Max. 0.069 0.008 0.063 0.018 0.010 0.020 45o (typ.) 9.8 5.8 10 6.2 0.386 0.228 1.27 8.89 3.8 4.6 0.5 0.394 0.244 0.050 0.350 4.0 5.3 1.27 0.62 0.150 0.181 0.020 0.157 0.209 0.050 0.024 SO16.TBL Dimensions 15/16 TS925 PACKAGE MECHANICAL DATA 16 PINS - THIN SHRINK SMALL OUTLINE PACKAGE Dim. Millimeters Min. Typ. A Max. Min. Typ. 1.20 A1 0.05 A2 0.80 b 0.15 c 0.1 D 4.90 E E1 Inches 0.15 1.00 5.00 0.05 0.01 1.05 0.031 0.30 0.005 0.20 0.003 5.10 0.192 6.40 4.30 e 4.40 o 0 l 0.50 4.50 0.039 0.041 0.15 0.012 0.196 0.20 0.169 0.173 0.177 0.025 o 0.60 0.006 0.252 0.65 k Max. o 8 0 0.75 0.09 8 0.0236 o 0.030 1998 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A. 16/16 ORDER CODE : Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publ ication supersedes and replaces all infor mation previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics