TS925 RAIL TO RAIL HIGH OUTPUT CURRENT QUAD OPERATIONAL AMPLIFIER ■ ■ ■ ■ ■ ■ ■ ■ RAIL TO RAIL INPUT AND OUTPUT LOW NOISE : 9nV/√Hz LOW DISTORTION HIGH OUTPUT CURRENT : 80mA (able to drive 32Ω loads) HIGH SPEED : 4MHz, 1.3V/µs OPERATING FROM 2.7V TO 12V LOW INPUT OFFSET VOLTAGE : 900µV max. (TS925A) N DIP16 (Plastic Package) ■ ADJUSTABLE PHANTOM GROUND (VCC/2) ■ STANDBY MODE ■ ■ ■ ■ D SO16 (Plastic Micropackage) ESD INTERNAL PROTECTION : 2kV LATCH-UP IMMUNITY MACROMODEL INCLUDED IN THIS SPECIFICATION DESCRIPTION P TSSOP16 (Thin Shrink Small Outline Package) The TS925 is a RAIL TO RAIL quad BiCMOS operational amplifier optimized and fully specified for 3V and 5V operation. High output current allows low load impedances to be driven. An internal low impedance PHANTOM GROUND eliminates the need for an external reference voltage or biasing arrangement. ORDER CODE The TS925 exhibits a very low noise, low distortion and high output current making this device an excellent choice for high quality, low voltage or battery operated audio/telecom systems. TS925I Headphone amplifier Soundcard amplifier, piezoelectric speaker MPEG boards, multimedia systems, ... Cordless telephones and portable communication equipment ■ Line driver, buffer ■ Instrumentation with low noise as key factor February 2001 P • • • Output 1 1 16 Output 4 Inverting Input 1 2 15 Inverting Input 4 Non-inverting Input 1 3 14 Non-inverting Input 4 + 4 13 V Non-inverting Input 2 5 12 Non-inverting Input 3 Inverting Input 2 6 11 Inverting Input 3 Output 2 7 10 Output 3 Phantom ground 8 9 V CC - - ■ ■ ■ ■ D PIN CONNECTIONS (top view) + + APPLICATIONS N N = Dual in Line Package (DIP) D = Small Outline Package (SO) - also available in Tape & Reel (DT) P = Thin Shrink Small Outline Package (TSSOP) - only available in Tape & Reel (PT) + + When the STANDBY mode is enabled, the total consumption drops to 6µA (VCC = 3V). -40°C, +125°C - - The device is stable for capacitive loads up to 500pF. Package Temperature Range Part Number CC - Stdby 1/15 TS925 ABSOLUTE MAXIMUM RATINGS Symbol VCC Vid Vi Toper Tj R thja Parameter Supply voltage 1) Differential Input Voltage Input Voltage 2) 3) Unit 14 V ±1 V -0.3 to 14 V -40 to +125 °C Maximum Junction Temperature 150 °C Thermal Resistance Junction to Ambient 130 Operating Free Air Temperature Range Output Short Circuit Duration 1. 2. 3. 4. Value see note °C/W 4) °C All voltage values, except differential voltage are with respect to network ground terminal. Differential voltages are the non-inverting input terminal with respect to the inverting input t erminal. The magnitude of input and output voltages must never exceed VCC + +0.3V. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuit on all amplifiers. Do not short circuit outputs to VCC+ when exceeding 8V : this can induce reliability defects. OPERATING CONDITIONS Symbol Parameter VCC Supply voltage Vicm Common Mode Input Voltage Range 2/15 Value Unit 2.7 to 12 V VCC- -0.2 to VCC+ +0.2 V TS925 ELECTRICAL CHARACTERISTICS VCC+ = 3V, VCC- = 0V, Tamb = 25°C (unless otherwise specified) OPERATIONAL AMPLIFIER Symbol Parameter Input Offset Voltage Vio DVio Tmin. ≤ Tamb ≤ Tmax. Min. Typ. TS925 TS925A TS925 TS925A Max. Unit 3 0.9 5 1.8 mV µV/°C Input Offset Voltage Drift 2 Iio Input Offset Current Vout = 1.5V 1 30 Iib Input Bias Current Vout = 1.5V 15 100 VOH High Level Output Voltage R L connected to Vcc/2 nA RL = 10k R L = 600Ω R L = 32Ω 2.90 2.87 V 2.63 RL= 10k R L = 600Ω R L = 32Ω 180 Avd Large Signal Voltage Gain (Vout = 2Vpk-pk) RL= 10k RL = 600Ω RL = 32Ω 200 35 16 GBP Gain Bandwith Product R L = 600Ω CMR Common Mode Rejection Ratio 60 80 SVR Supply Voltage Rejection Ratio V cc = 2.7 to 3.3V 60 85 Output Short-Circuit Current 50 80 mA SR Slew Rate 0.7 1.3 V/µs Pm Phase Margin at Unit Gain RL = 600Ω, C L =100pF 68 GM Gain Margin RL = 600Ω, C L =100pF 12 en Equivalent Input Noise Voltage f = 1kHz 9 VOL Io THD Cs Low Level Output Voltage R L connected to Vcc/2 nA 50 100 mV V/mV MHz 4 dB dB Degrees dB Total Harmonic Distortion Vout = 2Vpk-pk, F = 1kHz, Av = 1, RL =600Ω 0.01 Channel Separation 120 nV -----------Hz % dB 3/15 TS925 GLOBAL CIRCUIT Symbol Parameter ICC Total Supply Current No load, Vout = Vcc/2 Istby Total Supply Current in STANDBY (pin 9 connected to Vcc-) Venstby Pin 9 Voltage to enable the STANDBY mode 1) Tmin ≤ Tamb ≤ Tmax Vdistby Pin 9 Voltage to disable the STANDBY mode (see note1) Tmin ≤ Tamb ≤ Tmax 1. Min. Typ Max. 5 7 Unit mA µA 6 0.3 0.4 1.1 1 V V the STANDBY mode is currently enabled when Pin 9 is GROUNDED and disabled when Pin 9 is left OPEN. PHANTOM GROUND Symbol Parameter Vpg Phantom Ground Output Voltage No Output Current Ipgsc Phantom Ground Output Short Circuit Current (sourced) Z pg Phantom Ground Impedance DC to 20kHz E npg Phantom Ground Output Voltage Noise (f=1kHz) C dec = 100pF C dec = 1nF Min. Typ Max. Unit Vcc/2 -5% Vcc/2 Vcc/2 +5% V 12 18 Ω 3 C dec = 10nF 1) Ipgsk 1. 4/15 Phantom Ground Output Short Circuit Current (sinked) C dec is the decoupling capacitor on Pin9 mA 12 200 40 17 nV -----------Hz 18 mA TS925 ELECTRICAL CHARACTERISTICS VCC+ = 5V, VCC- = 0V, Tamb = 25°C (unless otherwise specified) Symbol Parameter Input Offset Voltage Vio DVio Tmin. ≤ Tamb ≤ Tmax. Min. Typ. TS925 TS925A TS925 TS925A Max. Unit 3 0.9 5 1.8 mV µV/°C Input Offset Voltage Drift 2 Iio Input Offset Current Vout = 2.5V 1 30 Iib Input Bias Current Vout = 2.5V 15 100 VOH VOL Avd High Level Output Voltage R L connected to Vcc/2 Low Level Output Voltage R L connected to Vcc/2 Large Signal Voltage Gain V out = 4Vpk-pk V out = 4Vpk-pk nA nA RL = 10k R L = 600Ω R L = 32Ω 4.90 4.85 V 4.4 RL= 10k R L = 600Ω R L = 32Ω 300 R L = 10k RL = 600Ω RL= 32Ω 200 40 17 50 120 GBP Gain Bandwith Product R L = 600Ω CMR Common Mode Rejection Ratio 60 80 SVR Supply Voltage Rejection Ratio V cc = 3V to 5V 60 85 Output Short-Circuit Current 50 80 SR Slew Rate 0.7 1.3 Pm Phase Margin at Unit Gain RL = 600Ω, C L =100pF 68 GM Gain Margin RL = 600Ω, C L =100pF 12 en Equivalent Input Noise Voltage f = 1kHz 9 Io THD Cs mV V/mV MHz 4 dB dB mA V/µs Degrees dB Total Harmonic Distortion Vout = 3Vpk-pk, F = 1kHz, Av = 1, RL =600Ω 0.01 Channel Separation 120 nV -----------Hz % dB 5/15 TS925 GLOBAL CIRCUIT Symbol Parameter ICC Total Supply Current No load, Vout = Vcc/2 Istby Total Supply Current in STANDBY (pin 9 connected to Vcc-) Venstby Pin 9 Voltage to enable the STANDBY mode 1) Tmin ≤ Tamb ≤ Tmax Vdistby Pin 9 Voltage to disable the STANDBY mode (see note1) Tmin ≤ Tamb ≤ Tmax 1. Min. Typ 6 Max. 8 Unit mA µA 10 0.3 0.4 1.1 1 V V the STANDBY mode is currently enabled when Pin 9 is GROUNDED and disabled when Pin 9 is left OPEN. PHANTOM GROUND Symbol Parameter Vpg Phantom Ground Output Voltage No Output Current Ipgsc Phantom Ground Output Short Circuit Current (sourced) Z pg Phantom Ground Impedance DC to 20kHz E npg Phantom Ground Output Voltage Noise (f=1kHz) C dec = 100pF C dec = 1nF Min. Typ Max. Unit Vcc/2 -5% Vcc/2 Vcc/2 +5% V 12 18 Ω 3 C dec = 10nF 1) Ipgsk 1. 6/15 Phantom Ground Output Short Circuit Current (sinked) C dec is the decoupling capacitor on Pin9 mA 12 200 40 17 nV -----------Hz 18 mA TS925 INPUT OFFSET VOLTAGE DISTRIBUTION TOTAL SUPPLY CURRENT vsSUPPLY VOLTAGE WITH NO LOAD SUPPLY CURRENT/AMPLIFIER vs TEMPERATURE OUTPUT SHORT CIRCUIT CURRENT vs OUTPUT VOLTAGE OUTPUT SHORT CIRCUIT CURRENT vs OUTPUT VOLTAGE OUTPUT SHORT CIRCUIT CURRENT vs OUTPUT VOLTAGE 7/15 TS925 OUTPUT SHORT CIRCUIT CURRENT vs TEMPERATURE VOLTAGE GAIN AND PHASE vs FREQUENCY DISTORSION + NOISE vs FREQUENCY THD + NOISE vs FREQUENCY THD + NOISE vs FREQUENCY THD + NOISE vs FREQUENCY 8/15 TS925 EQUIVALENT INPUT NOISE vs FREQUENCY TOTAL SUPPLY CURRENT vs STANDBY INPUT VOLTAGE PHANTOM GROUND SHORT CIRCUIT OUTPUT CURRENT vs PHANTOM GROUND OUTPUT VOLTAGE 9/15 APPLICATION NOTE PREAMPLIFIER AND SPEAKER DRIVER USING TS925 by F. MARICOURT The TS925 is an input/output rail to rail quad BiCMOS operational amplifier. It is able to operate with low supply voltages (2.7V) and to drive low output loads such as 32Ω. As an illustration of these features, the following technical note highlights many of the advantages of the device in a global audio application. Preamplifier : the operators A1 and A4 are wired with a non inverting gain of respectively : • A1# (R4/(R3+R17)) • A4# R6/R5 With the following values chosen : • R4=22kΩ - R3=50Ω - R17=1.2kΩ • R6=47kΩ - R5=1.2kΩ, the gain of the preamplifier chain is thus 58dB. Alternatively, the gain of A1 can be adjusted by choosing a JFET transistor Q1 instead of R17. This JFET voltage controlled resistor arrangement forms an automatic level control (ALC) circuit, use-ful in many MIC preamplifier applications. The mean rectified peak level of the output signal enve-lope is used to control the preamplifier gain. APPLICATION CIRCUIT Figure 1 shows two operators (A1, A4) used in a preamplifier configuration, and the two others in a push-pull configuration driving a headset. The phantom ground is used as a common reference level (VCC/2). The power supply is delivered from two LR6 batter-ies (2x1.5V nominal). Figure 1: Electrical Schematic Mike preamplifier C1 C9 MIKE OUTPUT R2 MICROPHONE R5 C6 R3 C4 C14 D1 C5 C2 D2 C3 C7 R7 R17 R18 ALC Q1 R8 Vcc 4 PHANTOM GROUND 8 9 13 C15 C10 STBY C18 C8 C12 R12 R13 R11 R10 C9 6 7 C10 HEADPHONES Headphones amplifier R15 5 C13 AMPLIFIER INPUT LEFT 11 10 Headphone amplifier : the operators A2 and A3 are organized in a push-pull configuration with a gain of 5. The stereo inputs can be connected to a CD-player and the TS925 drives directly the head-phone speakers.This configuration shows the abil-ity of the circuit to drive 32Ω load with a 10/15 R16 C11 12 AMPLIFIER INPUT RIGHT maximum output swing and a high fidelity for reproducing sound and music. Figure 4 shows the available signal swing at the headset outputs : two other rail to rail competitor parts are employed in the same circuit for compari-40 Sson (note the much reduced clipping level and crossover distortion) TS925 Figure 2 : Frequency Response of the Global Preamplifier Chain Figure 3 : Voltage Noise Density vs Frequency at Preamplifier Output 15 70 14 Noise Density (nV/sqrt(Hz) ) Voltage Gain (dB) 60 50 40 30 13 12 11 10 9 8 20 100 1000 10000 100000 1000000 10000000 1.0E+08 frequency (Hz) 7 10 100 1000 10000 100000 frequency (Hz) Figure 5 : THD + Noise vs Frequency (headphone outputs) 0.4 0.35 0.3 THD+noise (%) Figure 4 : Maximum Voltage Swing at Headphone Outputs (RL = 32Ω) 0.25 0.2 0.15 0.1 0.05 0 100 1000 10000 100000 Hz 11/15 TS925 MACROMODEL ** Standard Linear Ics Macromodels, 1996. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT TS925 1 3 2 4 5 (analog) ********************************************************* .MODEL MDTH D IS=1E-8 KF=2.664234E-16 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 8.125000E+00 RIN 15 16 8.125000E+00 RIS 11 15 2.238465E+02 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 153.5u VOFN 13 14 DC 0 IPOL 13 5 3.200000E-05 CPS 11 15 1e-9 DINN 17 13 MDTH 400E-12 VIN 17 5 -0.100000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 0.400000E+00 FCP 4 5 VOFP 1.865000E+02 FCN 5 4 VOFN 1.865000E+02 FIBP 2 5 VOFP 6.250000E-03 FIBN 5 1 VOFN 6.250000E-03 * GM1 STAGE *************** FGM1P 119 5 VOFP 1.1 FGM1N 119 5 VOFN 1.1 RAP 119 4 2.6E+06 RAN 119 5 2.6E+06 * GM2 STAGE *************** G2P 19 5 119 5 1.92E-02 G2N 19 5 119 4 1.92E-02 R2P 19 4 1E+07 R2N 19 5 1E+07 ************************** VINT1 500 0 5 GCONVP 500 501 119 4 19.38 !envoie I(VP)=(V119-V4)/2/Ut VP 501 0 0 GCONVN 500 502 119 5 19.38 !envoie I(VN)=(V119-V5)/2/Ut VN 502 0 0 ********* orientation isink isource ******* VINT2 503 0 5 FCOPY 503 504 VOUT 1 DCOPYP 504 505 MDTH 400E-9 VCOPYP 505 0 0 DCOPYN 506 504 MDTH 400E-9 VCOPYN 0 506 0 *************************** F2PP 19 5 poly(2) VCOPYP VP 0 0 0 0 0.5 I(vout)*I(VP)=Iout*(V119-V4)/2/Ut F2PN 19 5 poly(2) VCOPYP VN 0 0 0 0 0.5 I(vout)*I(VN)=Iout*(V119-V5)/2/Ut F2NP 19 5 poly(2) VCOPYN VP 0 0 0 0 1.75 I(vout)*I(VP)=Iout*(V119-V4)/2/Ut F2NN 19 5 poly(2) VCOPYN VN 0 0 0 0 1.75 I(vout)*I(VN)=Iout*(V119-V5)/2/Ut * COMPENSATION ************ CC 19 119 25p * OUTPUT*********** DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 6.250000E+02 VIPM 28 4 5.000000E+01 HONM 21 27 VOUT 6.250000E+02 VINM 5 27 5.000000E+01 VOUT 3 23 0 ROUT 23 19 6 COUT 3 5 1.300000E-10 DOP 19 25 MDTH 400E-12 VOP 4 25 1.052 DON 24 19 MDTH 400E-12 VON 24 5 1.052 .ENDS ds VP, ds VN, !multiplie !multiplie !multiplie !multiplie ELECTRICAL CHARACTERISTICS VCC+ = 3V, VCC- = 0V, RL, C L connected to VCC/2, Tamb = 25°C (unless otherwise specified) Symbol Conditions Vio A vd R L = 10kΩ ICC No load, per operator Vicm Value Unit 0 mV 200 V/mV 1.2 mA -0.2 to 3.2 V VOH R L = 10kΩ 2.95 V V OL R L = 10kΩ 25 mV mA Isink VO = 3V 80 Isource VO = 0V 80 mA GBP R L = 600kΩ 4 MHz 12/15 SR R L = 10kΩ, CL = 100pF 1.3 V/µs φm R L = 600kΩ 68 Degrees TS925 PACKAGE MECHANICAL DATA 16 PINS - PLASTIC PACKAGE Millimeters Inches Dim. Min. a1 B b b1 D E e e3 F i L Z Typ. 0.51 0.77 Max. Min. 1.65 0.020 0.030 0.5 0.25 Typ. Max. 0.065 0.020 0.010 20 8.5 2.54 17.78 0.787 0.335 0.100 0.700 7.1 5.1 3.3 0.280 0.201 0.130 1.27 0.050 13/15 TS925 PACKAGE MECHANICAL DATA 16 PINS - PLASTIC MICROPACKAGE (SO) Millimeters Inches Dim. Min. A a1 a2 b b1 C c1 D E e e3 F G L M S 14/15 Typ. Max. 0.35 1.75 0.2 1.6 0.46 0.19 0.25 0.1 Min. Typ. Max. 0.014 0.069 0.008 0.063 0.018 0.007 0.010 0.004 0.5 0.020 45° (typ.) 9.8 5.8 10 6.2 0.386 0.228 1.27 8.89 3.8 4.6 0.5 0.394 0.244 0.050 0.350 4.0 5.3 1.27 0.62 0.150 0.181 0.020 8° (max.) 0.157 0.209 0.050 0.024 TS925 PACKAGE MECHANICAL DATA 16 PINS - THIN SHRINK SMALL OUTLINE PACKAGE k c C PLANE SEATING E1 L1 L 0,25 mm .010 inch GAGE PLANE E A A2 8 aaa C D 9 e b A1 16 1 PIN 1 IDENTIFICATION Millimeters Inches Dim. Min. A A1 A2 b c D E E1 e k l 0.05 0.80 0.15 0.1 4.90 4.30 0° 0.50 Typ. 1.00 5.00 6.40 4.40 0.65 0.60 Max. Min. 1.20 0.15 1.05 0.30 0.20 5.10 0.01 0.031 0.005 0.003 0.192 4.50 0.169 8° 0.75 0° 0.09 Typ. 0.039 0.196 0.252 0.173 0.025 0.0236 Max. 0.05 0.006 0.041 0.15 0.012 0.20 0.177 8° 0.030 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom http://www.st.com 15/15